
Interface Texture Development

During Grain Growth

Jason Gruber

Department of Materials Science and Engineering

Carnegie Mellon University

Contents

Abstract 3

List of Symbols 6

List of Figures 8

1 Introduction 12

1.1 Motivation . 12

1.2 Objective . 13

1.3 Hypotheses . 13

1.4 Method . 14

2 Background 16

2.1 Characterization of internal interfaces . 16

2.1.1 Crystallography . 16

2.1.2 Polycrystallography . 17

2.2 Interface texture measures . 18

2.2.1 Misorientation distribution function . 19

2.2.2 Grain boundary character distribution . 20

2.3 Physical properties of internal interfaces . 21

2.3.1 Energy . 21

2.3.2 Mobility . 23

2.4 Kinetics of grain growth . 24

1

CONTENTS 2

2.5 Grain growth simulation . 26

2.6 Anisotropy and texture . 28

3 Simulation methods 30

3.1 Monte Carlo method . 30

3.2 Moving finite element method . 32

3.3 Simulation method verification . 37

3.4 Microstructure generation . 39

3.5 Microstructure analysis . 43

4 Misorientation dependent anisotropy 45

4.1 Simulations . 46

4.2 Results . 47

4.2.1 General observations . 47

4.2.2 Time dependence . 51

4.2.3 Property dependence . 51

4.2.4 Orientation texture dependence . 55

4.2.5 Simulation method validation . 67

4.3 Discussion . 69

4.4 Model . 70

4.4.1 Topological events in grain growth . 71

4.4.2 Critical event model . 72

4.4.3 Comparison with simulations . 74

4.4.4 Boundary lengthening model . 77

4.5 Summary . 84

5 Inclination dependent anisotropy 86

5.1 Simulations . 87

5.2 Results . 88

5.2.1 General observations . 88

5.2.2 Time dependence . 89

CONTENTS 3

5.2.3 Property dependence . 90

5.2.4 Simulation method validation . 98

5.3 Discussion . 101

5.4 Summary . 102

6 Conclusions and Future Work 103

Bibliography 105

A Source code 117

A.1 MMSP . 118

A.2 Texture . 135

A.3 Simulation . 149

A.4 Analysis . 155

Abstract

Simulations of 2D and 3D grain growth with misorientation dependent anisotropic interfacial energy

and mobility were performed using standard numerical methods. Average grain size, grain size distri-

bution, and area and number weighted misorientation distribution functions (MDFs) were computed

at equal time intervals throughout each simulation. The initial microstructures for all simulations

were produced through isostropic coarsening of a domain with all single pixel/voxel grains. Grain

orientations were either assigned randomly or were chosen to produce a single component orientation

texture. Various combinations of energy and mobility functions were used, in particular isotropic

(constant value), Read-Shockley type, and step functions. The simulations were validated by MDF

measurements in polycrystalline magnesia.

Simulations of 3D grain growth with inclination dependent properties were performed using

the moving finite element method with a microstructure discretized as a tetrahedral mesh. In

these simulations, the grain boundary character distribution (GBCD) was measured. The initial

microstructure was produced through isotropic coarsening with randomly assigned subdomains.

Grain orientations were assigned randomly. Energy and mobility functions used took the form of

a summation over the values of a given function for the interface plane in either grain reference

system. The simulations were validated by comparison with the measured GBCD in magnesia.

In simulations with misorientation dependent properties and random initial orientation texture,

both the area and number weighted MDFs reached steady-state distributions after a moderate

amount of grain growth. Similar qualitative results are found in all cases, regardless of the func-

tional form of the boundary properties, crystal symmetry, or dimensionality. Grain boundaries with

relatively low energy have larger average areas occur in greater number than those with higher

4

CONTENTS 5

relative energies. Mobility anisotropy has no measureable effect on interface texture in the simula-

tions performed. The relationship between grain boundary energy and the relative average area of

grain boundaries is found to be approximately one-to-one. Interface texture development occurs by

changes in the relative average areas of grain boundaries, explained by a triple junction lengthening

model, as well as biased elimination of grain boundaries through topological events. In systems with

misorientation dependent properties and non-random intial orientation texture, the MDFs do not

reach steady states. Interface texture in such cases occurs by the mechanisms suggested above but

is also enhanced by strengthening orientation texture.

A quantitative critical event model that is in good agreement with all simulations is presented.

This model predicts that the number weighted MDF fN (θ, t), the area weighted MDF fA(θ, t), the

texture weighted MDF f0(θ, t), and the relative average area of grain boundaries 〈A〉(θ, t)/〈A〉 are

related by the expressions

fN (θ, t) ∝ f0(θ, t)〈A〉(θ, t)/〈A〉

and

fA(θ, t) ∝ f0(θ, t) [〈A〉(θ, t)/〈A〉]2 .

Results from simulations with inclination dependent anisotropy suggest a similar mechanism as in

the case of misorientation dependent anisotropy, with boundaries of lowest energy occuring with the

highest frequencies, and no apparent effect of mobility anisotropy.

List of Symbols

Many of the following symbols that represent functions also appear in the text with explicit time

dependence.

t Time variable.

ϕ1, Φ, ϕ2 Euler angles (Bunge convention).

∆g Misorientation (rotation).

φ, θ Spherical coordinates.

n Surface normal vector.

θ Disorientation angle.

γ(θ) Interfacial energy as a function of disorientation angle.

M(θ) Interfacial mobility as a function of disorientation angle.

vn Normal velocity of a moving interface.

∆E Energy change with respect to interface motion.

kT Thermal energy (Boltzmann constant times temperature).

β Thermal scaling constant used in Monte Carlo simulations.

χ(i, j) Near neighbor indication function used in Monte Carlo simulations.

ǫtri, ǫtet Scaling constants used in moving finite element simulations.

Qtri, Qtet Element quality energies used in moving finite element simulations.

A Area of triangle element, grain boundary area.

V Volume of tetrahedron element, grain volume.

6

CONTENTS 7

N The total number of interfaces in a system.

N(θ) The total number of interfaces characterized by disorientation angle θ.

〈A〉 The average area (length) of all interfaces in a system.

〈A〉(θ) The average area (length) of interfaces characterized by disorientation angle θ.

fN (θ) Number weighted misorientation distribution function as a probability density.

λN (θ) Number weighted misorientation distribution function in multiples random.

fA(θ) Area weighted misorientation distribution function as a probability density.

λA(θ) Area weighted misorientation distribution function in multiples random.

f◦(θ) Texture weighted misorientation distribution function.

List of Figures

2.1 Scanning electron microscope image of strontium titanate microstructure (Courtesy

T. Sano). 17

2.2 Random disorientation-based MDFs for cubic (point group O) and hexagonal (point

group D6) crystal systems. 19

2.3 Example GBCD from simulation (see chapter 5) [1]. Population (in multiples random)

of grain boundary planes at a fixed misorientation of 45◦ about 〈1, 0, 0〉. 20

2.4 Read-Shockley energy plotted with θ′ = 15◦. 22

2.5 Energy of symmetric tilt grain boundaries in aluminum and copper as a function of

tilt angle α about [100] from Hasson et al. [2]. 23

2.6 Mobility as a function of misorientation, given in equation 2.3. Here n = 5. 24

3.1 Area rate of change of circular shrinking grains for Monte Carlo with isotropic bound-

ary properties: average area rate of change and results from three individual simulations. 39

3.2 Frequency of dihedral angles in MFE simulations as a function of time. 40

3.3 Initial microstructures for 2D and 3D simulations. 41

3.4 Initial microstructure for 3D FEM simulations. 42

4.1 Grain volume V as a function of time t for 3D Monte Carlo simulations. Here, “cubic”

and “hexagonal” imply γRS(θ) with θ′ = 45◦ and isotropic mobility, while “mobility”

implies MRS(θ) with θ′ = 45◦ and isotropic energy. 48

4.2 Grain size distribution for various 3D Monte Carlo simulations. 49

8

LIST OF FIGURES 9

4.3 Microstructure from grain growth with γRS, θ′ = 45◦, 2000 MCS. 1/8 of the simulation

domain is shown. 50

4.4 Plots of ∆(t) for select 3D Monte Carlo simulations with energy functions γRS(θ),

θ′ = 45◦ and isotropic mobility. 52

4.5 Misorientation distribution functions after 2D grain growth with energy functions

γRS(θ), θ′ = 45◦ and isotropic mobility at 1000 MCS. In each case, the average grain

area has doubled. 53

4.6 Misorientation distribution functions after 3D grain growth with energy functions

γRS(θ), θ′ = 45◦, isotropic mobility, at 500 MCS. In each case, the average grain

volume has doubled. 54

4.7 Grain boundary population in multiples random λ as a function of energy γ in several

3D simulations, 500 MCS. 56

4.8 Normalized average boundary area 〈A〉(θ)/〈A〉 and grain boundary energy γ as a func-

tion of disorientation θ for Monte Carlo simulations with anisotropic energy, isotropic

mobility, and cubic crystal symmetry at 500 MCS. 57

4.9 Area and number weighted MDFs in multiples random for various Read-Shockley

type energy functions and isotropic mobility. Data from 3D Monte Carlo simulations

at 500 MCS. 58

4.10 Area and number weighted MDFs for Read-Shockley type energy or mobility func-

tions. Data from 3D Monte Carlo simulations at 500 MCS. 59

4.11 Average grain volume 〈V 〉 as a function of time for simulations with non-random

orientation texture. 60

4.12 Grain size distribution for simulations with non-random orientation texture at 500

MCS. 61

4.13 Relative average area 〈A〉(θ)/〈A〉 of grain boundaries as a function of disorientation

angle θ for simulations with non-random orientation texture at 500 MCS. 61

4.14 Area weighted MDFs measured for simulations with non-random orientation texture. 62

4.15 Orientation distribution function for simulation with non-random initial orientation

texture with α = 4.20 at 0 MCS. 64

LIST OF FIGURES 10

4.16 Orientation distribution function for simulation with non-random initial orientation

texture with α = 4.20 at 4000 MCS. 65

4.17 Texture weighted MDF as a function of time for simulations with non-random orien-

tation texture. 66

4.18 Results from polycrystalline magnesia with random orientation texture (Courtesy

H.M. Miller [3]). 68

4.19 Scatter plot of left- and right-hand sides of equation 4.20 for all Monte Carlo simula-

tions with random orientation texture, 2000 MCS. 76

4.20 Scatter plot of left- and right-hand sides of equation 4.22 for all Monte Carlo simula-

tions, 2000 MCS. 78

4.21 Relation between area and number weighted MDFs for several 3D simulations, 500

MCS. 79

4.22 Scatter plot of left- and right-hand sides of equation 4.20. 3D Monte Carlo simulations

with γRS(θ), θ′ = 45◦ and cubic crystal symmetry. 79

4.23 Scatter plot of left- and right-hand sides of equation 4.20. 3D Monte Carlo simulations

with non-random orientation texture. 80

4.24 Scatter plot of left- and right-hand sides of equation 4.20 for polycrystalline magnesia. 80

4.25 Schematic of grain boundary lengthening process. A boundary with energy γ(θ) in-

tersects two boundaries with the maximum grain boundary energy in an isotropic

configuration. Boundary lengthening occurs as the boundaries adjust to satisfy me-

chanical equilibrium at the triple junction. 81

4.26 Scatter plot of grain boundary energy and average boundary area for Monte Carlo

simulations. Lines indicate boundary lengthening model predictions and polynomial

fit. 83

4.27 Steady state area weighted MDF computed using the second order polynomial fit 4.26,

γRS, θ′ = 45◦. Solid line is the corresponding area weighted MDF from simulation,

500 MCS. 84

4.28 Energy function derived from MDF measurements of polycrystalline magnesia. Solid

line is γRS, θ′ = 15◦. 85

LIST OF FIGURES 11

5.1 The function ∆(t) for select simulations. Data from isotropic simulation are obscured

by that from simulation with anisotropic mobility. 89

5.2 Grain boundary population and energy for a fixed misorientation of 45◦ about 〈1, 0, 0〉,

where γmin/γmax = 1.25, n′ = 〈1, 1, 1〉. 91

5.3 Grain boundary population and energy for a fixed misorientation of 60◦ about 〈1, 1, 1〉,

where γmin/γmax = 1.25, n′ = 〈1, 1, 1〉. 92

5.4 Average population of grain boundaries as a function of grain boundary energy γ for

various simulations. 93

5.5 Population of interface normals on an embedded shrinking grain, with misorientation

45◦ about 〈1, 0, 0〉. Compare with the result of figure 5.2. 94

5.6 Grain boundary population and mobility for a fixed misorientation of 45◦ about

〈1, 1, 0〉, where Mmin/Mmax = 12.5, n′ = 〈1, 1, 1〉. 95

5.7 Grain boundary population and energy for a fixed misorientation of 60◦ about 〈1, 1, 1〉,

where Mmin/Mmax = 12.5, n′ = 〈1, 1, 1〉. 96

5.8 Frequency of individual boundary types with energy γ and population λ (multiples

random). 97

5.9 Population and energy of grain boundaries with < 10◦ misorientation, as a function

of angle α about the zone [001]. Simulated data from simulation with “flat” energy

wells. 98

5.10 Experimentally measured population and energy of grain boundaries in polycrystalline

magnesia, as a function of angle α about the zone [010], from Saylor et al. [4]. 99

5.11 Comparison of low angle grain boundary distributions for simulation with [100] type

energy minima and experimental data from polycrystalline magnesia. 100

Chapter 1

Introduction

1.1 Motivation

The motivation for studying materials processing is a desire to predict and control the structure,

and consequently, the utility of engineered products. The majority of engineering materials are

polycrystalline, and for many such materials the microstructure largely determines the macroscopic

physical properties. A systematic study of materials processing and resulting microstructures then

has obvious value, and makes up a large part of the scientific literature. In this work we examine

grain growth, a process common to all polycrystalline materials, and its effect on several quantitative

microstructural measures.

Recent measurements of microstructural features in annealed metals and ceramics have shown

non-uniform distributions of internal interfaces [5–13]. In each case, these distributions appear to

be related to the physical properties of the interfaces. At the same time, several alloy producers are

now advertising materials which have undergone thermal and mechanical processing to control the

frequency of “special” internal interfaces. Similar processes are discussed in the literature, and have

been shown to result in improved bulk properties such as resistance to intergranular fracture and

stress corrosion cracking [14–19], longer fatigue lifetimes [20, 21], or enhanced ductility [22–24].

The question of how such non-uniform distributions of internal interfaces form has not yet been

answered. Grain growth in a single-phase polycrystal with anisotropic interfacial properties is per-

12

1.2. OBJECTIVE 13

haps the simplest physical process that might lead to interface texture, and several computational

studies have been performed that attempt to relate anisotropy to interface texture development in

these systems [1, 25–38]. Results from these simulations suggest that grain growth with anisotropic

interfacial properties can result in grain boundary distributions similar to those measured in real

materials. None of the previous work, however, incorporates complete interfacial anisotropy or fully

three-dimensional grain growth. While quantitative models have been proposed that explain area-

weighted grain boundary statistics [28], no such model exists that predicts texture in both area- and

number-weighted grain boundary distributions, as observed in experiment [6]. There is then a need

to investigate interface texture development using more complete models.

1.2 Objective

The objective of this work is to determine the effect of anisotropic interfacial properties on interface

texture resulting from grain growth. Specifically, we study the the misorientation distribution func-

tion (MDF) and the grain boundary character distribution (GBCD), both statistical measures of

the interface character of a polycrystal. Our focus is on determining the mechanisms which produce

interface texture and developing a quantitative model that relates interfacial properties to the MDF

or GBCD.

1.3 Hypotheses

We predict that many of the observations from previous simulations and experiments will hold

in the present case, i.e. that anisotropic interfacial properties will result in non-uniform interface

distributions, that these distributions will generally exhibit an inverse relation to interfacial energy,

and that mobility anisotropy will have a weaker effect on grain boundary distributions than energy

anisotropy [31, 32, 37]. In microstructures with random orientation texture, we assume that the

process of grain growth introduces new grain boundaries randomly, and because the kinetic equation

of grain growth is independent of length scales, we expect to find that the GBCD and MDF show

steady-state behavior during grain growth in sufficiently large (many grains) systems. Because we

expect texture development in our simulations to result from anisotropic interfacial properties, we

1.4. METHOD 14

predict that the amplitudes in most distributions increase with increasing energy anisotropy. To

test these hypotheses we must be able to measure grain boundary character in systems with varying

levels of anisotropy, while also analyzing interface texture data at many sequential points in time.

1.4 Method

Experimental measurements of the MDF are common, and GBCD measurements have been per-

formed recently [5, 6, 8, 9]. While automated texture analysis systems are continually improving,

such measurements still require a non-trivial effort to produce a temporal sequence of distributions

to a desirable resolution and accuracy. Additionally, those interfacial properties (energy and mobil-

ity) that affect grain growth kinetics are not easily measured. To study the effect of grain growth

with anisotropic interfacial properties on the MDF or GBCD, we must first be able to associate

an interfacial energy and mobility with any given misorientation and interface plane. At this time,

only one energy measurement with this generality has been completed, and there has never been

such a mobility measurement [4]. Our objective is perhaps unattainable with a purely experimental

approach.

We then proceed with computational methods. Mesoscale grain growth simulations have already

been used to successfully model physical systems with anisotropic interfacial properties [1,25,27–29,

33,34,36]. Measurement of the MDF or GBCD are then trivial, and the desired interfacial anisotropy

becomes an input parameter. While we focus on simulations that have realistic material properties,

using computational methods also allows us to model systems with interfacial properties that may

not be easily achieved with a physical specimen. For example, we can easily scale energy and mobility

functions, or isolate the effects of either. Exaggerated anisotropies can be easily simulated and could

be used to test the robustness of our hypotheses.

The variablity of the systems that might be studied is enormous. Our approach is to work from

the ground up, working with the simplest relevant cases. We therefore impose the following limits

on our model systems:

1. All systems are single-phase polycrystals. These are considered to be pure materials, i.e. there
are no effects of strutural or chemical inhomogeneities such as solute segregation that might

1.4. METHOD 15

affect the kinetics of grain growth.

2. In all systems, the correlated ODF and the uncorrelated ODF are, for practical purposes, the
same. This means that the statistical properties of the microstructure are the same in either
a local or global sense.

3. Thermodynamic variables other than interfacial energy (temperature, pressure, etc.) are con-
stant and uniformly homogeneous. In particular, the bulk free energy density is constant,
which implies that the only driving force for grain growth is the reduction in interfacial energy.

4. Interfacial energy and mobility are functions of macroscopic interface geometry only.

We note that the methods used in this work could easily be applied to systems where any of the

above limits are relaxed, and such cases should be examined in future work.

Chapter 2

Background

This chapter reviews basic concepts used in our work. Crystallography and polycrystallography are

discussed in the first section. The characterization of polycrystals by their macroscopic geometry

provides the most convenient method of classifying internal interfaces. The second section introduces

the interface texture measures that will be the objects of our study. These measures are statistical

distributions of internal interfaces based on the classification method discussed earlier. The following

two sections cover interfacial properties and the kinetic equation of grain growth, respectively. In

particular, we discuss grain boundary energy and mobility, which are the essential input to our

models. We then present an overview of methods commonly used in grain growth simulation.

Finally, we examine previous experimental and computational results that relate grain boundary

properties to interface texture development.

2.1 Characterization of internal interfaces

2.1.1 Crystallography

Crystallography is the study of crystal structures, which are spatially periodic arrangements of atoms

or molecules in space [39]. By convention, we associate coordinate axes with some convenient direc-

tions in a crystal and describe features, such as directions or atomic planes, using the terminology

of vector space theory. This model applies to a wide range of metals, alloys, ceramics, and naturally

16

2.1. CHARACTERIZATION OF INTERNAL INTERFACES 17

Figure 2.1: Scanning electron microscope image of strontium titanate microstructure (Courtesy T.
Sano).

occuring minerals.

Crystal structures are often classified by their symmetry, or more precisely, by invariance under

certain unitary (length and angle preserving) linear transformations. Such transformations represent

operations such as rotating a crystal from one spatial orientation into a physically indistinguishable

orientation. Symmetry implies that the directionally dependent properties of a crystal are invariant

under the same transformations (see e.g. [40]).

2.1.2 Polycrystallography

A polycrystal is a collection of crystals or grains that make up a single solid object, figure 2.1.

Individual grains in a polycrystal may differ from their neighbors by either orientation or phase.

Most engineered alloys and ceramics are polycrystalline.

The orientations of individual grains are usually represented mathematically as proper rotations

from some global coordinate system. Many computational tools exist for characterizing rotations (see

e.g. [41]). For generating orientations, and in functional arguments, we use Bunge’s convention [42]

for Euler angles, written as ϕ1, Φ, and ϕ2. For descriptive purposes, we will often specify particular

orientations by their associated rotation axis (unique real eigenvector) and angle pair. We use the

2.2. INTERFACE TEXTURE MEASURES 18

quaternion representation exclusively for computations [43].

The relative orientation difference between two grains, or the misorientation, is an important

quantity that provides one means for characterizing a grain boundary. The misorientation is itself

a rotation and is parameterized as such. Locally, the interface between a pair of adjacent grains is

represented as a two-dimensional surface. The local normal vector to the surface can be represented

by spherical angles with respect to the coordinate axes of either grain. In general, the macroscopic

geometric character of a grain boundary is determined by the misorientation between the opposing

grains and the direction of the local interface normal vector.

In three-dimensional polycrystals, any orientation or misorientation has three mathematical de-

grees of freedom [41]. Another related classification scheme for grain boundary character compresses

misorientations into a single parameter called the disorientation angle. The disorientation angle of

two grains is the smallest possible rotation angle when misorientation is described as one of any

symmetrically equivalent rotation axis and angle pairs. Grain boundaries with similar disorienta-

tion are sometimes found to have similar physical properties, and so the disorientation classification

is used frequently.

Some grain misorientations have especially simple geometries, and have been studied extensively

in the literature. These include twins and other coincident site lattice (CSL) boundaries [44]. These

interfaces have some number of lattice sites on either side of the boundary plane which coincide. In

some cases, CSL boundaries have physical properties that are significantly different than arbitrary

grain boundaries. The atomic structures and physical properties of more general grain boundaries

are in most cases unknown [45].

2.2 Interface texture measures

Polycrystalline materials are rarely simple enough to allow a complete quantitative characterization

of all microstructural features. Statistical measures, such as those described below, have proven

useful in understanding and predicting materials behavior.

2.2. INTERFACE TEXTURE MEASURES 19

0

0.01

0.02

0.03

0.04

0 20 40 60 80 100

f(
θ)

θ

cubic
hexagonal

Figure 2.2: Random disorientation-based MDFs for cubic (point group O) and hexagonal (point
group D6) crystal systems.

2.2.1 Misorientation distribution function

A misorientation distribution function (MDF) quantifies the probability of measuring interfacial area

in a polycrystal where the two grains making the interface have crystal coordinate systems related

by a particular rotation. The MDF can be interpreted as a weighted probability density on the

group of rotations in three dimensions. The weighting factor is usually chosen such that a random

distribution has unit value everywhere, i.e. the value is given in multiples of the random distribution

(MRD).

An MDF has symmetry properties derived from the crystal system(s) present in the microstruc-

ture. Often, the MDF is compressed into a probability density based on disorientation (see figure 2.2).

Because the misorientation is constant at all points on an interface separating two grains, an MDF

may in some cases be used to express a number fraction of boundary types rather than an area

fraction. How the MDF is used will always be stated explicitly.

In all that follows, the MDF will be presented as a function of disorientation angle θ only. The

MDF is computed by discrete binning. We consistently use a total of 30 bins over a range of

disorientation angles 2◦ ≤ θ ≤ θmax, where θmax is the maximum disorientation angle for the given

2.2. INTERFACE TEXTURE MEASURES 20

 0.200
 0.300
 0.400
 0.500
 0.600
 0.700
 0.800
 0.900
 1.000
 1.100

MRD

Figure 2.3: Example GBCD from simulation (see chapter 5) [1]. Population (in multiples random)
of grain boundary planes at a fixed misorientation of 45◦ about 〈1, 0, 0〉.

crystal system. For cubic and hexagonal crystal systems, we use the approximations θmax = 62.8◦

and θmax = 94.0◦, respectively.

2.2.2 Grain boundary character distribution

The grain boundary character distribution (GBCD) incorporates both misorientation and interface

normal vector information into a single weighted probability density.

The GBCD is a function of the five parameters describing misorientation and the interface

normal. Because of the possibility of continuously changing interface normal vectors, the GBCD

cannot be expressed as a number fraction of boundary types as the MDF without some explicit

choice of discretization. The convention for visualizing the GBCD is to plot sections of constant

misorientation in a stereographic projection as shown in figure 2.3. Experimental measurements of

the GBCD have been performed only recently [5, 6, 8, 9].

Like the MDF, we compute the GBCD by discrete binning. We use an equal volume element in the

2.3. PHYSICAL PROPERTIES OF INTERNAL INTERFACES 21

space of grain boundary planes with an approximate resolution of 10◦, i.e. ∆φ1 = ∆φ2 = ∆φ = 10◦

and ∆cosΦ = ∆cos θ = 1/9. Because we compute the GBCD only for the cubic crystal system, we

use a reduced Euler space defined by 0◦ ≤ φ1 ≤ 90◦, 0◦ ≤ Φ ≤ 90◦, and 0◦ ≤ φ2 ≤ 90◦, and the

positive hemisphere of S2, i.e. 0◦ ≤ φ ≤ 360◦ and 0◦ ≤ θ ≤ 90◦.

2.3 Physical properties of internal interfaces

Here we discuss those properties of internal interfaces which are explicitly involved in grain growth

kinetics. The discussion here should make it clear that, although a large number of simplifying

approximations must be made, the energy and mobility functions used in our simulations do have

an underlying physical basis.

2.3.1 Energy

Internal interfaces such as grain boundaries are non-equilibrium defects which are introduced into

a material through processing [45]. It follows that there is a positive excess energy associated with

such interfaces. This energy depends on interface structure as well as thermodynamic variables

such as temperature and chemical composition. The present work only considers systems where

temperature and other thermodynamic parameters are constant, and therefore interfacial energy

will be a function of interface geometry alone.

Even ignoring thermodynamic parameters, grain boundary energy as a function of macroscopic

interface geometry is known for relatively few materials systems [4]. It is therefore common practice

to approximate boundary properties by some simple functional forms. For misorientation depen-

dence, the most common approximation by far is the relation first proposed by Read and Shock-

ley [46]. The Read-Shockley energy γ is a function of disorientation θ and takes the form

γ(θ) =















γ′ θ
θ′

[

1 − ln
(

θ
θ′

)]

θ < θ′

γ′ θ ≥ θ′
(2.1)

where γ′ is the average energy of high angle grain boundaries and θ′ is the high disorientation angle

cutoff. A typical choice of θ′ is 15◦, and this function is shown in figure 2.4. Note that the use of the

2.3. PHYSICAL PROPERTIES OF INTERNAL INTERFACES 22

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

γ(
θ)

θ

Figure 2.4: Read-Shockley energy plotted with θ′ = 15◦.

disorientation angle implies that this function of grain boundary energy is invariant under all proper

crystal symmetry operators. The Read-Shockley function is based on a model of grain boundaries as

arrays of dislocations, and has been shown to fit energy functions for various polycrystalline systems

in the low angle regime [47–49]. The expression given above ignores differences in high angle grain

boundary energies where the dislocation array model is no longer appropriate. For example, Hasson

et al. have shown that the deviations occur at high angle tilt boundaries with low index planes

in aluminum and copper [2]. Their data is reproduced in figure 2.5. However, such deviations are

relatively small and the Read-Shockley function provides a reasonable approximation. Especially

large deviations from the Read-Shockley energy are expected to occur near particular misorientations

such as coherent twins or coincident site lattice (CSL) boundaries [50, 51].

The dependence of grain boundary energy on both misorientation and interface plane normal

has been studied recently. Saylor et al. [4] have shown that a half-energy value can be associated

with any interface plane irrespective of misorientation, such that the inclination dependent grain

boundary energy can be approximated reasonably well by the sum of the half-energies associated

with the two interface planes, i.e.

γ(∆g,nA) = γs(nA) + γs(∆gnA) (2.2)

2.3. PHYSICAL PROPERTIES OF INTERNAL INTERFACES 23

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90

γ/
γ m

ax

α

Al
Cu

Figure 2.5: Energy of symmetric tilt grain boundaries in aluminum and copper as a function of tilt
angle α about [100] from Hasson et al. [2].

where nA denotes the interface normals in one of the local (grain) coordinate systems, and ∆g is

a linear operator representing the grain misorientation. The function γs approximates the surface

energy of a single crystal. This method for assigning grain boundary energy with inclination depen-

dence has been shown to produce simulated GBCDs which in large part agree with experimental

results [1].

2.3.2 Mobility

Interface mobility is defined as the ratio of the normal velocity of a moving interface to the driving

force for that motion (see the following section). For the systems studied here, mobility is considered

only as a function of interface geometry only, similar to the interfacial energy.

A reasonable approximation for grain boundary mobility as a function of misorientation in many

materials is given by [52]

M(θ) =















M ′
(

θ
θ′

)n
θ < θ′

M ′ θ ≥ θ′
(2.3)

where M ′ is the average mobility of high angle grain boundaries, n is an empirical constant, and

2.4. KINETICS OF GRAIN GROWTH 24

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

γ(
θ)

θ

Figure 2.6: Mobility as a function of misorientation, given in equation 2.3. Here n = 5.

θ′ is the high angle disorientation cutoff (figure 2.6). Typically, the value of n is chosen to be

an integer greater than one. Qualitatively, this function behaves like the Read-Shockley function,

with a constant value for high angle boundaries and a fast drop to zero at zero misorientation.

The misorientation dependence of mobility is often approximated by either expression. As in the

approximation for grain boundary energy, this relation does not incorporate differences in high angle

boundary mobilities, which are known to change rapidly near special boundaries [53].

No complete experimental measurements of grain boundary mobility as a function of both mis-

orientation and interface plane normal have been performed as of this time. However, it seems

reasonable to chose an inclination dependent mobility function in the same way as described above.

Several measurements of mobility for specific grain boundaries have shown that anisotropies as great

as 100 or larger can occur in the space of grain boundary planes [53]. These are typically associated

with CSLs or other special boundaries.

2.4 Kinetics of grain growth

Grain growth is the process by which the total energy in a polycrystal is reduced by the elimination

of internal interfacial area as grain boundaries move. This motion is a result of solid-state diffusion

2.4. KINETICS OF GRAIN GROWTH 25

between adjacent grains. If a volume exchange that occurs at an interface decreases total energy,

the process leads to the growth of one grain at the expense of the other. We now relate the energy

change through interface motion to velocity for grain boundaries.

The simple model given here follows Turnbull [54]. At high temperatures, solid-state diffusion

occurs and there is a diffusive flux of atoms from grain 1 to grain 2, as well as in the opposite direction.

As a diffusional process, each flux is proportional to an exponential function of the activation energy

required for atomic motion. The net flux from grain 1 to grain 2 is

J = c12 exp

[

−∆E12

kT

]

− c21 exp

[

−∆E21

kT

]

(2.4)

where each cij is a positive constant, T is temperature, k is Boltzmann’s constant, and ∆Eij is the

activation energy required for flux from grain i to grain j. Define ∆E = ∆E12 − ∆E21. When

∆E = 0, there is no change in energy related with interface motion, and therefore J = 0, which

implies that the proportionality constants c12 = −c21 = c. Assuming J > 0, at high temperatures

kT ≫ ∆E and, keeping only the linear terms of the exponential,

J ≈ c exp

[

−∆E12

kT

]

∆E

kT
(2.5)

The normal velocity of the interface vn is given by the product of the net diffusive flux and the

atomic volume Na/Vm, giving

vn = M
∆E

∆Vm

(2.6)

where the interface mobility M is introduced as the proportionality between the energetic driving

force for boundary motion and the interface velocity.

We now have an equation which relates the local change in energy due to interface motion to the

velocity of an internal interface. In the continuum limit, this equation represents boundary motion

with velocity proportional to the energy gradient. For smoothly curved surfaces, this relation can

be expressed as

vn = Mγκ (2.7)

where κ is mean curvature. This equation now explicitly incorporates grain boundary energy. Note

2.5. GRAIN GROWTH SIMULATION 26

that the above derivation does not consider other mechanisms for grain boundary motion, such as

grain sliding or cooperative atomic motion [55].

2.5 Grain growth simulation

Several methods for simulating macroscopic grain growth are in common use and are discussed in

this section. More detailed information about the methods used in this work is presented in the

next chapter.

Vertex method. The vertex method has been used mainly to simulate grain growth in two

dimensions [56–66]. This method tracks triple junctions, or vertices, and approximates the remainder

of the grain boundary as a line segment (2D) or a planar segment (3D). Forces on the vertices are

calculated by the force imbalance at the triple junctions as per Herring’s equation for triple junction

equilibrium [67], and the system is evolved through discrete time steps.

Relatively few vertex method simulations with anisotropic interfacial properties have been per-

formed [57,60]. The vertex method cannot accurately predict the shape of curved grain boundaries,

and so is probably of limited use for studying local interface character and related texture measures

such as the GBCD.

Front-tracking methods. Front-tracking methods1 are essentially extensions of the vertex method.

In addition to the motion of triple junctions, the motion of arbitrary points along the interface are

calculated. The earliest such method was two-dimensional and used the points between triple junc-

tions to interpolate curved interfaces [68]. Triple junction motion was then similar to that in the

vertex method but a separate step was taken to advance all non-vertex points by interface curvature.

Many 2D front-tracking methods take this form [68–72], although particular methods may use some

definite choice of interpolating curve, e.g. cubic splines [73, 74].

Front-tracking methods improve upon the simple vertex method in that more realistic interface

curvatures are possible. Thus it is feasible to use such methods to study local interface character.

1Often, the term “front-tracking method” is used interchangably with “sharp interface method.” With this ter-
minology, moving finite element (MFE) methods are front-tracking methods. However, we will make the distinction
that front-tracking methods are those not derived from a variational principle.

2.5. GRAIN GROWTH SIMULATION 27

Monte Carlo methods. Monte Carlo (MC) methods are perhaps the most commonly used meth-

ods for simulating grain growth [28, 34, 75–95]. The basis of MC is that the physical domain is

partitioned into identical cells, each with an associated state which represents orientation, phase,

or other properties. Grain growth occurs by randomly selecting cells and altering their state by

some probabalistic rule. The probability is chosen such that the system evolves as if by a thermally

activated process. The MC method naturally lends itself toward simulating anisotropic properties,

e.g. in simulating abnormal grain growth due to anisotropic mobility [78, 81, 82].

Cellular automata methods. Cellular automata (CA) methods, like Monte Carlo methods, are

simulations in a spatial domain of regular cells with discrete states. In classical CA methods, the

new state of each cell in a CA simulation is updated by a deterministic rule that depends only on

the previous state of the cell and the neighborhood of cells around it. Another approach is to use

a probabilistic rule like that used for MC [96]. Such CA methods still differ from MC methods in

that cell updates are performed simultaneously.

Several grain growth simulations with CA methods have been performed [96–101]. An emerging

approach to grain growth simulation with CA is to use cells defined by points randomly positioned

within the simulation domain. Such random-grid CA models have even been used to simulate

anisotropic grain growth [98].

Phase field methods. Phase field methods for simulating grain growth were developed later than

most of the methods mentioned above [30–32, 102–112]. In phase field (PF) methods, continuous

fields are defined over the simulation domain and represent individual phases or orientations. In-

terfaces are represented by level sets of the phase fields and are moved implicitly by evolving the

fields.

PF simulations with anisotropic interfacial properties have been performed, many incorporat-

ing interface plane anisotropy [30–32, 108–110]. Until recently, the PF method has been capable of

simulating grain growth only in two-dimensional or small three-dimensional systems. New compu-

tational methods have overcome these limitations and made the PF method suitable for large-scale,

three-dimensional simulations with anisotropy [112,113].

2.6. ANISOTROPY AND TEXTURE 28

Moving finite element methods. Finite element methods (FEM) have many well-known appli-

cations. For simulating grain growth, moving finite elements (MFE) are employed [1, 29, 33, 35, 37,

114–119]. MFE methods represent interfaces as discrete elements, and boundary motion occurs by

updating the elemental node positions. The node velocities are calculated as the solution to some

variational problem and positions are updated through discrete time steps.

Moving finite element methods for simulating grain growth use a discretization in which a wide

range of interface inclinations can be approximated quite naturally. MFE methods make it trivial

to assign anisotropic interfacial properties which are interface plane dependent, to incorporate these

properties into the numerical method, and to analyze results.

2.6 Anisotropy and texture

The effect of anisotropic interfacial properties on interface texture development has been studied

previously with Monte Carlo and Phase Field methods [25, 27, 28]. In addition, Kinderlehrer et al.

have performed 2D moving finite element simulations to study interface texture [35].

Hinz et al. [25] assigned low energy values to coincident site lattice (CSL) boundaries and observed

higher populations of such grain boundaries in three-dimensional MC simulations. In three similar

studies, 2D MC simulations of grain growth with Read-Shockley type interfacial energy produced

interface populations with increased frequency of low-angle (low energy) boundaries [27,28,34]. The

work of Kazaryan et al. [30–32,110] incorporated anisotropic energy and mobility dependent on both

misorientation and interface inclination into 2D PF models. Results from these simulations suggested

a relatively weak effect of anisotropic mobility in comparison to anisotropic energy. Anisotropic

energy was found to increase the population of low energy interfaces. Upmanyu et al. [120] performed

similar calculations with misorientation-dependent energy and mobility [9]. Again, the effects of

anisotropic energy on interface plane texture were significantly greater than those of anisotropic

mobility. The authors of this paper proposed a boundary lengthening mechanism based on triple

junction equilibrium to explain their results. Kinderlehrer et al. [35] have simulated grain growth

with misorientation and interface plane dependent energy and mobility using a 2D FEM model.

Their results largely confirm those described above. In addition, they simulated grain growth with

anisotropic properties while constraining triple junctions to meet isotropic equilibrium conditions.

2.6. ANISOTROPY AND TEXTURE 29

The result was no interface texture development, supporting the idea that triple junctions influence

the development of interface plane populations. The authors also suggest interface rotation at triple

junctions as a cause of texture in the space of interface planes.

Chapter 3

Simulation methods

This chapter contains detailed information about the numerical methods used in this work. The

essential features of each simulation method are discussed, with particular emphasis on the incor-

poration of interfacial anisotropy. Test cases are presented which demonstrate that the methods

perform as expected for a variety of simple geometries. Finally, microstructure generation and

analysis methods are discussed.

Most of the computations discussed in the following chapters were performed with software

written specifically for this project. The appendix contains a detailed listing of the most relevant

source code.

3.1 Monte Carlo method

The formulation of the Monte Carlo method used here is based largely on common practice (see e.g.

[28,81,93,121]). We consider a domain Ω, sampled on a Cartesian grid with N lattice sites. Each site

has an integer value associated with it, called its “spin” state. For our purposes, the spin represents

a grain identifier, or equivalently, a fixed crystal orientation. In this representation, adjacent sites

with unlike spins define grain boundaries.

30

3.1. MONTE CARLO METHOD 31

The total system energy is given by

E =
N

∑

i=0

N
∑

j 6=i

γ(θij)χ(i, j) (3.1)

where N is the number of lattice points, γ(θij) is the energy per unit area of grain boundary with

misorientation θij , and χ(i, j) is a function that is one if site i is a near neighbor of site j and zero

otherwise. For a general lattice site, we use the 8 (2D) or 26 (3D) nearest lattice sites as neighbors.

Finite boundary conditions are imposed, and therefore sites on the domain boundary have fewer

neighbors than interior sites.

The Monte Carlo algorithm begins by choosing a site at random, which we will call the base site.

The state, or “spin” of the base site is recorded. Then a list is generated that consists of spins found

in the base site’s nearest neighbors. A possible new spin for the base site is chosen randomly from

this list. Define ∆E, the change in E produced by replacing the base site’s old spin with the new

spin. The switch is allowed to occur with a probability P that depends on the total energy change

of the system, as well as grain boundary energy and mobility,

P =















M(θij)
Mmax

γ(θij)
γmax

∆E ≤ 0

M(θij)
Mmax

γ(θij)
γmax

exp
[

− ∆E
βγ(θij)

]

∆E > 0

(3.2)

where β is an empirical constant chosen such that interfaces roughen but do not disorder. In most

simualations, we use values of β either 0.7 (2D) or 1.5 (3D). Intuitively, P represents the probability

that the subsystem at the base site has sufficient thermal energy to make the switch. The process is

then repeated. We use the convention that N such repetitions of this process constitute one Monte

Carlo step (MCS).

Note that anisotropy has been included explicitly in the flip probability given by equation 3.2.

While both the interface mobility and energy scale the magnitude of the boundary migration rate,

interfacial energy also affects the driving force for migration through the computation of ∆E with

equation 3.1. Thus energy and mobility anisotropy perform distinct roles in Monte Carlo grain

growth simulations.

Several choices made here, while common, are only a matter of preference when performing

3.2. MOVING FINITE ELEMENT METHOD 32

Monte Carlo simulations. For example, we perform Monte Carlo simulations on Cartesian grids,

although other discretizations such as the triangular lattice (2D) are common. Likewise, periodic

boundary conditions are often used as an alternative to finite boundary conditions. While these

choices may have little effect on the physicality of the simulation, it is known that choosing an

inappropriate value of β can lead to lattice pinning (low β) or disordering (high β). In this work,

we will demonstrate that all of the relevant data we wish to extract from Monte Carlo simulations

are fairly insensitive to the boundary conditions used or to our choice of lattice temperature β.

3.2 Moving finite element method

The classical equation for interface-controlled boundary motion is

vn = M∇nE (3.3)

where vn denotes the magnitude of the interface normal velocity, M the interface mobility, and

∇nE the total system energy change by an infinitesimal normal displacement of the interface at a

given point. The direction of the interface normal is, of course, chosen so that the process is energy

dissipative. The moving finite element method attempts to move mesh nodes so that the equation

of motion is satisfied as well as possible at all points on each interface [114–116]. This naturally

leads to minimization of a functional such as

J1 =

∫

S

(vn − M∇nE)2 dS (3.4)

over all possible nodal velocities. Here S implies all mobile interfaces. This functional represents in

some sense a least-squares problem for calculating interface motion.

Two additional issues must be addressed by the method. First, minimization of (3.4) may not

produce unique solutions for some mesh geometries. As an example, consider a planar interface with

a constant velocity at all points, presumably moving by a homogeneous volume energy driving force.

Minimization of (3.4) ensures that the boundary nodes will move with equal velocities perpendicular

to the interface, but does not constrain the lateral motion of any such nodes. Secondly, it is desirable

3.2. MOVING FINITE ELEMENT METHOD 33

that all nodes move so as to maintain a consistent mesh size and aspect ratio of volume elements.

This is critical in applications where field variables are calculated at the nodes. We must therefore

make an appropriate modification to the functional.

Each of the above problems may be addressed by controlling the size and quality (aspect ratio)

of interface and volume elements in the mesh. Intuitively, we would like to incorporate additional

forces on the nodes so that their motion best maintains mesh element quality. This leads to another

functional of the form

J2 = ǫtri
∑

nodes

∥

∥

∥

∥

ẋ(i) − M tri ∂Qtri

∂x(i)

∥

∥

∥

∥

2

2

+ ǫtet
∑

nodes

∥

∥

∥

∥

ẋ(i) − M tet ∂Qtet

∂x(i)

∥

∥

∥

∥

2

2

. (3.5)

Here, the ǫ and M terms are positive constants and the ∇Q terms represent gradients in artificial

“energies” associated with element size and aspect ratio. These will be discussed in more detail

later. The importance assigned to interface and volume element quality relative to the physically

meaningful forces acting on the interface can be controlled independently by the ǫ parameters. The

magnitude of these parameters is always chosen such that J2 ≪ J1, i.e. so that the natural forces

on the boundary are dominant. The M parameters determine the relative mobility of nodes under

the applied element quality forces. In this formulation, each M may be chosen independently but

elements of the same type are treated equally (isotropic mobility).

The complete moving finite element method is then to minimize the functional

J = J1 + J2 (3.6)

with respect to the motion of all mesh nodes. Let φi denote a piecewise linear basis function which

is unity at node i and zero at all other nodes. The jth position vector component xj of any other

point within the mesh can then be written as

xj =

N
∑

i=1

φix
(i)
j (3.7)

where x
(i)
j is the jth component of the position vector of the ith node, and N is the total number of

mesh nodes. The jth component of velocity ẋj at any point is found by differentiation of (3.7) with

3.2. MOVING FINITE ELEMENT METHOD 34

respect to time,

ẋj =
∂

∂t

[

N
∑

i=1

φix
(i)
j

]

=

N
∑

i=1

φiẋ
(i)
j . (3.8)

For any vector w,

‖ẋ− w‖2
2 =

3
∑

j=1

N
∑

i=1

[

φiẋ
(i)
j − wj

]2

. (3.9)

The magnitude of the normal velocity at any point on an interface is found by projection along the

(local) interface normal vector,

vn = ẋ · n =

3
∑

j=1

N
∑

i=1

φiẋ
(i)
j nj . (3.10)

It is now possible to rewrite the functional (3.6) with nodal velocities as the independent param-

eters. For simplicity, we will address each integral separately. The integral (3.4) expands to

∫

S





3
∑

j=1

N
∑

i=1

φiẋ
(i)
j nj − M∇nE





2

dS. (3.11)

Similarly, substitution of (3.9) into (3.5) gives

ǫtri

3
∑

j=1

N
∑

i=1

[

φiẋ
(i)
j − M tri ∂Qtri

∂x
(i)
j

]2

(3.12)

and

ǫtet

3
∑

j=1

N
∑

i=1

[

φiẋ
(i)
j − M tet ∂Qtet

∂x
(i)
j

]2

(3.13)

respectively.

A necessary condition for a minimum of (3.6) is that its derivatives with respect to the 3N nodal

velocity components are zero. Differentiation gives

∂ J

∂ x
(h)
k

= 2

∫

S





3
∑

j=1

N
∑

i=1

φiẋ
(i)
j nj − M∇nE



 φhnk dS

+ 2ǫtri

[

ẋ
(h)
k − M tri ∂Qtri

∂x
(h)
k

]

+ 2ǫtet

[

ẋ
(h)
k − M tet ∂Qtet

∂x
(h)
k

]

= 0 (3.14)

3.2. MOVING FINITE ELEMENT METHOD 35

which must be satisfied for 1 ≤ h ≤ N and 1 ≤ k ≤ 3. Combining terms and reordering,

3
∑

j=1

N
∑

i=1

[
∫

S

njnkφiφh dS + (ǫtri + ǫtet)δihδjk

]

ẋ
(i)
j =

∫

S

φhnkM∇nE dS + ǫtriM tri ∂Qtri

∂x
(h)
k

+ ǫtetM tet ∂Qtet

∂x
(h)
k

(3.15)

This is a system of 3N ordinary differential equations, which can be solved by a number of meth-

ods [122]. For simplicity, we will express the previous equation as

Kẋ = F. (3.16)

Note that the matrix K contains only geometric information about the mesh. Although other choices

for the element quality forces (equation 3.5) might be more robust [116], in this case the element

quality contribution is simply the diagonal matrix (ǫtri + ǫtet)I, which leads to faster numerical

convergence.

We now examine the process of evaluating the integrals appearing in equation 3.15. Note that, in

practice, it is sufficient to loop through each surface element, performing the following calculations

only once while assembling the global stiffness matrix K and force vector F. The left-hand side

surface integral is easily calculated by a summation of their value on individual surface (triangle)

element domains. Since each triangle has a unique normal vector, the normal components are

constants on every domain of integration. Therefore, it is enough that we demonstrate how to

calculate
∫

S

φiφh dS (3.17)

for an arbitrary triangular element.

A parent triangular element can be defined with vertices at (0, 0), (1, 0), and (0, 1) in a coordinate

system parameterized by u and v. We will map the vertices (1, 0) and (0, 1) to the nodes x(i) and

x(h), respectively. The remaining node will be labeled x(0). In this coordinate system, the functions

φi = u and φh = v. The coordinate mapping xj(u, v) from the parent triangle to any mesh triangle

is given by

xj(u, v) = (x
(i)
j − x

(0)
j)u + (x

(h)
j − x

(0)
j)v + x

(0)
j (3.18)

3.2. MOVING FINITE ELEMENT METHOD 36

and so

xu(u, v) =
∂

∂u
x(u, v) = 〈x(i)

1 − x
(0)
1 , x

(i)
2 − x

(0)
2 , x

(i)
3 − x

(0)
3 〉

xv(u, v) =
∂

∂v
x(u, v) = 〈x(h)

1 − x
(0)
1 , x

(h)
2 − x

(0)
2 , x

(h)
3 − x

(0)
3 〉. (3.19)

The metric tensor g is therefore constant and, since
√

g = 2A,

∫

S

φiφh dS =

∫ 1

0

∫ 1−v

0

uv
√

g du dv =
1

12
A. (3.20)

Here A is the area of the particular triangular element.

For the right-hand side surface integral, we again reduce the integral into a summation of its

value on individual triangular elements. In this case, interfacial mobility M and nk are constant. It

is then sufficient to calculate
∫

S

φh∇nE dS (3.21)

for an arbitrary interface triangle. First note that from equation 3.7 it follows that

∂xr

∂x
(h)
r

= φh. (3.22)

for 1 ≤ r ≤ 3. At any point on a triangular element

∇nE ≡
3

∑

r=1

∂E

∂xr

nr. (3.23)

Then

∫

S

φh∇nE dS =

∫

S

3
∑

r=1

∂xr

∂x
(h)
r

∂E

∂xr

nr dS

=

∫

S

dS

3
∑

r=1

∂E

∂x
(h)
r

nr = A

3
∑

r=1

∂E

∂x
(h)
r

nr (3.24)

since each ∂E/∂x
(h)
r term is constant. Note that, for a triangular element, E = γA. We compute

∂E/∂x
(h)
r by numerical perturbation. The perturbed (γA)′ may differ from γA in both the triangle

3.3. SIMULATION METHOD VERIFICATION 37

area and the value of γ, i.e. interface normal dependence of γ is possible with this approach.

We now rewrite the simplified master equation (3.15) in matrix form. First,

K(h,k),(i,j) =
1

12

∑

triangles

njnkA + (ǫtri + ǫtet)δihδjk. (3.25)

The dependence on indices i and h are implicit in the summation; only elements including both

nodes i and h are included. Similarly,

F(h,k) =
∑

triangles

nkMA

3
∑

r=1

∂E

∂x
(h)
r

nr + ǫtriM tri ∂Qtri

∂x
(h)
k

+ ǫtetM tet ∂Qtet

∂x
(h)
k

. (3.26)

Solving the master equation leads to a description of the continuous motion of the grain boundary

network. However, topological changes such as grain collapse cannot be modelled directly. Addi-

tionally, the maximum edge length and other properties of the mesh are not constrained by the

equation of motion, but can only be adjusted by retriangulation. For these reasons it is necessary

to periodically halt the simulation to perform such operations. For this we use the Los Alamos Grid

Toolbox (LaGrit) software package, with parameters identical to those used by Kuprat [116].

Values used for the constants in equation 3.15 are ǫtriM tri = 10−5 and ǫtetM tet = 10−15, with

both triangle and tetrahedron quality forces equal to their aspect ratio.

3.3 Simulation method verification

To test the accuracy of each method we performed 2D and 3D simulations of an isolated circular or

spherical grain shrinking with misorientation dependent boundary properties. Such a grain shrinks

with a self similar shape, and the motion of the boundary with radius r and curvature κ satisfies

∂r

∂t
= −Mγκ = −Mγ

r
. (3.27)

For 2D simulations, this relation implies that the grain area A as a function of time is

A(t) = A0 − 4πMγt. (3.28)

3.3. SIMULATION METHOD VERIFICATION 38

Simulation Energy Mobility Mγ (measured) Error (%)

MC 2D 1.00 1.00 0.994 -0.600

MC 2D 0.75 1.00 0.789 5.20

MC 2D 0.50 1.00 0.524 4.80

MC 2D 0.25 1.00 0.270 8.00

MC 2D 1.00 0.75 0.761 1.47

MC 2D 1.00 0.50 0.534 6.80

MC 2D 1.00 0.25 0.263 5.2

MC 3D 1.00 1.00 0.997 -0.300

MC 3D 0.75 1.00 0.752 0.266

MC 3D 0.50 1.00 0.502 0.400

MC 3D 0.25 1.00 0.249 -0.400

MC 3D 1.00 0.75 0.753 0.400

MC 3D 1.00 0.50 0.499 -0.200

MC 3D 1.00 0.25 0.249 -0.400

Table 3.1: Results from test cases with isolated circular grains and misorientation dependent
anisotropy. Area rate of change for Monte Carlo simulations shown after conversion to “real” time.

Similarly, for 3D simulations the grain volume V follows

V (t) =
4π

3

[

(

3V0

4π

)
2

3

− 4Mγt

]
3

2

. (3.29)

Thus a simple means of measuring the method’s ability to accurately produce anisotropic boundary

motion is to compute the total area or volume of the grain at a sequence of time intervals, perform

a fit using M and γ as free parameters, and compare these values to the input mobility and energy.

The results of test simulations for the Monte Carlo method are given in table 3.1. The initial grain

diameter is 100 ∆x, and all other simulation parameters are chosen as described above. Because the

Monte Carlo method is stochastic, there are typically large deviations from the average area rate of

change measured after a large number of simulations, as shown in figure 3.1. We therefore take an

average over 25 simulations. Also, because it is not possible to know a priori the correspondence

between a Monte Carlo step and “real time,” we must determine an appropriate scale factor. In

these simulations, where kT = 0.7, we find a scale factor of 2.15 MCS in 2D or 0.301 MCS in 3D

by fitting the area rate of change from simulations with isotropic growth. The error in the area or

volume rate of change from each Monte Carlo simulation are similar, but they do not appear to be

systematic.

3.4. MICROSTRUCTURE GENERATION 39

2000

3000

4000

5000

6000

1000 1200 1400 1600 1800 2000

A
(t

)

t (MCS)

γ = 1.00

Figure 3.1: Area rate of change of circular shrinking grains for Monte Carlo with isotropic boundary
properties: average area rate of change and results from three individual simulations.

Similar tests were performed with spherical shrinking grains using the moving finite element

method by Kuprat [116]. The error in ∂A/∂t was found to scale with (∆θ)2, where θ is the angular

resolution of the meshed sphere.

The mesh size of the moving finite element mesh is important in determining the physical behavior

of the simulation. In particular, poor mesh quality may prevent local equilibrium at triple junctions.

We have computed the distribution of dihedral angles within the MFE mesh during a simulation

with isotropic interfacial properties. Figure 3.2 shows this distribution after nearly one quarter and

one half of the grains have been eliminated, respectively. The average dihedral angle is near the

ideal values of 120◦, while the standard deviation are found to be 8.5◦ and 5.7◦. This suggests that

as the mesh evolves, the mesh better captures triple line equilibrium. This is presumably due to the

fact that grains are eliminated and the average number of facets per grain increases.

3.4 Microstructure generation

Monte Carlo. Because we cannot expect grain boundaries with relatively few pixels or voxels

to accurately reproduce curvature driven motion, we begin each simulation with a relatively coarse

3.4. MICROSTRUCTURE GENERATION 40

0

0.02

0.04

0.06

0.08

60 80 100 120 140 160 180

f(
α)

α

t = 10
t = 20

Figure 3.2: Frequency of dihedral angles in MFE simulations as a function of time.

microstructure. For Monte Carlo simulations, we use either a 4, 0962 (2D) or 2563 (3D) site lattice.

To produce the initial microstructure, unique spin numbers were assigned to each lattice point on a

Monte Carlo grid, and the microstructure was coarsened with isotropic interfacial properties until

68,651 (2D) or 35,751 (3D) grains remained. Portions of each initial microstructure are shown in

figure 3.3. Relative to the lattice, the grains and grain boundaries were reasonably well resolved,

with an average of approximately 244 (2D) or 470 (3D) lattice sites per grain. The initial 2D Monte

Carlo microstructure had 203,271 grain boundaries, while the 3D microstructure had 238,412.

Moving finite elements. Our initial geometry for moving finite element simulations was gener-

ated as follows. The unit cube was partitioned into a regular grid of 503 cells. A node was placed at

the order of each cell. The nodes were connected to create a regular tetrahedral mesh. This resulted

in a mesh of 750,000 tetrahedra of equal volume. Grain identifiers were randomly assigned to 5,000

of the tetrahedra while following the condition that no two grain centers lie in adjacent tetrahedra.

This mesh was evolved isotropically until 2,578 grains remained, figure 3.4. The coarsening process

included a sequence of mesh quality operations as described above.

3.4. MICROSTRUCTURE GENERATION 41

(a) 1/16 portion of 2D Monte Carlo grid.

(b) 1/8 portion of 3D Monte Carlo grid.

Figure 3.3: Initial microstructures for 2D and 3D simulations.

3.4. MICROSTRUCTURE GENERATION 42

Figure 3.4: Initial microstructure for 3D FEM simulations.

3.5. MICROSTRUCTURE ANALYSIS 43

Orientation assignment. Each grain identifier is mapped to a unique crystallographic orienta-

tion. To produce a random orientation texture, we generate (Bunge) Euler angles [42]

ϕ1 = 2πr1

Φ = cos−1(1 − 2r3)

ϕ2 = 2πr2 (3.30)

where each ri, 1 ≤ i ≤ 3, is a random floating point number in the unit interval. Other orienta-

tion textures can be produced by producing a set of random orientations, then selecting a subset

using some predetermined rule. We will describe the relevant selection rules for simulations with

nonrandom initial orientation textures as they appear.

We typically perform simulations where the time evolution of any grain boundary depends on

both its local geometry and the particular form of its energy and mobility functions. By performing

simulations with different grain identifier to orientation mappings, we can effectively sample many

sets of grain boundaries without generating more than one microstructure. For each set of interfacial

properties we use several such mappings.

3.5 Microstructure analysis

Computating the area (2D) or volume (3D) of a grain on a Monte Carlo grid simply consists of

counting all sites with some given grain identifier. We make the assumption that each grain con-

stitutes one connected component, which is sometimes not the case in Monte Carlo simulations,

although this is due primarily to random noise at interfaces. For an unstructured mesh, a similar

procedure requires computation of the area or volume of individual elements.

Measuring geometric features of a microstructure that depend on crystallographic orientation re-

quires a choice in what constitutes a single grain or grain boundary. In experimental measurements,

the limited accuracy of orientation measurements imposes a lower bound for grain boundary mis-

orientation. This is not the case with simulations. Since each volume element has a discrete grain

identifier which is associated with a fixed orientation, there is no misorientation resolution limit.

In our simulations where interfacial energy approaches zero as misorientation approaches zero, we

3.5. MICROSTRUCTURE ANALYSIS 44

occasionally observe two or more grains of low misorientation (< 1 ◦) meeting together and then

evolving as essentially a single grain. We have chosen to impose a minimum misorientation angle of

2 ◦ in all or our analysis so that our simulations are more directly comparable to experiment.

A suitable definition of grain boundary area on a Cartesian grid is required for the measurement

of area weighted texture measures in Monte Carlo simulations. Given a particular grid site, we count

each pair of neighboring sites, either 8 (2D) or 26 (3D), with unlike grain identifiers as a unit grain

boundary area. It is possible that this approach produces different results with a different choice

of neighborhood. Likewise, we might also consider weighting the contribution of each neighbor by

some factor other than one. While other neighbor counting or weighting schemes certainly compute

different absolute areas for a given boundary, we will show that the relative area measurements

are reasonably insensitive to the details of the method. The boundary area measurement in an

unstructured mesh is obviously more straightforward, as triangle areas can be computed directly.

Computing number weighted texture measures involves the same procedure used in the area

measurement, but individual grain boundaries are given unit weight. To simplify this calculation, we

assume that if two grains share a boundary, they share a single boundary. Under this assumption,

the data collected in an area measurement provides all the necessary information for a number

measurement. For example, in a Cartesian grid, the set of all neighbor pairs with unlike grain

identifiers contribute one grain boundary to the number count, while contributing a value equal to

the total number of such pairs to the area measurement.

Chapter 4

Misorientation dependent

anisotropy

One of the objectives of this work is to determine a quantitative relationship between grain bound-

ary energy and mobility and the interface texture resulting from grain growth. In full generality,

this seems to be an overwhelming task — each boundary property, as well as the distribution of

boundary types, is a function of five parameters. However, it is certainly possible to study energy

and mobility functions with a reduced number of independent parameters, and in fact previous

work has demonstrated that even disorientation angle based properties lead to interface texture

development [25, 28, 30–32,34].

In this chapter and the next, we examine misorientation and inclination dependent anisotropy

separately. Here, we limit misorientation to a single parameter (disorientation angle). In the limiting

case that interface texture can be written as a function of boundary properties alone, then the results

obtained here should apply to systems with full misorientation dependent anisotropy. The results

presented here are from grain growth simulations using Monte Carlo and phase field methods as

explained in the previous chapter.

Misorientation texture can develop as a result of changes in either the relative number of grain

boundaries, the average area of grain boundaries, or both. Experimental evidence suggests that

both occur [5]. Holm et al. introduced a model for interface texture development that explains the

45

4.1. SIMULATIONS 46

changes in area weighted MDFs by boundary lengthening, but does not predict changes in number

weighted MDFs [28]. In other computational studies, the problem of how number weighted MDFs

develop has largely been ignored. In this chapter we demonstrate that number weighted MDFs are

measurably affected by anisotropic interfacial properties. These results provide the motivation for a

new model for predicting changes in the number and area weighted MDFs that occur during grain

growth.

4.1 Simulations

While a general misorientation is characterized by three independent parameters, the grain bound-

ary properties used in this work are explicit functions of a single parameter, the grain boundary

disorientation angle. Note that such functions incorporate crystallographic symmetry implicitly in

the computation of disorientation angles. Grain boundary energy and mobility will always take one

of three functional forms, which are used in both 2D and 3D simulations (orientations are always

three dimensional). First, the isotropic function

γiso(θ) = 1 (4.1)

which is unity for all disorientation angles. Second, the Read-Shockley function,

γRS(θ) =















θ
θ′

[1 − ln(θ
θ′

)] θ ≤ θ′

1 θ > θ′
(4.2)

where θ is the disorientation angle and θ′ is the high angle grain boundary cut-off. Lastly, a step

function

γstep(θ) =















2
5 θ ≤ θ′

1 θ > θ′.

(4.3)

Although we used γ in the definitions above, mobility functions Miso, MRS, and Mstep are defined

in a similar way.

Monte Carlo simulations were performed with a number of different energy and mobility func-

4.2. RESULTS 47

Energy Mobility Symmetry β (2D) β (3D) Boundary Cond.

γiso(θ) Miso(θ) O 0.7 1.3,1.4,1.5 F,P

γiso(θ) MRS(θ), θ′ = 45◦ O 0.7 1.5 F

γRS(θ), θ′ = 15◦ Miso(θ) O 0.7 1.5 F

γRS(θ), θ′ = 30◦ Miso(θ) O 0.7 1.5 F

γRS(θ), θ′ = 45◦ Miso(θ) O 0.7 1.3,1.4,1.5 F,P

γRS(θ), θ′ = 45◦ Miso(θ) D6 0.7 1.5 F

γstep(θ), θ′ = 30◦ Miso(θ) O 0.7 1.5 F

Table 4.1: Summary of Monte Carlo simulation parameters. All simulations listed were performed
with 2D and 3D microstructures. F and P denote finite and periodic boundary conditions, respec-
tively.

tion combinations, as well as several different choices for the lattice temperature β and boundary

conditions. A summary of the simulation parameters is given in table 4.1.

Additionally, several simulations were performed with anisotropic energy and non-random initial

orientation distributions. In these cases, orientations were generated randomly as described in the

previous chapter, but were selected with a probability based on their proximity to a single favored

orientation coinciding with the sample coordinate system. Using the crystal disorientation from

sample coordinates θS , we chose

P (θS) = e−αθS (4.4)

where α = 4.20, 6.05, 9.45, or 16.80. Larger values of α produce orientation textures that increasingly

favor the preferred orientation. These simulations were all performed using the 3D microstructure

with γRS, θ′ = 45◦, isotropic mobility, kT = 1.5, and finite boundary conditions.

4.2 Results

4.2.1 General observations

The time-dependent behavior of grain size in simulations with anisotropic interfacial properties is

approximately the same as that in isotropic growth, as shown in figure 4.1. The kinetic exponent n

for isotropic growth in 3D is found to be n = 1.49, which is near the theoretical volume rate of change

exponent value of 1.5 [123]. This is nearly identical to the exponent for growth with anisotropic

energy in all cases. The kinetic exponent for average grain area versus time for isotropic growth in

4.2. RESULTS 48

10

100

1000

10000

100 1000 10000

<
V

>
(t

)

t (MCS)

isotropic
cubic

hexagonal
mobility

Figure 4.1: Grain volume V as a function of time t for 3D Monte Carlo simulations. Here, “cubic”
and “hexagonal” imply γRS(θ) with θ′ = 45◦ and isotropic mobility, while “mobility” implies MRS(θ)
with θ′ = 45◦ and isotropic energy.

2D is found to be n = 0.98, again near the theoretical area rate of change value of 1.0. It is clear

that the absolute rate of grain growth for simulations with anisotropy is slower than with isotropic

properties. Presumably, the rate is slower with anisotropy because the average energy or mobility

of boundaries in such cases is less than one. We then expect that as we increase the fraction of

disorientation space with energy or mobility less than one, the grain growth rate decreases, which

is satisfied here.

The grain size distribution in all simulations appears to be identical to that in the isotropic case,

figure 4.2. In our computations we have excluded grains less than about 10 pixels/voxels. We also

find that the grain size distribution does not change appreciably with time.

The grain morphology during 2D and 3D growth with anisotropic properties is illustrated in

figure 4.3. Grain shapes appear to be mostly equiaxed, and we can visually locate several triple

junctions with dihedral angles which are greater or less than the isotropic equilibrium value of

120◦. The average topological properties of grains are roughly the same with or without anisotropy.

Excluding grains on the domain boundary, we find that grains in 3D have an average of about 13.8

faces and 5.3 edges, while grains in 2D have 6.0 faces. These values remain approximately constant

4.2. RESULTS 49

0

0.1

0.2

0.3

0.4

-8 -6 -4 -2 0 2 4

f(
x)

ln(V/<V>)

isotropic
cubic

hexagonal
mobility

(a) Grain size distribution at 500 MCS.

0

0.1

0.2

0.3

0.4

-8 -6 -4 -2 0 2 4

f(
x)

ln(V/<V>)

0 MCS
100 MCS
500 MCS

1000 MCS
2000 MCS

(b) Grain size distribution for simulation with γRS, θ′ = 45◦.

Figure 4.2: Grain size distribution for various 3D Monte Carlo simulations.

4.2. RESULTS 50

Figure 4.3: Microstructure from grain growth with γRS, θ′ = 45◦, 2000 MCS. 1/8 of the simulation
domain is shown.

4.2. RESULTS 51

through time, and are similar to values reported elsewhere [124].

4.2.2 Time dependence

In every simulation performed, we find that after an initial transient state, both area and number

weighted MDFs reach what appear to be steady-state distributions. To quantify the transient, we

introduce a value ∆(t), defined as

∆(t) =

∫

|f(θ, t) − f(θ, 0)| dθ (4.5)

where f(θ, t) represents either an area or number weighted MDF depending on the context. Thus

∆(t) is just the L1 norm of the difference between a pair of distributions, one of which is always the

initial (random) MDF. Note that ∆(t) approaching a constant as t increases is a necessary condition

for the function f(θ, t) to reach a steady state.

In figure 4.4 we show the time dependence of ∆(t) for the area and number weighted MDF

during a particular simulation. It is clear that for the simulation with cubic crystal symmetry, ∆(t)

approaches some constant value. In other simulations, at long times ∆(t) continues to change slowly,

although this change is on the order of ∆(t) for isotropy. This implies that further changes in the

MDFs are due primarily to increasing measurement inaccuracy, as the total number of boundary

observations decreases rapidly while time progresses. We observe that the transient regime is consis-

tently longer for simulations with larger energy anisotropy. Grain growth occurs more slowly in the

2D simulations than in 3D (see figure 4.1), and subsequently the transient times for 2D are longer.

4.2.3 Property dependence

We observe a measurable change in the number and area weighted MDFs produced during grain

growth with anisotropic interfacial energy. This is true in both two and three dimensions and for

each energy function used. Figures 4.5 and 4.6 show the steady state number and area weighted

MDFs for the simulations with cubic or hexagonal crystal symmetry and Read-Shockley energy

functions with 45 ◦ cutoff angle after a significant portion of the original grains have been eliminated

by grain growth. In each case, the lowest energy boundaries are those closest to the origin. These

4.2. RESULTS 52

0

0.05

0.1

0.15

0.2

0.25

0 1000 2000 3000 4000 5000

∆(
t)

t (MCS)

fA(θ)
fN(θ)

(a) Cubic crystal symmetry.

0

0.05

0.1

0 1000 2000 3000 4000 5000

∆(
t)

t (MCS)

fA(θ)
fN(θ)

(b) Hexagonal crystal symmetry.

Figure 4.4: Plots of ∆(t) for select 3D Monte Carlo simulations with energy functions γRS(θ),
θ′ = 45◦ and isotropic mobility.

4.2. RESULTS 53

0

0.01

0.02

0.03

0.04

0 10 20 30 40 50 60 70

f(
θ)

θ

fA(θ)
fN(θ)

(a) Cubic crystal symmetry.

0

0.004

0.008

0.012

0.016

0.02

0 20 40 60 80 100

f(
θ)

θ

fA(θ)
fN(θ)

(b) Hexagonal crystal symmetry.

Figure 4.5: Misorientation distribution functions after 2D grain growth with energy functions γRS(θ),
θ′ = 45◦ and isotropic mobility at 1000 MCS. In each case, the average grain area has doubled.

4.2. RESULTS 54

0

0.01

0.02

0.03

0.04

0 10 20 30 40 50 60 70

f(
θ)

θ

fA(θ)
fN(θ)

(a) Cubic crystal symmetry.

0

0.004

0.008

0.012

0.016

0.02

0 20 40 60 80 100

f(
θ)

θ

fA(θ)
fN(θ)

(b) Hexagonal crystal symmetry.

Figure 4.6: Misorientation distribution functions after 3D grain growth with energy functions γRS(θ),
θ′ = 45◦, isotropic mobility, at 500 MCS. In each case, the average grain volume has doubled.

4.2. RESULTS 55

boundaries have increased in both number and average area relative to the higher energy boundaries

at larger disorientation angles. The area weighted MDF in all cases shows greater anisotropy than

the number weighted MDF, which is expected since the relative area of a boundary type is just its

relative number multiplied by its average area. In multiples random, the area and number weighted

MDFs appear to have an approximately linear inverse relationship with grain boundary energy, as

shown in figure 4.7. We note that the slope of the best fit line through the area weighted data is

almost identically twice the best fit slope through the number weighted data.

There appears to be a consistent inverse proportionality between the grain boundary energy

and the average boundary area, as shown in figure 4.8. In fact, the average area appears to be

an approximately linear function of the grain boundary energy for most of the disorientation angle

space. Figure 4.8 also demonstrates that the relationship between grain boundary energy and

average area may not always be one-to-one. This implies that the grain boundary’s disorientation

has some influence on the average boundary area. However, the step function energy used here is

non-physical, and it appears that this relationship is satisfied well by the more realistic continuous

energy functions.

The effect of increasing energy anisotropy on the area and number weighted MDFs is illustrated

in figure 4.9. We find that increasing energy anisotropy leads to both area and number weighted

MDFs which are increasingly different in comparison to those produced by isotropic grain growth.

The effect of mobility anisotropy on the MDF is noticeably weaker than that of energy anisotropy,

as shown in figure 4.10. In fact, both area and number weighted MDFs resulting from grain growth

with mobility anisotropy are negligibly different from those developed with isotropic properties.

These results are in agreement with previous findings using phase field and moving finite element

methods [31, 32, 37].

4.2.4 Orientation texture dependence

The area and number weighted MDFs presented above for simulations with anisotropic energy all

show some slight deviation from the distribution for a collection of random boundaries. Clearly,

the orientation texture of the microstructure has a large effect in determining how the MDFs might

evolve. We now describe results from simulations with non-random orientation texture.

4.2. RESULTS 56

-0.5

0

0.5

1

1.5

2

2.5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ln
(λ

A
(θ

))

γ(θ)

RS 15
RS 30
RS 45

(a) Area weighted MDF in multiples random.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ln
(λ

N
(θ

))

γ(θ)

RS 15
RS 30
RS 45

(b) Number weighted MDF in multiples random.

Figure 4.7: Grain boundary population in multiples random λ as a function of energy γ in several
3D simulations, 500 MCS.

4.2. RESULTS 57

0.8

1.2

1.6

2

2.4

0 10 20 30 40 50 60 70
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

<
A

>
(θ

)/
<

A
>

γ(
θ)

θ

<A>(θ)/<A>
γ(θ)

(a) γRS(θ), θ′ = 45◦.

0.75

1

1.25

1.5

0 10 20 30 40 50 60 70
 0.4

 0.6

 0.8

 1

 1.2

 1.4

<
A

>
(θ

)/
<

A
>

γ(
θ)

θ

<A>(θ)/<A>
γ(θ)

(b) γstep(θ), θ′ = 30◦.

Figure 4.8: Normalized average boundary area 〈A〉(θ)/〈A〉 and grain boundary energy γ as a function
of disorientation θ for Monte Carlo simulations with anisotropic energy, isotropic mobility, and cubic
crystal symmetry at 500 MCS.

4.2. RESULTS 58

0

2

4

6

8

10

0 10 20 30 40 50 60 70

λ A
(θ

)

θ

RS15
RS30
RS45

(a) Area weighted MDFs in multiples of random distribution (MRD).

0

1

2

3

4

5

0 10 20 30 40 50 60 70

λ N
(θ

)

θ

RS15
RS30
RS45

(b) Number weighted MDFs in multiples of random distribution (MRD).

Figure 4.9: Area and number weighted MDFs in multiples random for various Read-Shockley type
energy functions and isotropic mobility. Data from 3D Monte Carlo simulations at 500 MCS.

4.2. RESULTS 59

0

2

4

6

8

10

0 10 20 30 40 50 60 70

λ A
(θ

)

θ

isotropic
energy

mobility

(a) Area weighted MDFs in multiples of random distribution (MRD).

0

1

2

3

4

0 10 20 30 40 50 60 70

λ N
(θ

)

θ

isotropic
energy

mobility

(b) Number weighted MDFs in multiples of random distribution (MRD).

Figure 4.10: Area and number weighted MDFs for Read-Shockley type energy or mobility functions.
Data from 3D Monte Carlo simulations at 500 MCS.

4.2. RESULTS 60

10

100

1000

10000

100 1000 10000

<
V

>
(t

)

t (MCS)

isotropic
α = 4.20
α = 6.05
α = 9.45
α = 16.8

Figure 4.11: Average grain volume 〈V 〉 as a function of time for simulations with non-random
orientation texture.

First, we find that the kinetics of such simulations are nearly identical to the cases with random

orientation texture. Figure 4.11 shows the average grain volume as a function of simulation time. As

above, the grain growth exponent in simulations with anisotropic energy tends to be slightly lower

than with isotropy. Likewise, the grain size distribution appears to be similar for all simulation

conditions as well as constant through time, figure 4.12.

The average area of grain boundaries in simulations with non-random orientation texture follows

the same behavior as with random orientation texture, figure 4.13. These functions appear to be

identical, but each shifted along the y-axis, likely due to the fact that those simulations with greater

orientation texture have far fewer high angle boundaries and therefore larger values of 〈A〉 at earlier

simulation times.

Despite these similarities, we find qualitatively different behavior of the area and number weighted

MDFs. In particular, there appears to be no steady state within the time interval simulated, fig-

ure 4.14. Even in the case where α = 4.20, the initial MDFs are not quantitatively far from the

Mackenzie distribution yet the resulting MDFs at later times are increasingly far from those obtained

in simulations with random orientation texture. As the average boundary areas mimic those found

with random orientation texture, it must be that this difference is due to a drastic increase in the

4.2. RESULTS 61

0

0.1

0.2

0.3

0.4

-8 -6 -4 -2 0 2 4

f(
x)

ln(V/<V>)

isotropic
α = 4.20
α = 6.05
α = 9.45
α = 16.8

Figure 4.12: Grain size distribution for simulations with non-random orientation texture at 500
MCS.

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

0 10 20 30 40 50 60 70

<
A

>
(θ

)/
<

A
>

θ

isotropic
α = 4.20
α = 6.05
α = 9.45
α = 16.8

Figure 4.13: Relative average area 〈A〉(θ)/〈A〉 of grain boundaries as a function of disorientation
angle θ for simulations with non-random orientation texture at 500 MCS.

4.2. RESULTS 62

0

0.01

0.02

0.03

0.04

0.05

0.06

0 10 20 30 40 50 60 70

f(
θ)

θ

0 MCS
100 MCS

1000 MCS
2000 MCS
4000 MCS

(a) Simulation with α = 4.20.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 10 20 30 40 50 60 70

f(
θ)

θ

0 MCS
100 MCS

1000 MCS
2000 MCS
4000 MCS

(b) Simulation with α = 16.80.

Figure 4.14: Area weighted MDFs measured for simulations with non-random orientation texture.

4.2. RESULTS 63

number of low angle grain boundaries. We cannot exclude the possibility these MDFs eventually

reach a steady state without simulating to longer times.

The mechanism for this seems to be amplified by a continuously stronger orientation texture.

Figures 4.15 and 4.16 show orientation distribution functions measured at the initial state and at

4000 MCS for the simulation with α = 4.20. The initial orientation distribution shows preferential

alignment with sample axes, as expected, while the orientation distribution at 4000 MCS shows that

this preferred texture has become stronger through the grain growth. Because we have chosen to use

an energy function that is an increasing function of disorientation, we might expect that with our

chosen orientation texture the high energy boundaries typically exist on those grains that are not

aligned with the sample axes. That is, we expect a correlation between high energy grain boundaries

and grains that do not have the preferred orientation. We have shown that high energy boundaries

are eliminated preferentially by the grain growth process, and presumably this affects the lifetime of

such grains. In simulations with random orientation texture, there should be no correlation between

high energy boundaries and any grain orientation, explaining why there is no orientation texture

development in such cases.

The orientation texture of the microstructure deteremines in some part what the expected MDFs

should be. We define the TMDF as the probability density of grain boundary types given by random

selection of grain pairs from the polycrystal orientation distribution function (ODF). For example,

in systems with random orientation texture the texture weighted MDF is just the (cubic) Mackenzie

distribution or its analogue for other crystal structures. The TMDF can be estimated numerically

from orientation texture data by randomly selecting existing pairs of grain orientations, thereby

generating a list of possible grain boundaries with which to compute the TMDF in the same way

that we compute the MDF. Figure 4.17 shows the texture weighted MDF as a function of time for

two simulations with non-random orientation texture. The changing orientation texture increases

the bias towards low angle grain boundaries, and this appears to be the primary reason for the

differences between the MDFs measured in these and the random orientation texture simulations.

4.2. RESULTS 64

Figure 4.15: Orientation distribution function for simulation with non-random initial orientation
texture with α = 4.20 at 0 MCS.

4.2. RESULTS 65

Figure 4.16: Orientation distribution function for simulation with non-random initial orientation
texture with α = 4.20 at 4000 MCS.

4.2. RESULTS 66

0

0.01

0.02

0.03

0.04

0.05

0 10 20 30 40 50 60 70

f(
θ)

θ

0 MCS
500 MCS

1000 MCS
2000 MCS
4000 MCS

(a) Simulation with α = 4.20.

0

0.02

0.04

0.06

0.08

0.1

0.12

0 10 20 30 40 50 60 70

f(
θ)

θ

0 MCS
500 MCS

1000 MCS
2000 MCS
4000 MCS

(b) Simulation with α = 16.80.

Figure 4.17: Texture weighted MDF as a function of time for simulations with non-random orienta-
tion texture.

4.2. RESULTS 67

4.2.5 Simulation method validation

Here we compare our results with experimental measurements from polycrystalline magnesia samples

with random orientation texture [3].

A polycrystalline, 3000ppm Ca-doped MgO sample was prepared for electron backscatter diffrac-

tion (EBSD) mapping. High purity carbonates (Alfa Aesar Puratronic MgCO3Mg(OH)2+XH2O

99.996%, Alfa Aesar Puratronic CaCO3 99.999%) were dry-ground in an alumina mortar to pro-

mote mechanical mixing and uniform distribution of the dopant. The combined carbonates were

then calcined at 1100◦C for five hours in three nested MgO crucibles to avoid contamination in the

furnace. The resultant powder was again dry-ground and then compacted to approximately 1000 psi

in a half inch diameter cylindrical die using a Carver uniaxial press. The pellet was placed on a bed

of mother powder in three nested MgO crucibles and fired using the program: 5◦C/min to 900◦C for

10 hours, 5◦C/min to 1200◦C for 7 hours, 5◦C/min to 1600◦C for 7 hours, 5◦C/min to room tem-

perature. Rough grinding was completed with progressively finer SiC paper, using Buehler Metadi

fluid as a lubricant as water tends to degrade MgO specimens. Final polishing was accomplished

using 1µm and 0.1µm diamond in oil on Buehler Mastertex cloth. The sample was then annealed at

1200◦C for two hours and carbon coated (SPI-Module Carbon Coater) to eliminate charging under

the electron beam.

Crystal orientation maps were obtained from a planar section using an EBSD mapping system,

with 1µm spatial resolution and an average grain diameter of approximately 20µm. The dataset

used in computing the MDFs included 36,223 grains and 99,420 grain boundaries.

The experimentally measured MDFs from polycrystalline MgO exhibit the same trends as our

simulations, as shown in figure 4.18. Both number and area weighted MDFs are measurably non-

random, with low angle boundary enhancement comparable to the simulation with γRS, θ′ = 15◦.

Significant deviations occur in the two low angle bins, presumably due to an insufficient total number

of observations (15 and 41 observations, respectively). While the absolute changes in the number

and area weighted MDFs are similar, it is clear that the average area of low-angle boundaries has

increased, as in figure 4.18. These results suggest that an increase in both the number and average

area of grain boundaries contributes to interface texture development in real materials.

4.2. RESULTS 68

0.4

0.8

1.2

1.6

2

2.4

0 10 20 30 40 50 60 70

λ(
θ)

θ

MgO λA(θ)
MgO λN(θ)

RS 15 λA(θ)
RS 15 λN(θ)

(a) Area and number weighted MDFs in multiples random distribution.

0.95

1

1.05

1.1

1.15

1.2

0 10 20 30 40 50 60 70

<
A

>
(θ

)/
<

A
>

θ
(b) Relative average grain boundary area.

Figure 4.18: Results from polycrystalline magnesia with random orientation texture (Courtesy H.M.
Miller [3]).

4.3. DISCUSSION 69

4.3 Discussion

As previously stated, the fact that the area fraction of low energy grain boundaries increases during

grain growth has been observed in a number of 2D and 3D simulations [1, 25, 27, 28, 34, 37, 120].

There are inherent difficulties in measuring the number weighted MDF for the low angle regime

in microstructures with random orientation texture, as the proportion of such boundaries is only

a small fraction of the total number of grain boundaries. While nearly all of the listed studies do

not include measurements of the number weighted MDF, we note that Holm et al. have, and found

only a “minimal increase” in the number weighted MDF during anisotropic growth [28]. Although

they do not report the number of boundaries used in computing MDFs, from inspection of their

microstructure at the time of computation, and assuming three boundaries per grain, a reasonable

approximation is 3,750 grain boundaries. We find that the number weighted MDF appears random

in measurements with fewer than 10,000 grain boundaries. Presumably, the small increase in the

number weighted MDF for low energy boundaries was comparable to the noise in their measurements.

Because we have found a measurable anisotropy in the number weighted MDF of a real material

(figure 4.18) which is quantitatively similar to those found in our simulations, we conclude that

changes in both the relative number and area of grain boundaries occur during grain growth.

Holm et al. also proposed a model for the increased length (area) of low energy boundaries

driven by the requirement of interfacial equilibrium at triple junctions [28]. This model attempts to

explain why low energy grain boundaries have relatively larger average areas, which the present study

(figure 4.8) and several others have confirmed [1, 37, 120]. Such a model, however, does not explain

why low energy boundaries also appear in greater numbers. Because the number of boundaries of

any type changes only by topological events (see below) in the grain boundary network, a suitable

model must depend in some way on critical event rates.

The grain boundary energy anisotropy has a much larger influence on interface texture develop-

ment than mobility, which is in agreement with previous findings [31,32,37]. All such computations

were performed on simulation domains with random orientation texture, and it is likely that given

a non-random initial orientation texture, mobility anisotropy might contribute to changes in the

MDF, e.g. as in abnormal growth [92]. Here we have only studied the effect of energy anisotropy

on grain growth in systems with non-random orientation texture, but our results are qualitatively

4.4. MODEL 70

similar to previous work with stronger texture [28].

Finally, we note that misorientation texture development occurs without any significant effects

on such microstructural features as the grain size distribution, average grain properties like the

number of edges or faces, and only a minimal change in grain growth rate.

4.4 Model

It is clear from our results with non-random orientation texture that both area and number weighted

MDFs evolve to approximate steady-states that are measurably different from the initial random

state. In what follows we will discuss a new model for MDF evolution during grain growth. Because

the number of boundaries of any type changes only by discrete topological events in the grain

boundary network, our model is based on the relative rates of such critical events. We first discuss

the kinds of permissible topological events that can occur during grain growth and then derive a

rate equation for the change in number of grain boundaries as a function of boundary type. In

this model we assume that the relative grain boundary area, which has an approximately inverse

relationship to boundary energy, influences the probability of a grain boundary being eliminated by

topological events. Additionally, we assume that the character of a new grain boundaries generated

by critical events depends on the orientation texture of the microstructure. The combined result is

a quantitative relationship between grain boundary energy, orientation texture, and the expected

misorientation texture developed during grain growth. Finally, we discuss how we can use this

relation to predict misorientation texture in real materials, and also solve the inverse problem, i.e.

determining grain boundary energy anisotropy using misorientation texture data.

Here we use the word “area” to describe the usual measure of grain boundary size regardless

of dimensionality. We will denote the area and number weighted MDFs as fA(θ, t) and fN(θ, t),

respectively. Many other quantities, such as the area or number of boundaries, can be measured for

a particular boundary type or for the entire system. To avoid introducing an excess of variables,

we will always write system total functions with only a time argument. Thus the total area and

number of grain boundaries in the system will be given by A(t) and N(t), while the total area and

number of boundaries of a particular type, parameterized by θ will be A(θ, t) and N(θ, t). Likewise,

the average boundary area in the system will be 〈A〉(t), and the average area for boundary type θ

4.4. MODEL 71

is 〈A〉(θ, t). Note that the following relation holds, by definition

〈A〉(θ, t) =
A(θ, t)

N(θ, t)
=

fA(θ, t)A(t)

fN (θ, t)N(t)
(4.6)

and so the problem of predicting fA(θ, t) and fN (θ, t) can be reduced to a problem of predicting,

for example, 〈A〉(θ, t) and N(θ, t). This is the approach taken here, motivated by the fact that we

will later approximate 〈A〉(θ, t) as an explicit function of the grain boundary energy.

We focus on describing MDF development in systems with a large number of grains. By large

we mean to say that statements such as “the probability of a boundary of type θ being eliminated

by grain collapse” are meaningful. We will ignore the possibility of the MDF statistic ever being

affected by a small number of grain boundaries in the system, or that the domain size or shape

contributes in any way to the average properties of the grain boundary network. Of course the

simulations presented here, as well as any experimental study, are subject to such conditions.

4.4.1 Topological events in grain growth

Any change in the number of grain boundaries in a microstructure is necessarily the result of topo-

logical changes in the grain boundary network. We will base our classification scheme of critical

events on the work of Fortes and Ferro [125], who have described the possible “unit operations” that

may occur during grain growth. These topological events are those that preserve the correct valen-

cies of topological features found in a microstructure. Most importantly, any conceivable change in

the topological structure of a grain boundary network can be represented as a combination of such

events.

In both two and three dimensions, these events will be described as either collapse events or

switching events. Collapse events are associated with the collapse of entire grains and occur when

grains with three (2D) or four (3D) faces shrink to a vertex. Switching events involve grains switching

topological classes (number of faces and edges) while remaining in the microstructure. These events

occur by edge switching (2D), a face to edge switch (3D), or their inverses. Switching events occur

in pairs and thus preserve the total number of boundaries in 2D, but occur independently in 3D. We

will call the loss of a boundary by switching elimination, while the introduction of a new boundary

4.4. MODEL 72

in the microstructure will be called generation.

In what follows, the cumulative number of grain boundaries lost by grain collapse will be denoted

Nc(t), and the cumulative number eliminated or generated by switching events as Ne(t) and Ng(t),

respectively. We will set each to zero at t = 0.

4.4.2 Critical event model

Using the above definitions, we can write an exact relation for the change in the number of boundaries

of type θ during a time interval dt,

N(θ, t + dt) − N(θ, t) = pg(θ, t) [Ng(t + dt) − Ng(t)]

− pe(θ, t) [Ne(t + dt) − Ne(t)] − pc(θ, t) [Nc(t + dt) − Nc(t)] . (4.7)

Here, pg(θ, t), pe(θ, t), and pc(θ, t) denote the probabilities that each possible topological event

involves a boundary of type θ. The bracketed terms on the right-hand side of equation 4.7 are

simply the total numbers of each critical event that occur in this time interval. Dividing by dt and

taking the limit as the time interval approaches zero, we have the differential equation

N(t)
∂fN (θ, t)

∂t
+ fN(θ, t)

∂N(t)

∂t
= pg(θ, t)

∂Ng(t)

∂t

− pe(θ, t)
∂Ne(t)

∂t
− pc(θ, t)

∂Nc(t)

∂t
. (4.8)

We now define

αg(θ, t) =
∂Ng(t)

∂t

αe(θ, t) =
∂Ne(t)

∂t
(4.9)

αc(θ, t) =
∂Nc(t)

∂t
.

These functions express the relative rates of each critical event type to the change in the total

number of boundaries. Measuring these rates from our simulations, we find that each remains

nearly constant, i.e. the rate of each type of topological event scales with the total number of grain

4.4. MODEL 73

boundaries and, similarly, the grain size. Typical values for these rates are on the order of unity. For

generality, we will continue to assume each is time-dependent; we use them here merely to simplify

the notation. Substituting the definitions in the previous expression into equation 4.8, we have

fN (θ, t) + N(t)
∂fN (θ, t)

∂N(t)
= αg(t)pg(θ, t) − αe(t)pe(θ, t) − αc(t)pc(θ, t) (4.10)

and if the number weighted MDF reaches a steady state,

fN(θ, t) = αg(t)pg(θ, t) − αe(t)pe(θ, t) − αc(t)pc(θ, t) (4.11)

from which it is clear that the steady-state number weighted MDF depends on an equilibrium of

critical event rates.

Now it remains to determine an adequate form for each probability function. Our first assump-

tion, which is satisfied quite generally by our simulations, is simply

pg(θ, t) = f0(θ, t) (4.12)

where f0(θ, t) is the texture weighted misorientation distribution function (TMDF), as defined in

a previous section. This assumption implies that when new boundaries are generated, they appear

between grains that have a relationship given by the texture weighted MDF but have no other

correlation.

Next we assume a functional form for the elimination and collapse events. Both types of events

can only eliminate a boundary that already exists in the system. We therefore expect that when

the number of a particular boundary type θ is N and the probability of elimination is P , if the

number is increased to 2N then its probability of elimination is 2P , i.e. pe(θ, t) and pc(θ, t) should

both be first order homogenous in fN (θ, t). We further assume that these probabilities depend on

the average areas 〈A〉(θ, t) of boundary types. That the smallest boundaries on a grain are the

first to be eliminated by topological switching was postulated decades ago by C.S. Smith [126].

The probability of elimination therefore should decrease with increasing average area. Likewise, if

boundaries with relatively large areas persist on a grain as it loses faces, they should be the most

4.4. MODEL 74

likely to be eliminated by the grain collapse events. The probability of their elimination by collapse

should then increase with increasing average area.

Because the observed values of 〈A〉(θ, t) occur only within a small range of 〈A〉(t), we approx-

imate each boundary elimination probability by a series expansion in 〈A〉(θ, t) about 〈A〉(t). The

probabilities must be invariant with uniform scaling of the domain size, therefore each term in the

expansion must be divided by an appropriate scale factor such as 〈A〉(t). For pe(θ, t) we take

pe(θ, t) =
fN(θ, t)

〈A〉(t)

∞
∑

i=0

ae,i [〈A〉(θ, t) − 〈A〉(t)]i . (4.13)

Note that, in isotropic grain growth and more generally, when 〈A〉(θ, t) = 〈A〉(t), the above should

reduce to fN(θ, t), so that

ae,0 = 〈A〉(t). (4.14)

Similarly, for pc(θ, t) we take

pc(θ, t) =
fN (θ, t)

〈A〉(t)

∞
∑

i=0

ac,i [〈A〉(θ, t) − 〈A〉(t)]i (4.15)

and have that

ac,0 = 〈A〉(t). (4.16)

4.4.3 Comparison with simulations

Now we apply our model to the special case of determining the steady-state number and area fraction

weighted MDFs. After some algebraic manipulations, we have the first-order approximation

fN (θ, t) = f0(θ, t)

[

u(t) + v(t)
〈A〉(θ, t)
〈A〉(t)

]−1

(4.17)

where we have set

u(t) =
αe(t)(1 − ae,1) + αc(t)(1 − ac,1)

αg(t)
(4.18)

and

v(t) =
αe(t)ae,1 + αc(t)ac,1

αg(t)
. (4.19)

4.4. MODEL 75

In our simulations we find that u(t) takes values around 5/3, and v(t) of about −2/3, so that in

much of the applicable range of 〈A〉(θ, t), the bracket on the right hand side of equation 4.17 is linear

in 〈A〉(θ, t)/〈A〉(t). Thus, to first order,

fN (θ, t) ≈ f0(θ, t)
〈A〉(θ, t)
〈A〉(t) (4.20)

or, in multiples of a random distribution (MRD),

λN (θ, t) ≈ 〈A〉(θ, t)
〈A〉(t) (4.21)

where the appropriate proportionality constant for both equations can be determined by normalizing

equation 4.20.

The local value of the number weighted MDF is plotted against the right hand side of equa-

tion 4.20 in figure 4.19 for each simulation at 2000 MCS. For both 3D and 2D simulations, the

result is a scatter of points lying close to the line f(x) = x. This result confirms the quite general

applicability of equation 4.20 in predicting the steady-state number weighted MDF. We note that

the initial microstructure in all simulations satisfies equation 4.20 trivially, since we begin with an

isotropically grown polycrystal and randomly assigned orientations.

It is certainly possible to generate a microstructure where the average boundary area and the

grain boundary number fraction are not related by equation 4.20. We then expect that in such cases

the number weighted MDF transitions to the steady state according to equation 4.10. However, in

our simulations the critical event mechanism appears to operate quickly enough to compensate for

changes in the average areas of grain boundaries, leading to the steady-state equation being satisfied

at all times. Thus none of the Monte Carlo simulations performed here can be used to test the

time-dependent part of the critical event model.

Using equations 4.6 and 4.20, we can also compute the steady state area weighted MDF as

fA(θ, t) ≈ f0(θ, t)

[〈A〉(θ, t)
〈A〉(t)

]2

(4.22)

4.4. MODEL 76

0

0.01

0.02

0.03

0.04

0 0.01 0.02 0.03 0.04

f N
(θ

)

f0(θ) <A>(θ)/<A>

(a) 2D Monte Carlo simulations.

0

0.01

0.02

0.03

0.04

0 0.01 0.02 0.03 0.04

f N
(θ

)

f0(θ) <A>(θ)/<A>

(b) 3D Monte Carlo simulations.

Figure 4.19: Scatter plot of left- and right-hand sides of equation 4.20 for all Monte Carlo simulations
with random orientation texture, 2000 MCS.

4.4. MODEL 77

or, in multiples random

λA(θ, t) ≈
[〈A〉(θ, t)

〈A〉(t)

]2

(4.23)

Again, a suitable proportionality constant can be computed by normalization of equation 4.22. We

plot the area weighted MDF measured in each simulation against the right hand side of equation 4.22

in figure 4.20. Similar to the result above, we have points lying about a straight line. While the area

weighted MDF now depends on the square of 〈A〉(θ, t), deviations from this line are not significantly

larger than those in figure 4.19. Again we find that equation 4.22 is satisfied for all simulation times,

regardless of whether the area weighted MDF has reached a steady state.

We note that the above relations explain why the area and number weighted MDFs in figure 4.7

had slopes related by a factor of 2. In fact, the steady state equations derived from the critical event

model imply that lnλA ≈ 2 lnλN , which is plotted in figure 4.21.

Although the number and area weighted MDFs progress through a transient state before reaching

their steady state distributions, equations 4.20 and 4.22 appear to be satisfied at all times. This is

demonstrated in figure 4.22, where we take the particular case of the 3D Monte Carlo simulation

with Read-Shockley energy, θ′ = 45◦, and cubic crystal symmetry. It then also is possible that the

steady-state equation is satisfied, at least approximately, in simulations with non-random orientation

texture. In fact, this appears to happen quite generally, as shown in figure 4.23. Clearly, the

mechanism of misorientation texture development by critical events occurs on a smaller time scale

than the mechanisms controlled by boundary lengthening and orientation texture development.

We do not know whether the magnesia sample has reached a steady state MDF or ODF. However,

the results above suggest that equation 4.20 might also apply in this case. In fact we find that the

relation is satisfied quite well, as shown in figure 4.24.

4.4.4 Boundary lengthening model

Aside from the TMDF, the essential input to the critical event model presented above is the average

area for each boundary type. A quantitative model for average boundary area has been presented

by Holm et al. [28]. They consider a two-dimensional geometry where the ends of a grain boundary

with energy γ(θ) meet in triple lines with two other boundaries having energy γmax, the maximum

grain boundary energy in the system, as shown in figure 4.25. To begin, the boundaries are in

4.4. MODEL 78

0

0.01

0.02

0.03

0.04

0 0.01 0.02 0.03 0.04

f A
(θ

)

f0(θ) [<A>(θ)/<A>]2

(a) 2D Monte Carlo simulations.

0

0.01

0.02

0.03

0.04

0 0.01 0.02 0.03 0.04

f A
(θ

)

f0(θ) [<A>(θ)/<A>]2

(b) 3D Monte Carlo simulations.

Figure 4.20: Scatter plot of left- and right-hand sides of equation 4.22 for all Monte Carlo simulations,
2000 MCS.

4.4. MODEL 79

-0.5

0

0.5

1

1.5

2

2.5

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

ln
(λ

A
(θ

))

ln(λN(θ))

RS 15
RS 30
RS 45

λA = 2λN

Figure 4.21: Relation between area and number weighted MDFs for several 3D simulations, 500
MCS.

0

0.01

0.02

0.03

0.04

0 0.01 0.02 0.03 0.04

f N
(θ

)

f0(θ) <A>(θ)/<A>

0 MCS
100 MCS
500 MCS

1000 MCS
2000 MCS

Figure 4.22: Scatter plot of left- and right-hand sides of equation 4.20. 3D Monte Carlo simulations
with γRS(θ), θ′ = 45◦ and cubic crystal symmetry.

4.4. MODEL 80

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.01 0.02 0.03 0.04 0.05 0.06

f N
(θ

)

f0(θ) <A>(θ)/<A>

isotropic
α = 4.20
α = 6.05
α = 9.45
α = 16.8

Figure 4.23: Scatter plot of left- and right-hand sides of equation 4.20. 3D Monte Carlo simulations
with non-random orientation texture.

0

0.01

0.02

0.03

0.04

0 0.01 0.02 0.03 0.04

f N
(θ

)

f0(θ) <A>(θ)/<A>

Figure 4.24: Scatter plot of left- and right-hand sides of equation 4.20 for polycrystalline magnesia.

4.4. MODEL 81

Figure 4.25: Schematic of grain boundary lengthening process. A boundary with energy γ(θ) in-
tersects two boundaries with the maximum grain boundary energy in an isotropic configuration.
Boundary lengthening occurs as the boundaries adjust to satisfy mechanical equilibrium at the
triple junction.

an isotropic configuration, i.e. all boundaries have the same length L and every dihedral angle is

120◦. Now we let the boundaries relax until the equilibrium triple line geometry is obtained. The

boundary with energy γ(θ) now has length L + ∆L(θ). Holm et al. used a linear approximation for

the boundary lengthening, i.e.

∆L

L
= 1 + α(1 − γ(θ)) (4.24)

where α is a constant fitting parameter. Note that equation 4.24 was derived under the condition

that γmax = 1. However, we could easily compute the exact lengthening in such a case as

∆L

L
=

1

2

[

1 −
√

3

tan cos−1 γ(θ)
2γmax

]

(4.25)

This approach does not require a fitting parameter. In both models, the boundary lengthening

that occurs for this particular geometry is assumed to be representative of the average boundary

lengthening throughout the system. For two dimensions, the increase in boundary area should be

proportional to the boundary lengthening given by either equation 4.24 or 4.25. Three dimensional

area changes should follow the square of this relation.

Each boundary lengthening model predicts the general trends of average boundary area with

energy as measured from our simulations. Figure 4.26 shows that the average boundary area is a

nonlinear function of energy in both two and three dimensions, especially in the low energy regime.

4.4. MODEL 82

Equation 4.24 does not accurately predict the average boundary areas in regions where the data curve

upward, e.g. for the lowest energy grain boundaries, regardless of the chosen fitting parameter. We

find that the “exact” lengthening model in equation 4.25 is even less accurate, and in fact exhibits

curvature in the opposite direction.

Several approximations used in the boundary lengthening model may lead to its inaccuracy.

First, the topological neighborhood of any grain boundary is certainly more complex than that

used, i.e. with every boundary under consideration intersecting only boundaries of the system aver-

age energy. A more accurate form of the model might consider the boundary lengthening processof

a given boundary type in a number of neighborhoods with boundaries of various energies. Addition-

ally, the three boundaries meeting at a triple junction must satisfy the geometric constraint that

∆gAB∆gBC = ∆gCA (or any permutation of A, B, and C). For disorientation angles, this implies

that θAB ≤ θBC +θCA (for all permutations). In particular, two low angle grain boundaries meeting

at a triple junction necessarily meet with a third low angle boundary, while triple junctions with

high angle grain boundaries are not as constrained. This condition implies that, in general, low angle

grain boundaries should not lengthen as much as the model boundary lengthening model predicts.

This is in fact true of our simulations, see e.g. the average area data from the simulation with a step

function energy (figure 4.8).

Although the boundary lengthening process is simple, it appears to be quite difficult to derive a

simple quantitative model to predict its resulting effect on a microstructure. However, the relation

between grain boundary energy and average area is approximately one to one, and so we can at least

fit an empirical formula to it. With a second order polynomial fit

〈A〉(θ)
〈A〉 = a + b

γ

γmax
+ c

(

γ

γmax

)2

(4.26)

we find for 2D a = 2.345, b = −1.592, and c = 0.2231 with χ2 = 0.0005238, while for 3D a = 3.610,

b = −4.369, and c = 1.729 with χ2 = 0.001475. In particular, we can easily use equation 4.26

to approximate any of the steady state MDFs from simulations with random orientation texture,

as shown in figure 4.27. The accuracy of the result is very good, especially for low angle grain

boundaries.

We note that, because each of these functions are invertible within the domain of possible bound-

4.4. MODEL 83

0.8

1

1.2

1.4

1.6

1.8

2

0.2 0.4 0.6 0.8 1

<
A

>
(θ

)/
<

A
>

γ(θ)

RS15
RS30
RS45

hexagonal
Holm et al.

exact
fit

(a) 2D Monte Carlo simulations, 1000 MCS.

0.6

1.2

1.8

2.4

3

0.2 0.4 0.6 0.8 1

<
A

>
(θ

)/
<

A
>

γ(θ)

RS15
RS30
RS45

hexagonal
Holm et al.

exact
fit

(b) 3D Monte Carlo simulations, 500 MCS.

Figure 4.26: Scatter plot of grain boundary energy and average boundary area for Monte Carlo
simulations. Lines indicate boundary lengthening model predictions and polynomial fit.

4.5. SUMMARY 84

0

0.01

0.02

0.03

0.04

0 10 20 30 40 50 60 70

f(
θ)

θ

Figure 4.27: Steady state area weighted MDF computed using the second order polynomial fit 4.26,
γRS, θ′ = 45◦. Solid line is the corresponding area weighted MDF from simulation, 500 MCS.

ary energies [0, γmax], there is a possibility to use them in the context of deriving energy functions

from measured misorientation texture data. For example, we consider the area and number weighted

MDFs from the polycrystalline magnesia sample mentioned above. Figure 4.28 shows the results of

a fit to γ(θ) using equations 4.26 with the 3D fitting parameters. We see that the majority of the

points follow a Read-Shockley type function with θ′ = 15◦, as expected.

4.5 Summary

We have performed simulations of 2D and 3D grain growth with anisotropic energy and mobility, and

both random and non-random orientation texture. Grain boundary energy anisotropy was found

to produce a measurable effect on both number and area weighted MDFs in all cases. The average

area and the number of relatively low energy grain boundaries increases relative to higher energy

grain boundaries. The effect of mobility anisotropy on interface texture appears to be insignificant,

in agreement with previous results. Both area-weighted and number-weighted MDFs develop into

steady-state distributions after some initial transient. Similar results are obtained in all simulations

regardless of dimensionality, crystal symmetry, or the form of the energy function. Measured number

and area weighted MDFs in polycrystalline MgO are qualitatively similar to those produced by

4.5. SUMMARY 85

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70

γ(
θ)

θ

Figure 4.28: Energy function derived from MDF measurements of polycrystalline magnesia. Solid
line is γRS, θ′ = 15◦.

simulations with anisotropic energy. When the initial orientation texture of the microstructure is

non-random and boundary properties are anisotropic, we find that the texture weighted MDF is not

constant, and becomes an additional mechanism for interface texture development.

To describe our results, we have proposed a critical event model for the evolution of number and

area weighted misorientation distribution functions during grain growth. This model demonstrates

the explicit dependence of misorientation texture on grain boundary energy anisotropy and orien-

tation texture through the texture weighted misorientation distribution function. Predictions from

the model are compared to area and number weighted MDFs measured in Monte Carlo simulations

with random orientation texture and anisotropic interfacial properties. The steady state equation

of our model appears to be a good fit to all data, indicating that the critical event mechanism works

on a finer time scale than boundary lengthening or orientation texture development.

Chapter 5

Inclination dependent anisotropy

In the last chapter, we found that misorientation dependent energy anisotropy influences the aver-

age area of grain boundaries, which in turn leads to nonrandom number and area weighted MDFs.

Because boundary properties were a function of misorientation only, any single grain boundary had

a unique, constant energy and mobility, and moreover, the boundaries of a given type could be

counted. When the boundary properties are inclination (interface normal) dependent, this is no

longer the case, as the normal vector changes continuously over curved interfaces. The generation or

elimination of a particular boundary type may occur as a result of boundary motion, even without

topological events. Clearly, predicting the GBCD that results from grain growth with inclination

dependent anisotropy is a much different problem than modelling the effects of misorientation de-

pendent anisotropy.

In this chapter we will demonstrate that energy and mobility anisotropy have similar effects on

the resulting interface texture, in that the texture depends most strongly on the energy function.

Likewise, many of the other qualitative aspects of misorientation texture development apply here as

well.

86

5.1. SIMULATIONS 87

Energy α Energy n
′ γmax / γmin Mobility α Mobility n

′ Mmax / Mmin

0 〈1, 0, 0〉 1 0 〈1, 0, 0〉 1

0.08281 〈1, 0, 0〉 1.07 0 〈1, 0, 0〉 1

0.05915 〈1, 1, 1〉 1.05 0 〈1, 0, 0〉 1

0.1774 〈1, 1, 1〉 1.15 0 〈1, 0, 0〉 1

0.2957 〈1, 1, 1〉 1.25 0 〈1, 0, 0〉 1

0.8872 〈1, 1, 1〉 1.75 0 〈1, 0, 0〉 1

0 〈1, 0, 0〉 1 13.60 〈1, 1, 1〉 12.5

0.2957 〈1, 1, 1〉 1.25 13.60 〈1, 1, 1〉 12.5

Table 5.1: Summary of simulation parameters for grain growth with inclination dependent

anisotropy.

5.1 Simulations

Grain boundary properties are assigned on the basis of macroscopic grain boundary geometry. The

interfacial energy γ(∆g,n) and M(∆g,n) functions are defined by an interface plane scheme de-

scribed earlier. We write the interface properties as a function of the interface normal vectors with

respect to both grains, i.e.

γ(∆g,nA) = γs(nA) + γs(∆g nA) (5.1)

and

M(∆g,nA) = Ms(nA) + Ms(∆g nA) (5.2)

where γs(n) and Ms(n) are invariant under the relevant crystal symmetry operators. These functions

will take the form

γs(n) = 1 + α min
Oi∈Oh

∥

∥

∥

∥

Oin

‖Oin‖
− n′

‖n′‖

∥

∥

∥

∥

2

(5.3)

with Ms(n) similarly defined. Here, α is a positive constant and n′ is a fixed crystal direction,

usually taken to be either 〈1, 0, 0〉 or 〈1, 1, 1〉. Oi represents an operator from the point group Oh,

as we consider only cubic crystal symmetry. Note that minima for either function occur for normal

vectors near n′ and symmetrically equivalent directions. Also, the value of α can be used to control

the magnitude of the energy and mobility anisotropy. The functions are isotropic when α = 0.

We perform a number of simulations with various choices for α and n′. Table 5.1 contains a

summary of our choices for each.

5.2. RESULTS 88

Additionally, we performed one simulation with the following function for γs.

γs(n) = 1 +
1

8

[

1 + tanh

(

12 min
Oi∈Oh

∥

∥

∥

∥

Oin

‖Oin‖
− n′

‖n′‖

∥

∥

∥

∥

2

− 5

)]

(5.4)

where n′ = 〈1, 1, 1〉. This function is similar in magnitude and form to that described above with

γmax/γmin = 1.25, but has broader, “flattened” minima and maxima due to the hyperbolic tangent

function.

5.2 Results

5.2.1 General observations

As in simulations with misorientation dependent anisotropy, grain growth kinetics with inclination

dependent mobility anisotropy are nearly identical to the isotropic case, figure 4.1. The kinetic

exponent n for isotropic growth is found to be n = 0.99. Again, the absolute rate of grain growth

with mobility anisotropy is different because the average mobility of boundaries in such cases is

greater than one.

While the simulations with anisotropic mobility showed an increased rate of grain growth, we

find that those with anisotropic energy actually had slower growth and a grain growth exponent

of only about n = 0.94. The energy functions used here did not have strong anisotropy, and so

the average boundary energy in such cases was nearly one. To explain the decrease in growth rate,

we might consider that the inclination dependent anisotropy leads to changes in the local shape

of boundaries. Boundaries may become more planar in the vicinity of low energy inclinations in

an attempt to reduce total energy. These boundaries would then have less curvature and thus a

smaller average driving force for grain boundary motion. This seems reasonable, as the growth rate

diminishes with greater anisotropy.

While the typical shapes of grain boundaries appear to change with inclination dependent energy

anisotropy, grain shapes still appear to be mostly equiaxed, figure 4.3.

5.2. RESULTS 89

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

∆(
t)

t

isotropic
Mmax = 12.5
γmax = 1.15
γmax = 1.25
γmax = 1.75

Figure 5.1: The function ∆(t) for select simulations. Data from isotropic simulation are obscured
by that from simulation with anisotropic mobility.

5.2.2 Time dependence

We found that misorientation dependent anisotropy led to steady state MDFs, and the same is true

here. We redefine ∆(t) as a function of the GBCD, using the invariant measures on the sphere and

in SO(3),

∆(t) =

∫

‖f(ϕ1, Φ, ϕ2, θ, φ, t) − f(ϕ1, Φ, ϕ2, θ, φ, 0)‖ dV (5.5)

where the volume element dV is given by

dV = dϕ1d sin(Φ)dϕ2d sin(θ)dφ. (5.6)

This relation is plotted as a function of time for several simulations in figure 5.1. In each case, ∆(t)

initially increases quickly and later slows. This typically occurs after the number of grains in the

sample has decreased by more than about 30%, or equivalently, after the average grain volume has

increased by a factor of nearly 1.5. At later times, the rate of change of ∆ for all simulations is of

the same magnitude as for the isotropic case. This suggests that ∆(t) is changing only because of

increasing sampling noise.

5.2. RESULTS 90

5.2.3 Property dependence

In figures 5.2 and 5.3 we have plotted the energy and grain boundary population for several fixed

misorientations for simulations with anisotropic interfacial energy. There are clearly maxima

(minima) in each energy plot corresponding to minima (maxima) in the related grain boundary

distribution. When the grain boundary energy is anisotropic, low energy boundaries have relatively

high populations and high energy boundaries occur less frequently. This trend is consistent across

all simulations, and shows that texture development with inclination dependent energy follows the

same qualitative behavior as with misorientation dependent anisotropy. Figure 5.4 shows the average

population of grain boundaries as a function of energy for various simulations with anisotropic energy.

There is a clear trend for grain boundaries with low energy to have relatively larger populations that

those with higher energy.

The increase in low energy boundary planes in a microstructure agrees qualitatively with the

solution of a shrinking embedded grain. However, we observe that the steady-state GBCDs measured

here are nonzero everywhere, i.e. there exist grain boundaries of all types in each data set. This is

in constrast to the embedded grain, which typically has missing inclinations. Figure 5.5 shows the

steady-state population of interface normals of an initally spherical shrinking grain, which can be

directly compared to the result in figure 5.2. This result suggests that the grain boundary network

connectivity contributes in some way to the grain boundaries being unable to attain their minimum

energy configuration.

Figures 5.6 and 5.7 show the GBCD at fixed misorientation with anisotropic mobility and

isotropic energy. When the energy is isotropic, the distribution of grain boundary planes is random,

regardless of the mobility. Again, this result in qualitatively the same as that found with misori-

entation dependent properties. Note that while there is some deviation from the exact random

distribution with anisotropic mobility, this deviation is no larger than that measured in isotropic

growth.

We find that the energy to area mapping is nonunique, as shown in figure 5.8. Here we have plot-

ted a two dimensional histogram of boundaries categorized by their energy and measured population

in the simulation with γmin/γmax = 1.25, n′ = 〈1, 1, 1〉. While the relationship between energy and

population in simulations with misorientation dependent anisotropy was only approximately one-to-

5.2. RESULTS 91

 0.200
 0.300
 0.400
 0.500
 0.600
 0.700
 0.800
 0.900
 1.000
 1.100

MRD

(a) Grain boundary population in multiples random.

 1.080
 1.100
 1.120
 1.140
 1.160
 1.180
 1.200
 1.220
 1.240
 1.260
 1.280

Energy

(b) Grain boundary energy (arbitrary units).

Figure 5.2: Grain boundary population and energy for a fixed misorientation of 45◦ about 〈1, 0, 0〉,
where γmin/γmax = 1.25, n′ = 〈1, 1, 1〉.

5.2. RESULTS 92

 0.300
 0.400
 0.500
 0.600
 0.700
 0.800
 0.900
 1.000
 1.100
 1.200

MRD

(a) Grain boundary population in multiples random.

 1.000
 1.020
 1.040
 1.060
 1.080
 1.100
 1.120
 1.140
 1.160
 1.180
 1.200

Energy

(b) Grain boundary energy (arbitrary units).

Figure 5.3: Grain boundary population and energy for a fixed misorientation of 60◦ about 〈1, 1, 1〉,
where γmin/γmax = 1.25, n′ = 〈1, 1, 1〉.

5.2. RESULTS 93

-3

-2.4

-1.8

-1.2

-0.6

0

0.6

1.2

1 1.2 1.4 1.6 1.8

ln
(λ

)

γ

γ/γmax = 1.05
1.15
1.25
1.75

Figure 5.4: Average population of grain boundaries as a function of grain boundary energy γ for
various simulations.

5.2. RESULTS 94

 0.000

 5.000

10.000

15.000

20.000

25.000

30.000

MRD

Figure 5.5: Population of interface normals on an embedded shrinking grain, with misorientation
45◦ about 〈1, 0, 0〉. Compare with the result of figure 5.2.

5.2. RESULTS 95

 0.580
 0.600
 0.620
 0.640
 0.660
 0.680
 0.700
 0.720
 0.740
 0.760

MRD

(a) Grain boundary population in multiples random.

 4.000

 5.000

 6.000

 7.000

 8.000

 9.000

10.000

11.000

12.000

Mobility

(b) Grain boundary mobility (arbitrary units).

Figure 5.6: Grain boundary population and mobility for a fixed misorientation of 45◦ about 〈1, 1, 0〉,
where Mmin/Mmax = 12.5, n′ = 〈1, 1, 1〉.

5.2. RESULTS 96

 0.620

 0.640

 0.660

 0.680

 0.700

 0.720

 0.740

 0.760

MRD

(a) Grain boundary population in multiples random.

 1.000
 2.000
 3.000
 4.000
 5.000
 6.000
 7.000
 8.000
 9.000
10.000
11.000

Mobility

(b) Grain boundary mobility (arbitrary units).

Figure 5.7: Grain boundary population and energy for a fixed misorientation of 60◦ about 〈1, 1, 1〉,
where Mmin/Mmax = 12.5, n′ = 〈1, 1, 1〉.

5.2. RESULTS 97

0e+00
1e-03
2e-03
3e-03
4e-03

 1
 1.05

 1.1
 1.15

 1.2
γ(θ) 0.5

 1
 1.5

 2
 2.5

λ(θ)

Figure 5.8: Frequency of individual boundary types with energy γ and population λ (multiples
random).

5.2. RESULTS 98

1

2

3

4

0 30 60 90 120 150 180

1

1.1

1.2

1.3

1.4

f(
α) γ

α

f(α)
γ

Figure 5.9: Population and energy of grain boundaries with < 10◦ misorientation, as a function of
angle α about the zone [001]. Simulated data from simulation with “flat” energy wells.

one, here the non-uniqueness is much more pronounced. In particular, grain boundaries with the

same misorientation and identical energy values might have significantly different populations, as

shown in figure 5.9. Here the only significant difference between boundaries with the same energy

is the local energy gradient. Note that this effect occurs for both high and low energy boundaries.

This effect has also been observed experimentally by Saylor et al. [4], as shown in figure 5.10.

5.2.4 Simulation method validation

The grain boundary distributions from simulations are very similar to those measured in previous

studies of magnesia. Figure 5.11 compares plots of boundary plane distributions for various fixed

misorientations obtained with the GRAIN3D simulations with equivalent plots of measured distri-

butions. The success of the simulations in this respect is probably a result of the fact that energy

anisotropy alone accounts for the development of anisotropic grain boundary plane distributions.

5.2. RESULTS 99

0.35

0.4

0.45

0.5

0.55

0.6

0 30 60 90 120 150 180

0.88

0.89

0.9

0.91

ln
(λ

(α
))

γ
α

f(α)
γ

Figure 5.10: Experimentally measured population and energy of grain boundaries in polycrystalline
magnesia, as a function of angle α about the zone [010], from Saylor et al. [4].

5.2. RESULTS 100

 0.700

 0.800

 0.900

 1.000

 1.100

 1.200

 1.300

 1.400

 1.500

MRD

(a) Simulation at t = 10.

 7.000
 7.500
 8.000
 8.500
 9.000
 9.500
10.000
10.500
11.000
11.500
12.000

MRD

(b) Experimental data [6].

Figure 5.11: Comparison of low angle grain boundary distributions for simulation with [100] type
energy minima and experimental data from polycrystalline magnesia.

5.3. DISCUSSION 101

5.3 Discussion

We hypothesized an inverse relation between grain boundary energy and grain boundary distribu-

tions. In figures 5.2 and 5.3 we have plotted the energy and simulated grain boundary population

for several fixed misorientations for simulations with anisotropic interfacial energy.

There are clearly maxima (minima) in each energy plot corresponding to minima (maxima)

in the related grain boundary distribution. When the grain boundary energy is anisotropic, low

energy boundaries have relatively high populations and high energy boundaries occur less frequently.

This trend is consistent across all simulations, and shows that texture development with inclination

dependent energy follows the same qualitative behavior as with misorientation dependent anisotropy.

It is reasonable now to investigate the relationship between grain boundary energy and average

boundary area, and compare this to the relation found in the last chapter. First, we find that the

energy to area mapping is nonunique, as shown in figures 5.8 and 5.9. While this was the case

with misorientation dependent anisotropy, here it is much more pronounced. The only significant

difference between these simulations is the overall magnitude of the energy anisotropy.

However, this implies that the energy gradients are also different. With inclination dependent

energy anisotropy, the triple junction equilibrium depends on a balance of both the magnitude and

the gradient of the energy of each boundary. We might then expect that for such a mapping to

be even approximately one-to-one, it should at least consider both the energy and the local energy

neighborhood of grain boundary planes.

For the systems examined here, the independence of the grain boundary character distribution

from the mobility is noteworthy. It should be emphasized that even though the mobility anisotropy

used was ten times larger than the energy anisotropy, it had a negligible effect on the grain boundary

character distribution. In the absence of a strong orientation texture, it is possible that the highest

mobility boundaries move through grains quickly and are then replaced with randomly generated

boundary types, reducing the population of high mobility boundaries. However, the results presented

here demonstrate that this in not the case. It is then likely that in this context it is important to

recognize that when the mobility is anisotropic and the energy is isotropic, then the condition

for equilibrium at the triple junctions requires that grain boundaries adopt orientations such that

the grain boundary dihedral angles are all equal. Therefore, as long as the orientations of the

5.4. SUMMARY 102

triple lines are randomly distributed, the grain boundary plane orientations will also be randomly

distributed. On the other hand, when the boundary energy is anisotropic, the boundaries planes

at triple junctions adjust to low energy orientations that also satisfy the interfacial equilibrium

constraint and this produces a relatively higher population of low energy boundaries. Finally, it

should be noted that we do not necessarily expect the grain boundary character distribution to be

independent of mobility when significant orientation texture is present.

5.4 Summary

We have performed simulations of grain growth with inclination dependent energy and mobility

anisotropy and random orientation texture. Grain boundary distributions under these conditions

appear to reach steady states after some initial period. The distribution of grain boundary planes for

a fixed misorientation is dependent on the energy function for that misorientation, and specifically,

an inverse relation exists for local extrema. Boundary plane distributions exhibit relative minima

(maxima) for planes at energy maxima (minima), which is consistent with experimental observations

and other simulated results. The assumed grain boundary mobility anisotropy is shown to have no

measurable effect on grain boundary plane distributions under the simulation conditions used.

Chapter 6

Conclusions and Future Work

In this work, we have studied grain growth in two and three dimensions using a variety of compu-

tational methods. Our primary objective has been to model the quantitative relationships between

the anisotropy of interfacial properties and the resulting interface texture. These models, along with

their assumptions, accuracy, and limitations, have been discussed in the previous two chapters.

Regardless of the details of individual simulations, several distinct trends emerge. The intro-

duction of grain boundary energy anisotropy leads to interface texture, while mobility anisotropy

has a much weaker effect. For grain growth with misorientation dependent energy anisotropy and

random orientation texture, the resulting interface texture can be approximated reasonably well by

a function of grain boundary energy alone. Non-random initial orientation textures and anisotropic

energy allow for the possibility of orientation texture development during grain growth, which greatly

influences the resulting misorientation distribution. Inclination dependent anisotropy increases the

complexity of both the energy functions and resulting grain boundary texture. However, the overall

trend towards increasing the ratio of low energy to high energy boundaries remains true. In the case

of misorientation texture dependent anisotropy, the mechanism of interface texture development

appears to be due to a combination of boundary lengthening and biased critical events. The average

length or area of boundaries becomes non-uniform as a result of triple junction equilibration, while

these average areas dictate the rate at which different types of boundaries are eliminated. With

inclination dependent energy anisotropy, the triple junction equilibrium condition depends on local

103

104

energy gradients in addition to the magnitude of the energy. This leads to a more complex model

for average boundary area.

As for future work, several problems must be addressed before the models presented here can be

used to accurately predict grain boundary texture development or to infer grain boundary energy

anisotropy from experiment. One problem is to develop a better model for the relationship between

grain boundary type and average area, as well as to extend the current model to the more general

five parameter case. This appears to be the most critical limiting factor in the present model, as

the proposed relation between average area and number or area weighted MDFs is highly accurate.

Another significant task is to confirm that the results and models presented here agree with exper-

iment. Along with a better quantitative relationship, this will require a complete measure of grain

boundary energy anisotropy over all macroscopic parameters, as well as an accurate measurements

of the GBCD and the ODF.

Many other issues remain. In particular, this work has presented results from only a limited

subset of the possible choices for grain boundary energy and mobility anisotropy, as well as orien-

tation texture. There is reason to believe that extreme anisotropy might lead to effects that cannot

be explained by our model, e.g. grain boundary faceting. Whether our models are applicable to a

large or small subset of engineering materials can only be answered through further simulation and

experiment.

Bibliography

[1] J Gruber, DC George, AP Kuprat, GS Rohrer, and AD Rollett. Effect of anisotropic grain

boundary energy on grain boundary distributions during grain growth. Mat. Sci. Forum,

467-470:733–738, 2004.

[2] G Hasson, JY Boos, I Herbeuval, M Biscondi, and C Goux. Theoretical and experimental de-

termination of grain boundary structures and energies – correlation with various experimental

results. Surface Sci., 31:115–137, 1972.

[3] HM Miller. unpublished work. 2007.

[4] DM Saylor, A Morawiec, and GS Rohrer. The relative free energies of grain boundaries in

magnesia as a function of five macroscopic parameters. Acta Mater., 51(13):3675–3686, 2003.

[5] DM Saylor, A Morawiec, and GS Rohrer. Distribution and energies of grain boundaries in

magnesia as a function of five degrees of freedom. J. Am. Ceram. Soc., 85(12):3081–3083,

2002.

[6] DM Saylor, A Morawiec, and GS Rohrer. Distribution of grain boundaries in magnesia as a

function of five macroscopic parameters. Acta Mater., 51(13):3663–3674, 2003.

[7] GS Rohrer, DM Saylor, B El Dasher, BL Adams, AD Rollett, and P Wynblatt. The distribu-

tion of internal interfaces in polycrystals. Z. Metallk., 95(4):197–214, 2004.

[8] DM Saylor, BS El Dasher, AD Rollett, and GS Rohrer. Distribution of grain boundaries in

aluminum as a function of five macroscopic parameters. Acta Mater., 52(12):3649–3655, 2004.

105

BIBLIOGRAPHY 106

[9] DM Saylor, B El Dasher, T Sano, and GS Rohrer. Distribution of grain boundaries in srtio3

as a function of five macroscopic parameters. J. Am. Ceram. Soc., 87(4):670–676, 2004.

[10] DM Saylor, B El Dasher, Y Pang, HM Miller, P Wynblatt, AD Rollett, and GS Rohrer. Habits

of grains in dense polycrystalline solids. J. Am. Ceram. Soc., 87(4):724–726, 2004.

[11] CS Kim, Y Hu, GS Rohrer, and V Randle. Five parameter grain boundary distribution in

grain boundary engineered brass. Scr. Mater., 52(7):633–637, 2005.

[12] V Randle, Y Hu, GS Rohrer, and CS Kim. Distribution of misorientations and grain boundary

planes in grain boundary engineered brass. Mat. Sci. Tech., 21(11):1287–1292, 2005.

[13] GS Rohrer, V Randle, CS Kim, and Y Hu. Changes in the five parameter grain boundary

character distribution in alpha-brass brought about by iterative thermomechanical processing.

Acta Mater., 54(17):4489–4502, 2006.

[14] B Alexandreanu, B Capell, and GS Was. Combined effect of special grain boundaries and grain

boundary carbides on IGSCC of Ni-16Cr-9Fe-XC alloys. Mat. Sci. Engr. A, 300(1-2):94–104,

2001.

[15] B Alexandreanu and GS Was. Grain boundary deformation-induced intergranular stress cor-

rosion cracking of Ni-16Cr-9Fe in 360 degrees c water. Corrosion, 59(8):705–720, 2003.

[16] GO Williams, V Randle, JR Cowan, and P Spellward. The role of misorientation and phos-

phorus content on grain growth and intergranular fracture in iron-carbon-phosphorus alloys.

J. Micro., 213:321–327, 2004.

[17] U Krupp, PEG Wagenhuber, WM Kane, and CJ McMahon. Improving resistance to dynamic

embrittlement and intergranular oxidation of nickel based superalloys by grain boundary en-

gineering type processing. Mat. Sci. Tech., 21(11):1247–1254, 2005.

[18] B Alexandreanu and GS Was. The role of stress in the efficacy of coincident site lattice

boundaries in improving creep and stress corrosion cracking. Scr. Mater., 54(6):1047–1052,

2006.

BIBLIOGRAPHY 107

[19] G Owen and V Randle. On the role of iterative processing in grain boundary engineering. Scr.

Mater., 55(10):959–962, 2006.

[20] CS Chung, JK Kim, HK Kim, and WJ Kim. Improvement of high-cycle fatigue life in a 6061

Al alloy produced by equal channel angular pressing. Mat. Sci. Engr. A, 337(1-2):39–44, 2002.

[21] Y Gao, M Kumar, RK Nalla, and RO Ritchie. High cycle fatigue of nickel based superalloy

ME3 at ambient and elevated temperatures: Role of grain boundary engineering. Metal. Mat.

Trans. A, 36A(12):3325–3333, 2005.

[22] V Randle and H Davies. Evolution of microstructure and properties in alpha-brass after

iterative processing. Metal. Mat. Trans. A, 33(6):1853–1857, 2002.

[23] B Alexandreanu, BH Sencer, V Thaveeprungsriporn, and GS Was. The effect of grain boundary

character distribution on the high temperature deformation behavior of Ni-16Cr-9Fe alloys.

Acta Mater., 51(13):3831–3848, 2003.

[24] T Furuhara and T Maki. Grain boundary engineering for superplasticity in steels. J. Mat.

Sci., 40(4):919–926, 2005.

[25] DC Hinz and JA Szpunar. Modeling the effect of coincidence site lattice boundaries on grain

growth textures. Phys. Rev. B, 52(14):9900–9909, 1995.

[26] K Mehnert and P Klimanek. Monte carlo simulation of grain growth in textured metals using

anisotropic grain boundary mobilities. Comp. Mat. Sci., 7(1-2):103–108, 1996.

[27] N Ono, K Kimura, and T Watanabe. Monte carlo simulation of grain growth with the full

spectra of grain orientation and grain boundary energy. Acta Mater., 47(3):1007–1017, 1999.

[28] EA Holm, GN Hassold, and MA Miodownik. On misorientation distribution evolution during

anisotropic grain growth. Acta Mater., 49(15):2981–2991, 2001.

[29] MC Demirel, AP Kuprat, DC George, GK Straub, and AD Rollett. Linking experimental

characterization and computational modeling of grain growth in Al-Foil. Interface Sci., 10(2-

3):137–141, 2002.

BIBLIOGRAPHY 108

[30] A Kazaryan, Y Wang, SA Dregia, and BR Patton. Grain growth in systems with anisotropic

boundary mobility: Analytical model and computer simulation. Phys. Rev. B, 6318(18), 2001.

[31] A Kazaryan, Y Wang, SA Dregia, and BR Patton. Grain growth in anisotropic systems:

Comparison of effects of energy and mobility. Acta Mater., 50(10):2491–2502, 2002.

[32] A Kazaryan, BR Patton, SA Dregia, and Y Wang. On the theory of grain growth in systems

with anisotropic boundary mobility. Acta Mater., 50(3):499–510, 2002.

[33] MC Demirel, AP Kuprat, DC George, and AD Rollett. Bridging simulations and experiments

in microstructure evolution. Phys. Rev. Lett., 90(1), 2003.

[34] GN Hassold, EA Holm, and MA Miodownik. Accumulation of coincidence site lattice bound-

aries during grain growth. Mat. Sci. Tech., 19(6):683–687, 2003.

[35] D Kinderlehrer, I Livshits, GS Rohrer, S Ta’asan, and P Yu. Mesoscale simulation of the

evolution of the grain boundary character distribution. In Recrystallization and Grain Growth,

Parts 1 and 2, volume 467-470, pages 1063–1068, 2004.

[36] K Barmak, WE Archibald, J Kim, CS Kim, AD Rollett, GS Rohrer, S Ta’asan, and D Kinder-

lehrer. Grain boundary energy and grain growth in highly-textured al films and foils: Exper-

iment and simulation. In Icotom 14: Textures of Materials, Parts 1 and 2, volume 495-497,

pages 1255–1260, 2005.

[37] J Gruber, DC George, AP Kuprat, GS Rohrer, and AD Rollett. Effect of anisotropic grain

boundary properties on grain boundary plane distributions during grain growth. Scr. Mater.,

53(3):351–355, 2005.

[38] K Barmak, J Kim, CS Kim, WE Archibald, GS Rohrer, AD Rollett, D Kinderlehrer, S Ta’asan,

H Zhang, and DJ Srolovitz. Grain boundary energy and grain growth in al films: Comparison

of experiments and simulations. Scr. Mater., 54(6):1059–1063, 2006.

[39] C Hammond. The Basics of Crystallography and Diffraction. International Union of Crystal-

lography: Oxford University Press, Oxford, 1997.

BIBLIOGRAPHY 109

[40] JF Nye. Physical Properties of Crystals: Their Representation by Tensors and Matrices.

Clarendon, Oxford, 1957.

[41] A Morawiec. Orientations and Rotations: Computations in Crystallographic Textures.

Springer, New York, 2004.

[42] HJ Bunge. Texture Analysis in Materials Science. Butterworths, Boston, 1982.

[43] JB Kuipers. Quaternions and Rotation Sequences: A Primer with Applications to Orbits,

Aerospace, and Virtual Reality. Princeton University Press, Princeton, 1999.

[44] V Randle. The Role of the Coincidence Site Lattice in Grain Boundary Engineering. Institute

of Materials, London, 1996.

[45] AP Sutton and Balluffi RW. Interfaces in Crystalline Materials. Clarendon, Oxford, 1995.

[46] WT Read and W Shockley. Dislocation models of crystal grain boundaries. Phys. Rev.,

78(3):275–289, 1950.

[47] D Wolf. Structure-energy correlation for grain boundaries in fcc metals 2. boundaries on the

(110) and (113) planes. Acta Metall., 37(10):2823–2833, 1989.

[48] D Wolf. Structure-energy correlation for grain boundaries in fcc metals 1. boundaries on the

(111) and (100) planes. Acta Metall., 37(7):1983–1993, 1989.

[49] D Wolf. Structure and energy of general grain boundaries in bcc metals. J. Appl. Phys.,

69(1):185–196, 1991.

[50] D Wolf. Effect of interatomic potential on the calculated energy and structure of high-angle

coincident site grain boundaries 2. (100) twist boundaries in cu, ag and au. Acta Metall.,

32(5):735–748, 1984.

[51] D Wolf. Effect of interatomic potential on the calculated energy and structure of high-angle co-

incident site grain boundaries 1. (100) twist boundaries in aluminum. Acta Metall., 32(2):245–

258, 1984.

BIBLIOGRAPHY 110

[52] Y Huang and FJ Humphreys. Subgrain growth and low angle boundary mobility in aluminium

crystals of orientation 110001. Phys. Rev. B, 74(11), 2006.

[53] G Gottstein and Shvindlerman LS. Grain Boundary Migration in Metals: Thermodynamics,

Kinetics, Applications. CRC Press, Boca Raton, 1999.

[54] D Turnbull. Theory of grain boundary migration rates. Trans. Am. Inst. Min. Metal. Engr.,

191(8):661–665, 1951.

[55] H Zhang, DJ Srolovitz, JF Douglas, and JA Warren. Characterization of atomic motion

governing grain boundary migration. Phys. Rev. B, 74(11), 2006.

[56] K Kawasaki, T Nagai, and K Nakashima. Vertex models for two dimensional grain growth.

Phil. Mag. B, 60(3):399–421, 1989.

[57] T Nagai, K Fuchizaki, and K Kawasaki. Orientation effect on grain growth. Phys. A, 204(1-

4):450–463, 1994.

[58] M Enomoto, M Kamiya, and T Nagai. Computer simulation of two-dimensional grain growth

with anisotropic grain boundary energy and mobility by vertex model. In Grain Growth In

Polycrystalline Materials II, Pts 1 and 2, pages 71–82, 1996.

[59] C Maurice and J Humphreys. 2- and 3-d curvature driven vertex simulations of grain growth.

In ICGG-3: Third International Conference on Grain Growth, pages 81–90, 1998.

[60] D Weygand, Y Brechet, and J Lepinoux. Influence of a reduced mobility of triple points on

grain growth in two dimensions. Acta Mater., 46(18):6559–6564, 1998.

[61] D Weygand, Y Brechet, and J Lepinoux. A vertex dynamics simulation of grain growth in two

dimensions. Phil. Mag. B, 78(4):329–352, 1998.

[62] D Weygand, Y Brechet, J Lepinoux, and W Gust. Three dimensional grain growth: a vertex

dynamics simulation. Phil. Mag. B, 79(5):703–716, 1999.

[63] D Weygand, Y Brechet, and J Lepinoux. Zener pinning and grain growth: a two dimensional

vertex computer simulation. Acta Mater., 47(3):961–970, 1999.

BIBLIOGRAPHY 111

[64] D Weygand, Y Brechet, and J Lepinoux. On the nucleation of recrystallization by a bulging

mechanism: a two dimensional vertex simulation. Phil. Mag. B, 80(11):1987–1996, 2000.

[65] D Weygand, Y Brechet, and J Lepinoux. Mechanisms and kinetics of recrystallisation: a two

dimensional vertex dynamics simulation. Interface Sci., 9(3-4):311–317, 2001.

[66] D Weygand, Y Brechet, and J Lepinoux. A vertex simulation of grain growth in 2d and 3d.

Adv. Engr. Mat., 3(1-2):67–71, 2001.

[67] C Herring. Surface tension as a motivation for sintering. In WE Kingston, editor, The Physics

of Powder Metallurgy, pages 143–179. McGraw-Hill, New York, 1951.

[68] HJ Frost, CV Thompson, and DT Walton. Simulation of thin film grain structures 1. grain

growth stagnation. Acta Metall. Mat., 38(8):1455–1462, 1990.

[69] HJ Frost, CV Thompson, and DT Walton. Simulation of thin film grain structures 2. abnormal

grain growth. Acta Metall. Mat., 40(4):779–793, 1992.

[70] HJ Frost. Microstructural evolution in thin films. Mat. Char., 32(4):257–273, 1994.

[71] HJ Frost and CV Thompson. Computer simulation of grain growth. Curr. Op. Sol. St. Mat.

Sci., 1(3):361–368, 1996.

[72] SP Riege, CV Thompson, and HJ Frost. Simulation of the influence of particles on grain

structure evolution in two dimensional systems and thin films. Acta Mater., 47(6):1879–1887,

1999.

[73] SPA Gill and ACF Cocks. A variational approach to two dimensional grain growth 2. numerical

results. Acta Mater., 44(12):4777–4789, 1996.

[74] SPA Gill and ACF Cocks. A short note on a variational approach to normal grain growth.

Scr. Mater., 35(1):9–12, 1996.

[75] MP Anderson, DJ Srolovitz, GS Grest, and PS Sahni. Computer simulation of grain growth

1. kinetics. Acta Metall., 32(5):783–791, 1984.

BIBLIOGRAPHY 112

[76] DJ Srolovitz, MP Anderson, GS Grest, and PS Sahni. Computer simulation of grain growth

3. influence of a particle dispersion. Acta Metall., 32(9):1429–1438, 1984.

[77] MP Anderson, GS Grest, and DJ Srolovitz. Grain growth in 3 dimensions - a lattice model.

Scr. Metal., 19(2):225–230, 1985.

[78] DJ Srolovitz, GS Grest, and MP Anderson. Computer simulation of grain growth 5. abnormal

grain growth. Acta Metall., 33(12):2233–2247, 1985.

[79] MP Anderson, GS Grest, RD Doherty, K Li, and DJ Srolovitz. Inhibition of grain growth by

2nd phase particles - 3 dimensional monte carlo computer simulations. Scr. Metal., 23(5):753–

758, 1989.

[80] MP Anderson, GS Grest, and DJ Srolovitz. Computer simulation of normal grain growth in

3 dimensions. Phil. Mag. B, 59(3):293–329, 1989.

[81] AD Rollett, DJ Srolovitz, and MP Anderson. Simulation and theory of abnormal grain growth

anisotropic grain boundary energies and mobilities. Acta Metall., 37(4):1227–1240, 1989.

[82] GS Grest, MP Anderson, DJ Srolovitz, and AD Rollett. Abnormal grain growth in 3-

dimensions. Scr. Metal. Mat., 24(4):661–665, 1990.

[83] GN Hassold, EA Holm, and DJ Srolovitz. Effects of particle size on inhibited grain growth.

Scr. Metal. Mat., 24(1):101–106, 1990.

[84] AD Rollett, DJ Srolovitz, MP Anderson, and RD Doherty. Computer simulation of recrys-

tallization 3. influence of a dispersion of fine particles. Acta Metall. Mat., 40(12):3475–3495,

1992.

[85] EA Holm, DJ Srolovitz, and JW Cahn. Microstructural evolution in 2-dimensional 2-phase

polycrystals. Acta Metall. Mat., 41(4):1119–1136, 1993.

[86] GN Hassold and DJ Srolovitz. Computer simulation of grain growth with mobile particles.

Scr. Metal. Mat., 32(10):1541–1547, 1995.

[87] T Baudin, P Paillard, and R Penelle. Grain growth simulation starting from experimental

data. Scr. Mater., 36(7):789–794, 1997.

BIBLIOGRAPHY 113

[88] EA Holm, N Zacharopoulos, and DJ Srolovitz. Nonuniform and directional grain growth

caused by grain boundary mobility variations. Acta Mater., 46(3):953–964, 1998.

[89] NM Hwang. Simulation of the effect of anisotropic grain boundary mobility and energy on

abnormal grain growth. J. Mat. Sci., 33(23):5625–5629, 1998.

[90] T Baudin, P Paillard, and R Penelle. Simulation of the anisotropic growth of goss grains in

Fe3%Si sheets. Scr. Mater., 40(10):1111–1116, 1999.

[91] AD Rollett. Texture development dependence on grain boundary properties. In Textures Of

Materials, Pts 1 and 2, pages 251–256, 2002.

[92] EA Holm, MA Miodownik, and AD Rollett. On abnormal subgrain growth and the origin of

recrystallization nuclei. Acta Mater., 51(9):2701–2716, 2003.

[93] AD Rollett. Crystallographic texture change during grain growth. JOM, 56(4):63–68, 2004.

[94] ADF Rollett. Crystallographic texture change during grain growth. Jom, 56(4):63–68, 2004.

[95] AD Rollett. Abnormal grain growth and texture development. In Recrystallization and Grain

Growth, Pts 1 and 2, pages 1171–1176, 2005.

[96] D Raabe. Cellular automata in materials science with particular reference to recrystallization

simulation. Ann. Rev. Mat. Res., 32:53–76, 2002.

[97] Y Liu, T Baudin, and R Penelle. Simulation of normal grain growth by cellular automata.

Scr. Mater., 34(11):1679–1683, 1996.

[98] KGF Janssens. Random grid, three dimensional, space time coupled cellular automata for the

simulation of recrystallization and grain growth. Model. Sim. Mat. Sci. Engr., 11(2):157–171,

2003.

[99] KGF Janssens, EA Holm, and SM Foiles. Introducing solute drag in irregular cellular automata

modeling of grain growth. In Recrystallization and Grain Growth, Pts 1 and 2, pages 1045–

1050, 2004.

BIBLIOGRAPHY 114

[100] HL Ding, YZ He, LF Liu, and WJ Ding. Cellular automata simulation of grain growth in three

dimensions based on the lowest energy principle. J. Cryst. Growth, 293(2):489–497, 2006.

[101] YZ He, HL Ding, LF Liu, and K Shin. Computer simulation of 2d grain growth using a cellular

automata model based on the lowest energy principle. Mat. Sci. Engr. A, 429(1-2):236–246,

2006.

[102] LQ Chen and W Yang. Computer simulation of the domain dynamics of a quenched system

with a large number of nonconserved order parameters - the grain growth kinetics. Phys. Rev.

B, 50(21):15752–15756, 1994.

[103] LQ Chen. A novel computer simulation technique for modeling grain growth. Scr. Metal.

Mat., 32(1):115–120, 1995.

[104] DN Fan, CW Geng, and LQ Chen. Computer simulation of topological evolution in 2-d grain

growth using a continuum diffuse interface field model. Acta Mater., 45(3):1115–1126, 1997.

[105] DN Fan and LQ Chen. Diffusion controlled grain growth in two phase solids. Acta Mater.,

45(8):3297–3310, 1997.

[106] D Fan and LQ Chen. Computer simulation of grain growth using a continuum field model.

Acta Mater., 45(2):611–622, 1997.

[107] D Fan, SP Chen, and LQ Chen. Computer simulation of grain growth kinetics with solute

drag. J. Mat. Res., 14(3):1113–1123, 1999.

[108] H Garcke, B Nestler, and B Stoth. A multiphase field concept: Numerical simulations of

moving phase boundaries and multiple junctions. Siam J. Appl. Mathematics, 60(1):295–315,

1999.

[109] B Nestler. A multiphase-field model: Sharp interface asymptotics and numerical simulations

of moving phase boundaries and multijunctions. J. Cryst. Growth, 204(1-2):224–228, 1999.

[110] A Kazaryan, Y Wang, SA Dregia, and BR Patton. Generalized phase field model for computer

simulation of grain growth in anisotropic systems. Phys. Rev. B, 61(21):14275–14278, 2000.

BIBLIOGRAPHY 115

[111] LQ Chen. Phase field models for microstructure evolution. Ann. Rev. Mat. Res., 32:113–140,

2002.

[112] SG Kim, DI Kim, WT Kim, and YB Park. Computer simulations of two dimensional and

three dimensional ideal grain growth. Phys. Rev. E, 74(6), 2006.

[113] J Gruber, N Ma, Y Wang, AD Rollett, and GS Rohrer. Sparse data structure and algorithm

for the phase field method. Model. Sim. Mat. Sci. Engr., 14(7):1189–1195, 2006.

[114] NN Carlson and K Miller. Design and application of a gradient weighted moving finite element

code i: in one dimension. Siam J. Sci. Comp., 19(3):728–765, 1998.

[115] NN Carlson and K Miller. Design and application of a gradient weighted moving finite element

code ii: in two dimensions. Siam J. Sci. Comp., 19(3):766–798, 1998.

[116] A Kuprat. Modeling microstructure evolution using gradient weighted moving finite elements.

Siam J. Sci. Comp., 22(2):535–560, 2000.

[117] A Kuprat, D George, G Straub, and MC Demirel. Modeling microstructure evolution in three

dimensions with grain3d and lagrit. Comp. Mat. Sci., 28(2):199–208, 2003.

[118] D Kinderlehrer, J Lee, I Livshits, A Rollett, and S Ta’asan. Mesoscale simulation of grain

growth. In Recrystallization and Grain Growth, Parts 1 and 2, volume 467-470, pages 1057–

1062, 2004.

[119] D Kinderlehrer, I Livshits, and S Ta’asan. A variational approach to modeling and simulation

of grain growth. Siam J. Sci. Comp., 28(5):1694–1715, 2006.

[120] M Upmanyu, GN Hassold, A Kazaryan, EA Holm, Y Wang, B Patton, and DJ Srolovitz.

Boundary mobility and energy anisotropy effects on microstructural evolution during grain

growth. Interface Sci., 10(2-3):201–216, 2002.

[121] GS Grest, DJ Srolovitz, and MP Anderson. Computer simulation of grain growth 4. anisotropic

grain boundary energies. Acta Metall., 33(3):509–520, 1985.

[122] Y Saad. Iterative Methods for Sparse Linear Systems. PWS Pub. Co., Boston, 1996.

BIBLIOGRAPHY 116

[123] M Hillert. On theory of normal and abnormal grain growth. Acta Metall., 13(3):227, 1965.

[124] F Wakai, Y Shinoda, S Ishihara, and A Dominguez-Rodriguez. Topological transformation of

grains in three-dimensional normal grain growth. J. Mat. Res., 16(7):2136–2142, 2001.

[125] MA Fortes and AC Ferro. Topology and transformations in cellular structures. Acta Metall.,

33(9):1697–1708, 1985.

[126] CS Smith. Grain Shapes and Other Applications of Topology, pages 65–113. American Society

of Metals, Cleveland, OH, 1951.

Appendix A

Source code

This appendix contains a listing of all source code developed for use in this work. The first section

introduces the Mesoscale Microstructure Simulation Package (MMSP). MMSP is nothing more than

a collection of C++ header files that declare a number of grid or mesh objects (classes) and define

how most of their methods (member functions) are implemented. We have listed only that source

code for MMSP components used in this work; the source for these and other components, as well as

documentation, can be found at http://www.matforge.org/cmu/. The next section contains a col-

lection of classes and subroutines for computations involving crystallographic orientations, rotations,

and symmetry. The final two sections present those functions used explicitly in our simulations and

microstructural analysis.

117

A.1. MMSP 118

A.1 MMSP

The following code contains definitions and implementations for the various classes meant to repre-

sent the basic data structures at individual grid nodes: scalar, vector, sparse, and unused.

// MMSP.data.hpp
// Class definitions for MMSP data structures

// Questions/comments to jgruber@andrew.cmu.edu (Jason Gruber)

#ifndef MMSP_DATA

#define MMSP_DATA
#include<map>

#include<cmath>
#include<vector>
#include<complex>

#include<algorithm>

namespace MMSP{

template<typename value_type> class unused{
public:

// constructors

explicit unused(...) {}

// buffer I/O
int buffer_size() const {return 0;}
void to_buffer(char* buffer) const {}

void from_buffer(const char* buffer) {}

// assignment operators
unused& operator=(const value_type& temp) {return *this;}

unused& operator=(const unused& temp) {return *this;}

// data access operators

operator value_type&() {return static_cast<value_type>(0);}
operator const value_type&() const {return static_cast<value_type>(0);}

// data structure sizes
void resize(int n) const {}

int fields() const {return 0;}
int nonzero() const {return 0;}

};

template<typename value_type> class scalar{
public:

// constructors

explicit scalar(...) {}

// buffer I/O
int buffer_size() const {return sizeof(data);}
void to_buffer(char* buffer) const {memcpy(buffer,&data,sizeof(data));}

void from_buffer(const char* buffer) {memcpy(&data,buffer,sizeof(data));}

// assignment operators
scalar& operator=(const value_type& temp) {data=temp; return *this;}

scalar& operator=(const scalar& temp) {data=temp.data; return *this;}

// data access operators

operator value_type&() {return data;}
operator const value_type&() const {return data;}

// data structure sizes
void resize(int n) const {}

int fields() const {return 1;}
int nonzero() const {return (data!=static_cast<value_type>(0));}

private:

value_type data;
};

A.1. MMSP 119

template<typename value_type> class vector{
public:

// constructors
explicit vector(int n = 1, ...) {data.resize(n);}

// buffer I/O

int buffer_size() const {return data.size()*sizeof(value_type);}
void to_buffer(char* buffer) const {memcpy(buffer,&data[0],data.size()*sizeof(value_type));}
void from_buffer(const char* buffer) {memcpy(&data[0],buffer,data.size()*sizeof(value_type));}

// assignment operators

vector& operator=(const vector& temp) {data=temp.data; return *this;}

// data access operators

value_type& operator[](int i) {return data[i];}
const value_type& operator[](int i) const {return data[i];}

// data structure sizes

void resize(int n) {return data.resize(n);}
int fields() const {return data.size();}
int nonzero() const {return count_if(data.begin(),data.end(),

bind2nd(std::not_equal_to<value_type>(),static_cast<value_type>(0)));}

private:
std::vector<value_type> data;

};

template<typename value_type> class sparse{
public:

// constructors
explicit sparse(...) {}

// buffer I/O
int buffer_size() const;

void to_buffer(char* buffer) const;
void from_buffer(const char* buffer);

// assignment operators
sparse& operator=(const sparse& temp) {data=temp.data; return *this;}

// data access operators

value_type& operator[](int i);
const value_type operator[](int i) const;

// data structure sizes
void resize(int n) const {}

int fields() const {return data.size();}
int nonzero() const {return data.size();}

// utility functions
int index(int i) const {return data[i].first;}

value_type value(int i) const {return data[i].second;}

private:
std::vector<std::pair<int,value_type> > data;

};

template <typename value_type>

value_type& sparse<value_type>::operator[](int index)
{

int n = data.size();
for (int i=0; i<n; i++)
if (data[i].first==index) return data[i].second;

data.push_back(std::make_pair(index,static_cast<value_type>(0)));
return data.back().second;

}

template <typename value_type>

const value_type sparse<value_type>::operator[](int index) const
{

A.1. MMSP 120

int n = data.size();
for (int i=0; i<n; i++)
if (data[i].first==index) return data[i].second;

return static_cast<value_type>(0);
}

template <typename value_type>

int sparse<value_type>::buffer_size() const
{

int n = data.size();

return sizeof(int)+sizeof(std::pair<int,value_type>);
}

template <typename value_type>
void sparse<value_type>::to_buffer(char* buffer) const

{
char* p = buffer;

int n = data.size();
memcpy(p,&n,sizeof(int));

p += sizeof(int);
memcpy(p,&data[0],n*sizeof(std::pair<int,value_type>));

}

template <typename value_type>

void sparse<value_type>::from_buffer(const char* buffer)
{

const char* p = buffer;
int n;
memcpy(&n,p,sizeof(int));

p += sizeof(int);
data.resize(n);

memcpy(&data[0],p,n*sizeof(std::pair<int,value_type>));
}

} // namespace MMSP

#endif

A.1. MMSP 121

This file contains definitions and serial implementations for the basic grid template class, as well as

for the intermediate grid1D, grid2D, and grid3D classes, used mainly in deriving the high level

grid classes associated with various computational methods.

// MMSP.grid.hpp
// Class definitions for rectilinear grids (base class)

// Questions/comments to jgruber@andrew.cmu.edu (Jason Gruber)

#ifndef MMSP_GRID
#define MMSP_GRID
#include"MMSP.data.hpp"

#include<iostream>
#include<fstream>

#include<cstdarg>

namespace MMSP{

template <int dimension, typename type>

class grid{
public:

// constructors
grid(int nf, ...);
grid(const char* filename) {this->input(filename);}

grid(const char* filename, int id, int np, int ng = 1);

// subscript operator
type& operator[](int i) {return data[i];}
const type& operator[](int i) const {return data[i];}

// buffer I/O

int buffer_size(int x0 = 0, int sx = 0) const;
void to_buffer(char* buffer, int x0 = 0, int sx = 0) const;

void from_buffer(char* buffer, int x0 = 0, int sx = 0);

// file I/O

void input(const char* filename);
void input(const char* filename, int id, int np, int ng = 1);

void output(const char* filename) const;
void output(const char* filename, int id, int np, int ng = 1) const;

// grid attribute functions
int fields() const {return data[0].fields();}

int size(int i) const {return nx[i];}
bool boundary(int i) const {return px[i];}

bool& boundary(int i) {return px[i];}
float spacing(int i) const {return dx[i];}
float& spacing(int i) {return dx[i];}

// grid operations

void swap(grid& temp) {data.swap(temp.data);}
void ghostswap(int id, int np, int ng = 1);

protected:
// grid data

std::vector<type> data;
int nx[dimension];

bool px[dimension];
float dx[dimension];

};

template <int dimension, typename type>

grid<dimension,type>::grid(int nf, ...)
{

va_list list;

va_start(list,nf);
for (int i=0; i<dimension; i++) {

nx[i] = va_arg(list,int);
px[i] = false;

dx[i] = 1.0;
}

A.1. MMSP 122

va_end(list);

if (dimension==1) data.resize(nx[0],type(nf));

if (dimension==2) data.resize(nx[0],type(nf,nx[1]));
if (dimension==3) data.resize(nx[0],type(nf,nx[1],nx[2]));

}

template <int dimension, typename type>
int grid<dimension,type>::buffer_size(int x0, int sx) const
{

int buffer_size = 0;
if (sx==0) sx = data.size();

for (int x=x0; x<x0+sx; x++)
buffer_size += data[x].buffer_size();

return buffer_size;

}

template <int dimension, typename type>
void grid<dimension,type>::to_buffer(char* buffer, int x0, int sx) const

{
char* p = buffer;
if (sx==0) sx = data.size();

for (int x=x0; x<x0+sx; x++) {
data[x].to_buffer(p);

p += data[x].buffer_size();
}

}

template <int dimension, typename type>

void grid<dimension,type>::from_buffer(char* buffer, int x0, int sx)
{

char* p = buffer;
if (sx==0) sx = data.size();
for (int x=x0; x<x0+sx; x++) {

data[x].from_buffer(p);
p += data[x].buffer_size();

}
}

template <int dimension, typename type>
void grid<dimension,type>::input(const char* filename)

{
// file open error check

std::ifstream input(filename);
if (!input) {
std::cerr<<"file input error: "<<filename;

std::cerr<<" cannot be opened."<<std::endl;
exit(-1);

}

// dimension error check
int dim;
input.read(reinterpret_cast<char*>(&dim),sizeof(dim));

if (dim!=dimension) {
std::cerr<<"File input error: "<<filename;

std::cerr<<" has grid of dimension "<<dim<<std::endl;
exit(-2);

}

// read number of fields

int nf;
input.read(reinterpret_cast<char*>(&nf),sizeof(nf));

// read grid parameters
for (int i=0; i<dimension; i++)

input.read(reinterpret_cast<char*>(&nx[i]),sizeof(nx[i]));
for (int i=0; i<dimension; i++)

input.read(reinterpret_cast<char*>(&px[i]),sizeof(px[i]));
for (int i=0; i<dimension; i++)
input.read(reinterpret_cast<char*>(&dx[i]),sizeof(dx[i]));

// resize grid data structure

A.1. MMSP 123

if (dimension==1) data.resize(nx[0],type(nf));
if (dimension==2) data.resize(nx[0],type(nf,nx[1]));
if (dimension==3) data.resize(nx[0],type(nf,nx[1],nx[2]));

// read grid data

int pos1 = input.tellg();
input.seekg(0,std::ios::end);

int pos2 = input.tellg();
input.seekg(pos1,std::ios::beg);
int size = pos2-pos1;

char* buffer = new char[size];
input.read(reinterpret_cast<char*>(buffer),size);

this->from_buffer(buffer);
delete [] buffer;

// seed random number generators
srand(time(NULL));

}

template <int dimension, typename type>
void grid<dimension,type>::output(const char* filename) const
{

// file open error check
std::ofstream output(filename);

if (!output) {
std::cerr<<"file input error: "<<filename;

std::cerr<<" cannot be opened."<<std::endl;
exit(-1);

}

// write grid dimension

int dim = dimension;
output.write(reinterpret_cast<const char*>(&dim),sizeof(dim));

// write number of fields
int nf = fields();

output.write(reinterpret_cast<const char*>(&nf),sizeof(nf));

// write grid parameters
for (int i=0; i<dimension; i++)
output.write(reinterpret_cast<const char*>(&nx[i]),sizeof(nx[i]));

for (int i=0; i<dimension; i++)
output.write(reinterpret_cast<const char*>(&px[i]),sizeof(px[i]));

for (int i=0; i<dimension; i++)
output.write(reinterpret_cast<const char*>(&dx[i]),sizeof(dx[i]));

// write grid data
int size = this->buffer_size();

char* buffer = new char[size];
this->to_buffer(buffer);

output.write(reinterpret_cast<const char*>(buffer),size);
delete [] buffer;

}

template < template<typename value_type> class data_type, typename value_type >
class grid1D : public grid<1,data_type<value_type> > {
public:

// constructors
grid1D(int x, int nf = 1)

: grid<1,data_type<value_type> > (nf,x) {}
grid1D(const char* filename)

: grid<1,data_type<value_type> > (filename) {}
grid1D(const char* filename, int id, int np, int ng = 1)
: grid<1,data_type<value_type> > (filename,id,np,ng) {}

// utility functions

const data_type<value_type>& neighbor(int x, int sx) const;
};

template < template<typename value_type> class data_type, typename value_type >
const data_type<value_type>& grid1D<data_type,value_type>::

A.1. MMSP 124

neighbor(int x, int sx) const
{

const grid1D& grid = *this;

int nx = grid.nx[0];
bool px = grid.px[0];

int xsx = x+sx;

int ax = (xsx>=nx);
int bx = (xsx<0);
int i = xsx+(px)*(nx*(bx-ax))+(!px)*(ax*(nx-1)-(ax|bx)*xsx);

return grid.data[i];

}

template < template<typename value_type> class data_type, typename value_type >
class grid2D : public grid<2,grid<1,data_type<value_type> > > {

public:
// constructors

grid2D(int x, int y, int nf = 1)
: grid<2,grid<1,data_type<value_type> > > (nf,x,y) {}

grid2D(const char* filename)

: grid<2,grid<1,data_type<value_type> > > (filename) {}
grid2D(const char* filename, int id, int np, int ng = 1)

: grid<2,grid<1,data_type<value_type> > > (filename,id,np,ng) {}

// utility functions
const data_type<value_type>& neighbor(int x, int y, int sx, int sy) const;

};

template < template<typename value_type> class data_type, typename value_type >

const data_type<value_type>& grid2D<data_type,value_type>::
neighbor(int x, int y, int sx, int sy) const

{

const grid2D& grid = *this;
int nx = grid.nx[0];

int ny = grid.nx[1];
bool px = grid.px[0];

bool py = grid.px[1];

int xsx = x+sx;

int ax = (xsx>=nx);
int bx = (xsx<0);

int i = xsx+(px)*(nx*(bx-ax))+(!px)*(ax*(nx-1)-(ax|bx)*xsx);

int ysy = y+sy;

int ay = (ysy>=ny);
int by = (ysy<0);

int j = ysy+(py)*(ny*(by-ay))+(!py)*(ay*(ny-1)-(ay|by)*ysy);

return grid.data[i][j];
}

template < template<typename value_type> class data_type, typename value_type >

class grid3D : public grid<3,grid<2,grid<1,data_type<value_type> > > > {
public:

// constructors

grid3D(int x, int y, int z, int nf = 1)
: grid<3,grid<2,grid<1,data_type<value_type> > > > (nf,x,y,z) {}

grid3D(const char* filename)
: grid<3,grid<2,grid<1,data_type<value_type> > > > (filename) {}

grid3D(const char* filename, int id, int np, int ng = 1)
: grid<3,grid<2,grid<1,data_type<value_type> > > > (filename,id,np,ng) {}

// utility functions
const data_type<value_type>& neighbor(int x, int y, int z, int sx, int sy, int sz) const;

};

template < template<typename value_type> class data_type, typename value_type >

const data_type<value_type>& grid3D<data_type,value_type>::
neighbor(int x, int y, int z, int sx, int sy, int sz) const

A.1. MMSP 125

{
const grid3D& grid = *this;
int nx = grid.nx[0];

int ny = grid.nx[1];
int nz = grid.nx[2];

bool px = grid.px[0];
bool py = grid.px[1];

bool pz = grid.px[2];

int xsx = x+sx;

int ax = (xsx>=nx);
int bx = (xsx<0);

int i = xsx+(px)*(nx*(bx-ax))+(!px)*(ax*(nx-1)-(ax|bx)*xsx);

int ysy = y+sy;

int ay = (ysy>=ny);
int by = (ysy<0);

int j = ysy+(py)*(ny*(by-ay))+(!py)*(ay*(ny-1)-(ay|by)*ysy);

int zsz = z+sz;
int az = (zsz>=nz);
int bz = (zsz<0);

int k = zsz+(pz)*(nz*(bz-az))+(!pz)*(az*(nz-1)-(az|bz)*zsz);

return grid.data[i][j][k];
}

} // namespace MMSP

#endif

A.1. MMSP 126

This file contains the parallel implementations for the basic MMSP grid template class’ parallel

I/O and ghost cell swapping functions. The separation of serial and parallel implementations is

motivated by the expected need to compile serial code without using the MPI libraries.

// MMSP.grid.parallel.hpp
// Implementation of parallel grid operations (requires MPI)

// Questions/comments to jgruber@andrew.cmu.edu (Jason Gruber)

#ifndef MMSP_GRID_PARALLEL
#define MMSP_GRID_PARALLEL
#include"MMSP.grid.hpp"

#include"mpicxx.h"

namespace MMSP{

template <int dimension, typename type>

grid<dimension,type>::grid(const char* filename, int id, int np, int ng)
{

this->input(filename,id,np,ng);
}

template <int dimension, typename type>
void grid<dimension,type>::input(const char* filename, int id, int np, int ng)

{
if (id==0) {

// file open error check
std::ifstream input(filename);
if (!input) {

std::cerr<<"file input error: "<<filename;
std::cerr<<" cannot be opened."<<std::endl;

exit(-1);
}

// dimension error check
int dim;

input.read(reinterpret_cast<char*>(&dim),sizeof(dim));
if (dim!=dimension) {

std::cerr<<"File input error: "<<filename;
std::cerr<<" has grid of dimension "<<dim<<std::endl;
exit(-2);

}

// read number of fields
int gnf;

input.read(reinterpret_cast<char*>(&gnf),sizeof(gnf));

// read global grid parameters

int gnx[dimension];
bool gpx[dimension];

float gdx[dimension];
for (int i=0; i<dimension; i++)

input.read(reinterpret_cast<char*>(&gnx[i]),sizeof(nx[i]));

for (int i=0; i<dimension; i++)
input.read(reinterpret_cast<char*>(&gpx[i]),sizeof(px[i]));

for (int i=0; i<dimension; i++)
input.read(reinterpret_cast<char*>(&gdx[i]),sizeof(dx[i]));

// read global grid data
int pos1 = input.tellg();

input.seekg(0,std::ios::end);
int pos2 = input.tellg();

input.seekg(pos1,std::ios::beg);
int size = pos2-pos1;
char* buffer = new char[size];

input.read(reinterpret_cast<char*>(buffer),size);

// set main buffer position
char* p = buffer;

for (int ip=0; ip<np; ip++) {

A.1. MMSP 127

// compute local grid parameters
int lnx[dimension];
lnx[0] = (ip!=np-1)*(gnx[0]/np)+(ip==np-1)*(gnx[0]-(gnx[0]/np)*(np-1))+2*ng;

for (int i=1; i<dimension; i++) lnx[i] = gnx[i];

// send local grid parameters
MPI::COMM_WORLD.Send(&gnf,1,MPI_INT,ip,100);

for (int i=0; i<dimension; i++)
MPI::COMM_WORLD.Send(&lnx[i],1,MPI_INT,ip,110+i);

for (int i=0; i<dimension; i++)

MPI::COMM_WORLD.Send(&gpx[i],1,MPI_CHAR,ip,120+i);
for (int i=0; i<dimension; i++)

MPI::COMM_WORLD.Send(&gdx[i],1,MPI_FLOAT,ip,130+i);

// read local grid data

grid temp(gnf,lnx[0],lnx[1],lnx[2]);
temp.from_buffer(p,ng,lnx[0]-2*ng);

// send local grid data

int subgrid_size = temp.buffer_size(ng,lnx[0]-2*ng);
char* subgrid_buffer = new char[subgrid_size];
temp.to_buffer(subgrid_buffer,ng,lnx[0]-2*ng);

MPI::COMM_WORLD.Send(&subgrid_size,1,MPI_INT,ip,200);
MPI::COMM_WORLD.Send(subgrid_buffer,subgrid_size,MPI_CHAR,ip,300);

delete [] subgrid_buffer;

// advance buffer position
p += subgrid_size;

}

delete [] buffer;

input.close();
}

// receive grid parameters
int nf;

MPI::COMM_WORLD.Recv(&nf,1,MPI_INT,0,100);
for (int i=0; i<dimension; i++)

MPI::COMM_WORLD.Recv(&nx[i],1,MPI_INT,0,110+i);
for (int i=0; i<dimension; i++)
MPI::COMM_WORLD.Recv(&px[i],1,MPI_CHAR,0,120+i);

for (int i=0; i<dimension; i++)
MPI::COMM_WORLD.Recv(&dx[i],1,MPI_FLOAT,0,130+i);

// resize grid data structure
if (dimension==1) data.resize(nx[0],type(nf));

if (dimension==2) data.resize(nx[0],type(nf,nx[1]));
if (dimension==3) data.resize(nx[0],type(nf,nx[1],nx[2]));

// receive grid data

int size;
MPI::COMM_WORLD.Recv(&size,1,MPI_INT,0,200);
char* buffer = new char[size];

MPI::COMM_WORLD.Recv(buffer,size,MPI_CHAR,0,300);
this->from_buffer(buffer,ng,nx[0]-2*ng);

delete [] buffer;

// send and receive ghost cells

this->ghostswap(id,np,ng);

// seed random number generators
srand(time(NULL));

}

template <int dimension, typename type>

void grid<dimension,type>::output(const char* filename, int id, int np, int ng) const
{

// send local grid parameters
MPI::COMM_WORLD.Send(&nx[0],1,MPI_INT,0,100);

// send grid data
int size = this->buffer_size(ng,nx[0]-2*ng);

A.1. MMSP 128

MPI::COMM_WORLD.Send(&size,1,MPI_INT,0,200);
char* buffer = new char[size];
this->to_buffer(buffer,ng,nx[0]-2*ng);

MPI::COMM_WORLD.Send(buffer,size,MPI_CHAR,0,300);
delete [] buffer;

if (id==0) {

// file open error check
std::ofstream output(filename);
if (!output) {

std::cerr<<"file input error: "<<filename;
std::cerr<<" cannot be opened."<<std::endl;

exit(-1);
}

// write grid dimension
int dim = dimension;

output.write(reinterpret_cast<const char*>(&dim),sizeof(dim));

// write number of fields
int nf = fields();
output.write(reinterpret_cast<const char*>(&nf),sizeof(nf));

// write grid parameters

for (int i=0; i<dimension; i++)
output.write(reinterpret_cast<const char*>(&nx[i]),sizeof(nx[i]));

for (int i=0; i<dimension; i++)
output.write(reinterpret_cast<const char*>(&px[i]),sizeof(px[i]));

for (int i=0; i<dimension; i++)

output.write(reinterpret_cast<const char*>(&dx[i]),sizeof(dx[i]));

// global nx is wrong
int gnx = 0;

for (int ip=0; ip<np; ip++) {
// receive local grid parameters

int lnx;
MPI::COMM_WORLD.Recv(&lnx,1,MPI_INT,ip,100);

gnx += lnx-2*ng;

// receive local grid data

int subgrid_size;
MPI::COMM_WORLD.Recv(&subgrid_size,1,MPI_INT,ip,200);

char* subgrid_buffer = new char[subgrid_size];
MPI::COMM_WORLD.Recv(subgrid_buffer,subgrid_size,MPI_CHAR,ip,300);

// write local grid data
output.write(reinterpret_cast<const char*>(subgrid_buffer),subgrid_size);

delete [] subgrid_buffer;
}

// correct global nx
output.seekp(sizeof(dim)+sizeof(nf));

output.write(reinterpret_cast<const char*>(&gnx),sizeof(gnx));
output.close();

}
}

template <int dimension, typename type>
void grid<dimension,type>::ghostswap(int id, int np, int ng)

{
// swap ghost cells with other processes

// global domain must be subdivided into slabs

// declare buffers and sizes

char* send_buffer;
char* recv_buffer;

int send_size;
int recv_size;

// send to processor above and receive from processor below
send_size = this->buffer_size(nx[0]-2*ng,ng);

A.1. MMSP 129

MPI::COMM_WORLD.Send(&send_size,1,MPI_INT,(id+np+1)%np,100);
MPI::COMM_WORLD.Recv(&recv_size,1,MPI_INT,(id+np-1)%np,100);
send_buffer = new char[send_size];

recv_buffer = new char[recv_size];
this->to_buffer(send_buffer,nx[0]-2*ng,ng);

MPI::COMM_WORLD.Issend(send_buffer,send_size,MPI_CHAR,(id+np+1)%np,200);
MPI::COMM_WORLD.Recv(recv_buffer,recv_size,MPI_CHAR,(id+np-1)%np,200);

MPI::COMM_WORLD.Barrier();
this->from_buffer(recv_buffer,0,ng);
delete [] send_buffer;

delete [] recv_buffer;

// send to processor below and receive from processor above
send_size = this->buffer_size(ng,ng);
MPI::COMM_WORLD.Send(&send_size,1,MPI_INT,(id+np-1)%np,100);

MPI::COMM_WORLD.Recv(&recv_size,1,MPI_INT,(id+np+1)%np,100);
send_buffer = new char[send_size];

recv_buffer = new char[recv_size];
this->to_buffer(send_buffer,ng,ng);

MPI::COMM_WORLD.Issend(send_buffer,send_size,MPI_CHAR,(id+np-1)%np,200);
MPI::COMM_WORLD.Recv(recv_buffer,recv_size,MPI_CHAR,(id+np+1)%np,200);
MPI::COMM_WORLD.Barrier();

this->from_buffer(recv_buffer,nx[0]-ng,ng);
delete [] send_buffer;

delete [] recv_buffer;

// correct for non-periodic boundary conditions
if (px[0]==false) {
if (id==0) {

int size = this->buffer_size(ng,1);
char* buffer = new char[size];

this->to_buffer(buffer,ng,1);
for (int x=0; x<ng; x++)

this->from_buffer(buffer,x,1);

delete [] buffer;
}

if (id==np-1) {

int size = this->buffer_size(nx[0]-ng-1,1);
char* buffer = new char[size];
this->to_buffer(buffer,nx[0]-ng-1,1);

for (int x=nx[0]-ng; x<nx[0]; x++)
this->from_buffer(buffer,x,1);

delete [] buffer;
}

}

}

} // namespace MMSP

#endif

A.1. MMSP 130

This code contains the definition and implementation of all high level grids used for Monte Carlo

simulations.

// MCgrid.hpp

// Class definitions for rectilinear Monte Carlo grids
// Questions/comments to jgruber@andrew.cmu.edu (Jason Gruber)

#ifndef MCGRID

#define MCGRID
#include"MMSP.grid.hpp"

namespace MMSP{

class MCgrid1D : public grid1D<scalar,int> {
public:

// constructors

MCgrid1D(int x)
: grid1D<scalar,int>(x) {}

MCgrid1D(const char* filename)
: grid1D<scalar,int>(filename) {}

MCgrid1D(const char* filename, int id, int np, int ng = 1)
: grid1D<scalar,int>(filename,id,np,ng) {}

// the update function
void update(int steps = 1);

void update(int steps, int id, int np, int ng = 1);

// utility functions

std::vector<int> nonzero(int x) const;
};

std::vector<int> MCgrid1D::nonzero(int x) const

{
std::vector<int> nonzero;
for (int i=-1; i<=1; i++)

//if (abs(i)<=1)
nonzero.push_back(neighbor(x,i));

sort(nonzero.begin(),nonzero.end());
nonzero.erase(unique(nonzero.begin(),nonzero.end()),nonzero.end());
return nonzero;

}

class MCgrid2D : public grid2D<scalar,int> {

public:
// constructors
MCgrid2D(int x, int y)

: grid2D<scalar,int>(x,y) {}
MCgrid2D(const char* filename)

: grid2D<scalar,int>(filename) {}
MCgrid2D(const char* filename, int id, int np, int ng = 1)
: grid2D<scalar,int>(filename,id,np,ng) {}

// the update function

void update(int steps = 1);
void update(int steps, int id, int np, int ng = 1);

// utility functions
std::vector<int> nonzero(int x, int y) const;

};

std::vector<int> MCgrid2D::nonzero(int x, int y) const
{

std::vector<int> nonzero;

for (int i=-1; i<=1; i++)
for (int j=-1; j<=1; j++)

//if (abs(i)+abs(j)<=1)
nonzero.push_back(neighbor(x,y,i,j));

sort(nonzero.begin(),nonzero.end());
nonzero.erase(unique(nonzero.begin(),nonzero.end()),nonzero.end());

A.1. MMSP 131

return nonzero;
}

class MCgrid3D : public grid3D<scalar,int> {

public:
// constructors

MCgrid3D(int x, int y, int z)
: grid3D<scalar,int>(x,y,z) {}

MCgrid3D(const char* filename)

: grid3D<scalar,int>(filename) {}
MCgrid3D(const char* filename, int id, int np, int ng = 1)

: grid3D<scalar,int>(filename,id,np,ng) {}

// the update function

void update(int steps = 1);
void update(int steps, int id, int np, int ng = 1);

// utility functions

std::vector<int> nonzero(int x, int y, int z) const;
};

std::vector<int> MCgrid3D::nonzero(int x, int y, int z) const
{

std::vector<int> nonzero;
for (int i=-1; i<=1; i++)

for (int j=-1; j<=1; j++)
for (int k=-1; k<=1; k++)

//if (abs(i)+abs(j)+abs(k)<=1)

nonzero.push_back(neighbor(x,y,z,i,j,k));
sort(nonzero.begin(),nonzero.end());

nonzero.erase(unique(nonzero.begin(),nonzero.end()),nonzero.end());
return nonzero;

}

} // namespace MMSP

#endif

A.1. MMSP 132

This code contains the definition and implementation of all high level grids used for phase field

simulations using the sparsePF data structure.

// sparsePF.hpp

// Class definitions for rectilinear sparsePF method grids
// Questions/comments to jgruber@andrew.cmu.edu (Jason Gruber)

#ifndef sparsePFGRID

#define sparsePFGRID
#include"MMSP.grid.hpp"

namespace MMSP{

class sparsePF1D : public grid1D<sparse,float> {
public:

// constructors

sparsePF1D(int x)
: grid1D<sparse,float>(x) {}

sparsePF1D(const char* filename)
: grid1D<sparse,float>(filename) {}

sparsePF1D(const char* filename, int id, int np, int ng = 1)
: grid1D<sparse,float>(filename,id,np,ng) {}

// the update function
void update(int steps = 1);

void update(int steps, int id, int np, int ng = 1);

// numerical functions

float laplacian(int x, int index) const;

// utility functions
std::vector<int> nonzero(int x) const;

};

float sparsePF1D::laplacian(int x, int index) const

{
return (neighbor(x,1)[index]+neighbor(x,-1)[index]

-2.0*neighbor(x,0)[index])/(dx[0]*dx[0]);
}

std::vector<int> sparsePF1D::nonzero(int x) const
{

std::vector<int> nonzero;
for (int i=-1; i<=1; i++)

if (abs(i)<=1) {
const sparse<float>& data = neighbor(x,i);
for (int h=0; h<data.fields(); h++)

nonzero.push_back(data.index(h));
}

sort(nonzero.begin(),nonzero.end());
nonzero.erase(unique(nonzero.begin(),nonzero.end()),nonzero.end());
return nonzero;

}

class sparsePF2D : public grid2D<sparse,float> {

public:
// constructors
sparsePF2D(int x, int y)

: grid2D<sparse,float>(x,y) {}
sparsePF2D(const char* filename)

: grid2D<sparse,float>(filename) {}
sparsePF2D(const char* filename, int id, int np, int ng = 1)
: grid2D<sparse,float>(filename,id,np,ng) {}

// the update function

void update(int steps = 1);
void update(int steps, int id, int np, int ng = 1);

// numerical functions

A.1. MMSP 133

float laplacian(int x, int y, int index) const;

// utility functions

std::vector<int> nonzero(int x, int y) const;
};

float sparsePF2D::laplacian(int x, int y, int index) const

{
return (neighbor(x,y,1,0)[index]+neighbor(x,y,-1,0)[index]

-2.0*neighbor(x,y,0,0)[index])/(dx[0]*dx[0])

+(neighbor(x,y,0,1)[index]+neighbor(x,y,0,-1)[index]
-2.0*neighbor(x,y,0,0)[index])/(dx[1]*dx[1]);

}

std::vector<int> sparsePF2D::nonzero(int x, int y) const

{
std::vector<int> nonzero;

for (int i=-1; i<=1; i++)
for (int j=-1; j<=1; j++)

if (abs(i)+abs(j)<=1) {
const sparse<float>& data = neighbor(x,y,i,j);
for (int h=0; h<data.fields(); h++)

nonzero.push_back(data.index(h));
}

sort(nonzero.begin(),nonzero.end());
nonzero.erase(unique(nonzero.begin(),nonzero.end()),nonzero.end());

return nonzero;
}

class sparsePF3D : public grid3D<sparse,float> {

public:
// constructors
sparsePF3D(int x, int y, int z)

: grid3D<sparse,float>(x,y,z) {}
sparsePF3D(const char* filename)

: grid3D<sparse,float>(filename) {}
sparsePF3D(const char* filename, int id, int np, int ng = 1)

: grid3D<sparse,float>(filename,id,np,ng) {}

// the update function

void update(int steps = 1);
void update(int steps, int id, int np, int ng = 1);

// numerical functions
float laplacian(int x, int y, int z, int index) const;

// utility functions

std::vector<int> nonzero(int x, int y, int z) const;
};

float sparsePF3D::laplacian(int x, int y, int z, int index) const
{

return (neighbor(x,y,z,1,0,0)[index]+neighbor(x,y,z,-1,0,0)[index]
-2.0*neighbor(x,y,z,0,0,0)[index])/(dx[0]*dx[0])

+(neighbor(x,y,z,0,1,0)[index]+neighbor(x,y,z,0,-1,0)[index]
-2.0*neighbor(x,y,z,0,0,0)[index])/(dx[1]*dx[1])

+(neighbor(x,y,z,0,0,1)[index]+neighbor(x,y,z,0,0,-1)[index]

-2.0*neighbor(x,y,z,0,0,0)[index])/(dx[2]*dx[2]);
}

std::vector<int> sparsePF3D::nonzero(int x, int y, int z) const

{
std::vector<int> nonzero;
for (int i=-1; i<=1; i++)

for (int j=-1; j<=1; j++)
for (int k=-1; k<=1; k++)

if (abs(i)+abs(j)+abs(k)<=1) {
const sparse<float>& data = neighbor(x,y,z,i,j,k);
for (int h=0; h<data.fields(); h++)

nonzero.push_back(data.index(h));
}

A.1. MMSP 134

sort(nonzero.begin(),nonzero.end());
nonzero.erase(unique(nonzero.begin(),nonzero.end()),nonzero.end());
return nonzero;

}

} // namespace MMSP

#endif

A.2. TEXTURE 135

A.2 Texture

This file contains the quaternion class definition and implementation. Only generic quaternion

operations are defined here; functions that interpret quaternions as rotation operators are defined

elsewhere. Note that quaternion components use the order given by q0 + q1i + q2j + q3k.

// quaternion.hpp

// Quaternion class definition and implementation
// Questions/comments to jgruber@andrew.cmu.edu (Jason Gruber)

#ifndef QUATERNION
#define QUATERNION

template<typename T> class quaternion;

template<typename T>
inline quaternion<T> conj(const quaternion<T>& q)

{
return quaternion<T>(q[0],-q[1],-q[2],-q[3]);

}

template<typename T>

inline T norm(const quaternion<T>& q)
{

return sqrt(q[0]*q[0]+q[1]*q[1]+q[2]*q[2]+q[3]*q[3]);
}

template<typename T>
inline bool operator==(const quaternion<T>& q, const quaternion<T>& p)

{
return (q[0]==p[0] && q[1]==p[1] && q[2]==p[2] && q[3]==p[3]);

}

template<typename T>

inline bool operator==(const T& c, const quaternion<T>& q)
{

return (quaternion<T>(c)==q);
}

template<typename T>
inline bool operator==(const quaternion<T>& q, const T& c)

{
return (q==quaternion<T>(c));

}

template<typename T>

inline bool operator!=(const quaternion<T>& q, const quaternion<T>& p)
{

return (q[0]!=p[0] || q[1]!=p[1] || q[2]!=p[2] || q[3]!=p[3]);
}

template<typename T>
inline bool operator!=(const T& c, const quaternion<T>& q)

{
return (quaternion<T>(c)!=q);

}

template<typename T>

inline bool operator!=(const quaternion<T>& q, const T& c)
{

return (q!=quaternion<T>(c));
}

template<typename T>
inline quaternion<T> operator+(const quaternion<T>& q)

{
return quaternion<T>(+q[0],+q[1],+q[2],+q[3]);

}

A.2. TEXTURE 136

template<typename T>
inline quaternion<T> operator+(const quaternion<T>& q, const quaternion<T>& p)
{

return quaternion<T>(q[0]+p[0],q[1]+p[1],q[2]+p[2],q[3]+p[3]);
}

template<typename T>

inline quaternion<T> operator+(const quaternion<T>& q, const T& c)
{

return q+quaternion<T>(c);

}

template<typename T>
inline quaternion<T> operator+(const T& c, const quaternion<T>& q)
{

return quaternion<T>(c)+q;
}

template<typename T>

inline quaternion<T> operator-(const quaternion<T>& q)
{

return quaternion<T>(-q[0],-q[1],-q[2],-q[3]);

}

template<typename T>
inline quaternion<T> operator-(const quaternion<T>& q, const quaternion<T>& p)

{
return quaternion<T>(q[0]-p[0],q[1]-p[1],q[2]-p[2],q[3]-p[3]);

}

template<typename T>

inline quaternion<T> operator-(const quaternion<T>& q, const T& c)
{

return q-quaternion<T>(c);

}

template<typename T>
inline quaternion<T> operator-(const T& c, const quaternion<T>& q)

{
return quaternion<T>(c)-q;

}

template<typename T>

inline quaternion<T> operator*(const quaternion<T>& q, const quaternion<T>& p)
{

return quaternion<T>(q[0]*p[0]-q[1]*p[1]-q[2]*p[2]-q[3]*p[3],

q[0]*p[1]+q[1]*p[0]+q[2]*p[3]-q[3]*p[2],
q[0]*p[2]+q[2]*p[0]-q[1]*p[3]+q[3]*p[1],

q[0]*p[3]+q[3]*p[0]+q[1]*p[2]-q[2]*p[1]);
}

template<typename T>
inline quaternion<T> operator*(const quaternion<T>& q, const T& c)

{
return q*quaternion<T>(c);

}

template<typename T>

inline quaternion<T> operator*(const T& c, const quaternion<T>& q)
{

return quaternion<T>(c)*q;
}

template<typename T>
inline quaternion<T> operator/(const quaternion<T>& q, const quaternion<T>& p)

{
return q*((1.0/norm(p))*conj(p));

}

template<typename T>

inline quaternion<T> operator/(const quaternion<T>& q, const T& c)
{

A.2. TEXTURE 137

return q/quaternion<T>(c);
}

template<typename T>
inline quaternion<T> operator/(const T& c, const quaternion<T>& q)

{
return quaternion<T>(c)/q;

}

template<typename T> class quaternion{

public:
quaternion(T q0=0.0, T q1=0.0, T q2=0.0, T q3=0.0)

{q[0]=q0; q[1]=q1; q[2]=q2; q[3]=q3;}
T& operator[](int i)
{return q[i];}

const T& operator[](int i) const
{return q[i];}

template<typename U> quaternion(const U& c)
{q[0]=c; q[1]=0.0; q[2]=0.0; q[3]=0.0;}

template<typename U> quaternion(const quaternion<U>& p)
{q[0]=p[0]; q[1]=p[1]; q[2]=p[2]; q[3]=p[3];}

template<typename U> quaternion& operator+=(const U& c)

{(*this)=(*this)+quaternion(c); return (*this);}
template<typename U> quaternion& operator-=(const U& c)

{(*this)=(*this)-quaternion(c); return (*this);}
template<typename U> quaternion& operator*=(const U& c)

{(*this)=(*this)*quaternion(c); return (*this);}
template<typename U> quaternion& operator/=(const U& c)
{(*this)=(*this)/quaternion(c); return (*this);}

template<typename U> quaternion& operator+=(const quaternion& p)
{(*this)=(*this)+quaternion(p); return (*this);}

template<typename U> quaternion& operator-=(const quaternion& p)
{(*this)=(*this)-quaternion(p); return (*this);}

template<typename U> quaternion& operator*=(const quaternion& p)

{(*this)=(*this)*quaternion(p); return (*this);}
template<typename U> quaternion& operator/=(const quaternion& p)

{(*this)=(*this)/quaternion(p); return (*this);}
private:

T q[4];
};

#endif

A.2. TEXTURE 138

This file contains useful functions when interpreting quaternions as 3D rotations. Included are

functions for conversion to and from a number of other mathematical representations for rotations,

as well as a function for computing random quaternion orientations.

// rotations.hpp
// Functions for use with unit quaternions (interpreted as 3D rotations)

// Note: an expression such as q1*q2 implies that rotation q2 follows rotation q1
// Questions/comments to jgruber@andrew.cmu.edu (Jason Gruber)

#ifndef ROTATIONS
#define ROTATIONS

#include<cmath>
#include"quaternion.hpp"

template<typename T> quaternion<T> rotation(const T& theta, const T& x, const T& y, const T& z)
{

T norm = sqrt(x*x+y*y+z*z);
if (norm>0.0) {

T rnorm = 1.0/norm;
T v0 = cos(0.5*theta);

T v1 = sin(0.5*theta)*rnorm;
return quaternion<T>(v0,x*v1,y*v1,z*v1);

}

return quaternion<T>(1.0);
}

template<typename T> void rotation(const quaternion<T>& q, T& theta, T& x, T& y, T& z)
{

x = q[1];
y = q[2];

z = q[3];
T norm = sqrt(x*x+y*y+z*z);

if (norm>0.0) {
T rnorm = 1.0/norm;
x *= rnorm;

y *= rnorm;
z *= rnorm;

}
theta = 2.0*acos(q[0]);

}

template<typename T> quaternion<T> euler(const T& phi1, const T& PHI, const T& phi2)

{
T hP = 0.5*PHI;

T shP = sin(hP);
T chP = cos(hP);
T hp1 = 0.5*phi1;

T hp2 = 0.5*phi2;
T sum = hp1+hp2;

T dif = hp1-hp2;

return quaternion<T>(chP*cos(sum),shP*cos(dif),shP*sin(dif),chP*sin(sum));

}

template<typename T> void euler(const quaternion<T>& q, T& phi1, T& PHI, T& phi2)
{

T v0 = sqrt(q[0]*q[0]+q[3]*q[3]);
T v1 = (v0>1.0)? 1.0 : v0;
T sum = atan2(q[3],q[0]);

T dif = atan2(q[2],q[1]);

PHI = 2.0*acos(v1);
phi1 = sum+dif;
phi1 += 2.0*M_PI*(phi1<0.0);

phi2 = sum-dif;
phi2 += 2.0*M_PI*(phi2<0.0);

}

template<typename T> quaternion<T> qrandom()
{

A.2. TEXTURE 139

T v0 = static_cast<T>(rand())/(static_cast<T>(RAND_MAX)+1);
T v1 = 2.0*M_PI*static_cast<T>(rand())/(static_cast<T>(RAND_MAX)+1);
T v2 = 2.0*M_PI*static_cast<T>(rand())/(static_cast<T>(RAND_MAX)+1);

T v3 = sqrt(v0);
T v4 = sqrt(1.0-v0);

return quaternion<T>(cos(v1)*v3,sin(v2)*v4,cos(v2)*v4,sin(v1)*v3);

}

template<typename T, typename V> V operator*(const quaternion<T>& q, const V& x)

{
T aa = q[0]*q[0]; T bb = q[1]*q[1];

T cc = q[2]*q[2]; T dd = q[3]*q[3];
T ab = q[0]*q[1]; T ac = q[0]*q[2];
T ad = q[0]*q[3]; T bc = q[1]*q[2];

T bd = q[1]*q[3]; T cd = q[2]*q[3];

V r(3);
r[0] = (aa+bb-cc-dd)*x[0] +2.0*(ad+bc)*x[1] -2.0*(ac-bd)*x[2];

r[1] = -2.0*(ad-bc)*x[0]+(aa-bb+cc-dd)*x[1] +2.0*(ab+cd)*x[2];
r[2] = 2.0*(ac+bd)*x[0] -2.0*(ab-cd)*x[1]+(aa-bb-cc+dd)*x[2];
return r;

}

#endif

A.2. TEXTURE 140

This file declares constant quaternion objects that represent the members of the 11 groups of proper

crystal symmetry operators. Each set of quaternions is defined in a namespace that corresponds to

its Schoenflies symbol.

// symmetry.hpp
// Proper symmetry operators for all crystallographic point groups

// Questions/comments to jgruber@andrew.cmu.edu (Jason Gruber)

#ifndef SYMMETRY
#define SYMMETRY
#include"quaternion.hpp"

namespace symmetry{

namespace O{
const double val = 0.70710678118654752440;

const int operators = 24;
const quaternion<double> O[24] = {

quaternion<double>(1.0, 0.0, 0.0, 0.0),
quaternion<double>(0.0, 1.0, 0.0, 0.0),

quaternion<double>(0.0, 0.0, 1.0, 0.0),
quaternion<double>(0.0, 0.0, 0.0, 1.0),
quaternion<double>(0.5, 0.5, 0.5, 0.5),

quaternion<double>(0.5, -0.5, 0.5, 0.5),
quaternion<double>(0.5, 0.5, -0.5, 0.5),

quaternion<double>(0.5, 0.5, 0.5, -0.5),
quaternion<double>(0.5, -0.5, -0.5, 0.5),
quaternion<double>(0.5, -0.5, 0.5, -0.5),

quaternion<double>(0.5, 0.5, -0.5, -0.5),
quaternion<double>(0.5, -0.5, -0.5, -0.5),

quaternion<double>(val, val, 0.0, 0.0),
quaternion<double>(val, -val, 0.0, 0.0),

quaternion<double>(val, 0.0, val, 0.0),
quaternion<double>(val, 0.0, -val, 0.0),
quaternion<double>(val, 0.0, 0.0, val),

quaternion<double>(val, 0.0, 0.0, -val),
quaternion<double>(0.0, val, val, 0.0),

quaternion<double>(0.0, val, 0.0, val),
quaternion<double>(0.0, 0.0, val, val),
quaternion<double>(0.0, -val, val, 0.0),

quaternion<double>(0.0, val, 0.0, -val),
quaternion<double>(0.0, 0.0, val, -val)

};
}

namespace T{
const int operators = 12;

const quaternion<double> O[12] = {
quaternion<double>(1.0, 0.0, 0.0, 0.0),

quaternion<double>(0.0, 1.0, 0.0, 0.0),
quaternion<double>(0.0, 0.0, 1.0, 0.0),
quaternion<double>(0.0, 0.0, 0.0, 1.0),

quaternion<double>(0.5, 0.5, 0.5, 0.5),
quaternion<double>(0.5, -0.5, 0.5, 0.5),

quaternion<double>(0.5, 0.5, -0.5, 0.5),
quaternion<double>(0.5, 0.5, 0.5, -0.5),

quaternion<double>(0.5, -0.5, -0.5, 0.5),
quaternion<double>(0.5, -0.5, 0.5, -0.5),
quaternion<double>(0.5, 0.5, -0.5, -0.5),

quaternion<double>(0.5, -0.5, -0.5, -0.5)
};

}

namespace D6{

const double val = 0.86602540378443864676;
const int operators = 12;

const quaternion<double> O[12] = {
quaternion<double>(1.0, 0.0, 0.0, 0.0),

quaternion<double>(val, 0.0, 0.0, 0.5),
quaternion<double>(0.5, 0.0, 0.0, val),

A.2. TEXTURE 141

quaternion<double>(0.0, 0.0, 0.0, 1.0),
quaternion<double>(-0.5, 0.0, 0.0, val),
quaternion<double>(-val, 0.0, 0.0, 0.5),

quaternion<double>(0.0, 1.0, 0.0, 0.0),
quaternion<double>(0.0, val, 0.5, 0.0),

quaternion<double>(0.0, 0.5, val, 0.0),
quaternion<double>(0.0, 0.0, 1.0, 0.0),

quaternion<double>(0.0, -0.5, val, 0.0),
quaternion<double>(0.0, -val, 0.5, 0.0)

};

}

namespace C6{
const double val = 0.86602540378443864676;
const int operators = 6;

const quaternion<double> O[6] = {
quaternion<double>(1.0, 0.0, 0.0, 0.0),

quaternion<double>(val, 0.0, 0.0, 0.5),
quaternion<double>(0.5, 0.0, 0.0, val),

quaternion<double>(0.0, 0.0, 0.0, 1.0),
quaternion<double>(-0.5, 0.0, 0.0, val),
quaternion<double>(-val, 0.0, 0.0, 0.5)

};

}

namespace D4{
const double val = 0.70710678118654752440;
const int operators = 8;

const quaternion<double> O[8] = {
quaternion<double>(1.0, 0.0, 0.0, 0.0),

quaternion<double>(val, 0.0, 0.0, val),
quaternion<double>(0.0, 0.0, 0.0, 1.0),
quaternion<double>(-val, 0.0, 0.0, val),

quaternion<double>(0.0, 1.0, 0.0, 0.0),
quaternion<double>(0.0, val, val, 0.0),

quaternion<double>(0.0, 0.0, 1.0, 0.0),
quaternion<double>(0.0, -val, val, 0.0)

};
}

namespace C4{
const double val = 0.70710678118654752440;

const int operators = 4;
const quaternion<double> O[4] = {

quaternion<double>(1.0, 0.0, 0.0, 0.0),

quaternion<double>(val, 0.0, 0.0, val),
quaternion<double>(0.0, 0.0, 0.0, 1.0),

quaternion<double>(-val, 0.0, 0.0, val)
};

}

namespace D3{

const double val = 0.86602540378443864676;
const int operators = 6;

const quaternion<double> O[6] = {
quaternion<double>(1.0, 0.0, 0.0, 0.0),
quaternion<double>(0.5, 0.0, 0.0, val),

quaternion<double>(-0.5, 0.0, 0.0, val),
quaternion<double>(0.0, 1.0, 0.0, 0.0),

quaternion<double>(0.0, -0.5, val, 0.0),
quaternion<double>(0.0, -0.5, -val, 0.0)

};
}

namespace C3{
const double val = 0.86602540378443864676;

const int operators = 3;
const quaternion<double> O[3] = {

quaternion<double>(1.0, 0.0, 0.0, 0.0),

quaternion<double>(0.5, 0.0, 0.0, val),
quaternion<double>(-0.5, 0.0, 0.0, val)

A.2. TEXTURE 142

};
}

namespace D2{
const int operators = 4;

const quaternion<double> O[4] = {
quaternion<double>(1.0, 0.0, 0.0, 0.0),

quaternion<double>(0.0, 1.0, 0.0, 0.0),
quaternion<double>(0.0, 0.0, 1.0, 0.0),
quaternion<double>(0.0, 0.0, 0.0, 1.0)

};
}

namespace C2{
const int operators = 2;

const quaternion<double> O[2] = {
quaternion<double>(1.0, 0.0, 0.0, 0.0),

quaternion<double>(0.0, 1.0, 0.0, 0.0)
};

}

namespace C1{

const int operators = 1;
const quaternion<double> O[1] = {

quaternion<double>(1.0, 0.0, 0.0, 0.0)
};

}
}

#endif

A.2. TEXTURE 143

This code contains functions for computing the disorientation angle of a quaternion rotation, as

well as a function that computes the random distribution of disorientation angles based on crystal

symmetry.

// disorientation.hpp
// Functions to calculate disorientation, etc.

// Note: an expression such as q1*q2 implies that rotation q2 follows rotation q1
// Questions/comments to jgruber@andrew.cmu.edu (Jason Gruber)

#ifndef DISORIENTATION
#define DISORIENTATION

#include"symmetry.hpp"
#include<string>

#include<cmath>

template<typename T> T disorientation(const quaternion<T>& q, std::string symmetry = "O")

{
if (symmetry=="C1") {

using namespace symmetry::C1;

T disorientation = 2.0*M_PI;
for (int i=0; i<operators; i++) {

quaternion<T> a = quaternion<T>(O[i])*q;

for (int j=0; j<operators; j++) {
quaternion<T> b = a*quaternion<T>(O[j]);

T angle1 = 2.0*acos(b[0]);
T angle2 = 2.0*M_PI-angle1;
if (angle1<disorientation) disorientation = angle1;

if (angle2<disorientation) disorientation = angle2;
}

}
return disorientation;

}

else if (symmetry=="C2") {

using namespace symmetry::C2;

T disorientation = 2.0*M_PI;
for (int i=0; i<operators; i++) {

quaternion<T> a = quaternion<T>(O[i])*q;

for (int j=0; j<operators; j++) {
quaternion<T> b = a*quaternion<T>(O[j]);

T angle1 = 2.0*acos(b[0]);
T angle2 = 2.0*M_PI-angle1;

if (angle1<disorientation) disorientation = angle1;
if (angle2<disorientation) disorientation = angle2;

}

}
return disorientation;

}

else if (symmetry=="C3") {

using namespace symmetry::C3;

T disorientation = 2.0*M_PI;
for (int i=0; i<operators; i++) {

quaternion<T> a = quaternion<T>(O[i])*q;
for (int j=0; j<operators; j++) {

quaternion<T> b = a*quaternion<T>(O[j]);

T angle1 = 2.0*acos(b[0]);
T angle2 = 2.0*M_PI-angle1;

if (angle1<disorientation) disorientation = angle1;
if (angle2<disorientation) disorientation = angle2;

}

}
return disorientation;

}

else if (symmetry=="C4") {
using namespace symmetry::C4;

A.2. TEXTURE 144

T disorientation = 2.0*M_PI;
for (int i=0; i<operators; i++) {

quaternion<T> a = quaternion<T>(O[i])*q;
for (int j=0; j<operators; j++) {

quaternion<T> b = a*quaternion<T>(O[j]);
T angle1 = 2.0*acos(b[0]);

T angle2 = 2.0*M_PI-angle1;
if (angle1<disorientation) disorientation = angle1;
if (angle2<disorientation) disorientation = angle2;

}
}

return disorientation;
}

else if (symmetry=="C6") {
using namespace symmetry::C6;

T disorientation = 2.0*M_PI;

for (int i=0; i<operators; i++) {
quaternion<T> a = quaternion<T>(O[i])*q;
for (int j=0; j<operators; j++) {

quaternion<T> b = a*quaternion<T>(O[j]);
T angle1 = 2.0*acos(b[0]);

T angle2 = 2.0*M_PI-angle1;
if (angle1<disorientation) disorientation = angle1;

if (angle2<disorientation) disorientation = angle2;
}

}

return disorientation;
}

else if (symmetry=="D2") {
using namespace symmetry::D2;

T disorientation = 2.0*M_PI;

for (int i=0; i<operators; i++) {
quaternion<T> a = quaternion<T>(O[i])*q;

for (int j=0; j<operators; j++) {
quaternion<T> b = a*quaternion<T>(O[j]);
T angle1 = 2.0*acos(b[0]);

T angle2 = 2.0*M_PI-angle1;
if (angle1<disorientation) disorientation = angle1;

if (angle2<disorientation) disorientation = angle2;
}

}

return disorientation;
}

else if (symmetry=="D3") {

using namespace symmetry::D3;

T disorientation = 2.0*M_PI;

for (int i=0; i<operators; i++) {
quaternion<T> a = quaternion<T>(O[i])*q;

for (int j=0; j<operators; j++) {
quaternion<T> b = a*quaternion<T>(O[j]);
T angle1 = 2.0*acos(b[0]);

T angle2 = 2.0*M_PI-angle1;
if (angle1<disorientation) disorientation = angle1;

if (angle2<disorientation) disorientation = angle2;
}

}
return disorientation;

}

else if (symmetry=="D4") {

using namespace symmetry::D4;

T disorientation = 2.0*M_PI;

for (int i=0; i<operators; i++) {
quaternion<T> a = quaternion<T>(O[i])*q;

A.2. TEXTURE 145

for (int j=0; j<operators; j++) {
quaternion<T> b = a*quaternion<T>(O[j]);
T angle1 = 2.0*acos(b[0]);

T angle2 = 2.0*M_PI-angle1;
if (angle1<disorientation) disorientation = angle1;

if (angle2<disorientation) disorientation = angle2;
}

}
return disorientation;

}

else if (symmetry=="D6") {

using namespace symmetry::D6;

T disorientation = 2.0*M_PI;

for (int i=0; i<operators; i++) {
quaternion<T> a = quaternion<T>(O[i])*q;

for (int j=0; j<operators; j++) {
quaternion<T> b = a*quaternion<T>(O[j]);

T angle1 = 2.0*acos(b[0]);
T angle2 = 2.0*M_PI-angle1;
if (angle1<disorientation) disorientation = angle1;

if (angle2<disorientation) disorientation = angle2;
}

}
return disorientation;

}

else if (symmetry=="T") {

using namespace symmetry::T;

T disorientation = 2.0*M_PI;
for (int i=0; i<operators; i++) {

quaternion<T> a = quaternion<T>(O[i])*q;

for (int j=0; j<operators; j++) {
quaternion<T> b = a*quaternion<T>(O[j]);

T angle1 = 2.0*acos(b[0]);
T angle2 = 2.0*M_PI-angle1;

if (angle1<disorientation) disorientation = angle1;
if (angle2<disorientation) disorientation = angle2;

}

}
return disorientation;

}

else if (symmetry=="O") {

using namespace symmetry::O;

T disorientation = 2.0*M_PI;
for (int i=0; i<operators; i++) {

quaternion<T> a = quaternion<T>(O[i])*q;
for (int j=0; j<operators; j++) {

quaternion<T> b = a*quaternion<T>(O[j]);

T angle1 = 2.0*acos(b[0]);
T angle2 = 2.0*M_PI-angle1;

if (angle1<disorientation) disorientation = angle1;
if (angle2<disorientation) disorientation = angle2;

}

}
return disorientation;

}

return 0.0;
}

template<typename T>
T disorientation(const quaternion<T>& q1, const quaternion<T>& q2, std::string symmetry = "O")

{
return disorientation(conj(q1)*q2,symmetry);

}

template<typename T> T alpha(T r, T R = 1.0)

A.2. TEXTURE 146

{return acos(R/r);}

template<typename T> T C(T a, T b, T c)

{return acos((cos(c)-cos(a)*cos(b))/(sin(a)*sin(b)));}

template<typename T> T S1(T a)
{return 2.0*M_PI*(1.0-cos(a));}

template<typename T> T S2(T a, T b, T c)
{return 2.0*(M_PI-C(a,b,c)-cos(a)*C(c,a,b)-cos(b)*C(b,c,a));}

template<typename T> T mackenzie(T angle, std::string symmetry = "O")

{
if (angle<0.0 || angle>M_PI) return 0.0;

if (symmetry=="C1") {
static const T m = 1.0;

static const T K = m/180.0*M_PI;
static const T r1 = tan(M_PI/(2.0*m));

static const T r2 = tan(0.5*M_PI);

T r = tan(0.5*angle);

T chi = 4.0*M_PI;
if (r>r1) chi += -2.0*S1(alpha(r,r1));

if (r>r2) chi = 0.0;
T value = K/(2.0*M_PI*M_PI)*sin(0.5*angle)*sin(0.5*angle)*chi;

return fabs(value);
}

else if (symmetry=="C2") {
static const T m = 2.0;

static const T K = m/180.0*M_PI;
static const T r1 = tan(M_PI/(2.0*m));
static const T r2 = tan(0.5*M_PI);

T r = tan(0.5*angle);

T chi = 4.0*M_PI;
if (r>r1) chi += -2.0*S1(alpha(r,r1));

if (r>r2) chi = 0.0;
T value = K/(2.0*M_PI*M_PI)*sin(0.5*angle)*sin(0.5*angle)*chi;
return fabs(value);

}

else if (symmetry=="C3") {
static const T m = 3.0;
static const T K = m/180.0*M_PI;

static const T r1 = tan(M_PI/(2.0*m));
static const T r2 = tan(0.5*M_PI);

T r = tan(0.5*angle);

T chi = 4.0*M_PI;
if (r>r1) chi += -2.0*S1(alpha(r,r1));
if (r>r2) chi = 0.0;

T value = K/(2.0*M_PI*M_PI)*sin(0.5*angle)*sin(0.5*angle)*chi;
return fabs(value);

}

else if (symmetry=="C4") {

static const T m = 4.0;
static const T K = m/180.0*M_PI;

static const T r1 = tan(M_PI/(2.0*m));
static const T r2 = tan(0.5*M_PI);

T r = tan(0.5*angle);
T chi = 4.0*M_PI;

if (r>r1) chi += -2.0*S1(alpha(r,r1));
if (r>r2) chi = 0.0;

T value = K/(2.0*M_PI*M_PI)*sin(0.5*angle)*sin(0.5*angle)*chi;
return fabs(value);

}

else if (symmetry=="C6") {

A.2. TEXTURE 147

static const T m = 6.0;
static const T K = m/180.0*M_PI;
static const T r1 = tan(M_PI/(2.0*m));

static const T r2 = tan(0.5*M_PI);

T r = tan(0.5*angle);
T chi = 4.0*M_PI;

if (r>r1) chi += -2.0*S1(alpha(r,r1));
if (r>r2) chi = 0.0;
T value = K/(2.0*M_PI*M_PI)*sin(0.5*angle)*sin(0.5*angle)*chi;

return fabs(value);
}

else if (symmetry=="D2") {
static const T m = 2.0;

static const T K = 2.0*m/180.0*M_PI;
static const T r1 = tan(M_PI/(2.0*m));

static const T r2 = 1.0;
static const T r3 = sqrt(1.0+r1*r1);

static const T r4 = sqrt(1.0+2.0*r1*r1);

T r = tan(0.5*angle);

T chi = 4.0*M_PI;
if (r>r1) chi += -2.0*S1(alpha(r,r1));

if (r>r2) chi += -2.0*m*S1(alpha(r));
if (r>r3) chi += 4.0*m*S2(alpha(r,r1),alpha(r),0.5*M_PI)

+2.0*m*S2(alpha(r),alpha(r),M_PI/m);
if (r>r4) chi = 0.0;
T value = K/(2.0*M_PI*M_PI)*sin(0.5*angle)*sin(0.5*angle)*chi;

return fabs(value);
}

else if (symmetry=="D3") {
static const T m = 3.0;

static const T K = 2.0*m/180.0*M_PI;
static const T r1 = tan(M_PI/(2.0*m));

static const T r2 = 1.0;
static const T r3 = sqrt(1.0+r1*r1);

static const T r4 = sqrt(1.0+2.0*r1*r1);

T r = tan(0.5*angle);

T chi = 4.0*M_PI;
if (r>r1) chi += -2.0*S1(alpha(r,r1));

if (r>r2) chi += -2.0*m*S1(alpha(r));
if (r>r3) chi += 4.0*m*S2(alpha(r,r1),alpha(r),0.5*M_PI)

+2.0*m*S2(alpha(r),alpha(r),M_PI/m);

if (r>r4) chi = 0.0;
T value = K/(2.0*M_PI*M_PI)*sin(0.5*angle)*sin(0.5*angle)*chi;

return fabs(value);
}

else if (symmetry=="D4") {
static const T m = 4.0;

static const T K = 2.0*m/180.0*M_PI;
static const T r1 = tan(M_PI/(2.0*m));

static const T r2 = 1.0;
static const T r3 = sqrt(1.0+r1*r1);
static const T r4 = sqrt(1.0+2.0*r1*r1);

T r = tan(0.5*angle);

T chi = 4.0*M_PI;
if (r>r1) chi += -2.0*S1(alpha(r,r1));

if (r>r2) chi += -2.0*m*S1(alpha(r));
if (r>r3) chi += 4.0*m*S2(alpha(r,r1),alpha(r),0.5*M_PI)

+2.0*m*S2(alpha(r),alpha(r),M_PI/m);

if (r>r4) chi = 0.0;
T value = K/(2.0*M_PI*M_PI)*sin(0.5*angle)*sin(0.5*angle)*chi;

return fabs(value);
}

else if (symmetry=="D6") {
static const T m = 6.0;

A.2. TEXTURE 148

static const T K = 2.0*m/180.0*M_PI;
static const T r1 = tan(M_PI/(2.0*m));
static const T r2 = 1.0;

static const T r3 = sqrt(1.0+r1*r1);
static const T r4 = sqrt(1.0+2.0*r1*r1);

T r = tan(0.5*angle);

T chi = 4.0*M_PI;
if (r>r1) chi += -2.0*S1(alpha(r,r1));
if (r>r2) chi += -2.0*m*S1(alpha(r));

if (r>r3) chi += 4.0*m*S2(alpha(r,r1),alpha(r),0.5*M_PI)
+2.0*m*S2(alpha(r),alpha(r),M_PI/m);

if (r>r4) chi = 0.0;
T value = K/(2.0*M_PI*M_PI)*sin(0.5*angle)*sin(0.5*angle)*chi;
return fabs(value);

}

else if (symmetry=="T") {
static const T K = 12.0/180.0*M_PI;

static const T r1 = sqrt(3.0)/3.0;
static const T r2 = sqrt(2.0)/2.0;
static const T r3 = tan(0.25*M_PI);

T r = tan(0.5*angle);

T chi = 4.0*M_PI;
if (r>r1) chi += -8.0*S1(alpha(r,r1));

if (r>r2) chi += 12.0*S2(alpha(r,r1),alpha(r,r1),acos(1.0/3.0));
if (r>r3) chi = 0.0;
T value = K/(2.0*M_PI*M_PI)*sin(0.5*angle)*sin(0.5*angle)*chi;

return fabs(value);
}

else if (symmetry=="O") {
static const T K = 24.0/180.0*M_PI;

static const T r1 = sqrt(2.0)-1.0;
static const T r2 = sqrt(3.0)/3.0;

static const T r3 = 2.0-sqrt(2.0);
static const T r4 = sqrt(23.0-16.0*sqrt(2.0));

T r = tan(0.5*angle);
T chi = 4.0*M_PI;

if (r>r1) chi += -6.0*S1(alpha(r,r1));
if (r>r2) chi += -8.0*S1(alpha(r,r2));

if (r>r3) chi += 12.0*S2(alpha(r,r1),alpha(r,r1),0.5*M_PI)
+24.0*S2(alpha(r,r1),alpha(r,r2),acos(r2));

if (r>r4) chi = 0.0;

T value = K/(2.0*M_PI*M_PI)*sin(0.5*angle)*sin(0.5*angle)*chi;
return fabs(value);

}

return 0.0;
}

#endif

A.3. SIMULATION 149

A.3 Simulation

This file contains user-defined energy and mobility functions, as well as orientation and property

tables, and can be used with an simulation method.

// anisotropy.hpp
// Orientations, misorientations, energy and mobility functions

// Questions/comments to jgruber@andrew.cmu.edu

#ifndef ANISOTROPY

#define ANISOTROPY
#include<fstream>

#include"disorientation.hpp"
#include"rotations.hpp"

namespace anisotropy{
std::map<int,std::map<int,float> > angle;

std::vector<quaternion<float> > g;
}

void read_texture(const char* filename)
{

std::ifstream input(filename);
using namespace anisotropy;

// read texture from ascii text file
while (1) {

float phi1, PHI, phi2;
input>>phi1>>PHI>>phi2;

if (input.eof()) break;
g.push_back(euler(phi1,PHI,phi2));

}
}

float E(int i, int j, std::string symmetry = "O")

{
// trivial case: no boundary
if (i==j) return 0.0;

// uncomment for isotropy

//return 1.0;

// compute disorientation angle, if necessary
using namespace anisotropy;
int a = (i<j ? i : j);

int b = (i<j ? j : i);
if (angle[a][b]==0.0)

angle[a][b] = 180.0/M_PI*disorientation(g[a],g[b]);

// compute energy

float energy = 1.0;

// Read-Shockley functional form
if (angle[a][b]<15.0) energy = angle[a][b]/15.0*(1.0-log(angle[a][b]/15.0));

//if (angle[a][b]<30.0) energy = angle[a][b]/30.0*(1.0-log(angle[a][b]/30.0));
//if (angle[a][b]<45.0) energy = angle[a][b]/45.0*(1.0-log(angle[a][b]/45.0));

// step function
//if (angle[a][b]<30.0) energy = 0.6;

return energy;
}

float M(int i, int j)

{
// trivial case: no boundary

if (i==j) return 0.0;

A.3. SIMULATION 150

// uncomment for isotropy
//return 1.0;

// compute disorientation angle, if necessary
using namespace anisotropy;

int a = (i<j ? i : j);
int b = (i<j ? j : i);

if (angle[a][b]==0.0)
angle[a][b] = 180.0/M_PI*disorientation(g[a],g[b]);

// compute mobililty
float mobility = 1.0;

// Read-Shockley functional form
if (angle[a][b]<15.0) mobility = angle[a][b]/15.0*(1.0-log(angle[a][b]/15.0));

//if (angle[a][b]<30.0) mobility = angle[a][b]/30.0*(1.0-log(angle[a][b]/30.0));
//if (angle[a][b]<45.0) mobility = angle[a][b]/45.0*(1.0-log(angle[a][b]/45.0));

// step function

//if (angle[a][b]<30.0) mobility = 0.6;

return mobility;

}

#endif

A.3. SIMULATION 151

This file contains the MCgrid2D and MCgrid3D update functions. These functions define the

physical behavior of the Monte Carlo simulation, which in this case is anistropic curvature driven

interface motion.

// MCgrid.anisotropy.hpp
// Generic algorithms for Monte Carlo methods

// Questions/comments to jgruber@andrew.cmu.edu (Jason Gruber)

#ifndef MCGRID_UPDATE
#define MCGRID_UPDATE
#include"MCgrid.hpp"

#include"anisotropy.hpp"

namespace MC{

void MCgrid2D::update(int steps)

{
MCgrid2D& grid = *this;

int n = nx[0]*nx[1];
const float kT = 0.7;

using namespace anisotropy;

for (int step=0; step<steps; step++)

for (int h=0; h<n; h++) {
int x = rand()%nx[0];

int y = rand()%nx[1];
int spin1 = grid[x][y];

std::vector<int> neighbors = nonzero(x,y);
int spin2 = neighbors[rand()%neighbors.size()];

if (spin1!=spin2) {

float dE = -E(spin1,spin2);
for (int i=-1; i<=1; i++)

for (int j=-1; j<=1; j++) {

int spin = grid.neighbor(x,y,i,j);
dE += E(spin,spin2)-E(spin,spin1);

}
float num = static_cast<float>(rand())/static_cast<float>(RAND_MAX);
if (dE<=0.0 && num<M(spin1,spin2)*E(spin1,spin2)) grid[x][y] = spin2;

if (dE>0.0 && num<M(spin1,spin2)*E(spin1,spin2)*exp(-dE/(kT*E(spin1,spin2)))) grid[x][y] = spin2;
}

}
}

void MCgrid3D::update(int steps)
{

MCgrid3D& grid = *this;
int n = nx[0]*nx[1]*nx[2];

const float kT = 1.5;
using namespace anisotropy;

for (int step=0; step<steps; step++)
for (int h=0; h<n; h++) {

int x = rand()%nx[0];
int y = rand()%nx[1];

int z = rand()%nx[2];
int spin1 = grid[x][y][z];

std::vector<int> neighbors = nonzero(x,y,z);
int spin2 = neighbors[rand()%neighbors.size()];

if (spin1!=spin2) {
float dE = -E(spin1,spin2);

for (int i=-1; i<=1; i++)
for (int j=-1; j<=1; j++)

for (int k=-1; k<=1; k++) {
int spin = grid.neighbor(x,y,z,i,j,k);

dE += E(spin,spin2)-E(spin,spin1);
}

A.3. SIMULATION 152

float num = static_cast<float>(rand())/static_cast<float>(RAND_MAX);
if (dE<=0.0 && num<M(spin1,spin2)*E(spin1,spin2)) grid[x][y][z] = spin2;
if (dE>0.0 && num<M(spin1,spin2)*E(spin1,spin2)*exp(-dE/(kT*E(spin1,spin2)))) grid[x][y][z] = spin2;

}
}

}

} // namespace MC

#endif

A.3. SIMULATION 153

This file contains the sparsePF2D and sparsePF3D update functions. These functions define

the physical behavior of the phase field simulation, which in this case is anistropic curvature driven

interface motion.

// sparsePF.anisotropy.hpp
// Generic algorithms for phase field methods

// Questions/comments to jgruber@andrew.cmu.edu (Jason Gruber)

#ifndef SPARSEPF_UPDATE
#define SPARSEPF_UPDATE
#include"sparsePF.hpp"

#include"anisotropy.hpp"

namespace MMSP{

void sparsePF2D::update(int steps, int id, int np, int ng)

{
sparsePF2D& grid = *this;

using namespace anisotropy;

const float w = 6.0;
const float a = 4.0*w/M_PI/M_PI;
const float b = 4.0/w;

const float c = 1.0/a;
const float dt = 0.02;

for (int step=0; step<steps; step++) {
sparsePF2D update(nx[0],nx[1]);

for (int x=ng; x<nx[0]-ng; x++)

for (int y=0; y<nx[1]; y++) {
std::vector<int> p = nonzero(x,y);

int N = p.size();

if (N==1)

update[x][y][p[0]] = 1.0;

else {
std::vector<float> F(N,0.0);
for (int i=0; i<N; i++)

for (int j=i+1; j<N; j++) {
F[i] += E(p[i],p[j])*(a*laplacian(x,y,p[j])+b*grid[x][y][p[j]]);

F[j] += E(p[i],p[j])*(a*laplacian(x,y,p[i])+b*grid[x][y][p[i]]);
}

std::vector<float> H(N,0.0);
for (int i=0; i<N; i++)

for (int j=i+1; j<N; j++) {
H[i] += c*M(p[i],p[j])*(F[i]-F[j]);

H[j] += c*M(p[i],p[j])*(F[j]-F[i]);
}

float sum = 0.0;
for (int i=0; i<N; i++) {

const float epsilon = 1.0e-6;
float value = grid[x][y][p[i]]-dt*H[i]/N;

if (value>1.0) value = 1.0;
if (value<0.0) value = 0.0;
if (value>epsilon) update[x][y][p[i]] = value;

sum += value;
}

float rsum = 1.0/sum;
for (int i=0; i<N; i++)

if (update[x][y][p[i]]>0.0)
update[x][y][p[i]] *= rsum;

}
}

grid.ghostswap(id,np,ng);
grid.swap(update);

A.3. SIMULATION 154

}
}

void sparsePF3D::update(int steps, int id, int np, int ng)
{

sparsePF3D& grid = *this;
using namespace anisotropy;

const float w = 6.0;
const float a = 4.0*w/M_PI/M_PI;

const float b = 4.0/w;
const float c = 1.0/a;

const float dt = 0.02;

for (int step=0; step<steps; step++) {

sparsePF3D update(nx[0],nx[1],nx[2]);

for (int x=ng; x<nx[0]-ng; x++)
for (int y=0; y<nx[1]; y++)

for (int z=0; z<nx[2]; z++) {
std::vector<int> p = nonzero(x,y,z);
int N = p.size();

if (N==1)

update[x][y][z][p[0]] = 1.0;

else {
std::vector<float> F(N,0.0);
for (int i=0; i<N; i++)

for (int j=i+1; j<N; j++) {
F[i] += E(p[i],p[j])*(a*laplacian(x,y,z,p[j])+b*grid[x][y][z][p[j]]);

F[j] += E(p[i],p[j])*(a*laplacian(x,y,z,p[i])+b*grid[x][y][z][p[i]]);
}

std::vector<float> H(N,0.0);
for (int i=0; i<N; i++)

for (int j=i+1; j<N; j++) {
H[i] += c*M(p[i],p[j])*(F[i]-F[j]);

H[j] += c*M(p[i],p[j])*(F[j]-F[i]);
}

float sum = 0.0;
for (int i=0; i<N; i++) {

const float epsilon = 1.0e-6;
float value = grid[x][y][z][p[i]]-dt*H[i]/N;
if (value>1.0) value = 1.0;

if (value<0.0) value = 0.0;
if (value>epsilon) update[x][y][z][p[i]] = value;

sum += value;
}

float rsum = 1.0/sum;
for (int i=0; i<N; i++)

if (update[x][y][z][p[i]]>0.0)
update[x][y][z][p[i]] *= rsum;

}
}

}

grid.ghostswap(id,np,ng);
grid.swap(update);

}
}

} // namespace MMSP

#endif

A.4. ANALYSIS 155

A.4 Analysis

This file contains a single program that extracts relevant grain and interface data from Monte Carlo

grids.

// analysis.cpp
// MCgrid grain and interface analysis

// Questions/comments to jgruber@andrew.cmu.edu

#include"MCgrid.hpp"

using namespace MMSP;

#include"anisotropy.hpp"
using namespace anisotropy;

int main(int argc, char* argv[])
{

// get grid dimension
std::ifstream input(argv[1]);

int dim;
input.read(reinterpret_cast<char*>(&dim),sizeof(dim));
input.close();

// get texture data

read_texture(argv[2]);

// read symmetry (optional)

std::string symmetry = "O";
if (argc>3) symmetry = argv[3];

// data structures: maps let us use

// only the memory we need, automatically
std::map<int,int> grains;
std::map<int,bool> edge;

std::map<int,std::map<int,int> > area;

if (dim==2) {
// perform analysis for 2D grids
MCgrid2D grid(argv[1]);

int nx = grid.size(0);
int ny = grid.size(1);

bool px = grid.boundary(0);
bool py = grid.boundary(1);

for (int x=0; x<nx; x++)
for (int y=0; y<ny; y++) {

int IDa = grid[x][y];
grains[IDa] += 1;

if (!px && (x==0 || x==nx-1)) edge[IDa] = true;
if (!py && (y==0 || y==ny-1)) edge[IDa] = true;
for (int i=0; i<=1; i++)

for (int j=0; j<=1; j++) {
int IDb = grid.neighbor(x,y,i,j);

if (IDa!=IDb) {
int a = (IDa<IDb ? IDa : IDb);

int b = (IDa<IDb ? IDb : IDa);
area[a][b] += 1;
if (angle[a][b]==0.0)

angle[a][b] = 180.0/M_PI*disorientation(g[a],g[b],symmetry);
}

}
}

}

if (dim==3) {

// perform analysis for 3D grids
MCgrid3D grid(argv[1]);

int nx = grid.size(0);
int ny = grid.size(1);

A.4. ANALYSIS 156

int nz = grid.size(2);
bool px = grid.boundary(0);
bool py = grid.boundary(1);

bool pz = grid.boundary(2);

for (int x=0; x<nx; x++)
for (int y=0; y<ny; y++)

for (int z=0; z<nz; z++) {
int IDa = grid[x][y][z];
grains[IDa] += 1;

if (!px && (x==0 || x==nx-1)) edge[IDa] = true;
if (!py && (y==0 || y==ny-1)) edge[IDa] = true;

if (!pz && (z==0 || z==nz-1)) edge[IDa] = true;
for (int i=0; i<=1; i++)
for (int j=0; j<=1; j++)

for (int k=0; k<=1; k++) {
int IDb = grid.neighbor(x,y,z,i,j,k);

if (IDa!=IDb) {
int a = (IDa<IDb ? IDa : IDb);

int b = (IDa<IDb ? IDb : IDa);
area[a][b] += 1;
if (angle[a][b]==0.0)

angle[a][b] = 180.0/M_PI*disorientation(g[a],g[b],symmetry);
}

}
}

}

// write grain data

// grain ID, grain volume (area), edge flag
std::ofstream gfile("grains");

std::map<int,int>::iterator git;
for (git=grains.begin(); git!=grains.end(); git++) {
int ID = (*git).first;

int volume = (*git).second;
gfile<<ID<<" "<<volume<<" "<<edge[ID]<<std::endl;

}
gfile.close();

// write interface data
// grain IDa, grain IDb, angle, area (length), edge flag

std::ofstream ifile("interfaces");
std::map<int,std::map<int,float> >::iterator ait;

for (ait=angle.begin(); ait!=angle.end(); ait++) {
int a = (*ait).first;
std::map<int,float>::iterator bit;

for (bit=angle[a].begin(); bit!=angle[a].end(); bit++) {
int b = (*bit).first;

float theta = (*bit).second;
ifile<<a<<" "<<b<<" "<<theta<<" "<<area[a][b];

ifile<<" "<<(edge[a]&&edge[b])<<std::endl;
}

}

ifile.close();
}

