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Abstract

The thermodynamic driving force for the formation and evolution of microstructures in

polycrystalline materials is provided by the excess free energy per unit area associated

with interfaces. Data relating the energy of these interfaces to their character, or crys-

tallographic orientation, are required to understand, predict, and control microstructural

evolution. We have developed techniques to extract the population and relative energies for

all physically distinct surfaces and grain boundaries and applied the techniques to a poly-

crystalline magnesia sample. The techniques rely on using microscopic observations to

characterize the geometry and crystallography of large quantities of interfaces. From these

microscopic measurements, the character of the interfaces can be specified, and at triple

junctions, where three interfaces intersect, the local equilibrium condition can be used to

calculate the energies from the interfacial geometry and crystallography.

We have evaluated the surface energy anisotropy by making observations of circumfer-

ential thermal grooves on the surface of the magnesia sample. By examining ��� circum-

ferential thermal grooves, we find that, for magnesia at ����Æ�, the surface energy has a

minimum at ����� and a maximum at �����. The relative energies for the low index planes

are ��������� 	 ���
� ���� and ��������� 	 ���
� ����. These results are consistent with

observations of orientation stability at ����Æ� and with previous theoretical predictions

and experimental results for magnesia surfaces.

From the magnesia sample, we have also extracted the geometric and crystallographic

ii



iii

configuration of ������ of grain boundary area and ����� grain boundary triple junctions

in a volume of �������. These data have enabled us to specify the population and relative

energy of grain boundaries over all five macroscopic parameters. The population exhibits a

strong preference for grain boundaries with ����� plane normals. By comparing the char-

acter distribution to several boundary energy models, we find that the predicted energies

vary inversely with the observed population. Furthermore, we find a substantial inverse

correlation between the distribution and the energies calculated from the triple junction

measurements (�� 	 ���

). In general, we find that boundaries with ����� plane normals

have reduced energies, which is probably related to the relatively high coordination number

of atoms on this plane and its low surface energy.
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Chapter 1

Introduction

1.1 Motivation

The vast majority of technologically useful materials are polycrystalline. The properties

of these materials depend not only on their composition, but also on their microstructure,

which is described by the distribution of grain orientations, sizes, and shapes. During

material processing, the fundamental thermodynamic driving force for the formation and

evolution of the microstructure is provided by the excess free energy associated with in-

terfaces. In a homophase, polycrystalline material, surfaces and grain boundaries are the

most important interfaces. Reducing the area of these interfaces, per unit volume of the

polycrystal, lowers the overall free energy of the system. For example, the coalescence

of particles in a ceramic compact is driven by the associated reduction in surface area and

energy. Similarly, grain growth decreases the total grain boundary area, thereby reducing

the overall energy associated with the boundaries. The goal of the research described here

is to measure the anisotropy of interfacial energies. These data are needed to specify the

driving forces for sintering and grain growth and will thus serve as the basis for models that

will ultimately allow us to understand, predict, and control microstructural evolution.

1



Chapter 1. Introduction 2

1.2 Approach

The main challenge in quantifying interface energies is that the number of physically dis-

tinct interfaces that occur in nature is very large. For example, one must specify five macro-

scopic degrees of freedom and three microscopic degrees of freedom to uniquely describe

a grain boundary. The macroscopic degrees of freedom can be parameterized by three Eu-

lerian angles ������ ��� that characterize the misorientation range from zero to �, , and

�, respectively [1], and two spherical angles �	� �� that characterize the boundary plane

normal range from zero to � and , respectively. The microscopic degrees of freedom

are usually represented by a translation vector ����� which defines the relative translation

between the adjacent crystals. A reasonable discretization1 of this eight parameter space

would yield approximately � � ���� distinct grain boundary characters. Although crys-

tal symmetries can reduce this number by up to three orders of magnitude, the number

of physically distinct boundaries remains large. Furthermore, the experimental techniques

that can be used to probe the microscopic degrees of freedom (high resolution transmission

electron microscopy and computer simulation) can be applied to only a limited number of

boundaries.

It can be argued that if the translation degrees of freedom minimize the energy of the

interface at a fixed temperature, pressure, and chemical potential then, at equilibrium, there

should be only one translation vector for any given set of macroscopic degrees of freedom.

Therefore, to establish structure-property correlations one need only consider the macro-

scopic degrees of freedom. This ”mesoscale” approximation reduces the number of grain

boundary characters for a material with cubic symmetry to around � � ��� if a resolu-

tion limit of �Æ is considered. Furthermore, the space of surface characters is reduced to

only two spherical angles �	� �� representing the vector normal to the surface that range

from zero to � and , respectively. With �Æ of resolution, there are only about ��� sur-

face characters for a material with cubic symmetry. The recent development of automated

EBSP-based mapping systems [2–4] now makes it possible to completely probe these do-

1Assuming �
Æ angular resolution over the macroscopic parameters and that the microscopic parameters

can be characterized by ��
� discrete translation vectors.
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mains of macroscopic character space. For grain boundaries in particular, the energy and

character distributions over the entire domain of the parameter space remain relatively un-

explored. The fundamental experimental approach used in thesis is to use EBSP-based

mapping systems in concert with traditional microscopy techniques to characterize the ge-

ometry and crystallography of large quantities of interfaces. These data can be then be used

to specify the distribution of interfacial characters. Furthermore, observations of interfa-

cial geometry and crystallography along the lines where three interfaces intersect can be

used to extract the interface character-energy relationship. The thermodynamic condition

for local equilibrium at these triple junctions can be used to link the interfacial geometry

and crystallography to the energies. Thus, if a sufficient number of triple junctions can be

characterized, one can determine the energy over the complete range of physically distinct

interfacial characters.

1.3 Objective

The objective of this thesis is to determine the population and excess free energy of all

physically distinct surfaces and grain boundaries in a polycrystalline magnesia sample.

The first goal is to develop and exploit experimental techniques which will allow us to

probe the geometry and crystallography of large quantities of interfaces in reasonable time

periods. The next goal will be to use the data generated from these techniques not only

to specify the interfacial character distribution over the macroscopic parameter space, but

also to extract the relative interfacial energy as a function of interfacial character by fitting

the observations at triple junctions to the local equilibrium condition. Finally, we want

to apply the information to identify the underlying mechanisms that determine interfacial

energy anisotropy and control microstructural evolution.
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Chapter 2

Background

This chapter contains an overview of background information relevant to this thesis. First, a

description of the origin of interfacial energies and their variation with interfacial character

is presented. Next, a brief overview of representations of surfaces and grain boundaries will

be given, along with a description of the domains of “physically distinct” interfaces. The

local equilibrium condition which links interfacial geometry to energy is then described.

Finally, theoretical predictions and previous experimentally determined grain boundary and

surface energies are reviewed.

2.1 Interfacial energy

2.1.1 Origin of interfacial energy

Interfaces may be thought of as two-dimensional defects or departures from the ideal crys-

tal lattice structure. The presence of an interface, such as a surface or a grain boundary,

requires that atomic bonds be broken or distorted across the interface. The deviation from

a perfect crystal increases the energy of the system. Thermodynamically, the excess free

energy, �, of an interface is defined as the reversible work required to create a unit area of

interface at constant temperature, volume (or pressure), and chemical potential.

5
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θ

γ(θ)

(a) (b)

Figure 2.1: Schematic representation of a �-plot (a) and the corresponding Wulff construc-
tion (b). The Wulff construction is generated by first drawing radius vectors from the origin
to point where the vector intersects the �-plot. Lines are then drawn normal to these vec-
tors. The shape formed by the inner envelope of these normals is the equilibrium form
which is depicted by the shaded area in (b).

2.1.2 Anisotropy of interfacial energy

In a solid, the crystallinity gives rise to the anisotropy of the energy of a surface or grain

boundary. Depending on the crystallography of the interface, the quantity and type of bonds

broken or distorted will vary, and therefore the energy of interface will vary. Because the

energy is dependent on the crystallography of the interface, the energy should also possess

the same symmetries as the crystal structure. A �-plot can be used to display the energy

variation over the space of surface characters and, at a fixed misorientation, the space of

grain boundary plane characters. In a �-plot (see Fig. 2.1a), the direction of the vector

represents the orientation of the interface, and the magnitude of the vector is the magnitude

of the interfacial energy at that particular orientation. Fig. 2.1a is a simple example where

the interface considered is only dependent on only one parameter, 	.

As a system approaches equilibrium, interfaces will attempt to lower their free energy

by preferentially increasing the area of crystallographic orientations with relatively low

energy at the expense of higher energy orientations. The equilibrium form of the interface



Chapter 2. Background 7

can be determined by the Wulff construction. The Wulff construction involves first drawing

radius vectors from the origin to the point where the vector intersects the �-plot. Next, lines

are drawn normal to the radius vectors at these intersections. The shape formed by the inner

envelope of the normals is the equilibrium form. This process is depicted schematically in

Fig. 2.1b. Although this example is given for the simple one parameter case, the same

principles apply to the two parameter cases of a surface or a grain boundary plane.

From the Wulff construction, we see that the equilibrium shape will be faceted only if

there are singularities (i.e. cusps) in the energy function; however, the presence of facets

does not necessarily mean that there are missing orientations on the equilibrium form. If

there are missing orientations, the facet will be bounded by a sharp edge; otherwise, the

facet will be connected to a smooth curve. Finally, orientations can be missing from the

equilibrium form without the presence of facets. If this is the case, the equilibrium form

will have smooth curves that meet abruptly at sharp edges.

2.2 Interfacial character

2.2.1 Transformation of coordinate system

Since the character of an interface must be given in terms of crystallographic coordinates,

we need a method of transforming laboratory coordinates into crystal coordinates. Al-

though the choice of laboratory reference frame is arbitrary, our laboratory coordinate sys-

tem, ���, is right-handed with ��� direction in the plane of the sample pointing away from the

observer. The coordinate system is shown schematically in Fig. 2.2a. The transformation

from laboratory to crystal coordinates can be denoted by three Eulerian angles ������ ���

which are rotations that bring the laboratory reference frame into coincidence with the

crystal reference frame (��� � ���� ). These angles represent the following rotations: �� is

a rotation about ��� and the new coordinate system is denoted by ����, � is a rotation about

���� which yields the new coordinate system ����� , and finally �� is a rotation about ����� which

transforms the coordinate system into the crystal coordinate system, ���� . These rotations are

shown schematically in Fig. 2.2b-d. Now, we can define a transformation matrix, 
, which
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Figure 2.2: Schematic representation of the transformation from the laboratory reference
frame ����� to the crystal reference frame ����� � using three Eulerian rotations ������ ���. The
laboratory reference frame (a) is first rotated by �� about ��� and the new coordinate system
is denoted by ���� (b). Next, ���� is rotated by � about ���� which yields the new coordinate
system ����� (c), and finally ����� is rotated by �� about ����� which transforms ����� into the crystal
coordinate system,����� � (d).

based on these three rotations transforms laboratory coordinates into crystallographic co-

ordinates, where


������ ��� 	

�
����
������ � �������� ������ � �������� �����

������� � �������� ������� � �������� �����

����� ������ ��

�
���� � (2.1)

and the symbols c and s represent sine and cosine, respectively.
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2.2.2 Fundamental zones

Due to crystal symmetries, there exist crystallographically equivalent interfaces within the

entire domain of the space of interfacial characters. Thus, it becomes important to clarify

a method for selecting a unique representation out of the set of symmetrically equivalent

characters. For the common representations of interfaces, which will be discussed in the

subsequent sections, crystal symmetries yield contiguous volumes (or areas) of the charac-

ter space which contain a complete and unique set of interfacial characters. These volumes

(or areas) are sometimes referred to as asymmetric domains or fundamental zones. The

term “fundamental zone” was first used by Frank [1] to describe the unique volume clos-

est to the origin for the Rodrigues parameterization of orientation space. However, in this

document, fundamental zone is used to describe any compact volume of character space

that contains a complete and unique set of interfacial characters. Although there are con-

ventions for the choice of a fundamental zone, it is important to note that the choice is

arbitrary.

2.2.3 Surface representation

Since the orientation of a surface in independent of in-plane rotations, only two macro-

scopic parameters which give the vector normal to the surface need to be defined to de-

scribe a surface. The normal vector can either be represented by a unit vector in Cartesian

coordinates ���� or as a point on a unit sphere �	� ��, where the range of 	 and � are zero

to � and , respectively. If the direction normal to the surface in the laboratory coordi-

nate system, ��, is determined, the crystallographic direction of the surface, ��� , is given by

��� 	 
���� . For example, for a surface in the plane of the sample �� 	 �����, thus ��� is

given by �
��� 
��� 
���.
Ignoring multiplicity, there are �� symmetrically equivalent orientations for surfaces

of a cubic crystal (multiplicity reduces this number for orientations at special positions

where there are symmetry elements). The unique zones in the space of surface orientation

are shown in the stereographic projection in Fig. 2.3. In this work, we will use the stan-

dard stereographic triangle as the fundamental zone for surface orientations. The triangle,
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Figure 2.3: A standard stereographic projection. The standard stereographic triangle, a
fundamental zone for cubic surface orientations, is denoted by the shaded region. The
standard stereographic triangle consists of orientations with ��� � � and ��� � ��� � ��� .

shaded in Fig. 2.3, consists of orientations with ��� � � and ��� � ��� � ��� .

2.2.4 Grain boundary representation

The grain boundary character can be specified by five macroscopic parameters that define

the crystallographic lattice misorientation and boundary plane. The lattice misorientation

can be denoted by three Eulerian angles ������ ��� with ranges of zero to �, , and �,

respectively. These angles describe rotations about the laboratory reference frame which

will bring the two adjacent crystals into coincidence (����� � ����� ). The boundary plane,

similar to a surface, can then be characterized by a unit vector ���� or two spherical angles

�	� �� with ranges of � and , respectively.



Chapter 2. Background 11

Misorientation

The lattice misorientation, �
, is calculated from the measured orientations �
�� 
�� of

adjacent pairs of crystallites. Because it is arbitrary which crystal is rotated into the coinci-

dence with the other, there are �� �� equivalent misorientations, where � is the number

of proper symmetry operators for a given crystal symmetry. The �� � � equivalent lattice

misorientations are then given by

�
�� 	 
�

�
� and �
�� 	 ��
���

� 	 ���
����� (2.2)

where �� and �� are proper symmetry operators.

Although the fundamental zone for misorientation in the space of Euler angles has been

determined for cubic symmetry [2], the shape is complex and bounded by curved surfaces,

and the relationship between Euler angles and crystallographic coordinates is not straight-

forward. We can avoid these problems by using the Rodrigues parameterization of misori-

entation [1]. There is a direct relationship between the mapping of misorientations in Ro-

drigues space and crystallographic coordinates, and the parameterization yields fundamen-

tal zones that are regular polygons bounded by planes. In the Rodrigues parameterization,

the lattice misorientation is represented as a vector with components, �� 	 �� ��������,

where �� are the components of the unit vector representing the misorientation axis and �

is the misorientation angle. From �
, � can be determined from � 	 ����� ���
�� � ����,

and �� can be determined from �� 	 ������
����� �����, where ���� is the permutation

tensor.

For the case of cubic symmetry, there are �� proper symmetry operators; thus, there

exist ����� 	 ���� equivalent misorientations that need to be considered. Heinz and Neu-

mann [3] were the first to determine the fundamental zone for the Rodrigues parameteriza-

tion of cubic misorientations, along with the misorientations for hexagonal, orthorhombic,

and tetragonal crystal structures. The result was later repeated by Morawiec and Field [4],

who found the fundamental zone for misorientations in Rodrigues space for all crystal sym-

metries. The restricted domain for cubic misorientations is shown in Fig. 2.4. The unique

representation is selected such that the misorientation angle, �, is as small as possible and

that the rotation axis lies in the standard stereographic triangle, �� � �� � �� � �.
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Figure 2.4: The fundamental zone for the Rodrigues parameterization of cubic misorien-
tations. The unique representation is selected such that the misorientation angle, �, is as
small as possible and that the misorientation axis lies in the standard stereographic triangle,
�� � �� � �� � �.

Although it is not a unique representation, lattice misorientation is often given in terms

of the disorientation angle, 	. The disorientation between two crystallites is defined as the

minimum misorientation angle that will bring the crystallites into coincidence. For the

case of cubic symmetry, 	 ranges from zero to �����Æ [3]. Because the disorientation

representation ignores the misorientation axis, many physically distinct misorientations

will have identical disorientations. These misorientations will have Rodrigues vectors with

the same magnitude; therefore, in Rodrigues space the misorientations corresponding to a

given disorientation angle are given by the surface of a sphere with radius ��� 	�� that is

centered on the origin.

Boundary plane

Because there are two indistinguishable choices for the boundary plane normal, the space

of boundary planes for a given misorientation has inversion symmetry. It follows that,
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except for the special case when the misorientation axis is parallel to an axis with rotational

symmetry, the fundamental zone for the space of boundary planes will be a hemisphere with

	 and � in the range of zero to . Here, we have chosen the fundamental zone such that the

third component of the unit vector parallel to the crystallographic normal of the boundary

plane is positive. It is also arbitrary which of the two adjacent crystallites is selected as the

reference frame. This ambiguity is avoided by always expressing the plane normal in terms

of the first (non-transposed) crystallite reference frame. Furthermore, if the misorientation

axis is parallel to an �-fold symmetry axis, the range of the fundamental zone for the space

of boundary planes is reduced to 	 ranging from zero to �� and � ranging zero to ���.

Thus, to represent a boundary in the fundamental zone of the macroscopic grain boundary

character space, one must determine both the unique representation of the Rodrigues vector

and boundary plane normal.

Twist and tilt

We have already reviewed the five macroscopic parameters that define a grain boundary;

however, another common way of describing the boundary plane is in terms of its twist

and tilt components. The tilt and twist components of the boundary plane are defined as a

rotation about the misorientation axis and a rotation about an axis which lies perpendicular

to the misorientation axis, respectively. Thus, if the boundary plane normal is parallel to

the misorientation axis, the boundary is considered to be pure twist, and if the boundary

plane normal lies perpendicular to the misorientation axis the boundary is pure tilt. Finally,

if the boundary plane normal is somewhere in between pure tilt and pure twist, it can be

described by a combination of the two.

2.3 Triple junction equilibrium

The condition for local equilibrium at a triple junction with anisotropic interfacial ener-

gies that relates the interfacial geometry and crystallography to the energies of the three
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Figure 2.5: Schematic representation of a triple junction where three interfaces intersect.
The geometric and crystallographic quantities in the Herring relation (Eqn. 2.3) are also
depicted.

interfaces was originally described by Herring [5]:

�
�

����� � ���
���
���

	 �� (2.3)

In Eqn. 2.3, which represents a balance of forces, �� is the excess free energy per unit

area of the �	
 interface, ��� is the unit vector that lies in the �	
 interface and is normal to

the line of intersection of the three interfaces ����, ��� is the unit vector normal to the line

of intersection such that ��� 	 �� � ���, and �� is the right handed angle of rotation about ��

for the �	
 boundary measured from a reference direction. These quantities are depicted

schematically in Fig. 2.5.

The interfacial energies in Eqn. 2.3 can be determined if the geometric and crystal-

lographic quantities in Fig. 2.5 can be determined experimentally. However, a problem

arises in that there are three unknowns in the Herring relation and only two independent

equations. This problem can be circumvented if a sufficient number of triple junctions are

characterized, such that interfaces of the same character are found in multiple junctions. If

enough interfacial characters overlap, the system of equations can be overdetermined.
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Figure 2.6: Schematic representation of a thermal groove.

2.3.1 Thermal grooves

If sufficient atomic migration is possible, a thermal groove will form at the intersection of a

grain boundary and free surface in order to balance the interfacial tensions. Fig. 2.6 shows

a schematic of a thermal groove. Again, the geometry and crystallography of the triple

junction formed by the thermal groove is linked to the relative energies of the interfaces by

the Herring relation. The force balance represented by the Herring relation can be broken

down into two perpendicular components. With reference to Fig. 2.6, the force balance

normal to the macroscopic sample surface is:

�� ����� ���
��

���� 	 �� ����� � ���
���

����� � �� ����� � ���
���

������ (2.4)

and the force balance parallel to the macroscopic sample surface is:

��� ����� ���
��

���� 	 �� ����� � ���
���

����� � �� ����� � ���
���

������ (2.5)

The symbols in Eqns. 2.4 and 2.5 are defined in Fig. 2.6.

Thermal grooves represent a unique type of triple junction where the energies of two

different types of interfaces (surfaces and grain boundaries) are linked by the Herring re-

lation. This allows the local equilibrium condition to be simplified if one of the interfacial

energies can be held constant. A common method for probing the grain boundary energy
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is to measure only the surface dihedral angle, ��, (�� ��� in Fig. 2.6) of a thermal groove.

By assuming that the surface energy of the material is isotropic, the grain boundary en-

ergy is independent of boundary plane, and the boundary is normal to macroscopic sample

surface, the Herring relation simplifies to:

���
��

	 � ���

�
��
�

	
� (2.6)

Using Eqn. 2.6, the relative energy of a grain boundary can be determined from experi-

mental observations of ��. Although it is a common practice to apply these simplifying

assumptions, they are not always valid. One of the goals of this thesis is to avoid these

assumptions when applying the Herring relation to thermal groove measurements.

2.3.2 Grain boundary triple junctions

The Herring relation can also be applied to grain boundary triple junctions, i.e. the inter-

section of three grain boundaries (see Fig. 2.7). If we ignore the influence of the grain

boundary plane on the energy, the condition for local equilibrium at a grain boundary triple

junction reduces to the well known Young equation:

�
�

����
� ������ 	 �� (2.7)

where ��, the energy of the �	
 boundary, is assumed to be a function only of the misorien-

tation ��
� and ��� denotes the angle between ��� and ��� , as shown in Fig. 2.7. Equation 2.7

can also be rewritten in the following form:

��
��������

	
��

��������
	

��
��������

� (2.8)

Equation 2.8 is also known as the law of sines and gives the relationship between any two

of the three boundaries meeting at a triple junction. However, ignoring the grain boundary

plane influence on grain boundary energy is not always a valid assumption. Therefore, in

this thesis, we shall apply the Herring relation to grain boundary triple junction measure-

ments without making any simplifying assumptions.
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Figure 2.7: Schematic representation of a grain boundary triple junction.

2.4 Surface energy

2.4.1 Theoretical predictions

Broken bond model

The broken bond model is the simplest model for approximating the energy of solid sur-

faces. The model ignores entropy �� 	 ��� and relaxation effects and considers only

nearest neighbor interactions. The energy of a surface is given by the total energy of the

bonds per unit area that are required to be broken to form that surface. Therefore, using

the simplest approximation, the energy of a surface should scale with the density of broken

bonds.

In the broken bond model, the energy to form a surface is given as ��� (two surfaces

are formed) is equal to the product of the number of surface atoms per unit area, number of

broken bonds per surface atom, and energy per broken bond. For example, in the rock salt

structure, each cation forms a bond to � anions with a bond energy, �. The ����� surface

has � atoms per �� area with � broken bond per atom, and the ����� surface has � atoms

per
�
��� area with � broken bonds per atom, thus ���� 	 ����� and ���� 	 �

�
�����. To

form a ����� surface � bonds per atom must be broken, and there are ��
�
��� atoms per

area which yields ���� 	 �
�
�����. Therefore, by using the broken bond model we get
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the following relationships between the low index planes in rock salt: ��������� 	
�
� and

��������� 	
�
�. Although this model only gives us a simple approximation of the surface

energy, the general trends derived from the model, such as ���� � ���� � ����, are likely to

be valid.

The simple bond breaking model also predicts that as the orientation deviates away

from a low index orientation the surface energy will increase. Surfaces near low index

orientations (vicinal surfaces) will break up into a terrace-step structure where the surface

consists of large terraces of the low index orientation separated by monoatomic ledges.

Because additional bonds must be broken to form the ledges, the surface energy should be

higher than that of the low index orientation. Furthermore, as the deviation from the low

index orientation increases, more ledges are required to compensate, thus the energy of the

surface should also increase.

Polar surfaces

Although the simple bond breaking model predicts that orientations vicinal to a low index

plane have relatively higher energies because additional bonds must be broken to create a

terrace-step structure, this rationale does not necessarily apply to a polar surface. It has

been argued that because a polar surface has a dipole moment, its energies will always be

larger than the energies of other surfaces of the same solid that are either charge neutral or

charged, but lacking a dipole moment [6]. In this case, while the step creation does break

additional bonds, it also introduces ions of the opposite sign and this reduces the surface

charge imbalance. For example, adjacent ����� terraces of the rock salt structure separated

by monoatomic steps are terminated by ions of opposite charge. Thus, a decrease in the

surface energy with step density can occur if the gain in electrostatic stability is greater

than the cost of breaking bonds to create steps.
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2.4.2 Experimental measurements

Thermal groove geometry

Methods for extracting the surface energy anisotropy from thermal groove geometry mea-

surements are described in this section. The measurements rely on limiting the variations

in the grain boundary energy so that the left hand side of Eqn. 2.4 is constant over many

grooves. Because these methods apply only to crystalline materials that twin extensively or

can be drawn into wires and recrystallized, they have been applied only to fcc metals such

as Ni [7], Cu [8–10], �-Fe [11], and Au [12]. The maximum anisotropy reported in each of

these studies ranged from �� ��.

Mykura [7] was the first to use groove measurements to extract relative surface energies.

The key feature of Mykura’s [7] method is that all of the thermal groove measurements are

made at twin boundaries. By measuring only thermal grooves at grain boundaries with

the same character, the potentially overwhelming grain boundary energy anisotropy can be

eliminated in such a way that the energies of the free surfaces and their derivatives are the

only remaining unknown variables in Eqn. 2.4. By making some simple approximations,

Mykura [7] was able to solve for the surface energy derivatives (torque terms) in Eqn. 2.4,

and through graphical integration of these derivatives he was able to obtain the orientation

dependence of the surface energy.

Mykura’s [7] method was advanced by Winterbottom and Gjostein [12,13], who ap-

proximated the surface energy as a truncated double Fourier series and used the method

of least squares to determine the unknown coefficients of the series which best fit a set

of thermal groove observations. One limitation of Mykura’s [7] method is that it can be

applied only to the relatively small number of materials that exhibit a high population of

twin boundaries. McLean and Gale [9,10] devised a more general method involving the

characterization of circumferential thermal grooves on the surface of cylindrical wires with

a bamboo microstructure. Grooves at different positions around the circumference of the

wire are bounded by a range of crystallographically distinct free surfaces, but always have

the same grain boundary at the root.



Chapter 2. Background 20

Table 2.1: Relative surface energies of alumina determined from the geometry of internal

cavities.

Plane ����Æ� [43] ����Æ� [44] ����Æ� [44]

������ ��� ��� ���

������� ���
� ���� ����
� ����� ������ �����

������� ����� ���� ������ ����
 ������ �����

������� ����� ���� ����
� ����� ������ ����


������� ����� ���� ����
� ����� ������ �����

�������  ����  �����  �����

Other crystallographically indexed surface features

The thermal groove measurement techniques described above yield a functional form for

the orientation dependence of surface energy; however, other crystallographically indexed

surface features can be used evaluate surface energy anisotropy. For example, the equilib-

rium geometries of thermal facets [14,15], small crystallites [16,17], and internal cavities

[18–21] have all been used to deduce relative surface energies. Most relevant to this docu-

ment are the measurements of the relative surface energies in alumina from the geometry of

internal cavities [20,21]. The results of these measurements are summarized in Table 2.1.

As one would expect, these measurements demonstrate a higher surface energy anisotropy

���� ���� for alumina than the value obtained for fcc metals in the thermal groove exper-

iments. Furthermore, the work of Kitayama and Glaeser [21] shows not only that the total

surface energy anisotropy decreases with increasing temperature, but also that the relative

values of the energies are temperature dependent. Finally, we must mention that the dis-

crepancies in the two studies between the relative energy values at ����Æ� are most likely

due to a difference in the impurity levels in the two samples.
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Table 2.2: Model calculations of surface energy for magnesia, !���.

����� ����� ����� ����� Method

���� ���� Electrostatic model [22]

���� Ab initio Hartree Fock LCAO [23]

���
 ��
� Electrostatic model [24]

���� ����� Harris-Foulkes function (LDA) [25]

���� ���� ���� Self-consistent tight binding [26]

Calculations

There have been a number model calculations of the surface energy of ceramic compounds;

however, here we shall review only those calculations made for surfaces of magnesia and

alumina. The model calculations of the surface energy of magnesia are summarized in

Table 2.2 [22–26]. With one exception, these studies place the energy of the ����� surface

in the vicinity of ���!��� at ��. Further, in the cases where the energies of more than one

surface were computed, the energies of the low index planes are ordered in the same manner

predicted by the simple broken bond model ����� � ���� � �����. A number of studies have

also predicted the surface energy of low index planes in alumina [27–30]. A summary of

these data is provided in Table 2.3. Although the ordering of the energies vary in these

studies, we see that the surface energy of the basal ������ plane is approximately �!���

in all but one case. Furthermore, three of the four studies also predict total anisotropies

�����
�� that are nearly equivalent to the total anisotropy witnessed in the internal cavity

experiments. Finally, we must mention that all surface energy calculations reviewed here

ignored entropic effects �� 	 ���; therefore, we would expect to see lower anisotropies

in any equilibrium experiment conducted at an elevated temperature.
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Table 2.3: Model calculations of surface energy for alumina, !���.

������ ������� ������� ������� ������� Method

���
 ���
 ���
 ���� ���� Interaction model [27]

���� ���� ���� ���� ���� Interaction model [28]

��
� ���� ���
 ���� ���� First principles [29]

���� ���
 ���� Molecular dynamics [30]

2.5 Grain boundary energy

2.5.1 Theoretical predictions

Read-Shockley

The Read-Shockley [31] model for grain boundary energy is based on the idea that for

small angle misorientations, arrays of dislocations compensate for the structural deviations

between the two crystals. In this case, the boundary energy is equivalent to the energies of

the dislocations. As the misorientation increases from zero, more dislocations are required

to compensate for the deviations, and the energy increases. However, as the density of dis-

locations at the boundary increases with misorientation, the strain fields surrounding them

begin to cancel out, and the energy increases at a decreasing rate until it reaches a constant

value at some limiting angle. The relationship between the energy of the grain boundary

and the misorientation angle is given by ��� 	 "���# � ����, where "� is a function of

the elastic properties of the material, # depends on the core energy of the dislocation, and

� is the misorientation angle in radians. The function is only valid to a limiting misorien-

tation angle, typically ��Æ. When the misorientation angle exceeds the limiting angle, the

individual dislocation cores begin to overlap and can not be distinguished. For misorien-

tations greater than the limiting angle, the grain boundary energy is expected to be nearly

independent of misorientation based on this model.
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Coincidence site lattice (CSL)

For certain discrete misorientations, a number of lattice sites might coincide if the two crys-

tallites were superimposed. These misorientations are known as coincidence site lattices

(CSLs). CSLs are characterized by � which denotes the reciprocal density of coincident

sites, thus as the number of coincident sites decreases, � increases. Because atomic bond-

ing is left undistorted at these lattice sites, the energy of a grain boundary with a misorien-

tation at or near a CSL misorientation is expected to have a lower energy than for a general

high angle misorientation, especially for low values of �. Furthermore, because the num-

ber of coinciding sites scales inversely with �, the energy of the boundary is also expected

to scale inversely with �. We must also note that while the fractional lattice coincidence

is determined by the misorientation alone, it is only for certain special boundary planes

and microscopic translations that the atoms in the intergranular region occupy coincident

positions. For other planes separating crystallites of the same misorientation, there is no

reason to anticipate that the energy should scale with the lattice coincidence.

For slight deviations from the exact CSL misorientation, the deviation can be accom-

modated by dislocations in the CSL lattice which conserve the periodicity [32]. The be-

havior is similar to the Read-Shockley model described above for low angle misorienta-

tions. Therefore, we expect the same cusp-like behavior to occur at CSL misorientations;

as the deviation from the CSL misorientation increases, more dislocations are required to

compensate, and the energy of the boundary increases. Brandon’s criterion [32], which

corresponds to a relationship based on periodicity alone, is usually used to define the width

of the cusp and is given by 	�� 	 	����
�

� . Here, 	�� is the maximum angular devia-

tion from the CSL misorientations and 	�� is the angular limit for a low angle boundary,

typically ��Æ.

Broken bond model

An alternative method for theoretically predicting the energy of a grain boundary is to

extend the broken bond model used for the surface energy. The energy of a grain boundary,

��� can be thought of as the sum of the energies of the two surface planes, ��� , minus a
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binding energy, "�, which is the energy that is recovered from creating bonds when the

two surfaces are joined to form the boundary, ��� 	 ��� � ��� � "�. For general grain

boundaries, those not near “special” crystallographic positions, the binding energy can

be approximated as a constant value, and the boundary energy should scale linearly with

the sum of the energies of the two surfaces. This should be a reasonable approximation

because, for a general grain boundary, the combined repeat units of the two surfaces making

up the boundary will not form a commensurate structure. Therefore, essentially every atom

on the boundary plane will be subject to a different set of interatomic forces. Since the

contributions from different atoms can vary only between certain limits and the interatomic

forces will be averaged over a very large number of atoms, the energy recovered by forming

the boundary ("�) will average to a constant. Note that the approximation does not hold

for grain boundaries near “special” crystallographic positions where there are substantially

fewer broken or distorted bonds than a general boundary; however, these boundaries are

rare in random polycrystals [33] and, therefore, are of questionable significance. Although

there are no experimental data that substantiate the relationship between the surface and

grain boundary energies, it has been demonstrated in the results of computer simulations

for fcc metals reported by Wolf [34]. By comparing calculated values of the surface and

grain boundary energies, Wolf showed that, for general boundaries, the grain boundary

energy varies linearly with the sum of the two surface energies of the terminating planes,

and that it intercepts the sum of the two surface energies (��� 	 �) at a positive finite value

("�). Based on these results, it appears that the sum of the two surface energies of the

boundary planes should be a reasonable approximation of the energy of a general grain

boundary.

2.5.2 Experimental measurements

Thermal grooves

The surface dihedral angle of a thermal groove can be used as a direct measure of the

relative grain boundary energy using Eqn. 2.6. In the past, a variety of techniques have

been used to measure the surface dihedral angles of thermal grooves in ceramic systems,
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including profilometry [35], optical microscopy [36], optical interferometry [37–40], car-

bon reference line (CRL) [41,42], and metal reference line (MRL) [43,44]. These data

were reviewed by Handwerker et al. [43,44] who showed that the systematic errors in the

measurement decrease as the resolution limit increases. In the same study, Handwerker

et al. [43,44] made MRL measurements on grooves in magnesia, alumina, and magnesia-

doped alumina and corrected their measurements to account for the resolution limit of

the technique. Thus, these measurements based on MRL observations are the most reli-

able pre-existing measurements of the surface dihedral angle. The corrected MRL obser-

vations yielded median values of the surface dihedral angle to be ���Æ������� 	 �����,

���Æ������� 	 �����, and ���Æ������� 	 ����� for magnesia, alumina, and magnesia-

doped alumina, respectively.

There have also been a number of bicrystal studies [35,39,40,45] on ceramic systems

where the misorientation dependence of ������ has been probed using groove measure-

ments for a series of tilt and twist boundaries misoriented along low index axes. Both

Ready and Jech [35] and Dhalenne et al. [39] examined the variation of ������ with mis-

orientation angle for symmetric ����� tilt boundaries in NiO. The studies yielded simi-

lar results; they found that the grain boundary energy variation with misorientation angle

for these special boundaries was consistent with the Read-Shockley model. The energy

increased from zero at zero misorientation to an approximately constant value after ��Æ.

However, in both cases the results were not consistent with the CSL model. The relative

energy measured near the �� misorientation �����Æ was not significantly different than the

other high angle boundaries that were examined.

A number of other bicrystal studies on ceramic materials are not only consistent with the

Read-Shockley model at low misorientations, but also demonstrate the validity of the CSL

model. Kimura et al. [45] and Dhalenne et al. [40] examined the variation of ������ with

misorientation angle for ����� symmetric tilt boundaries, in magnesia and nickel oxide,

respectively. For boundaries with misorientations greater than approximately ��Æ, they

discovered that those with a high degree of coincidence had a relatively lower energy than

those that did not. These studies also demonstrate the effect of the boundary plane on

energy for CSL misorientations. For example, rotations of 
����Æ and �����
Æ about ����
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are both �� misorientations; however, a high degree of coincidence in the intergranular

region occurs only for symmetric 	���
 boundary planes. This configuration is realized

by a symmetric 
����Æ rotation, but not for the symmetric �����
Æ rotation. In the case of

magnesia, the energy of �����
Æ �� rotation was approximately ��� higher than the 
����Æ

�� rotation [45]. The effect was even larger in the nickel oxide case where the energy of

the �����
Æ �� rotation was ���� higher than the 
����Æ �� rotation [40].

Grain boundary triple junctions

Numerous studies [46-50] have been conducted to quantify the geometry of grain boundary

triple junctions. Although the observations in these studies are mostly limited to distribu-

tions of grain boundary dihedral angles, in a few cases the dihedral angle measurements

were used to extract relative energies and their dependence on grain boundary charac-

ter. For example, Dunn and Lionetti [47] made dihedral angle measurements from grain

boundaries in a series of silicon ferrite tricrystals. The crystals were fabricated such that all

boundaries had a ����� tilt character and that each tricrystal had one boundary misoriented

by approximately ��Æ. Because each tricrystal had one boundary with equivalent character,

Eqn. 2.8 could be used to extract the relative energies of all boundaries with respect to the

common one. The results showed Read-Shockley behavior at low misorientations with the

function approaching a maximum at approximately ��Æ. Furthermore, the energy function

showed a distinct cusp in the vicinity of the 
����Æ �� rotation.

Calculations

Much like the bicrystal studies discussed above, the use of computer simulation to cal-

culate grain boundary energy dependence on character for ceramic materials is limited to

symmetric tilt and twist rotations about low index axes. The present discussion is limited

to ceramic materials which have the rock salt structure. Wolf [51,52] has determined the

energy variation with misorientation angle for ����� twist boundaries in magnesia [51] and

a series of alkali-halide compounds [52]. For each of these materials, a grain boundary

energy variation consistent with the Read-Shockley model was found. In each case, as the

misorientation angle increased, the energy increased at a decreasing rate until a limiting
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angle of approximately �� � ��Æ. For larger misorientations, the energy was nearly in-

dependent of rotation angle. A similar trend was demonstrated by Duffy and Tasker [53]

for ����� symmetric tilt boundaries in nickel oxide; however, they did find evidence of a

cusp in the energy function at the �� misorientation. Duffy and Tasker [54] have also com-

puted the grain boundary energy for symmetric ����� tilt boundaries in nickel oxide. The

calculations demonstrated the existence of a strong cusp at the 
����Æ rotation ����.

2.6 Summary

In the preceding sections, we have reviewed previous experimental measurements of grain

boundary and surface energies, and we find that the scope of these studies is quite limited.

We have described a number of different methods that have been used to experimentally de-

duce relative surface energies. However, these techniques have a limited range of applica-

bility because they demand either special microstructural features or specimen geometries.

Furthermore, previous experimental measurements of relative grain boundary energies have

focused on one-dimensional slices through the five-dimensional grain boundary character

space, and the vast majority of the space of grain boundary types remains completely un-

explored. Therefore, more generally applicable techniques capable of probing the entire

ranges of interfacial character space are required so that we can adequately characterize

these interfacial energies for any material. The development and implementation of these

techniques are the subject of the rest of this document.
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[16] J.C. Heyraud and J.J. Métois, “Equilibrium Shape and Temperature; Lead on Graphite,”
Surface Science, 128 [2/3], 334-342 (1983).
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Chapter 3

Experimental

In this chapter, we will describe the synthesis and preparation of the polycrystalline mag-

nesia sample, as well as the characterization techniques, used throughout this thesis. Fur-

thermore, the experimental and analytical techniques developed to extract the data required

to specify the interfacial characters and reconstruct the energies are also discussed. These

techniques rely on characterizing the geometry and crystallography of large quantities of

thermal grooves and grain boundary triple junctions for the analysis of the surface and grain

boundary energies, respectively. This chapter also includes a detailed description of algo-

rithms that were used to reconstruct the geometric and crystallographic configuration of a

three-dimensional volume of microstructure from two-dimensional slices; a procedure that

is required to reliably extract the necessary data from grain boundary triple junctions and

to specify the areal distribution of grain boundary characters over the five mesoscopically

observable parameters.

3.1 Sample

The polycrystalline magnesia samples used for the surface and grain boundary energy anal-

yses were prepared by first forming magnesia powder by decomposing ���
� pure mag-

32
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nesium carbonate (Fisher Scientific) at ��
Æ� in air. Uniaxial compaction in a hot press

at �
��Æ� for one hour at ��$%� produced a disc with a diameter of ���� and an av-

erage thickness of �����. Specimens cut from this disc were then packed in a magnesia

crucible with the parent powder and annealed for ��& at ����Æ� in air. This procedure

yielded translucent specimens with a ����� axial texture that was �� times random at the

maximum. The geometric measurements used to characterize the thermal groove and grain

boundary triple junction geometry require samples that are flat and have two parallel faces.

Appropriate surfaces were prepared using an automatic polisher (Logitech PM5). The sur-

faces were initially lapped with a �'� alumina slurry and the final polish was achieved

using an alkaline (() � ��) colloidal silica (����'�) slurry. The flatness of the final

surface was measured using an inductive axial movement gauge head with a resolution of

���'�. (Brown and Sharpe, TESR, Model TT22); surfaces were determined to be flat

within ����'� over lateral dimensions of ���. The surface was thermally grooved by

annealing it in air for �& at ����Æ�. The average grain size of the sample was ���'�. At

this stage, one sample was analyzed for impurities. The sample contained ���� Ca, �����

Al, ����� Fe, ����� Si, and ����� Y.

3.2 Characterization techniques

3.2.1 Atomic force microscopy (AFM)

Atomic force microscopy (AFM) is a scanning probe technique in which topographic im-

ages of the surface are generated by rastering a small probe attached to a cantilever across

the surface of a sample. The technique can be thought of as an ultra-sensitive profilometer.

As the probe rasters over the surface, changes in topography cause the deflection of the

cantilever to change. The extent of the deflection is monitored by using a position-sensitive

photodetector to sense changes in the position of a laser beam which is reflected off of

the cantilever. All of the images obtained in this thesis were made in constant force mode

where the vertical position of the tip or sample is continuously adjusted by a piezoelectric

device to maintain a constant cantilever deflection. The adjustments made to the vertical
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position to maintain the constant deflection are a direct measure of the topography of the

surface.

Two different AFM’s were used in this study to measure the surface geometry of ther-

mal grooves under ambient conditions. The first instrument consisted of a Digital Instru-

ments StandAlone AFM (SAA-125) positioned above the sample mounted on an X-Y trans-

lation stage (Burleigh Instruments TSE-150), with a range of ������ in both directions, ca-

pable of reproducibly positioning the sample with ���� resolution. The advantage of this

system is that once a coordinate system and reference frame are established (with respect

to an intentionally introduced fiducial mark), it is possible to return to identical positions

on the sample surface after repeated thermal treatments or to position the sample based on

lower resolution data from the AFM or other microscopes. Si�N� cantilevers (DI Model

LNP) were used as probes. The second microscope was a Park Scientific Instruments Au-

toprobe CP. For this instrument, the probes consisted of gold coated Si�N� cantilevers with

pyramidal Si�N� (Park Scientific Instruments, MSCT-AUMT-A).

In this thesis, we have used AFM to characterize the surface geometry of thermal

grooves. The AFM images in this document are topographic. The highest positions on

the surface are indicated by the lightest shading and the lowest positions by the darkest

shading. AFM was used in place of the accepted techniques described in 2.5.2 because of

its height resolution advantage. Using AFM, height differences less than ��� are easily

resolved. It is also advantageous to use AFM because it is much less labor intensive than

the techniques described in 2.5.2; therefore, it is possible to measure a larger quantity of

thermal grooves. Several hundred boundaries can easily be characterized in a time scale of

days.

3.2.2 Orientation imaging microscopy (OIM)

Orientation imaging microscopy (OIM) [1] is a technique that determines the orientations

of individual crystallites by automatically indexing electron backscattered diffraction pat-

terns (EBSP). The sample is placed in a scanning electron microscope (SEM) at a steep

angle to the electron beam. The electron beam is focused on a single point and the elec-
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trons that penetrate the sample and meet the Bragg condition are backscattered to form a

cone of diffracted electrons. The cone is intercepted by a phosphor screen connected to a

high gain intensified silicon, intensified target (SIT) video camera. As the electrons strike

the phosphor screen, a diffraction pattern similar to a Kikuchi pattern is formed where the

bands represent planes and the intersections of two or more bands represent zone axes. Af-

ter the image has been digitized, a Hough transform is applied to the image which yields the

locations of the most intense bands in the image. Using the geometry of the bands, along

with the user specified unit cell, diffraction intensity, and pattern center data, the orientation

of the crystallite is calculated. This process can be done either by manually pointing the

electron beam or by computer control where the computer automatically rasters the beam

over the sample surface.

Unless otherwise specified, all orientation data presented in this document were gen-

erated with a Philips XL40FEG SEM which was controlled by a PC. The patterns were

indexed with OIM 2.5 and 2.6 software (TSL) on a SGI workstation. We have estimated

that the error in absolute orientation (
) and misorientation (�
) derived from this system

to be ��Æ and ����Æ, respectively.

3.3 Surface energy measurements

3.3.1 Experimental approach

When examining a well-annealed, polycrystalline microstructure, one occasionally finds

a small grain enclosed within a larger grain. We refer to the smaller, surrounded crystal

as an island grain and the larger crystal as the matrix grain. A planar section illustrating

this situation is shown schematically in Fig. 3.1a; an island grain observed in magnesia is

illustrated in Fig. 3.2. In Fig. 3.2, the boundary separating the island grain from the ma-

trix grain is easily distinguished by the thermal groove. Assuming that the triple junction

at the groove root is in local thermodynamic equilibrium, Eqns. 2.4 and 2.5 should then

be satisfied at all points, %�. The quantities in these equations are depicted schematically

in Fig. 3.1b. If the orientations of both grains (���) are determined by backscattered elec-
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Figure 3.1: The coordinate system used for the surface energy measurements. (a) A
schematic plane view of an island grain (crystal 2) within a matrix grain (crystal 1). Multi-
ple groove measurements are made around the circumference of the island grain, at points
labeled %�. (b) A schematic cross-sectional view of a triple junction. Note that �� points into
the plane of the paper.

tron diffraction and the inclinations of the three interfaces (defined by ��, ��, and �) are

determined by microscopic analysis at � points along the boundary, then it is possible to

specify all of the quantities in Eqns. 2.4 and 2.5, except the interface energies and their

derivatives. The advantage of making these measurements on island grains is that we can

assume that the grain boundary energy is a function only of the misorientation and not the

boundary plane. Although we address the grain boundary energy dependence on boundary

plane later in chapter 6, for these measurements we assume ������� 	 �; this is identical

to the approximation applied in the earlier work involving the characterization of circum-

ferential thermal grooves on the surface of cylindrical wires with a bamboo microstructure

[2,3] discussed in 2.4.2. Since the misorientation is fixed at all points across the boundary,

the grain boundary energy (��) is the same in each of the � equations. While the subject

of this thesis is polycrystalline magnesia, it should be possible to conduct similar measure-

ments on any polycrystalline specimen that has a grain size larger than ��'� and contains

some enclosed or partially enclosed grains.
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Figure 3.2: A montage of AFM images showing an island grain. The black-to-white verti-
cal contrast is �����. Contrast discontinuities occur at the points where images have been
pieced together.

3.3.2 Data collection

We have applied the approach described above to the polycrystalline magnesia sample.

After the grooving treatment (�& at ����Æ�), a significant number of island grains (� ��

in a ���� area) could be identified on the sample surface. The island grains were all found

to have a low misorientation angle (� 
Æ) and presumably formed when a higher mobility

grain boundary swept past during the coarsening of the microstructure. Five of these island

grains were selected for characterization, and a total ��� groove measurements were made.

One of the assumptions which underpins our measurements is that the groove mor-

phology is determined at ����Æ� and that it does not change in a significant way during

cooling. Considering the fact that the lateral and vertical dimensions of the grooves and

surface facets scale with the annealing time and that groove traces left by migrating bound-

aries are not observed, this seems to be a good approximation.
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Sample positioning

To characterize the quantities in Fig. 3.1b, we must combine data collected from several

microscopy techniques; therefore, it is important that the sample reference frame be co-

incident with the reference frame of the microscopes. To assist with alignment, two of

the lateral edges of the sample were cut so that they formed a right angle with each other

and the analysis surface. On each microscope stage, these external features were used to

align the specimen. We estimate that the uncertainty in the orientation of the characterized

interfaces that results from sample positioning errors is not greater than �Æ.

Surface characterization

The inclinations of the free surfaces bounding the groove between the island grain and the

matrix grain were determined by AFM. The procedure used to accurately measure groove

inclinations with AFM are described in detail in Appendix A. After imaging the island

grain with AFM, measurements are made at each point (%�) around the circumference of

the island grain. From these measurements, the inclinations (��) of the free surfaces are

determined. The AFM data were also used to determine the angle, * , between ��� and �+ (see

Fig. 3.1).

The orientations of the free surfaces at the groove root were determined by combining

�� and * from each AFM measurement with orientation data derived from EBSPs. Based

on the AFM data, the normal of the surface at the groove root (���) has the following com-

ponents in the laboratory reference frame:

���� 	 ����� ��� *�

���� 	 ����� ��� *�

���� 	 ����� �����

(3.1)

In Eqn. 3.1, the subscript � refers to the surfaces labeled in Fig. 3.1b. Note that the normal

vector ��� is defined as pointing into the crystal. In the crystal reference frame, the compo-

nents of the surface normal (,�) are specified according to the following transformation:

,� 	 
����� (3.2)
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where 
�� is given by Eqn. 2.1 and ��, �, �� in Eqn. 2.1 are the Euler angles denoting the

orientation of the grain.

Grain boundary inclinations

The boundary inclinations (�) were determined for each point (%�) in the following man-

ner. Optical micrographs of each island grain were recorded before and after a thin layer

of the sample was removed by polishing. The field of view for these micrographs included

approximately �� additional grains in the adjacent microstructure so that the relative lateral

positions of the two images could be determined by visually maximizing the overlap of

all the grain boundaries in the image. Based on measurements of the amount of material

removed and the apparent lateral shift of the boundary between the two images, the incli-

nation (�) at each point (%�) was determined. Considering the magnitude of the vertical

distance (�� ���'�) and our estimated uncertainty in the lateral registry between the two

layers (���'�), we anticipate that the maximum uncertainty on � is approximately ��Æ.

3.4 Grain boundary character and energy measurements

3.4.1 Experimental approach

To reliably specify the distribution of grain boundary characters and energies, over all five

mesoscopically observable grain boundary parameters, it is necessary to characterize the

geometry and crystallography of large quantities of contiguous crystallites. This was ac-

complished using an automated scanning electron microscope (SEM) mapping system that

controls both the stage and beam position as well as the acquisition of images and electron

backscattered diffraction patterns (EBSPs). When the mapping is conducted, the sam-

ple surface is initially divided into sectors. At each sector, a secondary electron image is

recorded, and EBSP measurements of crystallite orientation are made at regular intervals

within the sector. When the sector characterization is complete, the microscope stage is

automatically moved to the next sector. The entire procedure is carried out under computer

control. Because we use SEM images to determine grain boundary positions, the orien-
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Figure 3.3: Schematic representation of the geometric parameters required to characterize
a grain boundary triple junction.

tation measurements can be conducted at relatively coarse intervals. Thus, compared to

the conventional OIM methods, we are able to resolve the boundary positions accurately

without accumulating redundant orientation data [1]. After an area is mapped, high preci-

sion serial sectioning is used to remove a thin layer and the process is repeated so that the

three-dimensional characteristics of the grain boundary network can be determined.

From these data, we can reconstruct the geometric and crystallographic configuration of

the microstructure in three dimensions. These data allow us to extract the three-dimensional

grain boundary network, thus we can specify the areal distribution of grain boundaries over

the entire five parameter space. Furthermore, from the reconstructed volume, we can spec-

ify the geometry and crystallography for each triple junction (see Fig. 3.3) within the

characterized volume of material. First, the EBSP measurements are used to specify the

orientations of the crystallites bounding the triple junction (
�). From the microscopic im-

ages we can measure the grain boundary tangents in the section plane (���) and the triple

junction locations on each layer �-�� .��. The triple junction locations, along with the re-
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moval depth, �&, can be used to determine the triple line direction, ��, assuming that the

curvature of the triple line is negligible. This approximation should be valid as long as

�& is small compared to the grain size. The grain boundary normals (���) are given by

�� � ���, and the grain boundary crystallography can be derived from the crystallite orienta-

tions (
�). Thus, we can specify all of the quantities in the local equilibrium condition (Eqn.

2.3), except for the grain boundary energies and their derivatives.

3.4.2 Grain boundary crystallography

From experimental measurements of the crystallite orientations adjacent to the boundary

(�
�) and the vector normal to the boundary plane (��), the crystallographic character of

the grain boundary may be specified. The misorientation (�
) is given by �
 	 
�

�
�

and the boundary plane normal (��) can be expressed in terms of either crystal coordinate

system (�� 	 
�� or �� 	 
��). Note that in this document the ambiguity in the refer-

ence frame for �� is avoided by always expressing �� in terms of the first (non-transposed)

crystallite reference frame. However, due to the presence of crystal symmetries, numerous

different sets of �
 and �� represent physically indistinguishable grain boundaries. These

symmetrically equivalent boundaries are enumerated in the following manner. In the case

of cubic symmetry, for each 
 there are �� equivalent 
 given by �
, where � are the

proper symmetry operators for cubic symmetry, thus �
 	 ��
����
��
� . Further, �
 can

be expressed as the misorientation between the first grain and the second grain or vice-

versa. Therefore, we also have �
 	 ��
����
��
� . Although the boundary plane normal

is always expressed in terms of the first crystallite reference frame, it is arbitrary whether

it is directed towards the first or second grain, so �� 	 ���. Thus, for each grain boundary

there exist �� � � ��� 	 ���� symmetrically equivalent grain boundaries that need to be

considered.

3.4.3 Data collection

The automated mapping system described above was integrated with a Phillips XL40 FEG

SEM. The magnesia sample was carbon coated and tilted at ��Æ for imaging and acquisition
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of the EBSPs. On each layer, three scan areas consisting of a �� � �� grid of sectors

were characterized. In each of the ��� sectors, a tilt-corrected image was taken at 
���
magnification, and ��� uniformly distributed EBSPs were recorded. The patterns were

indexed using an algorithm previously described by Morawiec [4], which returns a set of

Euler rotation angles (��, �,��) relating the crystal reference frame to the sample reference

frame. The error in absolute orientation (
) obtained in this manner is estimated to be �Æ.

After scanning was completed on each layer, approximately 
'� of material was removed

(�&) and the entire process was repeated. For each layer removed in this manner, the error

in �& is approximately ����'�. On each layer, each of the three scan areas were visually

aligned to cover the same area as the corresponding scan on the previous layer. This was

repeated until data from five layers was accumulated and approximately ������� volume

of material had been characterized.

3.4.4 3-D reconstruction

Because the amount of material removed between section planes (�& � 
'�) was small

compared to the grain size (���'�), it is possible to reconstruct the geometric configu-

ration of the characterized volume of microstructure with reasonable accuracy. By first

reconstructing the microstructure in three-dimensions, the quantity and quality of triple

junction data extracted from the data collected is optimized. The procedures used to re-

construct the three-dimensional microstructure and extract the necessary data are described

in the following sections. These algorithms allow us to not only recover the geometry

and crystallography of all of the possible triple junctions in the characterized volume of

microstructure, but also reconstruct the grain boundary network, which is necessary to ac-

curately specify the distribution of grain boundaries found in the sample.

Crystallite geometry

The initial step in the volume reconstruction procedure is to extract the geometry of the

crystallites on each characterized layer. This involves transforming the grayscale secondary

electron images to spatially correct, binary images of the grain boundary skeleton. Al-
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though the recorded images were initially tilt-corrected, substantial geometric distortions

may still arise. Thus, these distortions were characterized using a lithographically produced

standard grating with known dimensions and corrected using the algorithm described by

Kapur and Casasent [5]. This procedure produced spatially correct images with a pixel-to-

pixel separation of approximately ����'� in both lateral dimensions. To accurately specify

the crystallite geometry in each image the grain boundaries were manually digitized. This

was accomplished by “drawing” small, connecting line segments over the grain boundaries

in each image; a process which yielded not only accurate grain boundary skeletons, but

also allowed us to accurately specify the location �-� .� and slope of the three boundaries

in the section plane ����� of the triple junctions in each image. A typical distortion corrected

SEM image and the corresponding skeletonized image are shown in Fig. 3.4.

Section plane reconstruction

Further analysis of the geometric and crystallographic data requires that we combine the

skeletonized images and crystallite orientation measurements from the sectors to produce

high-resolution orientation maps for each �� � �� scan area. This requires that we first

establish the relative positions of the sectors within each scan with more accuracy than the

positions provided by the microscope stage coordinates. To determine the relative positions

of the images in each planar section, we used the following two step procedure. Adjacent

images in each planar section are deliberately recorded so that all adjacent sectors overlap;

this makes it possible to determine an offset between each neighbor pair by maximizing the

contrast correlation in the overlapped region [6]. However, when ��� images in a ��� ��

array are positioned using only nearest neighbor offsets, significant cumulative errors arise.

In other words, if the distance between two points in distant images is computed by sum-

ming the nearest neighbor offsets along two different paths through the array of images,

the distances usually differ. So, the second step of the image positioning algorithm is

to randomly select paths through the image array and reposition the images to minimize

the differences between distances computed in the global reference frame and those deter-

mined by summing the nearest neighbor offsets along equivalent random paths. The errors

associated with positioning the images in this manner were usually less than one pixel.
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Figure 3.4: A typical grayscale SEM image that has been distortion corrected (a), and the
corresponding skeletonized image (b).
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Once the relative sector positions are known, the individual sector data were combined

to form high-resolution orientation maps. First, the relative positions of images were used

to construct large mosaic maps of the grain boundaries and orientation measurements for

each scan area. An example of a mosaic grain boundary skeleton map for a typical scan

area is shown in Fig. 3.5. To produce orientation maps from these data, every grain in the

scan area, defined by contiguous pixels not associated with a grain boundary, was identified

and assigned an orientation. Because multiple orientation measurements were made in each

grain, minority orientations resulting from errors in the indexing had to be excluded. The

remaining majority orientations, which contained some scatter, were averaged using the

algorithm described by Morawiec [7,8] to make the final orientation assignment for each

grain.

Section plane alignment

Once the high-resolution orientation maps from each layer were obtained, it was necessary

to align the maps to establish the same global reference frame for all layers in a given col-

umn. Here, we chose the first layer as the global reference frame. The transformation from

all subsequent layers to the first layer is given by #- � � where - is a two dimensional

vector which represents the position within a given layer, # is a � � � affine transforma-

tion matrix, and � is a two dimensional translation vector. To find �#� �� for each layer, we

initially find �#� �� that maximizes the area of overlap between positions with the same ori-

entations on adjacent layers by using a downhill simplex minimization routine (AMOEBA

[9]) to find the components of # and � that minimize ��	 � �����	, where �	 is the total

number of pixel positions used in the minimization and �� is the number of overlapping

pixel positions. A pixel position is considered to overlap if the orientations at the position

are within �Æ. After # and � are determined, the results were checked visually. Fig. 3.6

shows grain boundary maps from adjacent layers after the alignment process. We then use

the �#� �� describing the transformation that aligns adjacent layers to calculate the �#� ��

that aligns each layer with the initial layer.
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Figure 3.5: A typical mosaic grain boundary skeleton map.
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300µm

Figure 3.6: Typical grain boundary maps from adjacent layers after the alignment process.
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Grain connectivity

After all layers were transformed into the global reference frame, the final step in the “re-

construction” of the microstructure is to specify the connectivity of the grains through the

layers. Once the connectivity is established, the geometric configuration of all crystallites,

along with their orientation, throughout the volume will be known. The following algo-

rithm is used to identify the common grains through all the layers. First, the area of overlap

between all grain pairs on adjacent layers was determined. The pair of grains that has the

largest area of overlap is identified as being two sections of the same grain. The pair with

the second largest area of overlap is then assigned in the same way. The process continues

until all grains have been assigned or do not overlap any grains that have not been assigned.

Through visual inspection, we have determined that the algorithm successfully matches the

correct grains on adjacent layers ����� of the time. The success of this algorithm derives

from the fact that the distance between adjacent layers is much smaller than the average

grain size. After the grain connectivity was established, the orientations of the crystallites

were reassigned by repeating the process that was used in each layer, but now considering

all of the orientation data from different section planes of the same grain.

Triple junction extraction

After “reconstructing” the microstructure, we are now in a position to extract the relevant

data from the triple junctions for the energy determination. The first step is to establish the

location of each triple junction in the global reference frame. This is accomplished by first

using the relative sector positions to determine the triple junction locations within the sec-

tion plane. Next, the same transformations that were applied to the orientation maps in each

layer are applied to the triple junction locations to place them in the same global reference

frame. The in-plane slopes of the grain boundaries were not adjusted because the correc-

tions from the transformations (��Æ) were small compared to the error in the measurement

process, which we approximate to be ���Æ. By superimposing the transformed triple junc-

tion locations with the transformed orientation maps, the three grains bounding each triple

junction (with known orientations) could be identified. Using the bounding grains as iden-
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tifiers, duplicate triple junctions in each section plane, resulting from the overlap of sector

images, were identified and removed. Next, the bounding grains were again used to iden-

tify common triple junctions on adjacent sections. Using the lateral offsets (- �� .�) between

the triple junction locations on adjacent sections and the amount of material removed be-

tween sections (�&), the triple line direction (��) was determined. The grain boundary plane

normals (���) were then determined by ��� ���. Due to boundary curvature and experimental

errors, the apparent grain boundary tangents (���) are not necessarily identical on adjacent

layers. To average out the effect of these differences, the geometry of each triple junction

was determined twice; once considering ��� for the top layer and once for the bottom layer.

Thus, each valid triple junction was considered two times in our data set. Now, since the

crystallography of the bounding crystallites is already known, all of the quantities in the

Herring relation (Eqn. 2.3) are known except for the grain boundary energies and their

derivatives. A total of ����� junctions were identified in this manner.

Grain boundary meshing

Although we have already obtained the data required to reconstruct the grain boundary en-

ergy over all five mesoscopic parameters, the distribution of these boundaries can also be

extracted from the data that we have collected. This requires that we determine the total

area of each grain boundary character in the volume of microstructure that we have charac-

terized. This was accomplished by identifying the planes that connect the grain boundary

skeletons on each layer. The grain boundary surfaces were meshed with triangular elements

using the following algorithm. First, the pixels from common grain boundaries on adjacent

layers were extracted from the orientation maps. These pixels were identified by comparing

the two crystallites adjacent to the boundary on each layer. Using the triple junction loca-

tions as end-points, the grain boundary pixels from both layers were ordered in the same

manner. To mesh the grain boundary, the pixel positions on the second layer were projected

onto the plane of the first and every fourth pixel position on both layers was considered as

a vertex of a triangular element. Triangular elements were constructed from the vertices by

first connecting one of the sets of triple junction locations. Next, the distance to the next

vertex position for each layer (/�) was calculated. The vertex corresponding to the shortest
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Figure 3.7: Illustration of the grain boundary meshing algorithm. First, the pixel positions
on the second layer are projected onto the plane of the first layer. Next, the first set of triple
junction locations are connected, and the distance to the next vertex position for each layer
(/�) is calculated (a). The vertex corresponding to the shortest distance is used to create the
first element, and the process is repeated (b). This continues until all pixels on both layers
are connected (c).
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distance was used to create the first element. For the next element, the last connected vertex

on each layer was used and the shortest distance criterion was again applied to determine

the third vertex. This process continued in this manner until the last pixel from both layers

was connected.

From the triangular mesh representing the grain boundary network in the characterized

volume of material, it was possible to determine the distribution of grain boundaries over all

five mesoscopically observable parameters. Using the vertices of the triangles in the mesh,

the area and normal vector for each triangle were determined. Next, the normal vector and

the orientations of the crystallites bounding each triangle were used to specify all five grain

boundary parameters (misorientation and boundary plane normal), and the total boundary

area associated with each grain boundary type can be calculated. Thus, we are now in

a position to calculate the areal distribution of boundary types over the mesoscopic grain

boundary parameters.
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Chapter 4

Energy Reconstruction

In this chapter, we shall describe various methods for reconstructing both the surface and

grain boundary energies from the experimental data and discuss the relative advantages

and disadvantages of each. To illustrate the applicability of these methods, we have created

simulated data sets based on model energy functions. After adding random perturbations

to the simulated data that mimic the random errors in the real data, we reconstructed the

energy functions using selected methods. This procedure not only shows the reliability and

accuracy of the reconstruction methods, but also allows us to compare the performance

between methods.

4.1 Methods

The experiments described in this thesis rely on measuring the geometry and crystallog-

raphy of large quantities of triple junctions and then using the Herring relation to link the

observations to the interfacial energies. However, for every observed triple junction there

are three unknown interface energies and only two equilibrium conditions, thus the re-

construction methods require some level of approximation. The approximation is based

on reducing the number of unknowns required to describe the energy variation over all

53
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possible interfaces. One approach is to represent the energy variation over the domain of

interfacial characters as a finite series [1–4], such that the number of unknowns is limited

to coefficients of the series. The other approach is to discretize the space into a set of

predefined interfaces [5], thus limiting the total number of unknown energies.

4.1.1 Series expansion methods

The series expansion methods are based on representing the energy variation as a finite se-

ries of selected basis functions. The unknown coefficients of the series are then determined

by fitting the observations to the local equilibrium condition at a triple junction. One limita-

tion of the series expansion methods is that the assumption of particular basis functions for

the finite series constrains the form of the resulting surface energy function. The compara-

tive advantages and disadvantages of different basis functions were described by Gale et al.

[4], who evaluated the orientation dependence of the surface energy of an Fe-�� Si alloy.

This work showed that while a conventional trigonometric series can produce cusps in the

surface energy function, it does not have the correct symmetry. Spherical harmonic basis

functions can be used to produce a surface energy with the correct symmetry, but the finite

extent of the series makes it impossible to produce sharp cusps at low energy orientations.

The following sections describe these two techniques and their application to the surface

energy (Fourier series) and grain boundary energy (spherical harmonics) measurements.

Fourier series

To extract the surface energy anisotropy from the circumferential thermal groove measure-

ments using Fourier series expansion, we must first transform the surface normals into the

fundamental zone (standard stereographic triangle) where the normal vector (, ��) is given

by ,�� 	 $��,�. The components of ,�� are permutations of the absolute values of ,� such

that ,�� � ,�� � ,�� and the values of $�� are �� �� or �� and are assigned in the following

way: If ,�� 	 �,�� then $�� 	 �. If ,�� 	 �,��, then $�� 	 � for positive ,� and $�� 	 ��

for negative ,�. This step is required since the Fourier series does not have the correct

symmetry for the space of cubic surface normals. Furthermore, we must note that for the
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same reason the series will not be valid outside of the fundamental zone.

Next, the surface energy is parameterized in terms of the spherical coordinates 	 and �;

the relationship between these variables and the components of the surface normal are 	 	

������,��� and � 	 ������,���,
�

��. We now use Winterbottom and Gjostein’s [1] method

of approximating the surface energy as a truncated double Fourier series. We selected the

following form for the function:

���	� �� 	 � �

�

���


�
�������	������	�� �
 ����0�� � 1�� ������	� ����0��
����	������	�� �
 ����0�� � /�� ������	� ����0���

(4.1)

In Eqn. 4.1, the energy of the ����� orientation (	 	 �) is normalized to equal ���. Using

this approximation, the surface energy and its derivatives at each point are determined

by the inclination and orientation of the surfaces bounding the groove and a finite set of

unknown coefficients. For a series of order 2, the number of coefficients is �2��2 � ��

so that for a set of � observations along the circumferences of 3 island grains, the total

number of unknowns is 4 	 �2��2 � �� � 3. Because approximately �� observations

can be made at each island grain, an increment in3 increases � much more than 4 . Thus,

for even a small number of island grains, � is much greater than 4 , and a set of best

fit coefficients and grain boundary energies can be determined using a conventional linear

least squares procedure.

The torque terms in Eqns. 2.4 and 2.5 can be evaluated using the following expression:

���
���

	
�	

���

���
�	

�
��

���

���
��
� (4.2)

Analytical expressions for �����	 and ������ are easily obtained from Eqn. 4.1. Although

the terms �	���� and ������ can be derived exactly, for computational ease they where

approximated as difference quotients, �	���� and ������, calculated by dividing the

change that occurs in 	 or � (�	 or ��) as the surface normal vector is rotated through

a small, fixed angle about ��, by the rotation angle (���). The values of �	 and �� were

determined using a rotation matrix with elements 2��:

2�� 	 Æ�� �������� ������ ������� � ��� ������������� (4.3)

In Eqn. 4.3, �� are the components of the vector ��, Æ�� is the Kronecker delta, and ���� is the
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permutation tensor. The magnitude of the torque terms were insensitive to choices of ��

less than �Æ.

After the approximate expression for the surface energy (Eqn. 4.1), along with the

torque terms, is substituted into Eqns. 2.4 and 2.5, the only unknowns in the equations are

the coefficients of the series. Now, a standard linear least squares procedure can be used to

determine the functional form of the surface energy.

Spherical harmonics

To illustrate the application of symmetrized spherical harmonic functions to extract grain

boundary energies from the grain boundary triple junction data, we shall ignore the influ-

ence of the grain boundary plane on the energy. Under this assumption, the grain boundary

energy is a function of only misorientation (��� 	 �����
�) and the local equilibrium con-

dition is reduced to Eqn. 2.7. Next, the grain boundary energy is approximated as a finite

series of harmonic basis functions which have the symmetry of cubic misorientation space:

���
� 	
��
���

���	�
���

���	�
���

����
��� ��
� ��
�� (4.4)

where ��� ��
� ��
� are cubic-cubic symmetric generalized spherical harmonic functions, ����

are the coefficients of the series, and$��� are the number of linearly independent solutions

which are enumerated by the index ' or + [6]. These cubic-cubic functions can be used to

represent any property which is a function of misorientation in a homophase cubic system.

However, we know that the grain boundary energy function should exhibit certain proper-

ties and this allows us to introduce boundary conditions. In the limit that the misorientation

between adjacent grains goes to zero, the energy function must also be zero:

��5� 	 �� (4.5)

where 5 is the identity misorientation. Also, since the energies can only be determined in

a relative sense, we have normalized the function such that the average energy is equal to

one. Introducing these two boundary conditions leads to the following expression for the
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grain boundary energy as a function of misorientation:

���
� 	
�
�� ��� ��

� ��
�
�
�

��
��


���	�
���

���	�
���

����

�
��� ��
� ��
�� ��� ��

� �5� ��� ��
� ��
�

�
� (4.6)

After substituting the grain boundary energy (Eqn. 4.6) into the local equilibrium con-

dition (Eqn. 2.7) the only unknowns are the coefficients of the series (����). Again, the

coefficients can be determined using a standard linear least squares technique.

4.1.2 Discrete method

In this section, we shall describe an alternative method for reconstructing the interfacial

energy anisotropy that does not parameterize the energy in terms of a finite series of ba-

sis functions. Here, we employ a procedure developed by Morawiec [5] that provides a

discrete value of the energy for a predefined set of interfacial characters. This discrete

analysis is facilitated by use of the Cahn-Hoffman [7,8] formalism for the capillarity vector

which makes it possible to include the torque terms in the equilibrium equation without

having to compute differentials. This method will be referred to as the capillarity vector

reconstruction method.

The local equilibrium condition (Eqn. 2.3) can be rewritten in terms of the Cahn-

Hoffman [7,8] capillarity vector, 67. The capillarity vector is formed by combining the two

scalar quantities �� and ������� with unit vectors normal and parallel to the plane of the

interface, respectively. The component of the capillarity vector normal to the interface is

equal in magnitude to �, thus 67� 	 ���. Note that 67� � �� is a tension in the plane of the

interface that is perpendicular to �� and has a magnitude of �:

67� � �� 	 ���� (4.7)

Furthermore, the capillarity vector has a component in the plane tangent to the interface

that is related to the change in � with orientation given by 67	 	 ������������ where ���

points in the direction of maximum increase of �. Therefore, 67	��� is a vector perpendicular

to the interface whose magnitude is given by the component of 67	 perpendicular to ��. This

is a measure of the so-called torque force that is normal to the interface and urges it to
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rotate about the line of intersection. In other words,

67	 � �� 	
��

��
��� (4.8)

Substituting the left hand sides of Eqns. 4.7 and 4.8 into Eqn. 2.3, we see that the local

equilibrium condition for a triple junction can be expressed in the following way:

�67� � 67� � 67��� �� 	 �� (4.9)

By discretizing the space of interfacial characters and fitting experimental observations to

Eqn. 4.9, the capillarity vectors for the interfaces bounding a triple junction can be deter-

mined without evaluating any differential terms. The capillarity vector field for a discrete

set of interfaces is solved using an iteration process which is described in detail for both

the surface and grain boundary measurements in Appendix B. After solving the capillarity

vector field, the interfacial energy is then given by the magnitude of the capillarity vector

normal to the interface plane, � 	 67 � ��.

4.2 Simulated data results

The accuracy and performance of the energy reconstruction methods were tested by creat-

ing simulated data sets based on model energy functions with the correct symmetries for a

material with cubic crystal symmetry. These data sets were generated such that they mimic

the data sets extracted from thermal grooves (surface energy) and grain boundary triple

junctions (grain boundary energy).

4.2.1 Surface energy

Model function

The model function was isotropic (� 	 �) everywhere except for a cusp around �����. The

cusp had a width of ��Æ and a depth of �������	����� and was shaped by an analogy to the

Read-Shockley expression for the energy of low angle boundaries. The functional form is
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given by:

���� 	 ���

��	���� 	 ���

����
��

� 
�� ��


����
��

��
� ��� � � 	��� � ��Æ

��	���� 	 � 	���  ��Æ

(4.10)

where 	��� is the angular separation, in degrees, between the surface orientation and ����.

Triple junction generation

The model thermal grooves were generated by first assigning Euler angles (��, �,��) to

both the enclosed and matrix grains. Values for �� and �+ were then randomly generated.

Next, the values of �� and � that balance the interfacial energies according to Eqn. 2.3

were determined using a downhill simplex method (AMOEBA [9]). Parameter sets for

simulated grooves were considered valid if the absolute values of the perpendicular and

parallel components in Eqn. 2.3 summed to less than ����. The procedure was repeated

until �� valid grooves were found for each of five enclosed grain/matrix grain pairs. In other

words, the number of observations in the model data set was selected to mimic as nearly

as possible the real data set. Since the real data contains experimental errors, the groove

parameters (��, ��, �+, and �) were perturbed by a random angle generated according to a

Gaussian distribution with standard deviations of �Æ, �Æ, �Æ, and �Æ, respectively.

Energy reconstruction

The model energy function is shown in fig. 4.1 together with a comparison of the results

from the Fourier series fitting method and the capillarity vector reconstruction. The fitting

for the series reconstruction method was conducted by substituting an 2 	 � series into

Eqn. 2.4 and a standard linear least squares program (LSFIT [9]) was used to solve for

the unknown coefficients. The Fourier series fit results in a smoothly varying function that

approximates the shape of the actual surface energy function. However, the true depth of

the cusp is severely underestimated.

For the capillarity vector reconstruction method, the sub-domain of surface characters

(	 and � in the range of � to ��Æ) was divided into �� equal sections in ��� 	 and � (this
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provides a resolution of about �Æ). The relaxation factor for the iterative solution was cho-

sen as the inverse of the maximum number of equations that any one interfacial character

was involved in, and the iteration process was stopped when the change in the sum of the

magnitude of all of the deviations vectors is less than 1% of the change during the first

iteration. The iteration process converged after �
� steps. For each surface normal, the

energy was taken as the average of the � symmetrically equivalent cells that correspond to

the surface normal.

Although there are some outlying points, the calculated surface energies are close to the

model function. While the true depth of the cusp at ����� is not reproduced, the capillar-

ity vector reconstruction method performs better than the series fitting method. Note that

the only point where the discrete reconstructed data deviates significantly from the model

function is at the ����� orientation. On later inspection, it was found that the randomly gen-

erated data set contained no grooves with these surfaces. While denser and more uniform

trial data sets can be used to generate better reconstructions, the results shown in Fig. 4.1

are characteristic of the experimental data at hand and illustrate the challenges associated

with discerning sharp features in the surface energy. ��� of the surface energies deter-

mined using the capillarity vector reconstruction method deviated from the model function

by less than ����. In our reconstruction of the experimental data, we shall use this figure

as a measure of the uncertainty in the result.

4.2.2 Grain boundary energy - misorientation only

Model function

The Read-Shockley model was used as the model function for the grain boundary energy as

a function of misorientation alone. In this model, the grain boundary energy is a function

a single misorientation parameter, 	��, which is the minimum angle of misorientation

(disorientation) about the rotation axis common to the two grains. The functional form is
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Figure 4.1: Plot of relative surface energies reconstructed from model data using both the
series and capillarity methods. The plot shows orientations around the perimeter of the unit
triangle, from ����� to �����, then to �����, and back to �����.

given by:

���� 	 �

��-� 	 -��� ��-� � � - � �

��-� 	 � -  ��

(4.11)

where - 	 	�����
Æ.

Triple junction generation

The triple junctions were generated by first assigning three random grain orientations (
�)

and calculating the disorientation between each grain orientation (	��). Using the model

energy function, the dihedral angles at the triple junctions were calculated by solving Eqn.

2.7 with respect to ������ and using these values to calculate ���. A total of ���� triple

junctions were generated in this manner. To account for the experimental errors, the ideal

dihedral angles were altered by randomly generated angles (��) with a population gov-

erned by the von-Mises distribution,  !"�8 ������, with 8 	 ���. This distribution is
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peaked at �� 	 � and values outside the limits of ���Æ are very unlikely.

Energy reconstruction

To reconstruct the grain boundary energy function based on misorientation alone, we rep-

resented the data as a series of symmetrized spherical harmonics. For this analysis, the

functional form of the grain boundary energy (Eqn. 4.6) was truncated at � 	 ��. By trun-

cating the series at this point, the minimum period of oscillations that can be reproduced in


��Æ. The functional form for the grain boundary energy was then substituted into the local

equilibrium condition (Eqn. 2.7), and a standard linear least squares program (LSFIT [9])

was used to solve for the unknown coefficients. A comparison between the Read-Shockley

model and the fit function for the ����� misorientation axis is shown in Fig. 4.2. The fit

function shows the same general trends as the model; it increases as the misorientation an-

gle increases from zero to an angle of � ��Æ. For misorientation angles larger than ��Æ, the

function flattens and oscillates around one. However, the exact shape of the Read-Shockley

model is not reproduced by the approximate function, especially near the origin. Instead of

a sharp cusp at zero misorientation and a constant energy value of one for misorientations

greater than the limiting angle, the slope of the function vanishes at zero misorientation and

there are oscillations (�����) about one for the higher angle misorientations. This is an un-

avoidable consequence of approximating the energy as a finite series of harmonic functions.

While adding additional terms to the series can improve the approximation, these charac-

teristic features will, to some extent, persist as long as this particular set of basis functions

is used.

4.2.3 Grain boundary energy - five parameter

Model function

The model function for the grain boundary energy over all five parameters is based on a

uniform energy distribution with cusps shaped in analogy to the Read-Shockley expression
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Figure 4.2: Comparison of the model grain boundary energy function based on misorien-
tation alone and an approximate function fit to a data set generated from the model.

for the energy of low angle boundaries. The functional form is given by:

���� �� 	 �� �
��-� �� 	 �-��� ��-� � ��� �� � � - � �

��-� �� 	 � -  �

(4.12)

where - is the ratio of the angular distance from the center of the cusp (�) to the maximum

width of the cusp (9 ), and � corresponds to the depth of the cusp. The distance � between

two boundaries is given by � 	 � � ����
�� �
�� � �� � �� � ��
�� ��� � ��
�� ��� [5].

For the simulated data set, the model energy function had two cusps of this type: one

corresponding to a misorientation of ��Æ about ���� with a boundary plane normal to ����

and one corresponding to a misorientation of ��Æ about ���� with a boundary plane normal

to ����. For both cusps, � 	 ��
�
� and 9 	 ��Æ. The model function also had a special

cusp at zero misorientation that was independent of boundary plane. In this case, the same

functional form was used with � 	 � and 9 	 ��Æ, except � is given simply by the

minimum misorientation angle between the adjacent crystallites.
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Triple junction generation

The details of the procedure to generate grain boundary triple junctions from the model

function are given in [5]. The procedure involves first generating three random grain ori-

entations (
�) and a random unit vector corresponding to the direction of the triple line (��).

Next, the vector normal to the first boundary plane (���) is selected randomly with the con-

dition that it is perpendicular to the triple line (��� � �� 	 �). The remaining boundary plane

normals, ��� and ���, are determined such that they minimize the deviation of the magnitude

of the vector calculated from the left hand side of Eqn. 4.9 from zero. If the deviation does

not reach a sufficiently small value, the junction is rejected and the procedure is repeated.

A total of � � ��� junctions were generated in this manner, such that the number of junc-

tions in the simulated data set was nearly identical to the number in the real data set. Again,

errors were added to the junctions to mimic the presence of experimental errors in the real

data set. The geometric parameters of the triple junctions, the unit vectors �� and ���, were

expressed in terms of spherical angles 	 and �. For each vector, 	 and � were perturbed by

a random angle generated according to a Gaussian distribution with a standard deviation of

�Æ.

Energy reconstruction

For the grain boundary energy reconstruction, the space of grain boundaries was discretized

in the following manner. The space was parameterized by ��, ��� �, ��, ��� 	 and �, where

��, �, and �� are three Eulerian angles specifying the boundary misorientation and 	 and �

are spherical angles specifying the boundary plane normals. We chose the convenient sub-

domain of this space such that �� and �� were in the range of � to ��, ��� � and ��� 	 were

in the range of � to �, and � was in the range of � to �. The sub-domain was tessellated

into equal partitions such that ��� 	 ��� 	 �� 	 ��Æ, and ����� 	 ���� 	 	 ���,

yielding a resolution over the space of about ��Æ. The relaxation factor for the iterative

solution was chosen as �� times the inverse of the maximum number of equations that any

one interfacial character was involved in, and the iteration process was stopped when the

change in the sum of the magnitude of all of the deviations vectors is less than 1% of the
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Figure 4.3: Stereographic contour plots of the model and reconstructed grain boundary
energies. (a) and (b) are the model and reconstructed energies, respectively, corresponding
to �
 	 ����� ��Æ, and (c) and (d) are the model and reconstructed energies, respectively,
corresponding to �
 	 ����� ��Æ. The energies in the plots increase as the shading varies
from dark to light and the contour isolines in all plots correspond to relative energy values
of ����, ����, ����, ����, and ����.
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change during the first iteration. The iteration process converged after �� steps. For each

grain boundary type, the energy was taken as the average of all �� symmetrically equivalent

cells that correspond to the boundary type.

The model function, along with the results of the reconstruction, for the misorientations

corresponding to ����� ��Æ and ����� ��Æ are shown in Fig. 4.3. The plots in Fig. 4.3 show

that the general trends in the energy function are reproduced by the reconstruction; how-

ever, the depths of the cusps are severely underestimated. This occurs due to the relatively

large cell size (� ��Æ) required for the limited number of triple junctions used in the recon-

struction and the smoothing procedure. It has been shown that denser data sets that allow

a finer discretization of the grain boundary space and do not require the smoothing proce-

dure yield more accurate reconstructions [5]. Based on the results of the reconstruction, we

conclude that at the current data density we can reconstruct the general trends in the energy

function with reasonable accuracy; however, the extent of the energy anisotropy will not be

accurately reproduced.
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Chapter 5

Surface Energy

In this chapter, we will discuss the reconstruction of the surface energy from the groove

measurements taken from around the circumference of island grains in the polycrystalline

magnesia specimen. We have used both the Fourier series and capillarity vector reconstruc-

tion methods to extract the surface energy. The results from both methods are compared

to orientation stability data to assess which result more nearly represents the actual surface

energy anisotropy. Finally, the reconstructed surface energies are compared with previous

theoretical predictions and experimental results for magnesia surfaces.

5.1 Fourier series reconstruction

5.1.1 Linear least squares analysis

The approximate Fourier series expression for the surface energy (Eqn. 4.1) was substituted

into Eqns. 2.4 and 2.5, and a standard linear least squares procedure (LSFIT [1]) was used

to determine the best fit values of the coefficients. The quality of the fit was assessed by the

ratio (:) of the sum of the squares of the residuals to the difference between the number of

equations and the number of free parameters. We found : to be sensitive to the choice of

equilibrium equation (Eqn. 2.4 and/or Eqn. 2.5) and series order, 2.

68



Chapter 5. Surface Energy 69

Equilibrium equations

The Herring relation can be broken down into two independent equations, Eqns. 2.4 and

2.5, which represent the balance of the vertical and horizontal components, respectively.

Although fits which included both equations yielded qualitatively similar results, :was five

times smaller when only the balance of the vertical components (Eqn. 2.4) was considered.

The reason for this is evident when one compares the form of the equations. In both Eqns.

2.4 and 2.5, the magnitude of the left hand side is determined by �, a measured parameter

that is typically near zero (
�� of the observations fall in the range ���Æ � � � ��Æ)

and contains the highest degree of experimental uncertainty. The left hand side of Eqn.

2.4 scales with ���� and the left hand side of Eqn. 2.5 scales with ���� so that when �

is small, measurement errors are magnified by Eqn. 2.5 and diminished in Eqn. 2.4. For

example, a ��Æ error in the measurement of � near zero leads to an uncertainty on the left

hand side of Eqn. 2.4 of ����; for Eqn. 2.5, the same error leads to an uncertainty of ���.

Thus, we shall only consider Eqn. 2.4 in our analysis.

Series order

Using a series of 2 	 �, fitting the data to Eqn. 2.4 yields a : value of ��
�� ����. When

the data set is randomly partitioned into two smaller segments, fitting to each segment

leads to nearly identical results (within the standard deviation of the fit). When more terms

are included in the series, there are additional oscillations in the function, and : decreases

slightly. For example, when 2 	 �, : 	 ���
 � ����. In this case, the ordering of the

relative energies at the low index surfaces is the same as for the 2 	 � fit. However, when

the 2 	 � function is fit to the randomly partitioned data sets, the results differ from one

another and from the results obtained using the complete data set. For this reason, we take

the result from the 2 	 � series to be the more reliable result.

5.1.2 Surface energy function

We have determined that fitting only to Eqn. 2.4 and using a series of order2 	 � yields the

best representation of the data. The best fit coefficients derived from this fitting procedure



Chapter 5. Surface Energy 70

for the series in Eqn. 5.4 are listed in Table 5.1. Based on these values, we calculate the

energies of the low index planes to have the following relations:

����
����

	 ������ �����

����
����

	 ���
�� �����
(5.1)

The uncertainties in the values of the energy were determined from the variances and co-

variances of the fit coefficients [2]. The maximum energy occurs at the ����� orientation

and the minimum at �����. The functional dependence is illustrated in Fig. 5.1, where

the energy contours are plotted in the unit triangle of distinguishable orientations, and the

value of the surface energy function along the perimeter of the unit triangle is graphed in

Fig. 5.2. The best fit grain boundary energies for each of the island grains are listed in

Table 5.2. In each case, the energy is less than that of the ����� surface.

Table 5.1: Best fit coefficients.

��� ������ �����

1�� ������ �����

��� ������� �����

1�� ������� �����

��� ������� �����

/�� ������� �����

Table 5.2: Best fit grain boundary energies.

�������� 	���
Æ�

����� ���� ����

����� ���� ����

����� ���� ����

����� ���� ����

���
� ���� ����

5.2 Capillarity vector reconstruction

5.2.1 Energy reconstruction

To apply the capillarity reconstruction procedure to the island grain thermal groove mea-

surements, we used the same sub-domain of surface characters (	 and � between � and

��Æ) that was used with the simulated data. The sub-domain of was divided into �� equal

sections in ��� 	 and �. Again, the relaxation parameter was selected such that it was equal

to the inverse of the maximum number of equations that any one interfacial character was
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Figure 5.1: A surface energy contour plot for magnesia at ����Æ� constructed from the
best fit Fourier series.
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Figure 5.2: Plot of the relative surface energy derived from the Fourier series method
around the perimeter of the standard stereographic triangle, from ����� to �����, then to
�����, and back to �����.
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involved in, and the iteration process was stopped when the change in the sum of the magni-

tude of all of the deviations vectors is less than 1% of the change during the first iteration.

The iteration process converged after �
 steps. For each surface normal, the energy was

taken as the average of the � symmetrically equivalent cells that correspond to the surface

normal.

5.2.2 Surface energy function

A contour plot illustrating the orientation dependence of the surface energy is shown in Fig.

5.3, and the values of the reconstructed surface energy at intervals around the perimeter of

the unit triangle are shown in Fig. 5.4. Based on the capillarity vector reconstruction

method, the energies of the low index planes have the following relationships:

����
����

	 ���
� ����

����
����

	 ���
� ����
(5.2)

While the trends in the results from the series fitting method and the capillarity vector

reconstruction method are the same, the latter shows significantly more anisotropy. This is

consistent with the results from model data sets in 4.2.1. The reconstructed grain boundary

energies are listed in Table 5.3.

Table 5.3: Reconstructed grain boundary energies.

�������� 	���
Æ�

���� ����

���� ����

���� ����

��
� ����

��
� ����
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Figure 5.3: A surface energy contour plot for magnesia at ����Æ� based on the results of
the capillarity vector reconstruction method.
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Figure 5.4: Plot of the relative surface energy derived from the capillarity vector recon-
struction method around the perimeter of the standard stereographic triangle, from ����� to
�����, then to �����, and back to �����.
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5.3 Comparison of the methods

The results from the capillarity vector reconstruction method suggest that the total aniso-

tropy in the surface energy of magnesia is �
� while the results from the series fit method

on the same data suggest an anisotropy of 
�. Based on the results from the reconstruction

of the model data (4.2.1), we are led to believe that the capillarity vector reconstruction

method produces the more accurate results. Because the series fit results are constrained

by the form of the basis functions, the full anisotropy can not be reproduced. The question

is, which results more nearly represent the actual anisotropy? To discriminate between the

two results, we can make a quantitative comparison between the faceting behavior of the

magnesia polycrystal and the reconstructed surface energies.

5.3.1 Orientation stability map

AFM images of the specimen revealed that the surfaces of some grains were faceted while

others were smooth (see Fig. 5.5). The bounded and extended grain surfaces that have

orientations that are part of the equilibrium crystal shape will remain flat during annealing.

The surfaces of grains with missing orientations will form facets. The faceted surfaces al-

ways contained ridges formed by the intersection of two planes, but no corners. When the

surface inclination changes, as it does near a thermal groove, the ridges exhibit smoothly

curved edges. Thus, all missing surface orientations can be made up of two stable planes.

To map the orientations that are stable or unstable with respect to faceting, the surfaces

of more than ��� grains whose orientations were previously determined based EBSP data

were imaged by AFM. If steps with heights greater than ����� were observed (this cor-

responds to five times the lattice spacing), the grain was labeled as faceted. If no steps or

steps less than this height were observed, it was labeled as smooth. These data were used

to construct the orientation stability map shown in Fig. 5.5c. With the exception of two

outliers and a small amount of overlap in the distributions, the faceted and smooth orienta-

tions are well separated. Based on these data, it seems clear that orientations near the �����

and ����� poles are unstable with respect to faceting.

A careful examination of the faceted orientations has led us to the conclusion that within
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Figure 5.5: Examples of AFM images of (a) faceted and (b) unfaceted magnesia surfaces
at ����Æ�. AFM images of more than ��� surfaces were used, along with EBSP data, to
construct the orientation stability map shown in (c).

about ��Æ of 	���
, we find that surfaces facet to 	���
 plane and a complex facet. Further,

all orientations within about ��Æ of 	���
 form two facets that are always complex. In other

words, the 	���
 surface, and those vicinal to it, are missing from the equilibrium shape.

For any given orientation in this range, the facets and the macroscopic orientation must

share a common axis. This means that the missing orientation and the complex facets are

in the same zone and lie on a great circle. Further, if the complex facets at the boundary of

the unstable region have the same energy, then the circle should be the one that intersects

the macroscopic orientation and has the minimum length through the unstable region. The



Chapter 5. Surface Energy 76

Figure 5.6: (a) Schematic �-diagram determined from measurements of orientation stabil-
ity for magnesia at ����Æ�. Orientations near 	���
 are unstable with respect to faceting
into the 	���
 orientation and a complex facet. The white regions around 	���
 correspond
to unstable orientations which form two complex facets, while orientations in the shaded
region are stable with respect to faceting. (b) Contour map on a stereographic projection of
the relative surface energies derived from the capillarity method for magnesia at ����Æ�.

orientation of the complex facets will be found at the intersection of this great circle and

the boundary between the faceted and flat orientations. Using this information, we have

constructed a schematic �-diagram [3], which is a stereographic projection of the surfaces

present at equilibrium, for magnesia at ����Æ� shown in Fig. 5.6a. For comparison, a

contour map of the relative surface energies derived from the capillarity method are also

shown in Fig. 5.6b.

5.3.2 Facet local equilibrium

The results from both the Fourier series fit method and the capillarity vector reconstruc-

tion method agree qualitatively with the observed faceting. To make a more quantitative

comparison, we can assume that a local equilibrium is established at the intersections of

the surface facets. From the observations of orientation stability, we find that orientations

within about ��Æ of 	���
 facet to a 	���
 plane and a complex facet. Applying Herring’s
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equation to this situation, we find that [4,5]:

����
��

	 ���� � �

��

���
��

����� (5.3)

where � is the angle between the facets, and ���� and �� are the energies of the singular

����� and complex surface, respectively. Assuming that the torque is small enough for

the final term to be ignored, then the relative energy of two intersecting facets is given by

����. If the ����� surface and the neighboring complex facets are separated by ��Æ, then

������� 	 �����. Although both methods predict less anisotropy, this value is more con-

sistent with the capillarity vector results. However, it is most likely an underestimate since

the results from both methods predict ������ to be positive (the energy increases as � in-

creases away from the complex orientation). In fact, using the reconstructed energies from

the capillarity vector method, we estimate ������ to be about �����; therefore, ������� is

equal to �����. Therefore, it appears as though extent of the energy cusp at ����� has been

underestimated by both reconstruction methods The underestimation of the anisotropy of

the energy at a cusp is an artifact of the reconstruction procedures, which we observed

from the reconstruction of model data in Chapter 4. We can also consider the equilibrium

between complex facets formed by orientations within ��Æ of 	���
. Since the ����� facet

is replaced by complex facets inclined by ��Æ, we conclude that ������� is �����. If we

assume isotropy in this region of stable orientations, then the anisotropy we should expect

between ���� and ���� must be the product of ������� and �������, or about ���. This is

nearly equivalent to the anisotropy predicted by the capillarity vector method and is ap-

proximately two and a half times the amount of anisotropy predicted by the Fourier series

fit method, which, in fact, predicted missing orientations only �Æ from ����� and ���Æ from

�����. Although both techniques underestimate the extent of the energy cusp at �����, the

observed range of faceting is more consistent with the results from the capillarity vector

reconstruction method. Thus, we conclude that the capillarity vector results more nearly

represent the actual surface energy anisotropy in the magnesia polycrystal.
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5.4 Previous results comparison

5.4.1 Broken bond model

Ignoring relaxation effects, the relative surface energy of different crystallographic planes

should scale with the broken bond density. Magnesia has the rock salt structure and only

one bond per atom must be broken to create the ����� surface. Two and three bonds per

atom must be broken to form the ����� and ����� surfaces, respectively. When the broken

bond densities per unit area (;) are compared, one finds that the ����� surface has the

smallest value and that ;����;��� 	
�
� and ;����;��� 	

�
�. Therefore, the measured

surface energies occur in the same order as the density of nearest neighbor broken bonds

on the surface. As one would expect, however, the measured variation in the energies in the

real system (�
�) is much smaller than that predicted by the simple bond breaking model.

5.4.2 Model calculations

There have been a number of model calculations of the surface energy of magnesia which

were summarized in Table 2.2 [6–10]. With one exception, these studies place the energy

of the ����� surface in the vicinity of ���!��� at ��. Further, in the cases where the

energies of more than one surface were computed, the energies have the same order as

those observed in the present study (���� � ���� � ����). The magnitude of the anisotropy

predicted by these �� calculations is larger than experimentally observed and, in fact, is

larger than it would be possible to observe in any equilibrium experiment. For example, if

the energy of the ����� surface of a cubic crystal were more than
�
� times the energy of

the ����� surface, then the surface would lower its energy by faceting into ����� and �����

surfaces that would meet along lines in the ���� direction and form ridges. Therefore, the

energy of the ����� orientation has an upper limit of
�
�����. Similarly, if the energy of the

����� surface were more than
�
� times the energy of the ����� surface, it would lower its

energy by faceting into trigonal pyramids bound by �����, �����, and ����� facets. Thus,

the results of our experiments fall within the upper bounds set by the equilibrium condition.
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5.4.3 Experimental observations

Earlier experimental studies of magnesia surfaces have been conducted in temperature

ranges above and below the current study (but at different partial pressures of oxygen). For

example, Henrich [11] annealed an ion bombarded magnesia ����� surface in ultra-high

vacuum to temperatures as high as ���
Æ� and found that the surface faceted into trigonal

pyramids bounded by ����� planes. This would imply a higher degree of anisotropy than

what we have observed, which would be consistent with the lower temperatures used for

the annealing. When the magnesia ����� surface was examined by reflection electron mi-

croscopy after being annealed at ����Æ� to �
��Æ� in oxygen, it was found to be smooth

(but reconstructed on the atomic-scale) and stable against faceting [12]. While the widely

different partial pressures of oxygen used in the aforementioned studies might make a rig-

orous comparison inappropriate, it is worth noting that the transition from a faceted surface

at ���
Æ� [11] to a partially faceted surface at ����Æ� (the current study) and to a smooth

surface at ����Æ� [12] is consistent with the reduction in anisotropy that is expected at

elevated temperatures. In fact, this transition might be analogous to that observed in the

isostructural compound, halite, for which smooth ����� surfaces are only observed above

���Æ� [13]. In the present and previous studies, Ca was the major impurity and this is

known to segregate to the surface [14]. Reflection electron microscopy experiments have

shown that the step structure on the ����� surface can be altered by Ca segregation [15];

therefore, we must conclude that the exact form of the surface energy function is sensitive

not only to the temperature and partial pressure of oxygen, but also to the concentration of

dissolved (and segregated) impurities.

Although the differences of the relative energies of magnesia surfaces have not been

experimentally quantified, the current observations (�
�) are consistent with the anisotropy

reported for other ceramic compounds, such as LiF (���) [16] and sapphire (�� � ���)

[17,18]. Furthermore, our observations are higher than the anisotropy reported for fcc

metals (����) [19–25], which is expected since it is believed that more energy is required

to break ionic bonds than metallic bonds.
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5.4.4 Polar surfaces

The conventional view is that orientations vicinal to a low index plane have relatively higher

energies because additional bonds must be broken to create a terrace-step structure. How-

ever, our observations show the energy decreases as the orientation deviates from the �����

surface. The observation can be rationalized if we consider that the ����� surface of mag-

nesia is polar (terminated by ions with the same charge). We have previously mentioned

that because a polar surface has a dipole moment, its energies will always be larger than

the energies of other surfaces of the same solid that are either charge neutral or charged,

but lacking a dipole moment [26]. In this case, while the step creation does break addi-

tional bonds, it also introduces ions of the opposite sign and this reduces the surface charge

imbalance. For example, adjacent ����� terraces of the rock salt structure separated by

monoatomic steps are terminated by ions of opposite charge. Thus, a decrease in the sur-

face energy with step density can occur if the gain in electrostatic stability is greater than

the cost of breaking bonds to create steps.
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Chapter 6

Grain Boundary Character and Energy

In this chapter, we discuss the distribution of grain boundary character types extracted from

the triangular mesh of the grain boundary network described in Chapter 3. We compare

the character distribution to previous experimental results and established models for the

grain boundary energy. Established models relating grain boundary character to energy

that we consider are the dislocation model for the energy of low angle grain boundaries,

the hypothesis that the grain boundary is comprised of two surfaces and that its energy

should scale with the sum of the two free surface energies, and the coincidence site lattice

(CSL) model. Finally, we describe the results of the grain boundary energy distribution

reconstructed from the grain boundary triple junction measurements, compare the energies

to the character distribution, and discuss some of the problems associated with the energy

reconstruction.

6.1 Grain boundary character distribution

While the distribution of lattice misorientations is frequently derived from the analysis of

planar sections, grain boundary inclinations are rarely reported for more than a handful

of boundaries [1,2]. Using the experimental techniques described in Chapter 3, we have

83
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determined the geometry and crystallography of a ������ area of the grain boundary

network in the magnesia polycrystal. Thus, we are now in a position to comment on the

areal distribution of grain boundaries over all five mesoscopically observable parameters.

6.1.1 Distribution calculation

To specify the areal distribution of boundary characters over all five parameters, we have

discretized the domain of distinct grain boundaries in the same manner as in the energy

reconstruction described in Chapter 4. The misorientations, each described by three Eu-

lerian angles (��, �,��), were parameterized by ��, ��� �, and �� in the range of zero to

��, �, and ��, respectively. The boundary plane normals (inclinations), described by two

spherical angles, 	 and �, were parameterized by ��� 	 and � in the range of zero to � and

�, respectively. This particular parameterization was used because it yields cells of equal

volume when the parameters are equally partitioned. Within this domain, �� symmetrically

equivalent grain boundaries exist for each combination of five parameters. Thus, the area

of each triangle in the mesh is associated with �� cells within the domain.

After specifying the domain of grain boundary characters, the next step in calculating

the distribution is to tessellate the space into cells, such that each cell represents a discrete

grain boundary type. To choose an appropriate cell size, the cells must be large enough such

that the average cell contains a sufficient number of observations to be statistically signif-

icant and small enough such that they maintain an adequate resolution over the domain.

Assuming that for each boundary between adjacent sections the grain boundary elements

can typically be specified by two discrete boundary characters, then we have � � � ���

observations. Thus, by taking ��� 	 ��� 	 �� 	 ��Æ, and ����� 	 ���� 	 	 ���,

on average there are about ��� observations per cell with a resolution of approximately ��Æ.

To determine the distribution, the area from each triangle in the mesh is summed in each

of the �� symmetrically equivalent cells that correspond to the character specified by the

misorientation and boundary normal of the element. After the areas of all mesh elements

have been summed in the appropriate cells, the cells are normalized such that the average

value is one. Thus, because the cells are of equal volume, the cell values now represent
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multiples of a random distribution (MRD). We can now determine the MRD value for any

grain boundary type. By specifying the character of a grain boundary, the MRD value is

given as the average of the MRD values of the corresponding �� symmetrically equivalent

cells within the domain.

6.1.2 Distribution of boundary types

Because the distribution of boundary types is a function of five parameters, it is difficult to

examine the entire space. If we consider the distribution of misorientations alone, averaged

over the space of inclinations, a strong peak is exhibited at low angle misorientations (�
��� random at maximum). Furthermore, large angle misorientations ( ��Æ) primarily

consisted of those described by rotations about ����� due to the sample’s axial texture.

To probe the distribution over all five mesoscopically observable parameters, we use the

following scheme. A fixed misorientation is chosen based on an axis-angle pair, and the

distribution of inclinations are plotted on an inverse pole figure. Figs. 6.1–6.3 show the

distribution of inclinations for rotations about the low index axes, ����, ����, and ����,

respectively, and Fig 6.4 shows the distribution for rotations about ����, which lies in

the center of the three low index axes. The distribution of inclinations for more fixed

misorientations can be found in Appendix C.

In Fig. 6.2a, which shows the distribution of inclinations for a �Æ misorientation about

����, we observe that the distribution is high along the great circle ��Æ from the misori-

entation axis (����), which are inclinations from ����� (A), through ����, to ����� (B).

Because these inclinations are perpendicular to the misorientation axis, they correspond to

pure tilt boundaries. Furthermore, the plot shows that there is a particular preference for

����� type tilt boundaries (A and B). However, there is an inherent problem with probing

the distribution along a particular axis for a low angle misorientations using the current

parameterization and discretization scheme. In the space of Euler angles, the angular dis-

tance between misorientation axes goes to zero as the misorientation angle approaches

zero. In other words, the discrete cells in the sub-domain of boundary space that corre-

spond to misorientations of less than approximately ��Æ contain all possible misorientation
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Figure 6.1: Contour plots in stereographic projection of the grain boundary character dis-
tribution for misorientations with rotations of (a) �, (b) ��, (c) ��, and (d), ��Æ about ����.
The value of the distribution increases as the shading in the plots varies from dark to light,
and the scale bar shows the contour values.



Chapter 6. Grain Boundary Character and Energy 87

A

B

Figure 6.2: Contour plots in stereographic projection of the grain boundary character dis-
tribution for misorientations with rotations of (a) �, (b) ��, (c) ��, and (d), ��Æ about ����.
The value of the distribution increases as the shading in the plots varies from dark to light,
and the scale bar shows the contour values. The labels are described in the text.
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Figure 6.3: Contour plots in stereographic projection of the grain boundary character dis-
tribution for misorientations with rotations of (a) �, (b) ��, (c) ��, and (d), ��Æ about ����.
The value of the distribution increases as the shading in the plots varies from dark to light,
and the scale bar shows the contour values.
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Figure 6.4: Contour plots in stereographic projection of the grain boundary character dis-
tribution for misorientations with rotations of (a) �, (b) ��, (c) ��, and (d), ��Æ about ����.
The value of the distribution increases as the shading in the plots varies from dark to light,
and the scale bar shows the contour values.
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Figure 6.5: Contour plot in stereographic projection of the distribution of misorientation
axes for low angle (� ��Æ) misorientations. The value of the distribution increases as the
shading in the plots varies from dark to light, and the contour values are given on the scale
bar.

axes. Therefore, the plots for �Æ of misorientation in Figs. 6.1a–6.4a are generated from

approximately the same cells in the sub-domain. Varying the axis of misorientation in this

region does not have a substantial effect on the distribution calculation, except to change

the symmetry conditions and the tilt and twist components of the inclinations. Therefore,

to resolve the effect of different misorientation axes on the distribution of inclinations for

low angle misorientations, a different parameterization or finer discretization would be re-

quired. We have, however, determined the distribution of misorientation axes for grain

boundaries with a misorientation angle less than ��Æ, which is shown in Fig. 6.5. From the

plot in Fig. 6.5, we observe that the misorientation axes for low angle grain boundaries are

restricted to those greater than approximately ��Æ from ����� and ��Æ from �����, with a

strong maximum at �����. Because the ����� misorientation axes have the strongest repre-

sentation in the low angle regime, we conclude that Fig. 6.2a is and adequate representation

of the inclination distribution for low angle misorientations about ����. Furthermore, for

the ����, ����, and ���� axes, the calculated distribution may not be representative of the

actual distribution at low angle misorientations.

Fig. 6.2a also shows local maxima in the distribution for boundaries with ����� in-

clinations. From the other plots in Figs. 6.1–6.4, we see that this trend appears for every
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Figure 6.6: Normalized values of the grain boundary character distribution as a function of
the minimum angular deviation of the two boundary plane normals from �����, 	���.

fixed misorientation shown. In fact, with the exception of the ����� peaks in the plots corre-

sponding to �Æ misorientations, the maxima in each plot correspond to grain boundaries that

have one or both boundary planes near �����. However, the plots in Figs. 6.1–6.4 represent

a small fraction of the entire grain boundary space. To demonstrate that this trend per-

sists over the entire space, we have examined the dependence of the distribution (<��
� ���)

on the minimum angular deviation of the two boundary plane normals from ����� �	����

for the boundary characters that correspond to the center of all cells in the sub-domain of

the boundary space. However, since we are interested in the effect of only the inclination

parameters on the distribution, we first need to remove the bias from the misorientation

texture. For each fixed misorientation, (<��
� ���) was normalized by dividing by the value

of the distribution when only misorientations are considered (<��
�). The dependence of

the normalized distribution on 	��� is illustrated in Fig. 6.6. For equal increments of 	���,

the average of all the normalized values of the distribution are shown on the plot and the

error bars correspond to one standard deviation above and below the mean. From the plot,

we see that boundaries with a plane normal near ����� are typically twice as populated as
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Figure 6.7: Contour plot in stereographic projection of the crystallographic distribution of
triple line directions. The value of the distribution increases as the shading in the plots
varies from dark to light, and the contour values are given on the scale bar.

the average boundary for each particular misorientation, and this value decreases as 	���

increases.

In addition to the distribution of grain boundary types, we can calculate the crystallo-

graphic distribution of triple line directions from the experimental measurements of grain

boundary triple junctions described in Chapter 3. The distribution, which is shown in Fig.

6.7, exhibits a maximum at ����� of approximately ��� times random. This result should

be expected considering the preference for grain boundaries with ����� inclinations. If

two grain boundaries with ����� inclinations meet at a triple junction, the triple line direc-

tion must also be �����. Therefore, the peak in the crystallographic distribution of triple

junctions at ����� further illustrates the general preference for grain boundaries with �����
inclinations.

The apparent trend of preferred inclinations appears to be consistent for all fixed mis-

orientations. While it is well known that grain boundary misorientations are not necessarily

distributed randomly over the domain of possibilities, the current results illustrate that the

inclinations of the grain boundaries can also exhibit texture. In the following sections, we

shall address the question of whether or not certain points in the grain boundary space are

preferentially occupied because they represent low energy configurations. We shall attempt
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to reconcile the distribution results with what we know about the grain boundary energy of

magnesia.

6.2 Comparison with previous results of boundary energy

In Chapter 2, a number of theoretical predictions and experimental results concerning the

energy of grain boundaries were reviewed. To explore the idea that the volumes of grain

boundary space with high populations represent low energy configurations, we shall com-

pare the observed distribution of boundary types with hypothetical grain boundary energies.

6.2.1 Dislocation model

The Read-Shockley model [3] predicts that the energies of grain boundaries with low mis-

orientation angles (��) will vary with the density and energy of the dislocations that com-

pensate for the misfit. The number and type of dislocations required for a given grain

boundary ultimately depends on both the misorientation and the boundary plane. Thus, by

determining the dislocation densities for low angle boundaries we can estimate the relative

energy variation and compare it to the observed distribution.

Dislocation density calculation

To calculate dislocation densities we have utilized Frank’s formula for a general grain

boundary [4]. Given the boundary character (�
� ��) and a set of three noncoplanar Burgers

vectors (1�), the formula allows the density and orientation of the �	
 set of dislocations

(corresponding to 1�) that make up the boundary to be determined. The dislocation model,

��, is calculated from

�� 	 1
�

� � =� ��� � 1�� � =�� (6.1)

where = is the misorientation axis, � is the boundary plane normal, and 1�� are the reciprocal

vectors given by

1�� 	
1� � 1�

1� � 1� � 1� � (6.2)
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with similar relations for 1�� and 1�� obtained by rotating subscripts. The magnitude and

direction of the vector �� specify the density and orientation, respectively, of the �	
 set of

dislocations. The density is given by 	����, where 	 is the misorientation angle, and the

direction of �� is normal to the dislocation lines.

For magnesia, we have considered dislocations with 1 	 �������� and 1 	 ��������;
therefore, there exist many possible combinations of three noncoplanar Burgers vectors

each corresponding to a different dislocation model. To find the “best” model we evaluated

all possible combinations, and the one which yielded the lowest density was considered

to be correct. The plots in Figs. 6.8–6.11 show the calculated dislocation densities for

boundary planes with misorientations corresponding to a �Æ rotation about ����, ����,

����, and ����, respectively. In Fig. 6.9a, which shows the dislocation densities for a �Æ

misorientation about ����, we observe that the densities are lowest for pure tilt boundaries,

from ����� (A), through ����, to ����� (B), and highest for pure twist, ���� (C) and ������

(D). These trends are also apparent in the other misorientation axes shown. Furthermore,

misorientations about the low index axes exhibit particularly low densities for ����� type

tilts.

Distribution comparison

Although we have not differentiated between edge and screw type dislocations, which may

have different energies, the plots in Figs. 6.8–6.11 show the total dislocation density, which

should be at the very least a rough indication of the relative grain boundary energy. The

plots show that the dislocation density is lowest for tilt boundaries. Therefore, we can as-

sume that these boundaries have low energies compared to other boundary planes at the

same misorientation. Conversely, the dislocation densities are highest for twist bound-

aries, and these boundaries should have relatively high energies. However, to make the

comparison with the character distribution, we have to again consider the ambiguity in

the misorientation axes for low angle misorientations in the distribution. As we discussed

above, the distribution grain boundaries at low angle misorientations is strongly biased by

����� misorientation axes. Thus, for the ����, ����, and ���� axes at low misorientation

angles, the calculated distribution may not be representative of the actual distribution; only
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Figure 6.8: Calculated dislocation densities plotted in stereographic projection for the mis-
orientation corresponding to a �Æ rotation about ���� are shown in (a). The density in-
creases as the shading in the plots varies from dark to light. The contour values are shown
in the scale bar and have units of /��>?����?������. For reference the grain boundary
character distribution is shown in (b).

A C

D B

Figure 6.9: Calculated dislocation densities plotted in stereographic projection for the mis-
orientation corresponding to a �Æ rotation about ���� are shown in (a). The density in-
creases as the shading in the plots varies from dark to light. The contour values are shown
in the scale bar and have units of /��>?����?������. The labels are described in the text.
For reference the grain boundary character distribution is shown in (b).
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Figure 6.10: Calculated dislocation densities plotted in stereographic projection for the
misorientation corresponding to a �Æ rotation about ���� are shown in (a). The density
increases as the shading in the plots varies from dark to light. The contour values are shown
in the scale bar and have units of /��>?����?������. For reference the grain boundary
character distribution is shown in (b).

Figure 6.11: Calculated dislocation densities plotted in stereographic projection for the
misorientation corresponding to a �Æ rotation about ���� are shown in (a). The density
increases as the shading in the plots varies from dark to light. The contour values are shown
in the scale bar and have units of /��>?����?������. For reference the grain boundary
character distribution is shown in (b).
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the distribution in Fig. 6.9b (�Æ about ����) is an adequate representation the inclination

distribution for small angle misorientations. By comparing the calculated dislocation den-

sities in Fig. 6.9a with the distribution in Fig. 6.9.b, we find that highly populated regions

of the distribution, which correspond to tilt boundaries (especially ����� type tilts), are

also the regions of low energy indicated by low dislocation densities. Furthermore, for the

underpopulated regions in the vicinity of the pure twist boundaries, the dislocation densi-

ties, and therefore the energies, are high. This result supports the idea that the population

of boundaries is controlled by the boundary energies and that highly populated boundary

types correspond to low energy configurations. There are, however, also maxima in the

distribution at ����� inclinations, which are not predicted by the dislocation densities. The

preference for these boundary types is addressed the next section. In general, we find that

at low angle misorientations, the distribution we observe should correspond to a configu-

ration of reduced boundary energy (relative to a random configuration) as predicted by the

dislocation densities.

6.2.2 Boundary energy derived from the surface energy

The energy of a grain boundary, ���, can be thought of as the sum of the energies of the two

surface planes, ��� , minus a binding energy, "�, which is the energy that is recovered from

creating bonds when the two surfaces are joined to form the boundary, ��� 	 ��������"�.

For general grain boundaries, those not near “special” crystallographic positions, the bind-

ing energy can be approximated as a constant value, and the boundary energy should scale

linearly with the sum of the energies of the two surfaces. This should be a reasonable ap-

proximation because, for a general grain boundary, the combined repeat units of the two

surfaces making up the boundary will not form a commensurate structure. Therefore, es-

sentially every atom on the boundary plane will be subject to a different set of interatomic

forces. Since the contributions from different atoms can vary only between certain limits

and the interatomic forces will be averaged over a very large number of atoms, the energy

recovered by forming the boundary ("�) will average to a constant. Note that the approxi-

mation does not hold for grain boundaries near “special” crystallographic positions where
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there are substantially fewer broken or distorted bonds than a general boundary. However,

these boundaries are rare in random polycrystals [5] and, therefore, are of questionable sig-

nificance. Although there are no experimental data that substantiate this relationship, it has

been demonstrated in the results of calculated energies for fcc metals reported by Wolf [6].

We have already demonstrated that the boundary distribution decreases as the minimum

angular deviation of one of the boundary planes from ����� increases. Furthermore, in

Chapter 5 we have shown that the surface energy is minimum at ����� and increases as ori-

entation deviates from this orientation and maximizes at �����. Thus, from these trends it

appears that the distribution may vary inversely with the boundary energy derived from the

sum of the two surface energies. Therefore, to facilitate a more detailed analysis, we have

calculated hypothetical grain boundary energies based on the surface energies determined

from the capillarity vector reconstruction method in Chapter 5.

Energy calculation

To calculate a grain boundary energy from the surface energies, we first specify the bound-

ary in terms of �
� ��. Given (�
� ��), we determine the boundary plane normal with respect

to the second crystallite (��� 	 �
� ��). We then calculate the surface energy for both �� and

���, and since we have no knowledge of the magnitude or variability of the binding energy,

the grain boundary energy is simply taken to be the sum of these two energies. Figs. 6.12–

6.15 show the variation of these energies with inclination for misorientations corresponding

to rotations of ��Æ about ����, ��Æ about ����, ��Æ about ����, and ��Æ about ����, respec-

tively. For reference, the variation of the character distribution for these misorientations is

also shown on the plots. The distribution of the hypothetical boundary energy derived from

the surface energies for more fixed misorientations can be found in Appendix C.

Distribution comparison

From the plots in Fig. 6.12 (��Æ about ����), we observe that the hypothetical grain bound-

ary energy varies inversely with the character distribution. For ����� inclinations, the sum

of the surface energies of the two boundary planes is low, while the character distribution

has maxima at these positions. Further, the opposite occurs at ����� inclinations (indicated
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Figure 6.12: Hypothetical grain boundary energies derived from the surface energies plot-
ted in stereographic projection for the misorientation corresponding to a ��Æ rotation about
���� are shown in (a). The density increases as the shading in the plots varies from dark to
light, and the contour values are shown in the scale bar. The markers are described in the
text. For reference the grain boundary character distribution is shown in (b).

A

Figure 6.13: Hypothetical grain boundary energies derived from the surface energies plot-
ted in stereographic projection for the misorientation corresponding to a ��Æ rotation about
���� are shown in (a). The density increases as the shading in the plots varies from dark to
light, and the contour values are shown in the scale bar. The label is described in the text.
For reference the grain boundary character distribution is shown in (b).
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Figure 6.14: Hypothetical grain boundary energies derived from the surface energies plot-
ted in stereographic projection for the misorientation corresponding to a ��Æ rotation about
���� are shown in (a). The density increases as the shading in the plots varies from dark to
light, and the contour values are shown in the scale bar. For reference the grain boundary
character distribution is shown in (b).

Figure 6.15: Hypothetical grain boundary energies derived from the surface energies plot-
ted in stereographic projection for the misorientation corresponding to a ��Æ rotation about
���� are shown in (a). The density increases as the shading in the plots varies from dark to
light, and the contour values are shown in the scale bar. For reference the grain boundary
character distribution is shown in (b).
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in Fig. 6.12 by open circles). In these cases, the sum of the two surface energies is high,

and the population of grain boundaries is low. From the other plots in Figs. 6.13–6.15,

we see that the hypothetical energy variation is almost exactly the inverse of the character

distribution at each fixed misorientation shown.

Although for the fixed misorientations shown in Figs. 6.12–6.15 it appears that there

is an inverse relationship between the sum of the surface energies of the two boundary

planes and the character distribution, it is important to examine the relationship over the

entire parameter space. Therefore, we shall consider the values of the distributions for the

boundary characters that correspond to the center of all cells in the sub-domain of the pa-

rameter space. Further, we remove the bias from the misorientation texture by normalizing

the character distribution <��
� ��� at each fixed misorientation by dividing by the value of

the distribution when only misorientations are considered (<��
�). Next, to quantify the

extent of the relationship we have used the Spearman rank-order correlation coefficient, ��

(SPEAR [7]). For � pairs of measurements �-�� .��,

�� 	


�
����2� � �2��@� � �@��
�

����2� � �2��
�
�

����@� � �@��
� (6.3)

where 2� is the rank of -� among other -’s, and @� is the rank of .� among other .’s. The

values of �� range from �� to �, which indicate perfect negative and positive correlation,

respectively, and for �� 	 �, no correlation exists. Comparing the hypothetical grain bound-

ary energy and the normalized character distribution, we find an �� equal to ���
�, which

is indicative of a high degree of (negative) correlation and a marked relationship between

the two distributions [8].

Although there is substantial correlation between the hypothetical grain boundary en-

ergy and the character distribution, there are grain boundary types for which the relationship

does not hold. For example, in Fig. 6.13 (��Æ about ����), both distributions are high at

����� (A). In this case, the other boundary plane normal is very close to ����. In fact, we

find that, in general, the distributions deviate from each other when one of the boundary

plane normals is near ����� and one is far from �����. If we assume that the boundary

energy model is correct, these differences can be attributed to inaccuracies in the charac-

ter distribution or the reconstructed surface energies. Because the character distribution is
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calculated directly from the experimental measurements, we assume that it is more accu-

rate than the reconstructed surface energies. From our observations of orientation stability

in Chapter 5, we found that the extent of the energy cusp at ����� was probably under-

estimated in the surface energy experiment. It follows that for all boundaries with one or

both plane normal near ����� the grain boundary energy derived from the sum of the two

surfaces energies can be considered an overestimate. Considering this, the maxima in the

character distribution corresponding to plane normals near ����� at all fixed misorienta-

tions can be attributed to a low grain boundary energy estimated by the sum of the surface

energies of the two boundary planes.

The population of “random” boundaries, which are the majority of possible boundary

types, exhibits a negative correlation with the hypothetical grain boundary energy estimated

from the surface energies. Assuming that the boundary energy model is correct, this sug-

gests that the grain boundary character distribution that developed during grain growth is

controlled by the grain boundary energies. Conversely, if we assume that the distribution

we observe corresponds to a configuration of reduced boundary energy, then the sum of the

surface energies of the two boundary planes is an excellent indicator of the grain boundary

energy anisotropy at a fixed misorientation. Finally, between the hypothetical grain bound-

ary energy derived from the surface energies and the variation in the dislocation densities

at low angle boundaries, the majority of the variability in the character distribution can be

attributed to variations in the grain boundary energy.

6.2.3 Coincidence site lattice (CSL) model

Although the dislocation densities at low angle boundaries and the boundary energy as

the sum of the two surface energies explain most of the variation over the five parameter

grain boundary space, it is common to view grain boundaries in terms of the CSL model.

Therefore, even though these boundaries comprise a very small fraction of the possible

boundary types, we shall compare the observed character distribution to the existing results

from CSL boundaries in magnesia. In Chapter 2 a number of studies were reviewed that

focused on the energy of grain boundaries in magnesia [9] and isostructural nickel oxide
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[10–12] with low � CSL misorientations where the boundary plane was known. The studies

showed that grain boundaries with misorientations near low � CSLs were not necessarily

associated with low energy. Only some grain boundaries with special boundary planes

corresponding to a high density of coinciding sites across the boundary were determined

to have lower energy. Thus, assuming that the distribution of boundaries is controlled by

the energy, we expect the population of grain boundary misorientations to be independent

of CSL misorientation. Only in case of “special” boundary planes might we see a higher

density of boundary characters.

Distribution comparison

Table 6.1 lists the values of the distribution for misorientations alone (<��
�) for the CSL

misorientations up to ��� and shows that the population of these misorientations are not

significantly higher than random. The CSL misorientations that are greater than random

correspond to rotations about �����, and are high due to the ����� texture of the sample.

This is consistent with the idea that a boundary with a near-CSL misorientation does not

necessarily have low energy. However, we have also listed the values of the five parameter

distribution (<��
� ���) for the boundaries that have either been determined experimentally

or calculated in either magnesia or nickel oxide to have low energies. With the exception

of ��, all of these are greater (����� ��) than the averaged distribution for that particular

misorientation. Thus, there appears to be a preference for special boundary planes at CSL

misorientations. The ratios <��
� ����<��
� are similar to the values for grain boundaries

with boundary planes near ����� (��). It should be noted that our ability to observe the

distribution of boundaries corresponding to �� with �� 	 ����� is limited by the sample

geometry. Because the experiment was conducted by sectioning along the axis of the �����
sample texture, ����� twist boundaries have the greatest probability of being parallel to the

section plane and are less likely to be observed.

If we again assume that the character distribution we observe corresponds to a configu-

ration of reduced boundary energy, the results of the character distribution for low � CSL

boundaries suggest that a CSL misorientation alone has no effect on boundary energy. Only

for special grain boundary planes with a high density of coinciding sites should a reduction
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in boundary energy be observed. However, in general, these boundaries are insignificant

because they are extremely rare in random polycrystals. Furthermore, these results are con-

sistent with previous experimental evaluations of grain boundary energy in materials with

a rock salt crystal structure.

Table 6.1: Distribution of CSL boundaries.

� �
 <��
� �� <��
� ���

� ����� �����Æ ���� ���� ����

� ����� �����Æ ���� ���� ����


 ����� �����Æ ��
� N/A N/A

� ����� �����Æ ���� ����� ��
�

�� ����� ������Æ ���� ����� ����

6.3 Reconstructed grain boundary energies

From the experimental measurements of grain boundary triple junctions described in Chap-

ter 3, we can also obtain relative boundary energies by reconstructing the grain boundary

energy distribution. However, due to the limited number of triple junctions and the texture

throughout the five parameter space, large volumes of the grain boundary parameter space

will be significantly underpopulated. Therefore, the accuracy of the reconstructed ener-

gies, especially in the underpopulated regions of the parameter space, will be questionable.

We have, however, reconstructed the energies using the capillarity vector reconstruction

method and compared the results to the observed population of grain boundary characters.

6.3.1 Energy reconstruction

We have applied the capillarity vector reconstruction method to the grain boundary triple

junctions measurements. To apply the reconstruction procedure, we used the same sub-

domain of grain boundary characters with the same discretization that was used in the
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energy reconstruction with simulated data in Chapter 4 and in the grain boundary distribu-

tion calculation described above. The relaxation factor for the iterative solution was chosen

as ten times the inverse of the maximum number of equations that any one interfacial char-

acter was involved in, and the iteration process was stopped when the change in the sum of

the magnitude of all of the deviations vectors is less than 1% of the change during the first

iteration. The iteration process converged after �
� steps. For each grain boundary type,

the energy was taken as the average of all �� symmetrically equivalent cells that correspond

to the boundary type.

6.3.2 Energy function

The reconstruction from the simulated data discussed in Chapter 4 shows that with the

current data density and discretization of grain boundary space, the energy reconstruction

procedure reproduces the general trends in the function; however, the relative anisotropies

are severely underestimated. Furthermore, the simulated data was generated such that the

grain boundaries were more or less evenly distributed through the space. This is not the

case for the real data set. As one would expect, the texture we observed in the character dis-

tribution also occurs in the distribution of grain boundary types meeting at triple junctions.

Therefore, the relative anisotropy predicted by the reconstructed energies will be underes-

timated, and the reliability of the energies, especially in the underpopulated regions, will

be questionable. Taking these potential problems with the reconstruction into considera-

tion, we proceed with the analysis of the reconstructed energies. Figs. 6.16–6.19 show

the reconstructed relative grain boundary energies for rotations of �, ��, ��, and ��Æ about

�����. For reference the character distribution results are also shown in the figures. The

distribution of the reconstructed grain boundary energy for more fixed misorientations can

be found in Appendix C.

6.3.3 Distribution comparison

Fig. 6.16a shows the reconstructed relative boundary energies for a misorientation corre-

sponding to a �Æ rotation about ����. From the plot, we see that the reconstructed ener-
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Figure 6.16: Reconstructed grain boundary energies plotted in stereographic projection for
the misorientation corresponding to a �Æ rotation about ���� are shown in (a). The density
increases as the shading in the plots varies from dark to light, and the contour values are
shown in the scale bar. The labels are described in the text. For reference the grain boundary
character distribution is shown in (b).

Figure 6.17: Reconstructed grain boundary energies plotted in stereographic projection for
the misorientation corresponding to a ��Æ rotation about ���� are shown in (a). The density
increases as the shading in the plots varies from dark to light, and the contour values are
shown in the scale bar. For reference the grain boundary character distribution is shown in
(b).
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Figure 6.18: Reconstructed grain boundary energies plotted in stereographic projection for
the misorientation corresponding to a ��Æ rotation about ���� are shown in (a). The density
increases as the shading in the plots varies from dark to light, and the contour values are
shown in the scale bar. For reference the grain boundary character distribution is shown in
(b).

Figure 6.19: Reconstructed grain boundary energies plotted in stereographic projection for
the misorientation corresponding to a ��Æ rotation about ���� are shown in (a). The density
increases as the shading in the plots varies from dark to light, and the contour values are
shown in the scale bar. For reference the grain boundary character distribution is shown in
(b).
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gies are lowest for pure tilt boundaries, from ����� (A), through ����, to ����� (B), and

highest for pure twist, ���� (C) and ������ (D). The opposite trends are observed in char-

acter distribution, where tilt boundaries are highly populated, while relatively few twist

boundaries were observed. Furthermore, low relative energies at boundaries with planes

normal to ����� are also exhibited in Fig. 6.16a, as well at the other fixed misorientations

(Figs. 6.17a-6.19a). As previously discussed, these boundaries correspond to maxima in

the character distribution. Thus, it appears that reconstructed energy does exhibit some

inverse correlation with the character distribution. This would indicate the microstructure

has evolved to a reduced energy configuration during grain growth. There are, however,

definite deviations from this correlation. For example, Fig. 6.16b shows distinct maxima in

the character distribution at ����� tilt boundaries, while the reconstructed energy for these

boundaries is higher than all other tilt boundaries.

To illustrate the average relationship between the population and reconstructed ener-

gies, we again consider the character types corresponding to center of the cells in the sub-

domain of the five parameter space. After discretizing the range of energies into equal

partitions, we determined the mean and standard deviation of ���< � �� for all boundaries

in each partition. This procedure allows us to examine the correlation over the entire space,

and the results are illustrated in Fig. 6.20. The plot convincingly shows that as ��� in-

creases, < decreases. Furthermore, we can quantify the extent of the relationship between

the two distributions over the entire parameter space using the Spearman rank-order corre-

lation coefficient, ��. We have calculated �� between the two distributions equal to ���

,

which is indicative of a high degree of (negative) correlation. However, if we normalize

the distributions at each fixed misorientation, we find �� to be only �����. Therefore, there

appears to be only low to moderate correlation over the boundary plane normals alone and

most of the correlation arises from the fact that, on average, the distributions vary inversely

over the misorientation parameters (�� 	 �����). This is most likely due to the fact with

the current data and reconstruction procedure, we are much more likely to estimate the mis-

orientation dependence accurately than the variation over the inclination parameters. The

estimated experimental errors in the misorientation calculation (� � ���Æ) are significantly

less than those associated with determining the boundary plane normal (� � ��Æ). Fur-
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Figure 6.20: Values of the grain boundary character distribution as a function of recon-
structed grain boundary energies.

thermore, we expect variations with larger amplitudes over the misorientation parameters,

which are more likely to be reconstructed accurately.

In general, the reconstructed relative grain boundary energies and the character distribu-

tion exhibit a high degree of (negative) correlation over the five parameter grain boundary

space. If we assume that the reconstructed energies are reasonable, then the correlation

is further evidence that the microstructure has evolved to a reduced energy state during

grain growth. By reinforcing the assumption that the character distribution corresponds

to a reduced energy configuration, the correlation also further substantiates the validity

of the energy models discussed above, which we have also found to possess strong in-

verse correlations with the character distribution. Finally, the observation of strong inverse

correlations between the grain boundary character distribution and energies lead us to the

conclusion that, for the polycrystalline magnesia sample, grain boundary energy was the

primary factor influencing grain growth and the distribution of grain boundaries in the final

state microstructure.
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Chapter 7

Summary

The fundamental thermodynamic driving force for the formation and evolution of mi-

crostructures in polycrystalline materials is provided by the excess free energy per unit

area associated with interfaces. Data relating the energy of these interfaces to their char-

acter are required to ultimately understand, predict, and control microstructural evolution.

The objective of this thesis is to determine the population and relative excess free energy

of all physically distinct surfaces and grain boundaries in a polycrystalline magnesia sam-

ple. These data have allowed us to identify the underlying mechanisms that determine

interfacial energy anisotropy and control microstructural evolution.

The experimental techniques developed to acquire the geometric and crystallographic

data necessary to specify the interfacial character and energy distributions rely on using

electron backscattered diffraction patterns (EBSP) to determine the interfacial crystallog-

raphy and traditional microscopy techniques, such as scanning electron microscopy (SEM)

or atomic force microscopy (AFM), in concert with serial sectioning to characterize the

three dimensional interfacial geometry. Using these techniques, all of the unknowns in the

local equilibrium condition for triple junctions except for the interfacial energies and their

derivatives can be determined. The techniques, which should be applicable to any polycrys-

tal, were applied to a polycrystalline magnesia sample. The geometric and crystallographic
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measurements required to determine the relative surface energy anisotropy were made on

circumferential thermal grooves where it is assumed that the grooves are in local equilib-

rium and that the grain boundary energy is independent of its boundary plane. To determine

the grain boundary character and energy distribution, we have developed techniques that

allow the geometry and crystallography of a large quantity of contiguous crystallites to be

determined in three dimensions. From the geometric and crystallographic configuration

of these crystallites, it is possible to specify the grain boundary character distribution and

the triple junction information required for the extraction of the relative grain boundary

energies.

We have applied both continuous and discrete methods to reconstruct the character de-

pendence of the relative interfacial energies from the microscopic observations at triple

junctions. The continuous method involved representing the energy variation as a trigono-

metric series of finite order with linear coefficients. By substituting the series represen-

tation into the local equilibrium condition, the unknown coefficients of the series were

determined as those that best fit the experimental observations. In the discrete method, the

space of interfacial characters was tessellated into cells. Each cell is considered to be a

single interfacial character and an unknown in a system of linear equations based on the

local equilibrium condition. The energy for each cell is then determined using an iter-

ative procedure to solve the system of equations. To test the reconstruction procedures,

we have generated simulated triple junctions based on model energy functions that mimic

the surface and grain boundary energy measurements. The results suggest that the interfa-

cial energies can be accurately reconstructed and that the discrete method produces more

reliable results. However, the results also suggest that the even the discrete method will

underestimate the true anisotropy of the energies.

The experimental technique developed to determine the anisotropy of the surface energy

was applied to the polycrystalline magnesia specimen. I have applied both the series fit

and discrete reconstruction methods to ��� circumferential thermal grooves equilibrated

at ����Æ�. Both results produce a surface energy function that has a minimum at �����

and a maximum at �����. However, the capillarity vector results (��������� 	 ���
 �
���� and ��������� 	 ���
 � ����) suggests larger anisotropies than the results from the
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series fit (��������� 	 ����� � ����� and ��������� 	 ���
� � �����). By comparing

the results from both techniques to the observed faceting behavior, we find that the results

from the discrete method more nearly represent the actual surface energy anisotropy in

the magnesia polycrystal. Furthermore, the observed anisotropy compares favorably to

previous theoretical predictions and experimental results for magnesia surfaces.

Using the techniques developed to determine the geometry and crystallography of large

quantities of contiguous crystallites, we have extracted the grain boundary character distri-

bution from the polycrystalline magnesia specimen that had been annealed for ��& at ����Æ.

Data extracted from ������ of grain boundary area in a volume of ������� has enabled

us to specify the distribution of grain boundaries over all five mesoscopic parameters. We

find that strong texture exists in the space of grain boundary plane normals, a domain that

has not previously been explored. For grain boundaries with low angle misorientations,

the results suggest a preference for tilt boundaries, especially those with boundary plane

normals near �����. For all fixed misorientations, there also appears to be a preference for

boundaries with a boundary plane normal in the vicinity of �����. These boundaries are

typically twice as populated as the average boundary for each fixed misorientation.

To demonstrate that the highly populated boundary types correspond to low energy

configurations, and vice versa, we have compared the observed character distribution to

several models for the relative grain boundary energy. We find that the observed variations

in population are consistent with the dislocation model of boundary energy for low angle

misorientation boundaries. Furthermore, the character distribution correlates (inversely)

with a hypothetical grain boundary energy derived from the sum the surface energies of the

two boundary planes (�� 	 ���
�). This result also demonstrates that, at a fixed misori-

entation, the grain boundary energy can be adequately approximated as the sum of the two

surface energies. The character distribution also compares favorably to the existing results

on the energies of coincidence site lattice (CSL) boundaries. Finally, from the character-

ized volume of material, we have also extracted the geometry and crystallography of �����

grain boundary triple junctions. These data were used to determine the grain boundary

energies using the discrete energy reconstruction method. Although the reliability of the

reconstruction from these data is questionable, there is a substantial (inverse) correlation
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between the reconstructed energies and the character distribution (�� 	 ���

). In general,

we find that, at any fixed misorientation, grain boundaries with ����� boundary planes have

reduced energies, which is probably related to the relatively high coordination number of

atoms on this plane and its low surface energy.

We have found that the grain boundary character distribution exhibits a negative corre-

lation with the relative grain boundary energies derived from the dislocation densities for

low angle misorientations and from the sum of the reconstructed surface energies of the

two boundary planes for all fixed misorientations. Assuming that the models are correct,

then the majority of the variability in the character distribution can be attributed to vari-

ations in the grain boundary energy, and the microstructure evolved to a reduced energy

configuration during grain growth. The strong negative correlation we observe between

the character distribution and the reconstructed grain boundary energies also provides ev-

idence that the microstructure has evolved to a reduced energy state during grain growth.

These (inverse) correlations demonstrate that boundary energy was the primary factor in-

fluencing grain growth and the distribution of grain boundary characters in the final state

microstructure. Furthermore, if the character distribution we observe does, in fact, cor-

respond to a reduced energy configuration, then the combination of the dislocation model

and sum of the two surface energies model for the grain boundary energy would reasonably

estimate the energy over all five mesoscopic parameters. If this is true, then the problem

of determining grain boundary energies would be greatly simplified. To estimate the grain

boundary energy anisotropy (five parameters) for any material, one would only have to de-

termine the surface energies (two parameters) and have some knowledge of the dislocation

slip systems.



Appendix A

Thermal Groove Measurements

In this appendix, we shall describe a facile method of measuring the surface geometry of

thermal grooves using atomic force microscopy (AFM). First, procedures for minimizing

the error in the geometric measurements are described. To test the validity of these pro-

cedures, both kinetic and static observations of thermal grooves were made on ceramic

polycrystals. These observations are presented and compared to previous results using

more labor intensive techniques. Finally, we shall examine the misorientation dependence

of relative grain boundary energy given by groove geometries in selected polycrystalline

ceramics.

A.1 AFM imaging

The microscope used in this thesis was capable of making topographic, contact AFM im-

ages at any point on a sample surface in a ������� area. This instrument consisted of a

Digital Instruments StandAlone AFM (SAA-125) positioned above the sample mounted

on an X-Y translation stage (Burleigh Instruments TSE-150) capable of reproducibly po-

sitioning the sample with ���� resolution. The advantage of this system is that once a

coordinate system and reference frame are established (with respect to an intentionally in-
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troduced fiducial mark), it is possible to return to identical positions on the sample surface

after repeated thermal treatments or to position the sample based on lower resolution data

from the AFM or other microscopes. Si�N� cantilevers (DI Model LNP) were used as

probes.

A.1.1 Error analysis

AFM is a facile tool for measuring the surface geometry of thermal grooves; however,

when attempting to make quantitative measurements of thermal groove geometry with an

AFM, there are factors that potentially contribute to errors in the measurements. These

factors include the scanner calibration, the information density of the image, the definition

of the surface normal, the background subtraction, the convolution of the tip shape with the

sample surface, and the use of a linear fit to determine the slope at the groove root. Each of

these experimental factors, and the procedures used to minimize their impact, are described

briefly below.

Scanner calibration

The lateral and vertical calibrations for our AFM were established using a lithographically

produced standard grating supplied by the manufacturer. The calibration was checked for

consistency with the scanners on other microscopes in our lab, which have been calibrated

using surface crystallographic features [1].

Information density

The second consideration is the information density of the images from which the measure-

ments are made. The topographic data are collected pixel-by-pixel and the lateral resolution

limit is determined by the pixel spacing. Groove measurements were made using images

composed of 512 lines, with 512 pixels per line, and linear dimensions of � to ��'�.

Therefore, the lateral resolution limit is between � and ���� and the shape of each groove

is defined by a minimum of �� pixels. Typically, groove traces consisted of several hundred

pixels. In the vertical dimension, height differences of less than ��� are typically resolved.
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Definition of surface normal

Since the objective is to measure topographic deviations from the average surface plane, it

is important that the sample has flat, parallel surfaces and that the surface plane is parallel

to the AFM scanning plane. Because the AFM scanning plane is somewhat arbitrary in

that it can be altered with the instrumental tilts, we make sure that the sample has two flat,

parallel surfaces before the measurement. This is accomplished by polishing the sample

using an automatic polisher (Logitech, PM5) and measuring the deviations from planarity

using an inductive axial movement gauge head (TESR, Model TT22) with a resolution

of ���'�. Based on these macroscopic measurements, samples can be prepared which

are flat to ����'� over lateral distances of ���, and the deviation from parallelism is

undetectable within the resolution limits of the gauge head. After mounting the sample on

the AFM stage, the flat surface then serves as a reference plane and the instrumental tilts

are adjusted so that the angle between the sample surface plane and the image plane is less

than �Æ over a ���'� scan area.

Background subtraction

It is especially important to base geometric measurements on uncorrected topographic data.

Many AFM operating systems automatically subtract background planes; an operation that

distorts the actual topography. The only background subtraction used for our measurements

was a constant offset that was applied equally to each pixel. This operation is used to center

the contrast range and does not distort the topography.

Probe Convolution

The convolution of the AFM probe shape with the sample surface topography is a well-

known problem in AFM imaging. This problem is greatest when attempting to measure

concave shapes, such as grain boundary grooves. The central issue is illustrated in Fig. A.1.

As the AFM probe descends into the groove, its vertical position is actually determined by

a point on the side of the tip, not by the point at the end of the tip. For relatively steep

and/or narrow grooves, this leads to a systematic underestimation of the depth and slope.



Appendix A. Thermal Groove Measurements 118

-100

-50

0

50

100

300 400 500 600 700 800 900

Z Surface, nm
Z Image, nm
Z Tip, nm

Z
 D

is
ta

nc
e,

 n
m

X Distance, nm

Figure A.1: Illustration of why AFM topographs systematically underestimate the depths
of narrow, deep grooves. Because the point at which the tip contacts the groove surface is
not on the tip axis, the slope of the concave shape and its depth are systematically under-
estimated. Note that the vertical axis is amplified with respect to the horizontal axis; this
aspect ratio distorts the actual shape of the tip, which has an inner angle of ��Æ.

The magnitude of this systematic error depends on the aspect ratios (width to depth) of

the groove and the tip. Using established simulation methods, it is possible to determine

the systematic errors associated with measuring specific shapes with specific probes [2–4].

Thus, we have the choice of either correcting the observed data or finding domains for the

experimental parameters where the errors are small enough to be tolerated.

To explore the errors involved in measuring grooves by AFM, we used the envelope

reconstruction simulation method [2]. We began by developing model surface groove to-

pographies with a variety of dihedral angles and widths using the solution to the quasi-static

groove profile developed by Mullins [5] (see Fig. A.2). We should note that while the ideal

Mullins groove shape is convenient to use, it does not accurately describe the shapes of

grooves with small surface dihedral angles (#� � ���Æ). Robertson’s [6] numerical de-

termination of the quasi-static groove profile shows that for a given dihedral angle and

groove width, the profile predicted by Mullins’ [5] equation is too deep. In other words,



Appendix A. Thermal Groove Measurements 119

Ψs

W

d
β

crystal 1 crystal 2

Figure A.2: Schematic representation of the quasi-static groove profile derived by Mullins
[5].

the Mullins shape is actually more challenging to measure than the expected groove shape.

Thus, by simulating profiles measured from the Mullins [5] groove profile, we can be cer-

tain of obtaining an upper limit for the systematic error. Our two-dimensional model probe

tip is a triangle with an inner angle of ��Æ that is capped by a circle with a radius of ����

(probes with smaller inner angles are commercially available, but not as robust). This shape

conforms to the maximum size specified by the manufacturer and is consistent with high

resolution SEM images of probe tips after use. Again, we choose the most pessimistic

dimensions because we are interested in determining the maximum error. Based on sim-

ulated images of predefined grooves that span the range of expected geometries, we have

calculated the error in the measured groove width, 9 , groove depth, /, and groove angle

�. (These parameters are defined in Fig. A.2) The results, summarized in Fig. A.3, show

that the error in �, determined from measurements of / and 9 , diminishes as the groove

width increases.

Based on the results of the simulations, we draw the following conclusions. First,

the convolution of the tip shape and the surface topography does not create an error in

our measurement of the groove width, 9 . Second, the inner angle of the tip limits the

range of dihedral angles that can be reliably measured to � � ��Æ�#� � 
�Æ�. However,

based on previously reported measurements of dihedral angles, we expect the population
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Figure A.3: A comparison of the values of the angle �, determined from measurements
of 9 and /, with the actual values for model thermal grooves of different width (9 ) and
angle (�). As the grooves become wider, the measured and actual values converge.

of inaccessible boundaries to be very small or non-existent [7]. Finally, we note that as

the boundary width increases, both the depth (/) and the angle (�) are measured with

acceptable accuracy. Based on these results, we confine our observations to grooves with

an average width of greater than �'�.

Direct slope measurement

Finally, we note that determining the dihedral angle from measurements of / and9 , rather

than from direct measurements of �, eliminates the errors associated with measuring the

slope. To compute �, we must determine the slope from at least �� pixels near the groove

root. Because the slope continuously decreases with distance from the groove root, the

averaging necessary for the calculation of a slope leads to a systematic underestimation

of �. This is essentially the same problem analyzed by Handwerker et al. [8] for groove

measurements using other techniques. We can eliminate this particular source of error by
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computing � based on the known relationship between 9 and / determined by Robertson

[6]. While a systematic error in the measurement of / remains, the simulation results show

that it is relatively small. Specifically, the simulation results show that in the worst case,

we underestimate the depth of a �'� wide groove by less than 5%.

A.1.2 Measurement procedure

The consideration of the potential systematic errors leads us to the following procedure

for determining surface dihedral angles. First, the specimens are polished so that they

have two flat, parallel surfaces. Second, thermal treatments are used to groove the surfaces

so that the average width is at least �'�. Before collecting data, the AFM is adjusted

so that the image plane is parallel to the surface plane. Based on low resolution maps

of the surface, the X-Y translation stage is used to seek triple junctions such that AFM

topographs, � to ��'� on each side, can be recorded with an information density of ���

pixels per row and ��� rows. In each image, the triple junction is centered so that there

are three grain boundaries. We then measure the geometry of each boundary by selecting

linear traces over each of the three boundaries, and searching the traces for maximum and

minimum points at each groove. This procedure is illustrated graphically in Fig. A.4.

Using three traces over each boundary provides three measurements of 9 and / for each

groove, which are averaged to yield final values from which the surface dihedral angle is

determined. In several cases, we made �� measurements of 9 and / at different positions

along boundaries with some curvature, where there are potential differences in the indices

of the free surfaces bounding the groove and in the grain boundary tangent plane. Based

on such measurements, we estimate that the standard deviation resulting from measuring

different positions in the same groove is �Æ in #�. When this process was repeated on

straight boundaries, where all three of the interfaces bounding the groove remain constant,

the standard deviation associated with the random errors in our measurement procedure is

�Æ in #� for each boundary.



Appendix A. Thermal Groove Measurements 122

2.0
4.0

6.0
8.0

0.0

2.0

4.0

µm

µm 2
1

3

(a)

(b)

0.0

0.2

0.4

0.0 1.0 2.0 3.0 4.0 5.0
µm

µm

0.0

0.2

0.4

0.0 1.0 2.0 3.0 4.0 5.0
µm

µm

0.0

0.2

0.4

0.0 1.0 2.0 3.0 4.0 5.0
µm

µm

gb12

gb13

gb23

Figure A.4: (a) A typical contact AFM image of the point where a triple junction intersects
the surface of a magnesia polycrystal. The black lines show the locations at which the three
topographic traces in (b) were obtained. Values of 9 and / are obtained from each trace.
The final values of9 and / are determined by averaging three measurements from profiles
at different locations on each groove. The standard deviation of the data acquired in this
manner is �Æ.

A.2 Technique validation

It is important to verify that the AFM measurements described here lead to results that are

consistent with previous studies using accepted techniques. The existing data on polycrys-

talline ceramics have been generated using optical microscopy [9], optical interferometry

[10], and SEM [7,8,11]. These data include both distributions of surface dihedral angles

[7–9,11] and measurements of grooving kinetics [10]. To validate the procedure described

above, we have repeated some of these experiments and compared the observations with

the results of these previous studies.

A.2.1 Grooving kinetics

The quasi-static groove profile determined by Robertson [6] assumes that the dominant

atomic removal mechanism in the formation of grooves is surface diffusion. To test the
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Figure A.5: AFM image montages of the same area of an alumina surface after annealing
for �& (a), �& (b), and ��& (c) at ����Æ�. In all images, the vertical contrast from black-to-
white is �����. Contrast discontinuities occur at the boundaries between separate images
with different average contrast levels.

assumption and make a comparison with previous studies we have examined the kinetics

of groove formation in a polycrystalline alumina sample. The grain boundaries of the

sample were thermally grooved in air at ����Æ� and selected boundaries were repeatedly

examined by AFM using the procedure described above after �� �� �� �� �� �� ��� and ��& of

annealing. The AFM images in Fig. A.5 show the same region of the surface at different

times (�� �� and ��&) during the anneal. Note that as the annealing time increases, the

boundaries become deeper and wider, and the facets on the grain surfaces coarsen.

At each interval during the anneal, the widths of � different boundaries were monitored.

While depth measurements of such narrow boundaries would be unreliable, the width mea-

surement is unaffected by the tip/groove convolution. Mullins [5] showed that the quasi-

static groove profile depends on the atomic removal mechanism and that the slope (�) of a

���9 � v. �������� plot can be used to differentiate between surface diffusion (� 	 ����),

volume diffusion (� 	 ����), and evaporation/condensation (� 	 ����) mechanisms. The

time dependence of the width of three separate grooves is illustrated in Fig. A.6. The

slopes of the three curves (� 	 ����� ����� and ����) are closer to the slope predicted by

assuming a surface diffusion mechanism (� 	 ����) than the alternatives, and it should be

acceptable to use Robertson quasi-static profile in our measurement procedure.

Assuming that the grooves are formed by surface diffusion, the groove width data can

be used to compute a surface diffusion coefficient. Based on Mullins’ [5] analysis, the
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Figure A.6: The time (�) evolution of the groove width (9 ) for three grooves on an alumina
polycrystal heated in air at ����Æ�. The slopes of the lines indicate that the dominant
atomic removal mechanism is surface diffusion.

surface diffusion coefficient (A�) is given by the following equation.

A� 	
9 �8�

�������$���
(A.1)

Surface diffusion data for alumina has been previously reviewed by Tsoga and Nikolopou-

los [10]. The constants from Eqn. A.1 were taken from this earlier work to facilitate

a comparison with the current data. Specifically, the molecular volume ($) is ���� �
����������?>��=>�, the surface energy (���) is ����!���, and the number of diffusing

species (� ) is $����; 8 and � are Boltzmann’s constant and the absolute temperature

(��
��), respectively. Tsoga and Nikolopoulos [10] used optical interferometry measure-

ments to determine the groove width as a function of time and, based on their findings,

A� at ����Æ� in air should be ��� � ���������. It should be noted that this number was

computed based on average widths and ignores the anisotropy of the surface energy and dif-

fusivity. Results from other groups were cited in the same paper and when extrapolated to

����Æ�, they vary from ������� to �����������. The widths from the three boundaries
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we measured led to surface diffusion coefficients of ���� ����������, ���� ���������,

and ��� � ����������. The average of these three numbers falls in the lower end of the

range observed in past studies [10]. The scatter in our measurements from different bound-

aries is likely to be an indication of the anisotropy of the surface diffusivity and/or surface

energy. The lowest of our three values, which derives from a shallow, narrow boundary,

falls outside the range of previous observations. However, because of its size, such bound-

aries would be overlooked in an optical study. After ��& of annealing, the width of this

particular boundary was less than �����, half the size of the smallest boundary reported

in the earlier work. Thus, it appears that the AFM derived surface diffusivity data are

consistent with previous measurements using more laborious techniques.

A.2.2 Dihedral angle distributions

Using the procedures described above, we have generated distributions of surface dihedral

angles from grain boundaries from both an alumina and a magnesia polycrystal. The alu-

mina sample was grooved in air at ����Æ� for �&, while the magnesia sample was grooved

in air at ����Æ� for �&. These treatments yielded average groove widths of ���'� and

���'� for the alumina and magnesia samples, respectively.

Fig. A.7 shows the distribution of dihedral angles that we observed for alumina (a)

and magnesia (b), determined from AFM measurements of 9 and /. In the past, a variety

of techniques have been used to measure thermal grooves on similar samples. These data

were reviewed by Handwerker et al. [7,8] who showed that the systematic errors in the

measurement decrease as the resolution increases. Thus, the most reliable pre-existing

measurements are based on metal reference line (MRL) observations. Handwerker et al.

[7,8] corrected the MRL observations to account for the resolution limit of the technique,

and we have plotted the corrected data for comparison in Fig. A.7. The median values of

the distributions measured by AFM and the MRL techniques are the same, ���Æ for alumina

and ���Æ for magnesia.

While the AFM and MRL results give the same median values for the surface dihedral

angle distribution, there are some noteworthy differences in the details of the distribution.
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Figure A.7: (a) Distribution of thermal grooves in alumina, etched for �& at ����Æ� in
air. (b) Distribution of thermal grooves in magnesia, etched for �& at ����Æ� in air. For
comparison, equivalent data from [7] is plotted on each graph.

For example, the AFM measured magnesia distribution is wider on both sides of the me-

dian. There are several potential sources for the differences. The first might be the number

of points in each distribution. For alumina, there are �� MRL observations and ��� AFM

observations. Similarly, for magnesia, there are �� and ��� observations for MRL and

AFM, respectively. The second potential reason for the differences might be related to

sample purity and texture. For example, the alumina samples examined by Handwerker

et al. [7] were sintered in vacuum. The alumina samples described here were sintered

in air and might, therefore, have a greater impurity concentration. The relatively large
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number of low angle boundaries detected in our magnesia specimen might be the result

of crystallographic texture introduced during processing. The sample described here has a

����� texture, measured by OIM to be ��� times random, while the texture of the samples

examined by MRL was not reported. Although there are differences in the details of the

surface dihedral angle distributions derived from the MRL and AFM techniques, the results

illustrate an acceptable degree of consistency. Thus, we can conclude that by following the

procedures outlined in A.1.2, AFM can be used to accurately measure the surface geometry

of thermal grooves.
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Appendix B

Capillarity Vector Reconstruction Method

This appendix contains a detailed description of the capillarity vector method for the re-

construction of interfacial energies. The procedure, originally developed by Morawiec [1],

involves setting up a system of linear equations based on Eqn. 4.9, discretizing the space

of interfacial characters, and solving the system of equations for a set of discrete capillar-

ity vectors, 67�, using an iterative procedure. After the capillarity vector for each discrete

interface is determined, the vector field is smoothed to accommodate for the effect of ex-

perimental errors and underpopulated cells. Here, we not only review the procedure, but

also its application to both the surface and grain boundary energy measurements.

B.1 System of linear equations

The capillarity vector reconstruction method involves finding a consistent set vectors, 67�,

that satisfy Eqn. 4.9 as nearly as possible for all of the observed thermal grooves. To

accomplish this we must set up a system of linear equations based on the triple junction

measurements. While we wish to know the capillarity vectors with respect to the crystal

coordinate system, Eqn. 4.9 holds only for vectors in the sample coordinate system. The

orthogonal matrix, 
��, that transforms a vector from the sample reference frame to the

129
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crystal reference frame is given in Eqn. 2.1. We can therefore rewrite Eqn. 4.9 as:

������

�
��
67�� 	 �� (B.1)

where ���� is the permutation tensor and the superscript � enumerates the respective inter-

face. For the grain boundary triple junctions, � simply enumerates the grain boundaries and


 is given by the orientation of the appropriate crystallite. The case of the thermal groove

measurements is more complex. For thermal grooves, � goes from � to � to represent sur-

face �, surface �, and the grain boundary, respectively. For � equal to � or �, the Eulerian

angles yield the transformation matrix 
�� are those describing the orientation of the ap-

propriate crystallite with respect to the sample reference frame. Since we do not sample

enough of the possible grain boundary characters, we are forced to assume that the grain

boundary torque is negligible. In other words, ������ 	 � and 67� must be perpendicular

to the grain boundary plane. To apply this constraint, only the first component of 67� is

considered (if � 	 �, > 	 �). Therefore, the Eulerian angles for the grain boundary (� 	 �),

are given by 	, ���, and  � �, respectively.

For each of the ! observed triple junctions, there are three equilibrium equations enu-

merated by �. To solve these equations, we first tessellate the space of interfacial characters

into cells, with each cell enumerated by an index, �. Next, we make the substitution that

for an interface in cell �, #�
�� 	 9������
��, where 9 is selected so that #�

��#
�
�� 	 �, with

no summation over �. The set of ! linear equations representing the balance of interfacial

tensions is now:

#�
���7

�
� 	 �� (B.2)

B.2 Discretization of character space

Because we seek a discrete set of capillarity vectors, the space of interface characters must

be discretized over a fixed domain. One can chose the entire domain of possible interfacial

characters, the fundamental zone of indistinguishable characters, or an appropriate sub-

domain containing a integer number of fundamental zones. In both cases (surfaces and

grain boundaries), we used a convenient sub-domain of the character space.
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For the thermal groove measurements, the sub-domain of surface characters was se-

lected such that it contains all directions specified by vectors that have all three perpen-

dicular components greater than or equal to zero, thus, considering cubic symmetry, the

sub-domain contains � complete fundamental zones. If we specify these directions using

the spherical coordinates, these are the values of 	 and � between � and ��Æ. This sub-

domain is then discretized in units of ���� 	 and ��, which makes the range of surface

normals in each cell the same. Because we are assuming ������ 	 �, each enclosed grain

boundary has only one character. Thus, the space of grain boundaries is discretized simply

by the enclosed grain from which the measurement was taken.

In the case of the grain boundary triple junction measurements, the only interfaces are

the grain boundaries. Here, we represent the character of a grain boundary by three Eulerian

angles (��, �,��) describing the crystallite misorientation and two spherical coordinates

(	, �) describing the boundary plane orientation. The sub-domain of grain boundaries was

selected such that ��,�, and �� are in the range of � to ��Æ, and 	 and � are in the range of

� to ��Æ and � to ���Æ, respectively. Assuming cubic symmetry, this sub-domain contains

�� fundamental zones. To create cells of equal volume, the sub-domain is discretized in

units of ���, �����, ���, ���� 	, and ��.

As previously mentioned, the cells in both cases are enumerated with an index, �. For

all interfaces that fall within a given cell, the capillarity vector is approximated by the value

of 67� assigned to that cell.

B.3 Iterative solution

The system of equations (Eqn. B.2) is solved using the iterative method. The process

begins with the assumption that 7�� 	 ��� where ��� is the normal vector at the center

of each cell. At each step, the deviation vector, ���, in the sample coordinate system is

calculated according to:

#�
���7

�
� 	 ���� (B.3)

Because our sub-domain of interfacial character space contains symmetrically indistin-

guishable cells for each possible normal vector, there are equivalent equations for each
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observed triple junction. Therefore, the deviation vector for each triple junction is actually

the average of the symmetrically equivalent equations. After ��� is calculated for each

thermal groove, the capillarity vector is modified by the product of the deviation vector (in

the crystal coordinate system) and a relaxation factor, �. On the 8	
 iteration, it is modified

in the following way:

7���� 	 7
�
����� � �#�

����������� (B.4)

At the end of each iteration, the 67 values are normalized by dividing them by the average

magnitude of all 67 at the current iteration step.

B.4 Smoothing of vector field

Because of the data collection technique does not generate a uniform distribution of inter-

facial characters, the cell population is nonuniform and many of the cells are underpop-

ulated. This can create some sharp variations in what we expect to be a continuous and

relatively smooth field of capillarity vectors. For this reason, the field of capillarity vectors

is smoothed after the last iteration. The value of 67� in each cell is replaced by an average of

that cell and the adjacent cells in the matrix. Cells at the edges and corners of the matrix are

averaged only with their existing neighbors and if a cell contains zero or one observation,

the cell is not used in the smoothing process. Tests on model data sets suggest that with a

denser distribution of data, the smoothing process is not required.

After smoothing the field of 67, the energy (�) for each orientation, ��, is determined by

� 	 67 � ��. The energy of each interface is taken to be the average of the energies in all

symmetrically equivalent cells.
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Grain boundary character and energy

distributions

This appendix contains additional plots of the grain boundary character distribution, along

with both the boundary energy distribution estimated from the sum of the surface energies

of the two boundary planes and the energy reconstructed from the grain boundary triple

junction measurements. The plots in each figure correspond to a fixed misorientation and

show the variations over the boundary plane parameters in stereographic projection. The

fixed misorientations explored are in �Æ increments about ����, ����, ����, and ����.
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C.1 ����� misorientations

Figure C.1: Grain boundary character and energy distributions for the misorientation cor-
responding to a �Æ rotation about ����. The character distribution is shown in (a), while (b)
and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.2: Grain boundary character and energy distributions for the misorientation corre-
sponding to a ��Æ rotation about ����. The character distribution is shown in (a), while (b)
and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.3: Grain boundary character and energy distributions for the misorientation corre-
sponding to a ��Æ rotation about ����. The character distribution is shown in (a), while (b)
and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.4: Grain boundary character and energy distributions for the misorientation corre-
sponding to a ��Æ rotation about ����. The character distribution is shown in (a), while (b)
and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.5: Grain boundary character and energy distributions for the misorientation corre-
sponding to a ��Æ rotation about ����. The character distribution is shown in (a), while (b)
and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.6: Grain boundary character and energy distributions for the misorientation corre-
sponding to a ��Æ rotation about ����. The character distribution is shown in (a), while (b)
and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.7: Grain boundary character and energy distributions for the misorientation corre-
sponding to a ��Æ rotation about ����. The character distribution is shown in (a), while (b)
and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.8: Grain boundary character and energy distributions for the misorientation corre-
sponding to a ��Æ rotation about ����. The character distribution is shown in (a), while (b)
and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.9: Grain boundary character and energy distributions for the misorientation corre-
sponding to a ��Æ rotation about ����. The character distribution is shown in (a), while (b)
and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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C.2 ����� misorientations

Figure C.10: Grain boundary character and energy distributions for the misorientation cor-
responding to a �Æ rotation about ����. The character distribution is shown in (a), while (b)
and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.11: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about �����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.



Appendix C. Grain boundary character and energy distributions 145

Figure C.12: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.13: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.14: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.15: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.16: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.17: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.18: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.19: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.20: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.21: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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C.3 ����� misorientations

Figure C.22: Grain boundary character and energy distributions for the misorientation cor-
responding to a �Æ rotation about ����. The character distribution is shown in (a), while (b)
and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.23: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.24: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.25: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.26: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.27: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.28: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.29: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.30: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.31: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.32: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.33: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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C.4 ����� misorientations

Figure C.34: Grain boundary character and energy distributions for the misorientation cor-
responding to a �Æ rotation about ����. The character distribution is shown in (a), while (b)
and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.35: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.36: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.37: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.



Appendix C. Grain boundary character and energy distributions 171

Figure C.38: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.39: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.40: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.41: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.42: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.43: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.44: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.
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Figure C.45: Grain boundary character and energy distributions for the misorientation cor-
responding to a ��Æ rotation about ����. The character distribution is shown in (a), while
(b) and (c) show the boundary energy estimated from the surface energies and reconstructed
from the triple junction measurements, respectively.


