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Abstract 
 

The five-parameter grain boundary character distribution (GBCD) of a material contains 

both the grain boundary plane orientation and the lattice misorientation information.  This work 

focuses on generating three-dimensional microstructures that match the full five-parameter 

GBCD obtained from experimentally observed microstructures.  Microstructures that contain 

annealing twins are of particular interest in this investigation.  The statistics that are used to 

quantify the differences between the synthetic and experimentally observed structures are texture 

or orientation distribution (OD), GBCD, number and area fractions of Σ3 and coherent Σ3 

boundaries, Σ3 cluster distribution, and twin density.    

The main simulation code used in this study is the grain orientation assignment algorithm. 

This algorithm consists of taking a digital three dimensional microstructure and assigning 

orientations to the grains through a simulated annealing based optimization method, such that the 

generated orientation distribution and misorientation distribution or five-parameter GBCD will 

match the user-defined values.  The generation methods used in creating the digital voxel-based 

microstructures and the methods used to reconstruct experimentally measured structures with the 

dual-beam microscope are discussed.  From performing the grain assignment algorithm with 

different textures and misorientation distribution (MD) as the target distributions, it was found 

that when the OD and MD are incompatible, a compromise must be made in order for the two 

distributions to fit together in the structure.  The studies of matching several textures, MD, and 

GBCD to various microstructures indicated that the neighbors per grain and grain boundary areas 

have significant effects on the possible OD, MD, and GBCD that can exist in the structure.   

Due to the unique features of the annealing twins, a twin insertion algorithm is used to 

generate annealing twins in the synthetic microstructures.  To demonstrate the capability of the 
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twin insertion algorithm, the twin grains were removed from an experimental structure, Inconel 

100, and were then regenerated with the twin insertion algorithm.  The largest Σ3 cluster 

measured in the experimental Inconel 100 structure consists of 98 grains, which can only be 

observed by analyzing the fully-reconstructed 3D structure.   
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Chapter 1 Introduction 
 

1.1 Motivation 

 
Crystalline materials are generally aggregates of a large number of single crystals.  Grain 

boundaries are the transition regions between two adjacent grains of different crystal orientations 

[1].  When the misorientation between the two crystals is small (<15°), the grain boundary can be 

described by relatively simple dislocation configurations and is termed a low-angle boundary.  

For example, a low-angle tilt grain boundary is composed of edge dislocations.  When the 

misorientation is large (≥15°), the grain boundary will involve more complex structures of 

dislocations, vacancies, and displaced atoms, and is termed a high-angle boundary.  Since grain 

boundaries have a relatively open structure as compared to the bulk, the atoms that make up the 

non-equilibrium structure at the boundary have higher energies than the bulk atoms [2, 3].  

Therefore, chemical reactions, such as etching and corrosion, and solid-state mass transport 

effects, such as diffusion and atomic segregation, occur preferentially along the grain boundaries 

[2].  Since the free volume and energy vary between different grain boundary types, not all 

boundaries are equally sensitive to chemical attack or mass transport effects.  Many different 

grain boundary dependent properties, such as the resistance to fatigue cracking, and intergranular 

corrosion, have been found to be dependent on the crystallographic nature of the grain 

boundaries [4, 5].  Therefore, it is necessary to control the distribution of grain boundary types in 

a microstructure.  One method of controlling this is a process known as Grain Boundary 

Engineering (GBE) [5].   

In face-centered cubic (FCC) metals, Grain Boundary Engineering typically involves 

maximizing the density (or length fraction) of high symmetry boundaries as denoted by low 

sigma (Σ) values for Coincident Site Lattice (CSL) relationships.  Recent studies have shown that 
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by increasing the fraction of low-Σ CSL boundaries, properties such as intergranular corrosion 

cracking resistance [6], creep resistance [7], strength [8], and fatigue cracking resistance [9] of 

the material can be improved.  An example of the influence of grain boundary engineering on the 

properties of a material can be found in Section 3.1.1.  Studies on aluminum alloy 2124 show 

how boundaries with different CSL relationships can yield different intergranular corrosion 

responses. 

One major shortcoming in the CSL-based studies is that only 10% of researchers have 

analyzed the grain boundary plane distributions [10, 11].  Further discussion on the need to study 

the grain boundary plane orientations can be found in Section 4.2.  One way to define the five 

parameters is to specify the lattice misorientation and the boundary normal.  In face-centered 

cubic and low stacking fault energy metals, annealing twinning events are considered to be the 

most effective way of increasing the populations of low-Σ CSL grain boundaries [12].  Some 

researchers have even coined the phrase “twin-induced grain boundary engineering” where the 

goal of the thermal mechanical treatment is only focused on maximizing the number of annealing 

twins or the length fractions of Σ3 grain boundaries in the microstructure [13-17].  However, not 

all grain boundaries with the Σ3 relationship have improved properties.  For example, Gertsman 

et al. [18], Henrie et al. [19], and Lin et al. [20] have observed that not all Σ3 boundaries are 

corrosion or crack resistant, and analyzed the angle of deviation between the boundary trace of 

the cracked Σ3 boundaries and the {111} trace of the grains on either side of the boundary.  In 

the Ni-based and Fe-based austenitic stainless alloys, Gertsman et al. [18] observed that 2% of 

the cracked boundaries have a Σ3 relationship, and have boundary traces that deviated from the 

{111} trace by 5.1°-8.1°.  In 304 stainless steel, Henrie et al. [19] observed that the corroded Σ3 

boundaries deviated from the ideal {111} trace by an average of 48.8° whereas the non-corroded 
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Σ3 boundaries only deviated from the {111} trace by 20.9°.  In melt-spun Ni3Al ribbons, Lin et 

al. [20] found that only incoherent Σ3 boundaries were cracked.  The results from these 

researchers show that the difference in the corrosion resistance among Σ3 boundaries is due to 

the variation of the grain boundary plane orientations found in coherent and incoherent twin 

boundaries.  This is one example of the reasoning behind the necessity of including grain 

boundary plane distributions in the study of GBE.  Also, many researchers have referred to the 

distribution of CSL boundaries as the grain boundary character of the material [14, 17, 21-23].  

In this study, the term grain boundary character distribution (GBCD) consists of the distribution 

of plane normals and the misorientation of the crystal lattice at the grain boundary, as consistent 

with studies performed by Randle et al. [24, 25] and Rohrer et al. [26, 27].     

Another problem with GBE is that the thermal mechanical processes that are used to 

increase the fraction of CSL boundaries also change the grain shapes of the microstructure.  An 

example of such changes is shown in Section 3.1.2 through comparisons between a conventional 

and a GBE processed nickel-based superalloy.   

Computer simulations is an efficient  method for analyzing the effects that GBCD may 

have on the properties of the materials without having to perform multiple thermal mechanical 

processes that may change the grain shapes.  However, a statistically representative 

microstructure, especially one that contains annealing twins, must be generated before these 

material property simulations can be performed.  This study focuses on the generation of the 

synthetic microstructures that contain annealing twins.  A review of the studies performed by 

other researchers on simulating annealing and deformation twins is presented in Section 4.4.  In 

these studies, most of the computer simulations were performed on thin-films or two-

dimensional structures with nanocrystalline grains.  The work presented here focuses on creating 
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large enough sets of annealing twins, that can both satisfy the misorientation relationship and the 

boundary plane normal requirement of coherent Σ3 boundaries.   

 

1.2 Hypothesis 

 
It is possible to statistically generate three-dimensional microstructures that match the 

full five-parameter grain boundary character distribution obtained from experimentally observed 

microstructures.  The microstructures that are used to test the hypothesis are face-centered cubic 

materials that contain annealing twins.  The statistics that are used to quantify the differences 

between the synthetic and experimentally observed structures are (a) texture, (b) five-parameter 

grain boundary character distribution, (c) number and area fractions of Σ3 and twin boundaries, 

(d) Σ3 cluster distribution, and (e) twin density (number of twins per grain).    

 

1.3 Objectives 

 
To generate a microstructure that statistically matches experimentally observed structures, 

the current study concentrates on the following objectives: 

• Create digital microstructures that do not contain twins. 

• Define grain boundary plane orientations. 

• Develop a simulation model that assigns orientations to the grains such that  the 

orientation and the  five-parameter misorientation distributions in the digital 

microstructures match the target values to an acceptable accuracy. 

• Synthesize annealing twins in the microstructure such that the Σ3 cluster 

distribution, twin boundary fractions, and texture measurements  match the 

statistics gathered from experimentally observed microstructures.  
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Chapter 2 Background 
 

2.1 Crystallography 

 
The main objective of this section is to provide a general context for understanding grain 

orientations, textures, misorientations, and the most commonly used methods in representing 

their respective distributions. 

 

2.1.1 Orientations 

 
The orientation of a grain can be thought of as a transformation of the axes from the 

crystal reference frame to the external sample reference frame.  This transformation can be 

represented by axis-angle pairs, 3x3 matrices, Euler rotational angles, Rodrigues-Frank vectors, 

and homochoric (equal volume partitions) space vectors.  The axis-angle pair, Euler angle, and 

matrix representation will be described below, while the other representations can be found in 

Section 2.1.4. 

 The axis-angle pair is defined by the common axis that exists between the sample and 

crystal reference frame such that a single rotation (ω), brings the two reference frames into 

coincidence with each other, as illustrated by Fig. 2.1.  The most commonly used 

parameterization for representing orientations is with three Euler angles, using either the Bunge 

[28], Roe [29], or Kocks [30] conventions.  In this study, the Bunge convention will be used.  In 

the Bunge convention, the definition of the three Euler rotation angles (φ1, Φ φ2) can be thought 

of as a set of physical rotations of the crystal reference frame, which is initially coincident with 

the sample reference frame, until the crystal reference frame matches the orientation of the grain.  

An illustration of the Euler angle definition is seen in Fig. 2.2 where the Euler angles (φ1, Φ φ2) 

are defined by first rotating about the z-axis of the crystal reference frame, which equates to φ1, 
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then secondly rotating around the x-axis of the crystal reference frame to obtain the second angle, 

Φ, and lastly rotating around the rotated z-axis to obtain the last Euler angle φ2 when the crystal 

reference frame matches the orientation of the grain.  The 3x3 matrix representation of the 

orientation can be calculated with Equations 2.1 and 2.2 once the axis-angle or Euler angle 

representations are obtained. 

 
Figure 2.1  Image of an axis-angle representation of a grain orientation, where n


 is the common axis and ω is the 

rotational angle. 

 

 
Figure 2.2  Euler angles definition.  (a) The sample and crystal reference frames are coincident with each other.  (b) 

After the first rotation of the crystal axes of φ1around Z’.  (c) After the second rotation of the crystal axes by an 

angle of Φ around X’.  (d) After the third rotation of the crystal axes of φ2 around the already rotated Z’ axis.  The 
image was obtained from [31]. 
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Texture is the average crystallographic orientation of the grains in a material, and is 

usually measured from a statistically representative set of grains.  Typically, a material is 

considered to be textured when the average crystallographic orientation shows a preference to a 

certain direction.  The units of measure for this characterization (or distribution) are multiples of 

random distribution (MRD), which indicate texture whenever this value is different from 1.  To 

normalize any distribution into MRD values, the distribution is scaled such that the 

multiplication of the sum of the values per bin with the size of the bins is equal to the volume of 

the bins.  A comparison between MRD, probability density functions and cumulative probability 

functions can be found in Appendix A.  Some of the common methods to portray orientation 

information or texture are through the use of pole figures and plots in Euler angle space.  

Examples of these representations can be found in Section 7.1.3.   

 

2.1.2 Rolling and Fiber Textures 

 
Texture arises frequently due to the slipping and twinning events that occur during 

deformation processes, which give rise to preferred orientations.  In analyzing deformed FCC 

metals, two types of deformation textures can be formed depending on the material’s stacking 

fault energy.  The copper type texture is usually formed in materials with high stacking fault 

energy, and the brass type texture is usually formed in materials with low stacking fault energy 

[32].  In this study, deformation textures obtained from high stacking fault energy materials, such 

as copper (SFE ~ 78 mJm-2), will be discussed.  This deformation texture will henceforth be 

referred to as “rolling texture”.  An example of an orientation distribution that is characteristic of 
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rolling texture is shown in Fig. 2.3.  The distribution is represented both on a {111} pole figure 

and in Euler space.  The texture components and their corresponding Euler angle definitions that 

are typically studied for the rolling texture are listed in Table 2.1 [33]. 

 
Figure 2.3  (Left) {111} pole figure, and (right) Euler angle plot at every 5° of φ2 showing rolling texture obtained 
from 95% reduced copper, which is also the typical deformation textures found in high stacking fault materials [34]. 

 
Table 2.1  Texture components typically observed in rolled face-centered cubic materials and their respective Euler 
angle definitions [33]. 

Bunge Euler angles (degrees) Texture 
Component φφφφ1 ΦΦΦΦ φφφφ2 

Cube 0 0 0 
Goss 0 45 0 

S 59 37 63 
Brass 35 45 0 

Copper 90 35 45 
 
 

The rolling texture mentioned above can be defined as the combination of the texture 

components listed in Table 2.1, although in reality, a continuous range of orientation is present as 

the orientation distribution shown in Fig. 2.3 indicates.  A fiber texture however, contains a 

continuous range of grain orientations, in which a specific crystallographic direction is parallel to 
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one of the sample axis directions.  In this study, only the most commonly analyzed fiber textures 

will be used: the <100>, <110>, and <111> fiber textures.  When pole figures are plotted for 

fiber textures, the centers of the polar plots in some cases correspond to the fiber axis direction 

(e.g. the <111> fiber texture appears as a single peak at the center of the {111} pole figure).  

      

2.1.3 Misorientations 

 
Misorientation is defined as the transformation between two crystal orientations, and 

therefore can be represented by any of the orientation parameterizations described in the 

previous section.  However, it is an arbitrary choice as far as picking which crystal to rotate into 

coincidence with the other is concerned.  Therefore, there are 2xN2 equivalent misorientations 

with N being the number of proper symmetry operators for the corresponding crystal structure.  

In the case of cubic materials, there are N=24 proper symmetry operators, which yield 1152 

equivalent misorientations.  To select a single misorientation to represent all equivalent 

misorientations, a selection rule must be imposed.  This selection rule will be defined below with 

the definition of the fundamental zone in Section 2.1.5. 

 

2.1.4 Rodrigues-Frank Space and Homochoric Space 

 
Heinz and Neumann have discussed two disadvantages in using the Euler angle space to 

plot the orientation distribution [35].  In plotting orientations in the Euler angle space, a 

degeneracy exists where any sets of rotations with the second angle Φ=0, and φ1+φ2 = constant 

cannot be differentiated from each other.  The other problem with Euler angle space is that angle 

axis pairs that share the same axis do not appear in the plot as a straight line but a curly line 

through the space.  Also, no simple rules exist for combining two sets of Euler angles together 

(e.g. to compute a misorientation) whereas well established rules for combining Rodrigues-Frank 
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vectors together are available.  Frank mentioned that the most  favorable advantage in using 

Rodrigues-Frank vectors space is the fact that varying rotation angles about the same axis appear 

as a straight line in Rodrigues-Frank space [36].   

Given an orientation representation of a unit vector n


 and angleω , the relationships 

between the axis-angle pair, Rodrigues-Frank vector, and homochoric space vector 

representations are given by Equations 2.3-2.4 respectively [36]. 









=
2

tan
ω

nR


     (2.3) 

 ( )
3

1

sin
4

3






−= ωωnH


     (2.4) 

 
       

2.1.5 Fundamental Zones 

 
The term fundamental zone is first defined by Frank [36] as the region which the 

Rodrigues-Frank vector [36, 37] lies closest to the origin.  However, the usage of the 

fundamental zone is not limited to the Rodrigues-Frank vector representation.  In any 

representation of an orientation or misorientation, a fundamental zone is the region that contains 

one and only one representative for any orientation or misorientation.  Out of all the 

symmetrically equivalent orientations or misorientations, the unique representative is selected 

through the use of the axis-angle pair representation.  For misorientations, the selected 

representative is the set of axis-angle pairs that has the smallest rotation angle (ω) and the 

rotation axis that contains all positive components in which the relation: u≥v≥w≥0 is satisfied.  

With the aforementioned selection rule, in cubic materials, the rotational angle ranges from 0-

62.8° [35], while the axis always lies somewhere inside (or on the edge of) the standard 

stereographic triangle (SST) highlighted in red shown in the stereographic projection of Fig. 2.4. 
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Figure 2.4  A stereographic projection with one standard stereographic triangle for cubic materials highlighted in red. 

 
In representing orientations, the rotation axis cannot be changed with symmetry, and thus 

the selection rule simply becomes finding the orientation with the smallest rotation angle.   In 

Rodrigues-Frank vector space, this means that the Rodrigues-Frank vectors must satisfy 

Equations 2.5-2.6.  The fundamental zone traced out by Equation 2.5 is a cube in the Rodrigues-

Frank vector space with edge length 12 − , while Equation 2.6 causes the truncated corners to 

appear as shown in Fig. 2.5a [35].  In tracing the fundamental zone for misorientations however, 

the additional selection rule of the rotation axis further decreases the size of the fundamental 

zone as shown in Fig. 2.5b. 

12 −≤iR       (2.5) 

     1
3

1

≤
=i

iR       (2.6) 

 
 

The fundamental zones for orientations and misorientations in homochoric space are very 

similar to the ones found for Rodrigues-Frank vector space.  The main difference between the 

two fundamental zones is that the faces of the fundamental zone have a slightly bowed out 

surface for homochoric space rather than a flat surface for the Rodrigues-Frank space.  In this 
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study, homochoric space is used for comparing the distributions of grain orientations and 

misorientations because of its ability to be easily divided into equal volume elements [36].  In the 

Euler angle space of 0 ≤ ϕ1 ≤ 
2

π
, 0 ≤ Φ ≤ 

2

π
, 0 ≤ ϕ ≤ 

2

π
, 36 copies of the fundamental zone is 

stored for misorientations while 3 copies of the fundamental zone is stored for the orientations.  

On the other hand, only one copy of the fundamental zone is stored for both the orientation and 

misorientation in homochoric space.  The fundamental zone in homochoric space is partitioned 

by dividing each of the three dimensions into equal sections.  Once the space is subdivided into 

equal volume elements, the orientation or misorientation distribution can be treated as a one 

dimensional histogram.  However, the one major disadvantage in using the homochoric space is 

that once an orientation or misorientation has been binned into the corresponding volume 

element, it is difficult to convert the orientation or misorientation into a different representation.   

 
Figure 2.5 (a) Cubic Rodrigues orientation space.  (b) Cubic Rodrigues misorientation space highlighted in black.  
The first octant of Rodrigues orientation space is drawn in grey to clarify the difference in the size between the 
orientation and misorientation fundamental zones.  Images were modified from [35]. 

 
 
 
 

a b 
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2.2 Grain Boundary Characteristics 

 
In this section, the definition of the CSL boundary relationships, the method to discretize 

the grain boundary character distribution, and the observations of annealing twins in both two 

and three-dimensional views are discussed. 

 

2.2.1 CSL boundaries 

 
Kronberg and Wilson were the first to introduce the concept and importance of the 

coincident site lattice (CSL) theory [38].  CSLs are defined by the finite fraction of crystal lattice 

sites that coincide between the two lattices.  The quantity sigma (Σ) is then defined as the volume 

ratio between the unit cell of coinciding sites and a standard unit cell, which is also the reciprocal 

density of coinciding sites [38].  An example of a Σ5 relationship is shown in Fig. 2.6 [39].  It 

should be noted that the CSL theory is only a geometrical concept, and as such, any boundary 

can be defined as a CSL boundary provided that the sigma value is allowed to approach infinity 

[40].   

 
Figure 2.6  Two overlaying lattices (grey and white), with the black atoms being the coinciding lattice sites.  This is 

an example of a Σ5 relationship.  Image obtained from Humphreys and Hatherly [39]. 
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A general procedure for calculating sigma values from misorientations is provided by 

Ranganathan [41].  Since CSL sigma values are simply defined by the overlaying of lattices, 

some of the CSL sigma values can be obtained by different misorientations that are not related 

by symmetry.  These sigma values are distinguished by a letter designation in the order of 

increasing misorientation angle [42].  A truncated list of axis-angle pair definitions of Σ values of 

up to Σ29b are given in Table 2.2 [42].  Read and Shockley were the first to propose that low 

angle grain boundaries close to a Σ1 relationship could be categorized as a defective version of a 

Σ1 boundary since the small deviation from the exact relationship could be accounted for by 

dislocations [43].  Various criteria have since been proposed by other researchers in defining the 

maximum allowable angular deviation ( )θ∆  such as the Read-Shockley approximation [44], 

Palumbo-Aust criterion [45], and Brandon’s criterion [46].  In this study, Brandon’s criterion 

was used to identify the allowable spread of the exact CSL relationships in misorientation space.  

Brandon’s criterion states that a grain boundary can be assigned a certain sigma value if the 

angle of deviation from the exact CSL relationship satisfies,  

Σ
≤∆

15
θ       (2.1) 

 

Experimental studies by other researchers have shown that grain boundaries with a low-Σ 

relationship (Σ29) exhibit improved properties.  Creep resistance [7], and intergranular 

degradation such as intergranular corrosion [47, 48], and fatigue cracking [9] resistance, have 

been shown to increase with increasing fraction of the low-Σ boundaries.     

In this study, the Rodrigues-Frank vector space was used to plot the misorientations 

because for all the CSL boundary relationships that are of interest in this study ( values up to 



 15 

29b), their definitions appear as unique positions in the Rodrigues-Frank fundamental zone.  An 

example of one of the chosen fundamental zones is shown in Fig. 2.7.   

Table 2.2  Coincident site lattice relationships.  Reproduced from Table 4.1 of [39]. 

Sigma (ΣΣΣΣ) Misorientation Angle (°) Misorientation Axis 

1 0 Any 
3 60 < 111 > 
5 36.87 <  100 > 
7 38.21 <  111 > 
9 38.94 <  110 > 

11 50.48 <  110 > 
13a 22.62 <  100 > 
13b 27.80 <  111 > 
15 48.19 <  210 > 
17a 28.07 <  100 > 
17b 61.93 <  221 > 
19a 26.53 <  110 > 
19b 46.83 <  111 > 
21a 21.79 <  111 > 
21b 44.40 <  211 > 
23 40.45 <  311 > 
25a 16.25 <  100 > 
25b 51.68 <  331 > 
27a 31.58 <  110 > 
27b 35.42 <  210 > 
29a 43.61 <  100 > 
29b 46.39 <  221 > 

 



 16 

 
Figure 2.7 Top view of a Rodrigues-Frank fundamental zone showing the locations of the CSL boundary 
relationships. 

 

2.2.2 Grain Boundary Character Distribution 

 
Grain boundaries can only be distinguished from one another when five independent 

macroscopic parameters are defined [49].  The grain boundary character distribution (GBCD), 

which consists of the distribution of grain boundary types and planes in a material, will be 

characterized with all five parameters that relate to the grain boundary: three parameters for 

specifying the lattice misorientation and two parameters for specifying the boundary plane 

orientation.  Therefore, the GBCD function, ( )n,g∆λ , is defined as the relative areas of internal 

interfaces that have a misorientation Tggg 21=∆ and an interface normal, n [27].   
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Figure 2.8  The parameterization of  the GBCD function with (a) spherical angles that represent the interface normal, 
and (b) the three Euler angles that represent the lattice misorientation [27]. 

 

For easier analysis of the grain boundary types that exist in the system, ( )n,g∆λ  is 

parameterized into discrete cells by using the three Euler angles (ϕ1, Φ, ϕ2) that represent the 

lattice misorientation, and two spherical angles (θ, ϕ) that represent all possible interface 

normals.  For any material, the Euler angles ϕ1, Φ, and ϕ2, range from 0 to 2π, π, and 2π 

respectively.  In the parameterization of the misorientation, the angles ϕ1, cos(Φ) and ϕ2 are used 

to subdivide the Euler angle space into equal volumes.  For the interface normals, the spherical 

angles θ and ϕ range from 0 to π and 2π respectively and cos(θ) and ϕ are used to discretize the 

domain of the interface normals into equal areas.  The discretization of ( )n,g∆λ  with respect to 

the five parameters is shown in Fig. 2.8.  The homochoric subdivision of the Euler angle space 

into equal volumes and the interface normal space into equal areas allows for each cell to have 

an equal probability of being populated by a random grain boundary.  When the population of 

each cell is divided by the total population in ( )n,g∆λ , the units of measurement become 

multiples of random distribution (MRD).  Hence, for a random GBCD, all cells in ( )n,g∆λ  

would have the same values, which is equivalent to an MRD value of 1.       



 18 

A common way of displaying the GBCD is by first choosing a particular misorientation, 

and then plotting the relative areas of grain boundaries with the specified misorientation as a 

function of grain boundary plane orientation on a stereographic projection plot. 

 

2.2.3 Annealing twins 

 
Annealing twins are commonly observed in FCC materials that have low-stacking fault 

energies.  It should be noted that from here on, unless otherwise specified, any reference to twins 

in this study has to do with annealing twins rather than mechanical or deformation twins.  The 

main difference between mechanical twins and annealing twins is that mechanical twins are 

generated from the cross-slipping of partial dislocations [50], while one of the mechanisms 

believed to be responsible for the generation of annealing twins is growth accidents that occur 

during the migration of the grain boundaries [51].  A review on the formation mechanisms of 

annealing twins can be found in Section 4.3.  

A twin boundary in FCC materials is generated with a 180° rotation of the lattice about 

the twin plane normal, which forms a 60°<111> misorientation (the CSL 3 relationship) 

between the twin grain and the neighboring grain or the grain the twin is residing in (the parent 

grain).  The twin boundary is considered coherent when the Σ3 boundary has a 60°[111] 

misorientation and a plane normal parallel to the [111] direction in both adjacent crystals.   

Most studies of annealing twins by other researchers were performed on the planar 

sections of the materials.  An example of the four most common morphologies of annealing 

twins observed in two dimensions are shown in Fig. 2.9 [52].  In the case of C, where a twin does 

not completely span the grain in this section plane, steps can be seen at the short edge of the twin 

as shown in the bright field image and illustration of Fig. 2.10a and 2.10b respectively.  As seen 

in the illustration, only the longer boundaries highlighted in red are coherent with the grain.  In 
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the studies of increasing the fraction of low-Σ boundaries, twinning events have been found to be 

very effective in introducing low-Σ boundaries [12].   

 
Figure 2.9 The four prominent morphologies of annealing twins found on two-dimensional sections [52]. 

 
 

Figure 2.10 (a) A bright field image of an annealing twin observed under the transmission electron microscope in the 
718+ alloy discussed in Section 3.1.2.  (b) An illustration of an annealing twin with coherent boundaries highlighted 
in red and incoherent boundaries highlighted in blue. 

 
 One of the problems with observing twins on a planar section of the structure is that it is 

not possible to measure how the planar section intersects with a twin.  If the observation plane is 

parallel with the twin’s flat interface, the twin grain will not have the morphologies that are 

observed in Fig. 2.9.  Therefore, to truly observe the behavior of the twin grains, a three 
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dimensional view of the twin is necessary.  Bystrzycki and his coworkers [53, 54] have 

reconstructed the annealing twin grain shape through the use of serial sectioning on a NiMn2 

alloy.  Bystrzycki et al. [53, 54] characterized the annealing twin shape with only two categories: 

lamellae twins or edge twins.  Lamellae twins are characterized by a combination of two parallel 

coherent grain boundaries and irregular incoherent grain boundaries, while edge twins can be 

approximated as tetrahedrons.  However, the division between the two shapes is not distinct, as 

Bystrzycki et al. [53, 54] also mentions that twins have frequently been found to have a mix of 

lamellae and edge twin features.  As seen in Fig. 2.11, Bystrzycki et al. [53, 54] used AutoCad 

[55] to reconstruct the twins, and from the image, it is very difficult to quantify or categorize the 

grain into any particular shape.  In this study, with the three-dimensional tools that are available, 

reconstruction, presentation, and analysis of the twins will be improved, as seen in Fig. 2.12.  

Chapters 6 and 9 of this dissertation explain how twin grains can be characterized and 

synthesized in either the computer generated or experimentally observed microstructures. 

 
Figure 2.11  Bystrzycki et al.'s (left) serial sections and (right) the reconstructed 3d view of the lamellar twin [53, 
54]. 
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Figure 2.12  Three dimensional view of a grain cluster, obtained from a reconstructed Inconel 100 data set [56, 57], 
showing the twin grain (red) cutting through the parent grain (blue).  Left and right images simply show the different 
angles of observing the grains. 

 
 

2.3 Simulated Annealing 

 
Simulated annealing was used to assign grain orientations to the voxelized 

microstructures.  Simulated annealing is an efficient method for finding the desired global 

minimum or maximum values for a function that contains many independent variables [58].  As 

the name implies, simulated annealing is formed based on the observations of real-world 

annealing phenomenon.  In the annealing procedure, a heated system with random configurations 

can either be quenched or slow-cooled to reach a lower energy state.  In terms of computer 

models, the quenching of the material is similar to an iterative improvement method, while the 

slow-cooling of the material is comparable to the simulated annealing method in searching for a 

low energy state.  A cost function is analogous to the energy of the system, where the goal of the 

algorithm is to reach the minimum value of this function.  The iterative improvement method 

takes a system of known configuration, and iteratively rearranges the configuration, such that the 

cost function is lowered, until no further improvement to the cost function can be made [59, 60].  
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However, the problem with the iterative improvement method is that only the local rather than 

the global minima will be found.   

On the other hand, what is known as the Metropolis procedure [61] is a more generalized 

iterative improvement where the probability of allowing a proposed move with a higher cost 

function is defined by the Boltzmann probability distribution [58, 62].  The Boltzmann 

probability distribution is based on the idea that a system that is in a thermal equilibrium at 

temperature T will have an energy probabilistically distributed among all the different energy 

states [63].  The simulated annealing procedure is then the Metropolis algorithm performed at 

various temperatures.  One advantage of this more elaborate procedure is that one can avoid 

configurations stuck in local minima (in energy or cost).  An annealing schedule is typically used 

to define the constant ratio at which the temperature decreases, and the number of 

rearrangements allowed at each temperature step [58].  In summary, the simulated annealing 

procedure requires [63]: 

 1. The definition of the possible system configurations. 

 2. A generator that allows for random changes in the system configuration. 

 3. The definition of a cost function. 

 4. The starting annealing temperature and the annealing schedule. 
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Chapter 3 Related Experimental Work 
 

The experimental results presented in this section serve to expand and support the 

motivation for the work presented in the later sections.  Intergranular corrosion studies on the 

2124 aluminum alloy yielded results that show why the control of CSL boundary distributions is 

an important aspect in improving material properties.  On the other hand, the studies on a nickel-

based superalloy show what problems the thermomechanical treatments involved in GBE can 

introduce.   

 

3.1.1 Intergranular Corrosion Studies on 2124 Aluminum Alloy 

 
The 2124 aluminum alloy used in the study has a nominal chemical composition (wt %) 

of Cu: 3.8, Mg: 1.2, Mn: 0.48, Fe: 0.09, Si: 0.04, Zn: 0.04, Ti: 0.02, and balance Al.  The 6.3 mm 

thick material first underwent a heat treatment at 350°C for 2 h followed by air cooling to relieve 

any residual stress.  The material was then cold rolled to 82% reduction through a constant speed 

rolling mill.  After cold working, the samples received a solutionizing heat treatment of 540°C 

for 2 h.  Room temperature water was used to quench the samples immediately after removal 

from the box furnace.  The annealed samples were subjected to ASTM G110 corrosion testing, 

whereby 2.5 cm x 2.5 cm samples were immersed into a solution of sodium chloride and 

hydrogen peroxide for 24 h [64].  Cross-sections perpendicular to the rolling plane were 

mechanically polished for microstructural characterization through Electron Backscatter 

Diffraction (EBSD).  Diffraction data was collected on a Phillips XL40 FEG instrument 

equipped with an EBSD indexing system provided by EDAX, Inc. using operating parameters of 

an accelerating voltage of 20kV, a working distance of 17mm, and a step size of 1µm scanning 

on a hexagonal sampling grid.  An example of an EBSD data set is portrayed with an inverse 
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pole figure map in Fig. 3.1.  Figure 3.1 also demonstrates the method used to study the grain 

boundary data.   

Since the raw EBSD data collected with the Orientation Imaging Microscopy (OIMTM) 

software package contains points where the pattern was incorrectly indexed, either from 

overlapping of diffraction patterns or uneven topography effects, and points that are not indexed, 

from the corrosion of the boundaries, the erroneous results need to be corrected.  The correction 

or “clean up” method chosen for this purpose is grain dilation.  The grain dilation method first 

identifies points that do not belong to a grain and groups of points that is smaller than the 

specified minimum grain size (5 pixels for this study), then changes the orientation of the 

identified points to match the orientation of the grain with the majority of neighboring points or a 

neighboring grain that is randomly selected [65].  After the EBSD data has been cleaned, the 

OIM software can be used to extract the grain boundary information.  Grain boundaries were 

reconstructed with the OIM software by connecting all triple points, or points where three 

surrounding orientation belongs to three different grains, with straight lines.  However, if the 

furthest perpendicular distance between the reconstructed boundary and the true boundary 

exceeds a set tolerance, the straight line is segmented such that the reconstructed boundary will 

follow more closely to the true boundary.  Once the grain boundaries were reconstructed, the 

corroded boundaries were traced by hand onto the cleaned image such that all the reconstructed 

grain boundaries can be categorized into either the corroded boundary or the non-corroded 

boundary group. 
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Figure 3.1  Inverse pole figure maps showing the EBSD data (a) as obtained from the OIM system, (b) with the 
grain segments highlighted after being cleaned up with the TSL software, and (c) with the corroded grain boundaries 
manually traced back onto the cleaned map. 

 
In the OIM software, the area of each grain, Ai, in a hexagonal grid is given by, 
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where Npi is the number of points that make up grain i, and S is the scanning step size [65].  The 

circle equivalent diameter of the grain is then calculated with, 
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Once the circle equivalent diameter of each grain is calculated, the number-weighted average 
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while the area-weighted average is calculated with,  
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where N  is the total number of grains in the analysis [65].  If the grain size is uniform, the 

number-weighted and area-weighted average grain sizes will be very close to each other.  On the 

other hand, for non-uniform grain sizes, the area-weighted average will generally yield a larger 
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grain size than the number-weighted average.  For this analysis, both averages were calculated, 

which gave an area-weighted average grain size of 66.7µm, and a number-weighted average 

grain size of 41.8µm.  The number and lengths of the CSL grain boundary types with Σ19 are 

reported in Table 3.1.  From Table 3.1, it can be seen that 1 not only dominates in numbers but 

also in length over the other CSL boundary types.   

Table 3.1  Number and length of grain boundaries with a CSL relationship of Σ19.  (N=number, L=length, and 
A=area) 

  N% L, µµµµm L,% <L>, µµµµm L/A, µµµµm-1  

Total 100.00 95604.7 100.00 30.4 5.94x10-2 

ΣΣΣΣ1    11.49 12440.2 13.01 34.5 7.72x10-3 

Σ3Σ3Σ3Σ3    3.02 2958.3 3.09 31.1 1.84x10-3 

ΣΣΣΣ5    1.50 1621.8 1.70 34.5 1.01x10-3 

Σ7Σ7Σ7Σ7    1.24 1148.9 1.20 29.5 7.13x10-4 

ΣΣΣΣ9    1.18 1044.4 1.09 28.2 6.49x10-4 

Σ11Σ11Σ11Σ11    0.76 769.2 0.80 32.1 4.78x10-4 

ΣΣΣΣ13    0.57 687.6 0.72 38.2 4.27x10-4 

Σ15Σ15Σ15Σ15    0.57 500.6 0.52 27.8 3.11x10-4 

ΣΣΣΣ17    0.45 523.7 0.55 37.4 3.25x10-4 

Σ19Σ19Σ19Σ19    0.54 517.3 0.54 30.4 3.21x10-4 

 
  

From a total of 1191 grains (excluding edge grains), 3142 grain boundaries were 

observed.  Of those 3142 grain boundaries, 23% have a Σ19 CSL relationship and 49% were 

corroded.  The population of Σ19 type boundaries is reported in Fig. 3.2.  The percentage of 

each corroded boundary type is also included in the plot.  Since 49% of all grain boundaries were 

corroded, any boundary type with the ‘Corroded’ bar covering less than 49% of the ‘Population’ 

bar, as denoted by the red lines, in Fig. 3.2 should have a higher corrosion resistance.  On this 

basis, 1, 3, 7, and 13 boundaries have a higher resistance to corrosion than the other CSL 

boundaries analyzed.  However, it is uncertain that grain boundaries with a Σ13 relationship truly 

have a higher corrosion resistance since only 18 boundaries were observed.  In the interest of 
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investigating whether 3n boundaries have higher corrosion resistance, 27 boundaries were also 

considered.  However, since only six 27 boundaries were found within the indexed areas, the 

result was not included in the analysis. 

 
Figure 3.2  The percent of grain boundaries observed is indicated in solid color and within each bar, the percentage 
of grain boundaries that are corroded is indicated in stripes for each CSL boundary type.  The solid red lines denote 

49% of the population for each CSL boundary type.  Note that the population of Σ1 grain boundaries is truly 11.49%.  
The scale on the y-axis was adjusted to allow easier visualization for the 3-19 boundary populations. 

 
The limitation of this intergranular corrosion study rests on observing corrosion only on a 

two-dimensional plane.  Without a three-dimensional model of the sample, connectivity studies 

and grain shape analysis remains limited.  However, the difference in corrosion resistance of the 

grain boundary types, based on CSL relationships, is still clearly observed.   
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3.1.2 Grain Boundary Engineering of Nickel-Based Superalloy 

 
Conventional and grain boundary engineered samples of 718+, a nickel-based superalloy, 

were provided by Integran Technologies Inc. for EBSD analysis.  Diffraction data was collected 

with an accelerating voltage of 20kV, a working distance of 17mm, and a step size of 0.5µm and 

2µm for the conventional and GBE samples respectively.  Examples of the EBSD data sets 

collected from the two different samples are shown as image quality maps in Fig. 3.3.  Even 

though grain boundaries with a Σ3 relationship have been highlighted in red, it is very difficult to 

differentiate the fraction of Σ3 boundaries in the two samples in Fig. 3.3.  Therefore, Table 3.2 

provides a complementary numerical analysis on the different length fractions of the CSL 

boundaries with Σ19.  From Table 3.2, it can be seen that the sample that has undergone GBE 

processing contains a 45% increase in the fraction of Σ3 boundaries compared to the sample that 

has undergone conventional processing.  On the other hand, the populations of the other CSL 

boundary types have lower fractions, with Σ1 being the most significant.   

 
Figure 3.3  Image quality maps showing the (a) conventional and (b) grain boundary engineered 718+ alloy.  Grain 

boundaries with a misorientation angle greater than 15° are highlighted in black, while boundaries with a Σ3 CSL 
relationship are highlighted in red. 
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As seen in Fig. 3.3, the grain sizes for the two samples are very different, with the area-

weighted average grain size being 10.38 µm and 30.40µm, while the number-weighted average 

grain size being 3.44 µm and 16.91 µm for the conventional and GBE samples respectively.  

Moreover, the grain size distribution of the conventional samples is bimodal, suggesting 

abnormal grain growth.  This study is an example of the problems involved in experimentally 

increasing the fraction of low-Σ CSL boundaries.  Even though the fraction of Σ3 boundaries has 

increased, the grain structures are very different between the conventional and GBE processed 

samples.  Even if improved material performance was observed in the GBE processed material, 

the improved performance can not be explained with CSL boundary fractions alone.  Therefore, 

time-consuming experimentation on material processing can be avoided by utilizing computer 

simulations, which is the most cost-effective way to explore the effects of the CSL boundaries on 

material properties. 

Table 3.2  Number and length of grain boundaries with a CSL relationship of Σ19 for a conventional and a grain 
boundary engineered nickel-based superalloy sample.  (N=number, and L=length) 

  Conventional GBE 

 N N, % L, µµµµm L,% N N, % L, µµµµm L,% 

total 141893 100.00 41000.0 100.00 30401 100.00 36000.0 100.00 

ΣΣΣΣ1    43204 30.45 12474.9 30.42 1233 4.06 1423.8 3.95 

Σ3Σ3Σ3Σ3    47070 33.17 13587.9 33.14 14993 49.32 17312.4 48.09 

ΣΣΣΣ5    691 0.49 199.5 0.49 106 0.35 122.4 0.34 

Σ7Σ7Σ7Σ7    956 0.67 276.0 0.67 226 0.74 261.0 0.72 

ΣΣΣΣ9    2013 1.42 581.1 1.42 767 2.52 885.7 2.46 

Σ11Σ11Σ11Σ11    1053 0.74 304.0 0.74 252 0.83 291.0 0.81 

ΣΣΣΣ13    834 0.59 240.8 0.59 141 0.46 162.8 0.45 

Σ15Σ15Σ15Σ15    498 0.35 143.8 0.35 52 0.17 60.0 0.17 

ΣΣΣΣ17    870 0.61 251.2 0.61 47 0.15 54.3 0.15 

Σ19Σ19Σ19Σ19    633 0.45 182.7 0.45 23 0.08 26.6 0.07 
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Chapter 4 Literature Review 
 

4.1 Statistical Digital Microstructure Generation 

 
Various statistical methods to generate three-dimensional digital microstructures exist 

with each method exhibiting its own strengths and weaknesses.  The traditional method of 

generating composite microstructures is to evolve a randomly digitized system that contains 

black and white pixels that represent the two different phases.  To evolve the system towards a 

minimum energy state, two randomly selected pixels of different phases are swapped until good 

agreement with the target statistics is reached [66-68].  This evolution method automatically 

preserves the volume fraction of the different phases.  Similarly, a genetic algorithm can be 

employed where a population of points is allowed to evolve by producing offspring [69, 70].  A 

cost function, such as mechanical response, is used to measure the fitness of the resulting 

microstructure, and the shape and size of the two phases in the microstructure evolves such that 

one or more cost functions are optimized.  Genetic algorithms are effective in creating two-phase 

materials where grain information is not required.   

In generating a statistically representative polycrystalline material, more complex 

geometrical shapes are needed to represent a grain [71].  A relatively fast and efficient strategy is 

to generate a microstructure based on a 3D Voronoi tessellation [72, 73].  Initially, a volume is 

filled with random points.  Voronoi tessellation then constructs bisecting planes perpendicular to 

the lines joining the points such that the volume is segmented into unique regions with each grain 

being a single Voronoi cell [74].  Alternatively, Fan et al. [75] packs spheres with a lognormal 

volume distribution into the simulation box, and subsequently uses the centers of the spheres as 

the initiating points for Voronoi tessellation.   
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In order to generate microstructures that contain more characteristic grain shapes, many 

authors have used ellipsoid distributions to approximate the grain size and shape distributions 

that exist in the real microstructures [76-80].  Brahme et al. [76] followed Saylor et al.’s [79] 

method in packing ellipsoids into the simulation box such that the shape and size distributions 

match experimental values.  The grain shape and size distributions are first extracted from 

orthogonal two-dimensional EBSD maps.  A large number of overlapping ellipsoids is then 

inserted into the simulation box.  An active subset of the ellipsoids that will allow maximum 

space filling and minimum overlapping of ellipsoids are identified.  Brahme et al. [76] then takes 

the centers of all the ellipsoids (active or inactive) as points for Voronoi tessellation.  The 

Voronoi cells created by the inactive ellipsoids are then grouped into grains when the seed points 

of the Voronoi cells lie within the corresponding active ellipsoid.  Brahme et al. [76] also 

simulated elongated grains by stretching an equiaxed grain structure along the rolling and 

transverse directions.  On the other hand, Groeber et al. [77, 78] extracts the ellipsoid shape and 

size distributions from a fully reconstructed three-dimensional dataset.  The ellipsoids are then 

packed into the simulation box one by one to maintain the ellipsoid size and shape distributions, 

and the number of neighbors shared per grain.  Once the ellipsoids are packed into the box, 

Groeber et al. [77, 78] takes the centers of the ellipsoids as seed points for Voronoi tessellation.  

The limitations of the Voronoi tessellation generation method are mainly related to the geometry 

of the grain boundaries.  When structures with equiaxed grains are generally created using one 

Voronoi cell, the resulting boundary planes are flat and planar.  When more than one Voronoi 

cell is grouped to form a grain, the resulting boundaries are often very rough.   

The microstructure generation method used by Saylor et al. [79] was described in the 

previous paragraph with Brahme et al.’s [76] generation methods.  The difference between 
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Saylor et al. [79] and Brahme et al.’s [76] methods is that Saylor et al. [79] uses cellular 

automaton algorithm instead of the Voronoi tessellation with the centers of the ellipsoids as cell 

centers.  The Cellular Automaton (CA) takes the centers of the active ellipsoids as nucleating 

sites, and allows the nuclei to grow outward with anisotropic growth rates (based on the ellipsoid 

size) until the entire volume of the active ellipsoids is filled.  Further growth is then conducted, 

without any curvature or energy considerations, until the grains impinge upon one another and it 

terminates when all the free space in the bounding simulation box is consumed.  Saylor et al.’s 

[79] generation algorithm is termed Microstructure Builder and is used for creating some of the 

digital microstructures used in this study. 

St-Pierre et al. [80] proposed to generate more realistic microstructures by using the two-

dimensional EBSD image as the input for the top surface of the digital structure.  The ellipse 

shape and size extracted from the two-dimensional image are used to recreate the top surface of 

the structure following Saylor et al.’s [79] method, where the centers of the observed grains are 

used for cellular automaton.  After the top surface has been created, the remaining volume in the 

box is filled with ellipsoids that are inserted one by one from largest to smallest with the 

ellipsoid center and the orientations are randomly chosen.  After 65% of the voxels are consumed 

by ellipsoids, each remaining free voxel is then assigned to the grain with the nearest ellipsoid 

center.  The limitation to St-Pierre et al.’s [80] generation method is that the size of the digital 

microstructure will be limited by the size of the two-dimensional image obtained from EBSD 

analysis. 

 

4.2 The Importance of the Five-Parameter Grain Boundary Character Distribution 

 
As mentioned in Section 1.1, Gertsman et al. [18], Henrie et al. [19], and Lin et al. [20] 

have observed that Σ3 boundaries with different boundary plane orientations can have different 
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corrosion or crack resistance.  However, these researchers did not explicitly measure the grain 

boundary plane orientations.  Through serial sectioning an intergranular stress corrosion cracked 

X-750 alloy, a Ni-Fe-Cr alloy, Pan et al. [81] found that cracked boundaries with CSL 

relationships of Σ5-49 consist of boundary planes that deviated away from the low-index planes.  

Some researchers have found that boundary properties correlate more with the boundary plane 

orientations rather than the CSL criteria [82-84].  In an Al-Cu-Mg-Zn alloy, Field et al. [82] 

found that {111} boundary planes aligned parallel to the rolling plane were more crack resistant.  

Ohfuji et al. [83] found that fracture surfaces occurred more preferentially on {100} planes in 

pure iron.  In pure copper, Miyamoto et al. [84] found that grain boundaries with smaller 

interplanar spacing results in higher corrosion resistance.  From the observations made by these 

researchers, it is evident that the full five-parameter GBCD must be evaluated to correlate not 

only the lattice misorientation distribution but also the grain boundary plane orientation with 

grain boundary dependent properties. 

 

4.3 Formation of Annealing Twin Boundaries 

 
Since the formation of annealing twin boundaries was first discussed by Carpenter and 

Tamura [85] in 1926 the formation mechanism of annealing twins is still under debate today.  

Many formation mechanisms have been proposed, and can be generally classified into 4 groups: 

(a) growth accident, (b) grain encounter, (c) stacking-fault packets, and (d) grain boundary 

dissociation [86].  Each of the 4 groups of formation mechanism will be briefly discussed. 

The growth accident mechanism that was first proposed by Carpenter and Tamura [85] in 

1926, and later described by Burke [87] and Fullman et al. [88], involves the idea that as grain 

boundaries migrate, stacking faults can occur and generate annealing twins.  In 1969, Gleiter 
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[89] provided an atomistic explanation to the mechanism.  During grain growth, atoms transfer 

from ledges of the shrinking grain to the ledges of the growing grain [89].  Stacking faults can 

then occur at the ledges of the growing grain, which then leads to the formation of coherent twin 

boundaries.  However, in performing studies on Cu-3wt%Al, Baro and Gleiter [90] found that 

the growth accident mechanism was not able to explain twin boundary formation at annealing 

temperatures below 600°C.  More recently, Mahajan et al. [51] proposed a modified growth 

accident mechanism, where annealing twin boundaries are formed due to the stacking faults that 

are accidentally generated on the {111} planes of the migrating boundaries, as seen in Fig. 4.1.  

The major assumptions of Mahajan et al.’s [51] growth accident mechanism are that the grain 

boundaries must migrate for twin boundary formation to occur, the driving force for boundary 

migration is dependent on the boundary curvature, which can be described by the ledges of the 

boundary, and that the ledges of the boundary may lie on {111} planes.  Mahajan’s [51] growth 

accident mechanism found support in experimental studies of annealing twin boundary formation 

in pure nickel, and copper [91], and molecular dynamics simulations in nanocrystalline metals 

[92].   
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Figure 4.1  Demonstration of the growth accident mechanism proposed by Majahan et al. (Fig. 2 of [51]).  As Grain 

I grows and Grain II shrinks, a {111} step (MNQR plane) can sometimes form. 

 
 

The grain encounter mechanism that was proposed by Burgers [93, 94] and Nielsen [95] 

formulates that coherent twin boundaries are generated by the motivation to lower system energy 

when two growing grains meet.  The grain encounter mechanism can only explain the formation 

of a single twin boundary, and can not explain the formation of true twin grains that are bounded 

by two parallel twin boundaries. 

Dash et al. [96] proposed that during recrystallization, stacking fault packets are formed, 

and coalesce into annealing twins.  In high purity nickel specimens, Merklen et al. [97] observed 

that thin twins were formed from the coalescence of the stacking faults.   

The annealing twin boundary formation proposed by Meyers et al. [52] involves grain 

boundaries dissociating into segments of random and Σ3 boundaries under energetically 

favorable conditions.  In thin-film welded bicrystals of gold, Goodhew [98] observed the 

dissociation of Σ9, 11, and 99 into Σ3 and other boundaries.   
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4.4 Simulating Twins 

 
Both annealing twins and deformation twins have been extensively studied and simulated 

through various means.  Since the structures of annealing and deformation twins are very similar 

in FCC metals, simulations of both types of twins will be reviewed in this section.   

In simulating deformation twins, the most commonly used computational tool is 

molecular dynamics, where the atomic motion is tracked as the simulated material is deformed 

with high strain rates.  Because atomic motion is being tracked in molecular dynamics, the length 

scale is on the order of angstroms while the time scale is on the order of femtoseconds [99, 100].  

Even though parallel algorithms that allow for larger simulation domains and longer timesteps 

exist, millions of atoms are still needed to simulate a sub-micron size material while thousands of 

timesteps are needed to simulate picoseconds of deformation behavior [99].  Therefore, most 

deformation twin simulations are studied on nanocrystalline materials using only a few grains 

[101-106].  Also, the goal of these studies is not to generate representative microstructures, but to 

either study the formation mechanisms of deformation twins [101-103] or the effect of 

deformation twins on material properties [104-106].  Annealing twins have also been simulated 

using molecular dynamics by Farkas et al. [92].  However, the limitations of molecular dynamics 

remain since Farkas et al. [92] only observed the formation of annealing twins in 5nm-sized 

grains at timesteps up to 1500 ps.  Due to the restrictions in length and time scales, molecular 

dynamics is not a suitable simulation method for generating annealing twins in large simulation 

domains that will contain thousands of grains. 

 Gertsman et al. [107, 108] has developed a different method for generating annealing 

twins in two-dimensions.  Among the 19 hexagonal-shaped grains, a grain is chosen at random, 

and a portion of the grain is assigned the twin misorientation [108].  The twin boundary is then 
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constructed such that the selected portion is divided from the original grain.  Twin boundaries are 

allowed to divide the original grain into two or three parts [107].  An example of Gertsman et 

al.’s simulated microstructure is shown in Fig. 4.2.  Since Gertsman et al. [107, 108] was only 

concerned with generating representative misorientation distributions, grain boundary planes 

were not considered in the simulations.  As seen in Fig. 4.2, the twin-generation technique does 

not produce realistic-looking microstructures that can be compared with experimentally observed 

structures. 

 

Figure 4.2  An example simulated microstructure created by Gertsman et al. [107]. 

 
Reed et al. [109] has simulated annealing twins by using a Monte Carlo method coupled 

with the Metropolis algorithm to evolve a pixel-based microstructure to a lower energy state.  By 

assigning negative energies to the Σ1 and Σ3 grain boundaries, these boundaries were favorably 

created in the structure.  An example of the simulated microstructure created by Reed et al. [109] 

is shown in Fig. 4.3.  As seen in Fig. 4.3b, the simulated microstructure does not contain any Σ3 

grain boundaries that have the appearance of a twin boundary (straight / parallel lines) that is 

typically observed in planar sections, as shown in Fig. 2.9 in Section 2.2.3. 
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Figure 4.3  (a) Experimental EBSD and (b) simulated microstructure created by Reed et al. [109]. 
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Chapter 5 Microstructure Generation 
 

Since the current method of synthesizing annealing twins, discussed in Section 9.1 of this 

dissertation, only creates coherent Σ3 grain boundaries in an existing microstructure, other 

methods are required to generate the initial grain structure.  In this section, different methods for 

generating realistic as well as idealized microstructures, and methods for obtaining experimental 

microstructures are presented.  In this study, all microstructures are described with voxel data, 

where each voxel can be treated as an equiaxed three-dimensional pixel or a cube.  In other 

words, the microstructures are represented as images and boundaries are implicit. 

 

5.1 Synthetic Microstructures 

 
Microstructure Builder was used to create microstructures that are representative of 

experimentally observed structures [79].  On the other hand, the Plank Generator and Voronoi 

tessellation growth simulation [110, 111] methods were used to generate some simple 

microstructures that represent the most simplified structures. 

 

5.1.1 Microstructure Builder 

 
The method used for generating voxel-based polycrystalline microstructures that are 

representative of experimentally observed structures was developed by other researchers, and is a 

computer software package known as Microstructure Builder [79].  In Microstructure Builder, 

the grains in the voxel-based structure are generated by optimally packing ellipsoids into a 

specified bounding box.  The grain population is then controlled by specifying the size of the 

ellipsoids and the amount of overlap that is allowed between the ellipsoids.  Once the ellipsoids 

are packed into the microstructure, the centers of the ellipsoids are taken as cell centers.  These 
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cell centers are then allowed to grow at different rates based on the ellipsoid sizes until the grains 

impinge and all the space inside the bounding box is filled [79].   

Three examples structures generated with Microstructure Builder are shown in Fig. 5.1.  

As can be seen in Fig. 5.1, the M1 and M2 structures have more equiaxed grain structures, while 

M3 is representative of rolled structures.  From the plot of grain sizes in the figure, M2 is a 

structure that is equivalent to subjecting the M1 structure to grain growth.  The M1 structure has 

a much higher number fraction of small grains (relative to the mean size) than the M2 structure.  

Further numerical details regarding the three different structures’ dimensions and grain sizes are 

given in Table 5.1. 

 
Figure 5.1  Grain structures (left) and the distributions of normalized spherical equivalent radius of the grains 
obtained from the three different structures generated by Microstructure Builder (right). 
 
Table 5.1  Detailed grain information about the three different structures generated with Microstructure Builder.  

Structure Dimensions 
(voxels) 

Number 
of 

Grains 

Maximum 
Grain Volume 

(voxels) 

Average Grain 
Volume 
(voxels) 

Average Grain 
Spherical 

Equiv. Radius 
(voxels) 

M1 200 x 200 x 
200 

1512 189,184 5295 8.71 

M2 128 x 128 x 
128 

1634 8354 1282 6.05 

M3 200 x 200 x 
200 

744 253,607 10,782 11.16 
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5.1.2 Plank Generator 

 
The plank structure is the most simple and idealized structure, and can be thought of as a 

tower of stacked square slices, with each slice having a different grain identification number or 

orientation.  The special feature of this structure is that each grain has two neighbors, which can 

be thought of as an idealized columnar structure.  The plank structure shown in Fig.5.2 is made 

up of 800 grains with detailed structure dimensions and grain size information given in Table 5.2.  

As seen in the plot of grain sizes in Fig. 5.2, all the grains in the structure have identical grain 

volumes.  Plank Generator can also generate structures that contain grains of various thicknesses 

such that a grain size distribution can be imposed without affecting any other geometric feature.  

 
Figure 5.2 Grain structure (left) and the distribution of normalized spherical equivalent radius of the grains obtained 
from the plank structure (right). 

 
Table 5.2  Detailed grain information about the plank structure shown in Fig. 5.2. 

Structure Dimensions 
(voxels) 

Number 
of Grains 

Maximum 
Grain Volume 

(voxels) 

Average 
Grain 

Volume 
(voxels) 

Average Grain 
Spherical 

Equiv. Radius 
(voxels) 

Plank 100 x 100 x 
800 

800 10,000 10,000 13.37 
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5.1.3 Voronoi Tesselation Growth 

 
An idealized microstructure of tetrakaidecahedron (14-sided) grains was generated with 

the Voronoi tessellation growth algorithm that was adapted from Lee [112].  The Voronoi 

tessellation growth method, outlined by Mahin and Rickman [110, 111], consists of randomly 

assigning seed points into a bounding cube, and segmenting the volume into unique regions such 

that each grain consists of one nucleating site.  In this dissertation, instead of performing a 

Voronoi tessellation with randomly placed points, the seed points were placed on a regular grid.  

In the first layer, the seed points are placed on a square lattice spaced at a distance of r apart 

from each other.  The second layer of points is placed on a square lattice that is shifted by a 

vector 

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

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,

2
,

2

rrr
from the first layer of points.  The two layers are then repeated in the 

subsequent layers until the seed points have filled the simulation box.  A top view of the 

placement of the seed points is shown in Fig. 5.3.  This placement of the seed points can be 

thought of as creating a body-centered cubic spatial arrangement of the seed points inside the 

bounding simulation box.  This method of placing the seed points on a body-centered grid will 

allow the final output of the grains to have the special tetrakaidecahedron shape that is shown in 

Fig. 5.4.  An example of the resulting tetrakaidecahedron structure generated by the Voronoi 

tessellation method is shown in Fig. 5.5.  Because periodic boundary conditions were not used in 

creating this structure and thus grains touching the edges of the box are truncated, the grain size 

distribution is not uniform.  The widths of the peak seen in the plot of grain sizes in Fig. 5.5 are 

only a consequence of binning errors.  The peak at a normalized grain spherical equivalent radius 

of just above 1 should be a straight vertical line showing that all interior grains have the same 

grain size.  Numerical details regarding the structure dimensions and grain sizes are given in 

Table 5.3. 
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Figure 5.3  Top view of the placement of the initiating points used in Voronoi tessellation for creating structures 
containing tetrakaidecahedron-shaped grains. 

 
 

 
Figure 5.4  Illustration of two tetrakaidecahedron-shaped (14-sided) grains. 

 

 
Figure 5.5  Grain structure (left) and the distribution of normalized spherical equivalent radius of the grains obtained 
from the tetrakaidecahedron structure (right).  Although a regular grid of points was used to generate the 
microstructure, grains adjacent to the edge were truncated, giving rise to the small peaks below the average size. 
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Table 5.3 Detailed grain information about the tetrakaidecahedron structure shown in Fig. 5.5. 

Structure Dimensions 
(voxels) 

Number 
of 

Grains 

Maximum 
Grain 

Volume 
(voxels) 

Average 
Grain 

Volume 
(voxels) 

Average Grain 
Spherical 

Equiv. Radius 
(voxels) 

Tetrakaidecahedron 200 x 200 x 
200 

1241 7858 6441 11.35 

 

5.2 Experimentally Observed Structures 

 
Three-dimensional microstructures can be obtained experimentally by using dual-beam 

systems that combine an orientation imaging microscope (OIM) with a focused ion beam (FIB) 

[56, 57, 71, 78, 113, 114].  After each layer of material is removed by the FIB, an electron back-

scatter diffraction (EBSD) image is obtained on the surface of the material.  The removal 

thickness is typically specified to be equal to the step size used in the EBSD data collection.  The 

EBSD images are then reconstructed into a 3D digital structure with a registration method 

developed by Lee [115].  The registration method assumes that there is only translational 

misalignment between adjacent layers in the x and y directions.  The alignment is then performed 

such that the total misorientation between adjacent layers is minimized.  After the 3D structure is 

established, each grain is assigned a unique integer value for identification purposes. 

Three experimentally reconstructed structures obtained from two different materials, 

Zirconia [71, 113], and Inconel 100 [57], were used in this study.  The Zirconia structure and the 

smaller Inconel 100 structure are used in testing the orientation assignment algorithms, while the 

larger Inconel 100 structure is used in verifying the twin synthesizing algorithm.  The structures 

are shown in Fig. 5.6 with detailed structure dimensions and grain size information given in 

Table 5.4.  The large Inconel 100 structure contains approximately 5 times more grains than the 

smaller Inconel 100, and therefore produced a grain size distribution that appears much smoother 

than the distribution obtained from the smaller structure.  As seen in the distributions of 
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normalized spherical equivalent grain size, the Inconel 100 structures have larger populations of 

smaller grain sizes that are attributed to the additional twin grains that are not found in the 

equiaxed grain structure of the Zirconia.  Note that the grain sizes may be slightly biased towards 

the smaller grain size since all structures are non-periodic, and all surface grains are included in 

the distributions. 

 

Figure 5.6 Grain structures (left) and the distributions of normalized spherical equivalent radius of the grains 
obtained from the reconstructed Zirconia [113]  and the small and large Inconel 100 [57] structures (right). 

 
Table 5.4  Detailed grain information about the reconstructed Zirconia and Inconel 100 structures.  

Structure Dimensions 
(voxels) 

Number 
of Grains 

Maximum 
Grain 

Volume 
(voxels) 

Average 
Grain 

Volume 
(voxels) 

Average Grain 
Spherical 

Equiv. radius 
(voxels) 

Zirconia 150 x 140 x 50 1011 15,297 1053 5.30 

Small Inconel 
100 

150 x 150 x 80 1488 26,900 1312 5.29 

Large Inconel 
100 

389 x 146 x 
184 

8518 32,535 1227 5.41 
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Chapter 6 Digital Microstructure Characterization 
Techniques  

 
After the digital microstructures are generated, the geometrical features of the microstructure 

must be quantified.  The various methods used in this study to quantify the distribution of 

interface normals, Σ3 and twin boundary fractions, Σ3 and twin cluster distributions, grain size, 

twin width, and the twin density are presented here.  In obtaining grain sizes, some researchers 

have either ignored the twins or presented both measurements with and without including the 

twins [91, 116].  For this purpose, a twin grain removal technique is presented for obtaining the 

grain sizes of the parent grains.  The twin grain removal technique will also be used in this study 

for verifying the twin insertion algorithm.   

 

6.1 Distribution of Interface Normals 

 
To obtain the distribution of interface normals for the three-dimensional voxelized 

structures, a surface mesh must first be generated for the specified structure.  For this purpose, 

the multi-material marching cubes algorithm was used to generate the initial surface mesh [117, 

118].  The initial conformed surface mesh must be smoothed to remove any artifacts that may 

exist due to the voxelization or pixelation of the grain boundaries.  The smoothing method 

imposed on the surface mesh is similar to the grain boundary reconstruction method used by the 

OIM software on the two-dimensional EBSD images, briefly described in Section 3.1.1.  Instead 

of constraining the triple points, quadruple points are examined in the three-dimensional 

structure.  Between any pair of quadruple points, the grain boundary line (a collection of all the 

triangle edges) is traced.  Straight lines connecting the quadruple point and the midpoints of the 

connecting segments of the grain boundary line are then inserted.  If the furthest perpendicular 

distance between the reconstructed straight line and the grain boundary line does not exceed a set 
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tolerance (0.7 voxels for this study), the straight line is accepted as the new boundary line.  Once 

the smoothed conformed surface mesh is generated, interface normals can be calculated for every 

triangular element of the mesh.  Each triangular area is then used for binning the corresponding 

misorientation and interface normal into the corresponding cell in the GBCD.  The number of 

elements identified for each of the structures used in this study is given in Table 6.1. 

Table 6.1  The number of nodes and triangles that resulted from generating surface meshes of the various structures. 

Structure Number of Nodes Number of Triangles 
M1 1 646 622 3 436 356 
M2 882 904  1 899 378 
M3 1 697 335 3 501 043 

Plank 33 626 65 734 
Tetrakaidecahedron 2 213 023 4 614 382 

Zirconia 411 164 874 005 
Small Inconel 100 690 652 1 473 903 
Large Inconel 100 4 641 833 10 020 591 

 
 

6.2 Σ3 and Twin Boundary Fractions 

 

To quantify the number and area fractions of coherent and incoherent Σ3 grain 

boundaries, the conformed surface mesh is used to help classify the grain boundaries.  Only the 

lattice misorientation across each triangular element of the mesh is needed for determining 

whether or not the Σ3 relationship exists.  To determine the coherency of the triangular element, 

the misorientation axis from the minimal misorientation angle-axis relationship is rotated from 

crystal to sample reference frame using either one of the adjoining grain orientation matrices.  

The triangular element is considered to have a coherent Σ3 relationship if the angle between the 

misorientation axis and the interface normal is less than 15°.  The area of the boundaries is then 

measured by summing the areas of the corresponding triangular elements.  The number of 

coherent Σ3 boundaries is measured by counting the number of grain boundaries that have more 

than a threshold fraction (0.5 in this study) of the triangular elements classified with the coherent 
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Σ3 relationship.  The discussion on choosing the correct threshold value for classifying the 

coherent Σ3 boundaries can be found in Section 10.2.1. 

 

6.3 Σ3 and Twin Cluster Distributions 

 
In correlating the connectivity of grain boundaries with the intergranular degradation 

behavior of materials, many researchers such as Basinger et al.!"##$%, Frary et al.!"#&'(#&&%, 

Fullwood et al. [123], Gaudett et al. [124], Henrie et al. [19], Palumbo et al. [48], Schuh et al. 

[125, 126], and Wells et al. [127] have used bond percolation theory to identify clusters, where a 

cluster is defined as the length of connected degradation susceptible boundaries.  The percolation 

threshold, the fraction of intergranular degradation resistant boundaries below which a cluster 

exists that spans the sample, is then often measured to determine whether a material is 

susceptible to intergranular degradation.   

In this thesis, the site percolation theory is used to define clusters as the number of grains 

that are linked together through a certain boundary type, similar to the method used by Xia et al. 

[23].  Therefore, a Σ3 cluster consists of grains that are linked together through coherent or 

incoherent Σ3 boundaries, whereas a twin cluster consists of grains that are linked together only 

through coherent Σ3 grain boundaries.  To characterize the Σ3 cluster distribution, the 

misorientation between the first grain and its neighbors are measured.  If a Σ3 boundary exists 

between the first grain and a neighbor, the neighbor is added to the cluster.  The misorientation 

between the newly added grain and all its corresponding neighbors is then measured and tested 

for the Σ3 relationship.  The procedure is then repeated until no further Σ3 boundaries can be 

found next to the cluster.  To characterize the twin cluster distribution, the list of coherent Σ3 

boundaries obtained by performing the twin boundary fraction analysis is used.  Since each grain 
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boundary corresponds to the interface between two adjacent grains, the uniquely assigned grain 

identification numbers are used to link the grains with coherent Σ3 boundaries together into 

clusters.  

 

6.4 Grain Size 

 
The grain size in any of the structures can be defined with either the grain volume or the 

spherical equivalent radius of the grain.  The grain volume is calculated by summing up the 

number of voxels that make up the grain.  The spherical equivalent radius takes the grain volume 

and calculates the radius assuming that the grain is a perfect sphere using, 

3

4

3
Volumeradius

π
=       (6.1) 

 
 

6.4.1 Twin Removal  

 
In measuring grain sizes in FCC metals that contain annealing twins, when twins are 

included in the measurement, the average grain size is always smaller than when the twins are 

ignored [128].  On the planar orientation maps, the OIM software has the ability to exclude Σ3 

boundaries from the grain size measurements by considering the twin and the parent together as 

one grain.  The problem with using this technique is that the OIM software only uses the lattice 

misorientation to find the Σ3 boundaries.  Therefore, all pairs of grains sharing a Σ3 boundary, 

regardless of the coherency of the boundary, will be merged together as one grain.  The method 

used in this study observes the fully reconstructed 3D structures and only removes truly coherent 

Σ3 boundaries from the structures.  Following the method outlined in Section 6.3 to identify twin 

clusters, the removal of the twin boundaries is simply performed by allowing the first grain to 

consume the remaining grains in the identified twin clusters.  After the twin boundaries are 
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removed from the structure, random grain orientations are assigned such that any preferential 

texture that may be caused by the twin removal will be avoided. 

  

6.5 Twin Density 

 
Twin density is often measured by researchers as the number of twin boundaries 

intersected by a straight line on a two-dimensional planar section of the sample [89, 129-131].  In 

this study, the definition of twin density is changed to being the number of twins per parent grain.  

The modification to the twin density definition is necessary for the twin synthesizing algorithm 

to create statistics that match those observed in the experimental microstructures.  The major 

challenge with the measurement of this type of twin density is that when more than one twin 

exists in the parent grain, it becomes very difficult to differentiate between the twins and the 

parent grain.  The approach used to measure the number of twins per grain in this study is to 

identify the twin clusters in the structure.  Since all the grains in the twin clusters are related 

through coherent Σ3 boundaries, it is assumed that the twin cluster represents one parent grain 

that contains multiple twin grains.   
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Chapter 7 Texture Generation 
 

7.1 Textures 

 
In this section, the methods used for generating the <100>, <110>, and <111> fiber 

textures, creating the random texture, and extracting the rolling texture from an experimentally 

observed rolled structure are discussed. 

 

7.1.1 Fiber Textures 

 
The model used in this study for generating axial fiber textures was adopted from the 

work of Garbacz and Grabski [132, 133], where it is assumed that deviations from the ideal 

<hkl> direction can be described by the normal distribution.  As seen in Fig. 7.1a, any specified 

<h’k’l’> direction will form a small angle ϕ with the ideal <hkl> direction.  This allowable angle 

of deviation is then specified with the probability density function for a normal distribution,   
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where µ is the mean, and σ is the standard deviation [134].  In generating the fiber textures, the 

mean is always set as zero, so that the standard deviation specifies the sharpness of the fiber 

texture or more simply, the allowable angle of deviation, as seen in Fig. 7.1b.  In terms of Euler 

angle representation, the Euler angles that will satisfy the deviation is given in Table 7.1, with 

deviations of the Euler angles satisfying the relation given by, 

°≤∆+∆Φ 152φ   (7.2) 

where Φ and φ2 can be positive or negative values [132]. 
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Table 7.1  Euler angles for calculating the three fiber textures <100>, <110>, and <111>. 

Euler Angles <100> <110> <111> 

φ1 0° – 360° 0° – 360° 0° – 360° 

Φ 0° + ∆Φ 90° + ∆Φ 54.7° + ∆Φ 

φ2 0° + ∆φ2 45° + ∆φ2 45° + ∆φ2 
  
 

 
Figure 7.1  (a) Shows the method used to specify the allowable angle of deviation from the ideal <hkl> texture, and 

(b) shows the three probability density functions with varying sharpness of texture as σ varies from 3 to 15 (redrawn 
from [133]). 

 
 The pole figures shown in Fig. 7.2 were plotted with a list of 10,000 orientations 

generated with µ=0° and σ=5° for each corresponding fiber texture.  The highest peak occurring 

at the center of each pole figure corresponds to each fiber texture where all the grain orientations 

happen to have their major axis aligned parallel with the corresponding pole.  For example, the 

peak at the center of the (100) pole figure for the <100> fiber texture indicates that the <100> 

crystal direction is aligned parallel with the <100> sample direction.  The ring patterns seen in 

the other pole figures are created from rotating the crystal axis 360° around the specified fiber 

axis. 
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Figure 7.2 Pole figures showing the <100>, <110>, and <111> fiber textures.  Note that white is off-scale in the 
positive direction (MRD>8) and black is off-scale in the negative direction. 

 
 

7.1.2 Random Textures 

 
To generate a random texture, the list of Euler angles simply need to be randomly 

assigned.  In the Euler angle space, this means that the angles φ1 and φ2 are chosen randomly 

within the range of 0 to 2π and the cosine of the second angle is chosen randomly within the 

range -1 to +1.  The most common pseudo-random number generator algorithm, the linear 

congruential generator, is used for this purpose [135].  Since the list of random orientations was 

generated as a list of three Euler angles, the list can be treated as both orientation and 

misorientation.  As seen in Fig. 7.3, when the list of random Euler angles is plotted with either an 

orientation distribution function (OD) plot or misorientation distribution function (MD) plot, a 
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random distribution or 1 MRD is observed.  The texture components for the random texture are 

also calculated and shown in Table 7.2.  The number fractions of the various texture components 

calculated with the random texture are commonly used as a basis of comparison with texture 

components calculated with other textures. 

 
Figure 7.3  Random texture shown with (a) OD plots created with slices of φ1 in Euler angle space, and (b) MD plots 
with slices of R3 in Rodrigues-Frank misorientation space. 

 
Table 7.2 Number fraction of texture components observed in random texture with a capture radius of 15°. 

Texture 
Component 

Cube Goss S Brass Copper 

Volume 
Percent (%) 

0.005 2.8 44.8 26.4 19.9 
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7.1.3 Experimental Textures 

 
The rolling texture used in this study was obtained from an EBSD map of rolled 

commercial-purity copper.  The inverse pole figure map and pole figures obtained from the 

EBSD map are shown in Fig. 7.4.  As seen in the inverse pole figure map, a rolled structure is 

clearly observed, while in the pole figures, the distinct pattern generated by the rolling texture is 

seen.  The OD and MD extracted from the rolled copper using the OIM software are plotted in 

Euler angle space and Rodrigues-Frank space in Fig. 7.5.  The highest intensity found in the pole 

figures and Euler angle space plots are 8 MRD and 16 MRD respectively.  The difference in 

maximum intensity values is due to the fact that intensity on the pole figure is equivalent to 

integrating along a path in Euler angle space [33].  After normalization, the pole figure 

intensities are lower than the intensities found in the Euler angle space plots because one has, in 

effect, averaged the ODF intensities along the integration path.  In Fig. 7.5b, the MD of the 

rolled copper shows somewhat higher than random frequencies of low angle grain boundaries 

and misorientations that are close to the Σ3 relationship.   
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Figure 7.4 (Left) Inverse pole figure map, and (lower right) the pole figures obtained from EBSD scan collected 
from rolled commercial-purity copper. 

 

 
Figure 7.5  (a) OD plots created with slices of φ1 in Euler angle space showing the grain orientations, and (b) MD 
plots with slices of R3 in Rodrigues-Frank space showing the misorientations observed in rolled commercial-purity 
copper. 
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7.2 Misorientation Distributions 

 
The method used to generate a list of CSL boundary types and the various techniques to 

extract GBCD from experimentally observed data sets are presented in this section.   

 

7.2.1 CSL Boundary Lattice Misorientations 

 
As previously shown in Fig. 2.6 of Section 2.1.4, CSL boundary relationships appear as 

unique positions in the Rodrigues-Frank fundamental zone.  A similar set of singular points can 

be located in the Euler space fundamental zone.  However, due to the asymmetric nature of the 

fundamental zone [136] in Euler space, the larger domain of all three Euler angles ranging from 

0 to 
2

π
 is typically used instead, which contains 36 copies of the fundamental zone.  The 

algorithm for generating the list of sigma boundary relationships searches the domain of the 

Euler angle space in 0.1 radian steps to identify all the CSL relationships.  In using Brandon’s 

criterion for classifying the CSL relationships, any one specified misorientation could intersect 

with more than one CSL relationship.  Therefore, the angle of deviation between the specified 

misorientation and all CSL relationships (Σ49) must be calculated to ensure that the 

misorientation is properly labeled with the closest CSL sigma value.  Two lists of CSL 

boundaries are plotted in Fig. 7.6, the first list consists of misorientations with a Σ1 relationship, 

and the other consists of misorientations with Σ1, 3, and 7 relationships.  As a consequence of 

the angle of deviation allowed by Brandon’s criterion, the location of each CSL relationship is no 

longer a singular point.  For example, the Σ3 peak can be seen through several sections in 

Rodrigues-Frank space after using 5° of Gaussian smoothing.  As mentioned in Section 3.1.1, the 

grain boundaries that have Σ1, 3, and 7 CSL relationships are the boundaries of interest for 

improving the intergranular corrosion resistance of Aluminum. 
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Figure 7.6  MD plots in Rodrigues-Frank space with (a) showing boundaries limited to the Σ3 relationship, and (b) 

showing boundaries with Σ1, 3, and 7 relationships.  A reference for the ideal CSL positions can be found in Fig. 2.6. 

 
 

7.2.2 Stereological Methods in Obtaining GBCD 

 
A stereological approach can be used to estimate the distribution of grain boundary types 

based on the observation of a planar section [137].  As mentioned before, the grain boundary 

character distribution is parameterized with the three Euler angles that represent the lattice 

misorientation, and the two spherical angles that represent the grain boundary normal.  In 

observing a planar section, only the grain boundary trace and the lattice misorientation are 

known.  Even though the exact grain boundary inclination is unknown, the grain boundary plane 

must lie somewhere within the zone of the grain boundary trace.  Hence, for each observed 

length of grain boundary trace, every possible observed plane within the zone of the specified 

grain boundary trace is added to the GBCD.  After a large set of boundary traces have been 

observed, the relative areas of the correct grain boundary orientations will be larger than the 

incorrectly observed orientations.  In this analysis, it is assumed that all of the bicrystals with a 
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similar misorientation are randomly oriented with respect to the plane of observation and that a 

sufficient number are sampled.   For cubic materials, not only are 5x104 boundary traces needed, 

but the material must be relatively untextured for this method to give correct approximations of 

the grain boundary distributions.  Further detailed description of the stereological method for 

obtaining the full five-parameter GBCD from planar sections is given by Saylor et al. [137]. 

  

7.2.3 Experimental GBCD 

 
Experimental GBCDs can be measured from one of the reconstructed microstructures 

that were collected from the dual beam FIB-SEM.  Details about the meshing of the structure to 

obtain the interface normals were given in Section 6.1.  Since the binning of the GBCD requires 

both the misorientation information as well as the interface normals, caution is required to treat 

the combination of the two types of information.  In experimentally obtaining the 

crystallographic information, the reference frame used to collect the orientation information is 

not always identical to the sample reference frame.  In such a case, the interface normals must be 

rotated such that both the orientation and sample references frames coincide with each other 

prior to being binned into the GBCD.  For example, under default settings, experimental 

interface normals observed with the OIM system made by EDAX, Inc. must be transformed with 

Euler angles φ1 = -90°, Φ=180 °, and φ2=0° before being binned into the GBCD. 
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Chapter 8 Orientation Assignment Algorithms 
 

8.1 Algorithms for Orientation Assignment 

 
Two different versions of the orientation assignment algorithms are presented here, the 

MD version (3 parameters) and the GBCD version (5 parameters).  The main difference between 

the two versions of the code is that in the MD version, only the distribution of lattice 

misorientations is used, whereas in the GBCD version, the distributions of both the lattice 

misorientations and the interface normals are used in assigning the grain orientations in the 

specified microstructure.   

Given the geometric configuration of the grains in a specified microstructure, the grain 

information must first be extracted to simplify the orientation assignment procedure.  The only 

grain information required by the MD version of the orientation assignment program is the grain 

volume, the grain boundary area between each pair of adjacent grains, and the neighbor 

information for each grain.  The GBCD version of the program requires additional information 

about the interface normals for each grain boundary.  The grain volume is calculated as the total 

number of voxels that make up each grain.  To obtain the neighbor information, the nearest 

neighbor of each voxel is examined to determine both the identification number of the neighbor 

and the boundary area shared with that neighbor.  As mentioned before, the interface normals are 

extracted from meshing the structure and calculating the normal vectors corresponding to the 

triangulated surfaces.  The grain volumes and grain boundary areas are used to calculate the 

volume-weighted orientation distribution and area-weighted misorientation distribution or grain 

boundary character distribution respectively. 

 Once the list of grain information is obtained, orientations are then assigned such that the 

distributions of grain orientations and grain boundary misorientations will match the target 
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distributions.  As previously stated, the homochoric space is convenient for representing the 

distributions of grain orientations because it can be easily divided into equal volume elements.  

However, while the distribution is tracked in homochoric space, each individual grain orientation 

is tracked with the Rodrigues-Frank vectors assigned to the grains.  To specify the target grain 

orientation distribution, crystallographic information can either be extracted from orientation 

maps or computer generated with the methods mentioned before.  In either case, binning of the 

orientation distribution is accomplished by adding the number fraction of each orientation 

observed into the appropriate cell in homochoric space.  To specify the target misorientation 

distribution for the MD version of the algorithm, the same procedure as specifying the target 

orientation distribution is used.  To specify the target GBCD, the five parameter boundary 

information can either be calculated with stereological methods from an orientation map, or 

extracted from an experimentally reconstructed 3D data set, as described in Sections 7.2.2-7.2.3. 

After the target distributions are specified, grain orientations are assigned to the specified 

microstructure using simulated annealing, such that the output and target distributions will match.  

The simulated annealing method has been shown by Miodownik et al. [138] to be an efficient 

Monte Carlo algorithm that assigns appropriate distributions of grain orientations and 

misorientations to three-dimensional microstructures.  It should be noted that this simulation 

method does not allow any spread or deviation in orientation within a single grain, thus only one 

orientation is assigned to each grain.  Also, the geometric information of the grains remains 

constant throughout the simulated annealing procedure.  The algorithm can initiate the simulated 

annealing procedure by assigning either random orientations or grain orientations that were 

based on the target orientation distribution to the grains.  Next, both the grain orientation 

distribution and either the misorientation distribution or grain boundary character distribution are 
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calculated and compared to the target distributions.  Each observed grain orientation and 

misorientation are binned into the corresponding cells in homochoric space based on the volume 

fraction of the grain and area fraction of the boundary respectively.  The grain boundary 

character distribution is calculated and binned with the same method mentioned in Section 2.2.2.  

The error value between the proposed and target distributions are then calculated with either  
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where index i sums over the homochoric cells for orientation, index j sums over the homochoric 

cells for misorientation, indexes k, l, and m sum over the GBCD cells for Euler angles, and 

indexes n and o sum over the GBCD cells for boundary normals.  The total number of cells in 

homochoric space is designated with Ni and Nj , the total number of cells in each direction in 

Euler angle space is designated with CD, and the total number of cells representing the interface 

normal is given by CD2 and 4CD2.  In the parameterization of the interface normal, CD2 relates 

to the latitude angle, which ranges from 0 to 90°, while 4CD2 relates to the longitude angle, 

which ranges from 0 to 360°.  The variables OD_weighting, MD_weighting, and 

GBCD_weighting enable the user of the simulated annealing algorithm to vary the closeness of 

fitting to either the target OD or to the target MD (or target GBCD).  These variables can be 

specified with the weight variable, which ranges from 0 to infinity, with,  
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The option of dividing the MD_weighting by 6 is motivated by the fact that the fundamental 

zone for misorientations is 
6

1
 the size of the fundamental zone for orientations.  Therefore, for 

the same cell or bin size in homochoric space, only 
6

1
 of the cells are used to bin the 

misorientation distribution.  The division by 6 offsets the bias of it being easier to achieve the 

same error between the fitted and target MD distributions as a consequence of the smaller 

fundamental zone.  Due to the differences between using the homochoric space and the Euler 

angle space for binning the OD and GBCD, the GBCD_weighting has been scaled by an 

additional 10-13 to ensure that the error values obtained from the OD and GBCD are on a similar 

magnitude.  In measuring the errors contributed by the target and output ODs, volume fractions 

of grain orientations are binned into 1000 bins in homochoric space.  On the other hand, to 

measure the error contributed by the target and output GBCDs,  grain boundary areas are binned 

into 236,196 bins (using 10° bins) in the Euler angle space.  For example, a grain boundary area 

of approximately 960,000 voxels was observed in the M1 structure.  Since the difference 

between the target and output GBCD is measured as the squared difference in boundary areas, 

this difference must be scaled by a factor of 10-11 to allow reasonable comparisons with the 

difference in volume fractions between the target and output OD.  However, because there are 
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approximately 100 times more bins in measuring the GBCD as compared to the OD, an 

additional scaling factor of 10-2 must be included, and hence the scaling factor of 10-13 was 

included in the GBCD_weighting.   

After the error value is computed at each step, the algorithm evolves the proposed 

distributions towards the target distributions by one of two evolution operations.  The algorithm 

can either choose a grain at random and assign another orientation to the grain, or choose two 

grains at random and swap their orientations.  Once either of the two operations is selected, the 

probability that the evolution step is accepted is calculated with,  
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where T is the annealing temperature.  Simply, when the error of the system is decreased, the 

evolution step is always accepted, whereas when the error of the system is increased, the 

evolution step is either accepted or rejected based on the value of the annealing temperature.  

The annealing schedule then consists of decreasing the annealing temperature for a fixed number 

of annealing steps until the error of the system has decreased significantly.  To complete one 

annealing step at a specified annealing temperature, 10N successful evolution steps or 100N 

attempts of evolution must be performed, where N is the total number of grains in the specified 

microstructure.  After an annealing step is completed, the annealing temperature is decreased by 

20%, for the next annealing step to proceed.  The default settings for the algorithm specify the 

initial annealing temperature to be 0.0001 and the number of annealing steps to be 50, which is 

equivalent to allowing the annealing temperature to decrease 49 times.  
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8.2 Verification of the Algorithm – MD Version 

 
To verify that the MD version of the algorithm is indeed assigning the correct OD and 

MD to the structure, the rolling texture components and the CSL boundary distributions were 

tracked as OD_weighting and MD_weighting were changed following Equations 8.3 and 8.4a.  

The results shown in Fig. 8.1 were obtained by initiating with random grain orientations, and 

performing the grain orientation assignment on the M1 structure with the target OD being rolling 

texture, and the target MD being the list of 1, 3, and 7 relationships.  As seen in Fig. 8.1A, as 

OD_weighting increases, the volume fraction of the texture components in the structure quickly 

approaches that of the target volume fractions (denoted by the straight lines across the graph).  It 

appears that an OD_weighting of approximately 1.3 is sufficient to match the output and target 

textures with the total difference in volume fractions of texture components, listed in Fig. 8.1, 

reduced from 0.82 to 0.09.  For the area fractions of CSL boundary plot shown in Fig. 8.1B, the 

maximum fraction of CSL boundaries is achieved with an MD_weighting value as low as 

approximately 0.5.  It should be noted that the target MD cannot be fully matched because it 

would require the grain boundary network to be composed entirely of only boundaries that have 

1, 3, or 7 relationships.  Therefore, Fig. 8.1B not only shows that an MD_weighting of only 0.5 

is sufficient, but also that the maximum area fractions of the 1, 3, and 7 boundaries that are 

possible with rolling texture in structure M1 are 0.27, 0.22, and 0.20 respectively. 
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Figure 8.1  (A) Volume fractions of texture components plotted against OD_weighting and MD_weighting that 
shows the results obtained from using rolling texture as the target OD.  The target texture components are drawn as 
straight lines across the plot.  (B) Area fractions of the sigma boundaries plotted against MD_weighting and 
OD_weighting showing the results obtained from using the list of 1, 3, and 7 grain boundary relationships as the 
target MD. 

 
 

8.3 Verification of the Algorithm – GBCD Version 

 
To verify that the GBCD version of the algorithm is indeed matching the target OD and 

GBCD, orientation assignment using rolling texture as the target OD and the GBCD obtained 

from a commercially pure nickel sample [139] as the target GBCD was performed on the M1 

structure.  The error value as grain orientations were assigned to the M1 structure is shown in Fig. 

8.2.  Despite the relatively high error value that remained at the termination of the algorithm, Fig. 

8.2 indicates that further iterations of the algorithm will not greatly improve the fit between the 

target and output orientation distributions and GBCDs.  The target and output orientation 

distribution plots are shown in Fig. 8.3.  As seen in Fig. 8.3, the grain orientation assignment 

algorithm was not able to maintain the rolling texture as both the OD and GBCD was 

simultaneously matched.  The target and output GBCD plots are shown in Fig. 8.4.  As seen in 

Fig. 8.4b, 27MRD of coherent Σ3 boundaries was observed in the output GBCD.  It should be 

noted that the M1 structure does not contain any twin grains, and therefore will not be possible 

for the output GBCD to achieve 1600 MRD observed at the coherent twin location in the target 



 67 

GBCD.  An interesting feature observed in Fig. 8.4 is that despite the high MRD value for the 

coherent Σ3 boundaries, the preferential boundary orientations of the Σ9 and Σ27a boundaries 

observed in the target GBCD were still matched by the output GBCD.  Even though the output 

orientation distribution deviated from the target orientation distribution, it is still clear that the 

GBCD version of the orientation assignment algorithm was able to successfully match the 

GBCD as closely as possible after performing 230,000 iterations, which took approximately 6 

days. 

 

 
Figure 8.2  Plot of the error as orientations were assigned to the M1 structure with the target OD being the rolling 
texture, and target GBCD obtained from a nickel sample that contains annealing twins.   
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Figure 8.3  Euler angle plots showing the (a) target OD, rolling texture obtained from a rolled commercially pure 
copper, and (b) assigned OD obtained after performing orientation assignment with the GBCD version of the 
algorithm. 
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Figure 8.4  (a) Target GBCD plots measured from a commercially pure nickel sample, and (b) output GBCD plots 
after performing the GBCD version of the grain assignment algorithm on the M1 structure. 

 
 

8.4 Sensitivity of Simulation Variables – MD Version 

 
The effects of the different simulation variables are explored in the following sections, 

which includes the OD_weighting and MD_weighting variables used in calculating the system 

error, the choice for initial grain orientations, grain orientation evolution mechanism, the 

simulated annealing temperature, and the number of annealing steps.  With the exception of the 

OD_weighting and MD_weighting sensitivity analysis, all structures used in the sensitivity 
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studies yield very similar results with common characteristics that are shown in the plots.  

Therefore, only results obtained from assigning grain orientations for the M1 structure are shown 

for those studies. Unless otherwise noted, all orientation assignments were performed under the 

default settings of the initial annealing temperature to be 0.0001, the number of annealing steps 

to be 50, and using only Equation 8.4a to calculate the MD_weighting.  For each of the graphs 

displayed in this section, each point in the plots represents a separate simulation run that was 

produced with different weight values that range from 0 to infinity.  Therefore, even though 

trends can be seen in the plots, each data point on the graphs is completely independent of any of 

the other data points. 

 

8.4.1 Weighting for OD and MD 

 
The different weighting of the OD_weighting and MD_weighting parameters for the 

simulated annealing procedure described in Section 8.1 is explored here.  The results shown in 

Fig. 8.5 and Table 8.2 were obtained by performing the grain orientation assignments on all the 

synthetic microstructures, the experimental Zirconia, and the small Inconel 100 structure, 

described in Chapter 5, using both Equations 8.4a and 8.4b to calculate the MD_weighting as 

weight is varied from 0 to infinity.  The top plot of Fig. 8.5 shows the output results on a semi-

log scale.  The semi-log plot was chosen for its suitability to the results, and was generated by 

calculating the root mean square difference between the target and output distributions in 

homochoric space for OD and MD.  The colored solid lines found in the semi-log plot are drawn 

with the RMS OD and MD differences summing to a constant total error.  For each solid line, the 

constant total error value is arbitrarily adjusted until the first data point of the corresponding 

structure intersects with the solid lines.  The constant total error value used for constructing each 

solid line is given in Table 8.1.  The points of intersection between the data points and the 
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colored solid lines are the points at which the best combination of OD_weighting and 

MD_weighting is found for each corresponding structure. 

Table 8.1  Total constant values used to draw the solid colored lines shown in the semi-log plot of Fig. 8.5. 

Structure M1 M2 M3 Zirconia IN100 Plank Tetrakaidecahedron 

Constant total error 0.186 0.200 0.157 0.187 0.173 0.040 0.122 

 
The letter designations for each pair of the Euler angle and Rodrigues-Frank plots 

matches with the letters marked on the semi-log plot in Fig. 8.5.  The letter designations of a-d 

indicate the RMS OD and MD differences that resulted from using OD_weighting values of 0, 

0.67, 1.82, and 1.99, and MD_weighting values of 2, 0.22, 0.031, and 0.00085 respectively.  As 

can be seen from inspecting the Euler angle plots from (a) to (d), the output orientation 

distribution approaches the target distribution as OD_weighting increases.  From observing the 

Rodrigues-Frank plots, as the MD_weighting decreases, the misorientation distribution moves 

away from the target distribution.   

In the top plot of Fig. 8.5, the lower right portion of any data set is the smallest possible 

difference that can be achieved between the output and the specified target orientation 

distribution.  The data point that lies farthest right in the plot correspond to results obtained from 

using weight values close to infinity, in other words, when only the OD was used to calculate the 

error function.  On the other hand, the data points that have the highest RMS OD differences 

were obtained with weight values close to 0, which corresponds to using only the MD to 

calculate the error function.  However, the most interesting observation is that even when only 

MD was used to calculate the error function, the lowest RMS MD difference was not achieved.  

This is an indication that when a weak texture is present, fewer re-orientation steps are needed  

for the orientation assignment algorithm to match the target MD.  The algorithm was not able to 
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reach the most optimum OD and MD match between the target and output distributions because 

all simulations were performed with a constant number of annealing steps.  If more annealing 

steps were to be included for the OD_weighting = 0 simulations, the RMS MD difference would 

be expected to decrease while the RMS OD difference would remain approximately constant.  

The black line in the graph traces the line that defines the locus of points for which the RMS OD 

difference is equal to the RMS MD difference.  Since the major portion of all the data points 

exist below the black line, this indicates that, in optimizing the OD and MD in all the structures, 

it is easier for the algorithm to optimize the OD instead of the MD.  This can be easily 

understood as grain orientations can always be independently assigned, whereas misorientations 

are highly dependent on the local arrangement of the orientations.   

Another interesting feature of the semi-log plot in Fig. 8.5 is that below a RMS OD 

difference of approximately 0.05, there is always a linear portion in the plots.  The linear 

relationship of mxAey =  and the coefficient of determination values, R2, have been solved and 

the detailed values are reported in Table 8.2.  This linear relationship was obtained by only 

analyzing the data points from using weight values that were in the range of 0.3 to 10.0 or 

OD_weighting of 0.462 to 1.818 and MD_weighting of 0.0303 to 1.538.  The R2 values given in 

Table 8.2 not only report how accurately the linear relationship fits the data, but can also be used 

to interpret which structure, within the specified range, offers the most linear correlation between 

OD and the MD.  From Table 8.2, the maximum R2 value was obtained using the Plank structure.  

The data points produced by the Plank structure are also the points that lie closest to the lower 

left corner of the top graph shown in Fig. 8.5.  This is an indication that it is easiest to match the 

target OD and MD using the Plank structure, as one might expect since each grain has only two 

nearest neighbors, which represents the least complicated neighborhood.   
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Figure 8.5  The plot of the root mean square difference between the target and output OD vs the root mean square 
difference between the target and output MD is shown at the top.  The colored lines were plotted using constant total 
error values given in Table 8.1.  The points of intersection between the constant total error curves and the data points 
indicate the most optimum fit between the OD and MD.  The Euler angle plots and Rodrigues-Frank plots shown 
from a-d are the output distributions obtained from using weight values of 0, 0.5, 10, and 390 respectively with the 
tetrakaidecahedron structure.  

 

Table 8.2  The variables fitting into the relationship of 
mxAey =  for the linear portions of the top graph found in 

Fig. 8.5.  The linear fit was obtained by using the results of the simulations that used weight values of 0.3-10, and 
both options of MD_weighting.  The coefficients of determination (R2) values for the fitting of the equations are also 
given for the different 3D microstructures. 

Structure A M R2 
M1 79.176 -48.246 0.869 

M2 146.33 -47.692 0.842 

M3 4.275 -36.444 0.885 

Plank 0.0819 -56.251 0.942 

Tetra 1.251 -38.432 0.926 

Zirconia 29.888 -41.505 0.851 

IN100 21.322 -43.920 0.905 
 
The conclusion that can be drawn in this section is that there is an exponential 

relationship that exists between orientation and misorientation distributions.  However, as can be 

seen in the plots, a weak texture allows the algorithm to match the maximum fraction of the 
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desired boundary types more easily.  Also, there is always a compromise between obtaining the 

most desirable orientation distribution and misorientation distribution.  As can be seen with the 

data points generated with the different structures, geometrical differences in the structure also 

play an important role in correlating the orientation and misorientation distributions. 

 

8.4.2 Initiating simulations with random or non-random orientations 

 

 
Figure 8.6  Area fractions of Σ1, 3, 7 boundaries plotted against MD_weighting and OD_weighting showing results 
obtained by (A) matching initial grain orientations to the input OD, and (B) having random initial grain orientations.  
The results obtained from rolling texture are shown in the bright colors while the results from random texture are 
shown in the lighter colors.  For the number of annealing steps used, the initial orientation assignment does not 
influence the result. 
 

Results from assigning grain orientations for the M1 structure with the target OD being 

either rolling or random texture, the target MD being the combination of 1, 3, and 7 types, and 

the two options of assigning initial grain orientations randomly or based on the target OD are 

shown in Fig. 8.6.  Comparing the two plots shown in Fig. 8.6, it is evident that there is no 

difference between initializing the grain orientations with either of the two options.  The reason 

is because regardless of the initial grain orientations, and assuming that enough iteration steps 
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were used in the simulated annealing based optimization method, the resulting texture always 

proceeds towards the target OD and MD. 

 

8.4.3 Optimizations with changing or swapping of Orientations 

 

 
Figure 8.7  Area fractions of Σ1, 3, 7 boundaries plotted against MD_weighting and OD_weighting showing results 
obtained by (A) allowing the grain orientations to change and swap in the simulated annealing procedure, and (B) 
allowing only swapping of orientations.  The results obtained from rolling texture are shown in the bright colors, 
while the results from random texture are shown in the lighter colors. 

 
Figure 8.7 shows the results obtained from assigning grain orientations for the M1 

structure with the target OD being either rolling or random texture, target MD being the 1, 3, 

and 7 list, and two different options of evolution mechanisms: changing and swapping grain 

orientations or only swapping orientations between grains.  As seen in Fig. 8.7, when the 

evolution mechanism is limited to only the swapping of orientations, the area fractions of the 

desired CSL boundaries found in the structure are lower than if both changing and swapping of 

grain orientations were allowed.  Once the grain orientations are initialized, the swapping 

evolution mechanism prevents the system from optimizing the misorientation distribution since 

the simulated annealing procedure becomes a simple reshuffling of the same list of grain 



 78 

orientations.  Therefore, even with an infinite number of iteration steps, the final misorientation 

distribution would be dictated only by the initial grain orientations.    

 

8.4.4 Number of Iteration Steps 

 
Figure 8.8 shows the total error plotted against the number of iteration steps obtained by 

assigning orientations for the M1 structure with the target OD being the rolling texture, and the 

target MD being the list of 1, 3, and 7 misorientations under equal weighting for the OD and 

MD.  The graph shows that as the number of iteration steps increases, the error for the system, as 

calculated with Equation 6.1, decreases.  This graph shows that at the end of the simulation run, 

the total error of the system is reduced to approximately 1% of the total initial error.  Therefore, 

it appears that the choice of 50 annealing steps and a minimum of 10N, with N being the total 

number of grains, of successful evolutions per annealing step are acceptable values to use in 

optimizing the OD and MD.       

 
Figure 8.8  Plot of the total error of the system against the number of iterations as orientations were assigned to the 
M1 structure with the target OD being the rolling texture, target MD being the list of 1, 3, and 7 misorientations, 
and equal weighting for the OD and MD. 
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8.4.5 Annealing Temperature 

 
Figure 8.9 shows orientation assignment performed on the M1 structure with the target 

OD being the rolling texture, the target MD being the list of 3 boundaries, and varying 

annealing temperatures.  Once again, both Equations 8.4a and 8.4b were used to calculate 

MD_weighting as the weight value ranged from 0 to infinity.  As seen in Equation 8.4, as the 

annealing temperature is increased, the probability of accepting an evolution step of either 

changing or swapping of grain orientations is also increased.  Therefore, in the limit of 

increasing the annealing temperature to ~50, the simulation study accepts every proposed 

evolution step, and the output OD and MD become nearly random.  The graph also indicate that 

temperatures lower than 0.0001 appear to be unlikely to result in a smaller error at the optimum 

point.   

 
Figure 8.9 Plot of the summation of the root mean square difference of each bin in homochoric space between the 
output and target OD vs MD showing the effects of changing annealing temperature. 
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8.4.6 Summary 

 
The effects of the variables used in the MD version of the grain orientation assignment 

algorithm have been investigated.  Weighting values for OD_weighting in the range of 0.4 to 1.8, 

and MD_weighting in the range of 0.03 to 1.5 are all acceptable values to use when optimizing 

the orientation and misorientation distributions for a structure.  In initiating the grain orientations 

with a random distribution or the target orientation distribution, either choice yields the same 

output distributions.  Both evolution mechanisms of swapping orientations and randomly 

assigning new orientations are needed to achieve an optimum fitting of the OD and MD.  Lastly, 

the default settings of 50 annealing steps with a maximum of 10N successful evolutions per 

annealing step, and an annealing temperature of 0.0001 are all reasonable values to use for the 

grain assignment algorithm. 

 

8.5 Validation of the Algorithm – MD Version 

 
One of the methods that can be used to validate the current method of assigning grain 

orientations through simulated annealing is by measuring and comparing the CSL boundary 

distributions with the results of Garbacz et al. and Gertsman et al. [108, 132, 133, 140].  To 

match the methods used by these researchers, the MD_weighting was set to 0 such that the OD 

would be matched exactly to the target distribution, and the orientations can be randomly 

assigned to the grains.  For either the random or fiber texture simulations, only results from the 

Plank and tetrakaidecahedron structures are shown for clarity.  Minor fluctuations were observed 

between the results from the other synthetic structures and the tetrakaidecahedron structure, 

which could have been caused by the geometrical differences between the structures.  As a 
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reminder, the results from Pan et al. [141] and Morawiec et al. [142] were calculated with 

Equation 4.1 rather than measured with simulations, and are included in Fig. 8.10 for interest.   
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Figure 8.10  Plot of the percentage of sigma boundaries that are calculated by assigning random orientations to the 
Plank and tetrakaidecahedron structures, with results obtained from Gertsman et al. [108], Garbacz et al. [132], Pan 
et al. [141], and Morawiec et al. [142] for comparison. 

 
The orientation assignment that used a random texture as the target OD is shown in Fig. 

8.10.  As seen in the figure, results from the tetrakaidecahedron structure closely resemble the 

results collected from the other researchers.  The results from the Plank structure were kept in 

Fig. 8.10 to show the exception that was seen in this simulation, with significant errors for Σ9, 

Σ13, Σ21 and Σ23.  The Plank structure is the unique structure where each grain only has a 

maximum of two grain neighbors with the same grain boundary area.  Therefore, due to the 

limitation of having so few boundaries and no distribution of different grain boundary areas, only 

a very distinct set of orientations will allow a match to the reported results.   

The results obtained from using the <111> fiber texture as the target OD are shown in Fig. 

8.11.  The percentages of CSL boundary types obtained from the current study fully match 
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Gertsman et al.’s [108] percentages.  On the other hand, the percentages reported by Garbacz et 

al. [132] appear to overestimate the populations of the 1, 3, and 7 boundaries.  Another 

observation to be made is that for the <111> fiber texture, the set of percentages of the CSL 

boundaries obtained from the Plank structure also matches Gertsman et al.’s distributions.  This 

may be an indication that the <111> fiber texture poses a limit on the possible CSL boundary 

types, and even with many fewer grains in the Plank structure, the limitation is still evident. 

Figure 8.12 shows the results generated by performing grain orientation assignments with 

the <100> and <110> fiber textures as the target orientation distributions.  Once again, the 

percentages of the various CSL boundary types match very closely with the percentages reported 

by Gertsman et al. [108].  In fact, the percentages of the boundaries match up almost perfectly 

for the <100> fiber texture. 

Since all the percentages of CSL boundary types generated with the current simulation 

method match the percentages reported by Gertsman et al., the MDF version of the grain 

orientation assignment algorithm is verified to be an effective method in assigning grain 

orientations to digital microstructures.   
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Figure 8.11  Plot of the percentage of sigma boundaries that is obtained by imposing the <111> fiber texture onto 
the Plank and tetrakaidecahedron structures, with results obtained from Gertsman et al. [108], and Garbacz et al. 
[132] for comparisons. 

 

 
Figure 8.12  Plot of the percentage of sigma boundaries that is obtained by imposing the (A) <100> and (B) <110> 
fiber textures onto the Plank and tetrakaidecahedron structures, with results obtained from Gertsman et al. [108], and 
Garbacz et al. [133] for comparisons. 
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8.6 Application of the MD Version of the Grain Orientation Assignment 
Algorithm – Studying the Microstructure Geometrical Effects on OD and MD 

 
The effects of the different microstructural parameters on the relationship between OD 

and MD can be explored with the grain orientation assignment algorithm.  The geometrical 

features of the structure, such as the number of grains in the system, the grain size distribution, 

and the grain shape, can be varied as the target OD and MD remains constant while the algorithm 

is used to perform grain orientation assignments.  To isolate the different microstructural 

parameters, different versions of the Plank and tetrakaidecahedron structures were used in the 

studies performed for this section.  This includes changing the thickness of each square slice for 

the Plank structure to create a grain size distribution, and repeating each x-z slice in the 

tetrakaidecahedron structure to simulate the effects of elongating the grains, without changing 

the number of neighbors shared by each grain. 

 

8.6.1 Number of Grains 

 
Figure 8.13 shows the effects of changing the number of grains used in the simulation of 

fitting a target MD of 3 relationships, and target OD of rolling texture to the tetrakaidecahedron 

structure.  Different versions of tetrakaidecahedron structures with varying number of grains in 

the same bounding cube size were created for this analysis.  Periodic boundary conditions were 

also used to explore whether having surface grains would affect the relationship between OD and 

MD.  The results show that as the number of grains increases, the OD and MD approach closer to 

the target distributions.  However, periodic boundary conditions only have minor effects on the 

RMS OD and MD differences.  When the use of periodic boundary conditions removes the 

effects of surface grains, the simulation does not optimize the OD and MD distributions as 

effectively, as seen by the shifting of the curves to the right.  Surface grains should allow an 
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easier fit of the orientation and misorientation distributions to the structure since the surface 

grains add a degree of freedom.  Thus, the surface grains have less effect on the misorientation 

distribution when the orientations of those grains change.  Also noteworthy is that, when the 

surface grains are removed, the grain size distribution becomes uniform.  Therefore, it is unclear 

as to how the surface grains truly affect the relationship between the OD and MD.  However, it 

remains clear that when enough grains are included in the simulation, periodic boundary 

conditions do not need to be imposed to obtain an optimum match between the output and target 

distributions. 

 
Figure 8.13  Plot of the summation of the root mean square difference of each bin in homochoric space between the 
output and target OD vs MD showing the effects of changing the number of grain included in the system.  The P in 
the index denotes that periodic boundary condition was imposed on the structure. 

 
 

8.6.2 Grain Size Distribution 

 
Different variations of the Plank structure was used to study the effects of grain size 

distribution on the OD and MD relationship.  In order to impose a grain size distribution onto the 
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structure without having to change any of the other microstructural variables, the Plank structure 

was the best choice for this analysis.  The difference between the various versions of Plank 

structures is that the square slices in the structure are allowed to have different thicknesses to 

match the different grain size distributions shown in Fig. 8.14.  In Fig. 8.14, the grain size 

distributions that are labeled as A and B were extracted from the previously mentioned 

experimentally reconstructed structures from the dual-beam FIB-SEM, the Zirconia and Inconel 

100 structures respectively.  The grain size distribution labeled C was arbitrarily created to match 

a normal distribution.  Lastly, distribution D was extracted from the default Plank structure, 

where all the grains are of uniform size.   

 
Figure 8.14  Probability density is plotted against normalized grain volume (volume/average volume).  The grain 
size distributions A and B were obtained from the Zirconia and Inconel 100 structures respectively, while 
distribution C was created to resemble a normal distribution, and distribution D was obtained from the original 
Plank structure.  
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Figure 8.15  Plot of the summation of the root mean square difference of each bin in homochoric space between the 
output and target OD vs MD.  The results were created by performing the simulation on different versions of the 
Plank structure that contains the various grain size distributions shown in Fig. 8.14.  Little sensitivity to the grain 
size distribution is evident. 

 
The simulation results shown in Fig. 8.15 indicate that the OD and MD relationship has 

only a weak dependence on the grain size distribution.  The OD can be optimized slightly more 

easily with a wider grain size distribution, as seen with the shifting of the data points down 

towards a lower RMS OD difference.  Distribution D is the limit to this study since it probably 

should not even be considered a distribution when all the grains in the population have exactly 

the same size.  The rationalization of this observation is that volume and area weighted 

orientation and misorientation distributions are used to calculate the error in the system.  When 

different volumes exist in the system, orientations that increase the error of the system do not 

necessarily need to be removed.  Instead, the program can rely on the swapping evolution 

mechanism to reassign these orientations to grains that have a much smaller volume.  For the 

case when all the grains are the same size however, the simulation is forced to remove the 
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erroneous orientations and find the exact orientation that results in a lower system error.  No 

effect can be seen on the fitting of the misorientation distribution.  This is due to the fact that the 

number of neighbors per grain was set to be constant.  Even though different grain sizes were 

imposed onto the structures, the grain boundary areas remained constant in the four different 

structures.   

 

8.6.3 Grain Shape 

 
In order to adjust the grain shapes without affecting the other microstructural parameters, 

different variations of the tetrakaidecahedron structure were used in this study.  As seen in Fig. 

8.16, the difference between the variations of tetrakaidecahedron structures simply involves the 

number of times each x-z slice in the structure was duplicated.  This act of duplicating each layer 

in the voxel structure allows a rolled structure to be created while maintaining the number of 

grain in the system and the number of neighbors shared by each grain constant.   

The results shown in Fig. 8.17 were obtained by performing the simulation on the 

structures shown in Fig. 8.16, using the rolling texture as the target OD, and the list of 3 

relationships as the target MD.  As seen in Fig. 8.17, the change in grain shape has no effect on 

the relationship between rolling texture and sigma 3 misorientations.  However, the result may be 

different if a fiber texture is imposed along the different directions for the various structures. 

 
Figure 8.16  The four different variations of tetrakaidecahedron structure with each number following the 
underscore denoting how many times the x-z slice has been duplicated. 
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Figure 8.17  Plot of the root mean square difference between the output and target OD vs MD showing the effects of 
changing the grain shape.  The results were obtained by performing simulations on the structures shown in the 
previous figure.  No sensitivity to grain shape is evident. 

 
 

8.6.4 Summary 

 
The geometric effects on the grain orientation assignments and resulting misorientation 

distributions have been analyzed.  The results show that structures with a larger number of grains 

have minor effects on the orientation and misorientation distributions.  However, as seen in 

Section 8.6.1, when periodic boundary conditions are imposed on the system, a large number of 

grains is necessary for improving the OD and MD fitting.  The grain shape and the grain size 

distribution did not appear to have any effects on the ability of the structures to obtain any 

specified misorientation distributions with the fixed orientation distribution.  This observation 

may be a consequence of the constraint of the number of neighbors shared per grain. 
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8.7 Application of the MD Version of the Grain Orientation Assignment 
Algorithm – Studying the Effects of Orientation Distribution on Misorientation 
Distribution 

 
The effects of the orientation distribution on the misorientation distribution can be 

explored with the grain orientation assignment algorithm by matching different target ODs with 

different target MDs.  For this purpose, the results in Fig. 8.18 were obtained by performing 

grain orientation assignment on the M2 structure with the target OD being the rolling texture or 

random texture, and the target MD being the MD obtained from the rolled commercial-purity 

copper, the list of 1, 3, and 7 relationships, or the list of 3 boundaries.  It is evident in Fig. 

8.18 that the MD constructed with combinations of Σ1, 3, and 7 boundaries is much easier to 

attain than the unrealistic target that requires the entire grain boundary network to be constructed 

of only Σ3 boundaries.  This is indicated by the data points, obtained from using Σ3 boundaries 

as the target MD, being located on the right side of the plot.  However, the plot also shows that 

when both the OD and MD were experimentally extracted from the rolled commercial-purity 

copper, there is almost no difference between the output and target distributions.  The RMS 

differences are not exactly zero due to the error in binning the orientations and misorientations 

into homochoric space.   

When comparing the differences between fitting the random and rolling texture to the 

structure, the minimum RMS ODF difference observed for fitting random texture is 0.01, while 

for fitting rolling texture is 0.0001.  The higher RMS difference in ODF fitting is due to the fact 

that the algorithm mathematically compares the target and output OD. The output ODs obtained 

from assigning grain orientations to the M2 structure with the three different MD and 

OD_weighting of 0 are shown in Fig. 8.19.  Figure 8.19 illustrates that when the target OD was 

not taken into consideration, the most optimum fit between the target and output MD required 
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slight orientation preferences as seen in the pole figures.  Even though qualitatively, the pole 

figures all show a random texture, mathematically however, any small preferences away from 

exact randomness would be penalized by the grain orientation assignment algorithm. 

When comparing the data points obtained between using the rolling and random texture 

in conjunction with either the target MD constructed with the list of Σ1, 3, and 7 boundaries, or 

the list of Σ3 boundaries, the random texture always yielded higher RMS MDF differences.  The 

higher RMS MDF differences can be attributed to the association of the texture with the fraction 

of CSL boundaries.  As seen in Fig. 8.20, assigning grain orientations based on the rolling 

texture yields higher fractions of Σ1 and Σ3 boundaries than based on the random texture.   

 
Figure 8.18  The plot of the root mean square difference between the target and output OD vs MD.  The results were 
obtained by performing simulations on the M2 structure using rolling texture and random texture as the target OD 
and the rolling MD, the list of 1, 3, and 7 boundaries, and the list of 3 orientations as the target MD.  In all cases 
the rolling texture target resulted in better fits to the target MD. 
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Figure 8.19  Pole figures obtained from assigning grain orientations to the M2 structure with OD_weighting of 0 and 

target MD of (a) Rolling MD, (b) Σ1, 3, 7, and (c) Σ3. 
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Figure 8.20  The percentage of sigma boundaries that are calculated by assigning random and rolling textures 
without target MD to the M2 structure. 

 
 

8.8 Application of the GBCD Version of the Grain Orientation Assignment 
Algorithm – Studying the Effects of Grain Shape on Grain Boundary 
Character Distribution  

 
To investigate the effects grain shapes have on the grain boundary character distribution, 

grain orientations were assigned to the M1 structure, which contains 1512 grains, a 

tetrakaidecahedron structure that contains 1594 grains, and a plank structure that contains 1594 

grains of uniform grain size.  The rolling texture was set as the target OD, while a GBCD 

obtained from a commercially pure nickel sample [139] was set as the target GBCD.  The grain 

assignment algorithm was terminated simultaneously after 6 days of assigning orientations to the 

three structures.  The error values obtained from the grain assignment algorithm with respect to 

the number of iterations is shown in Fig. 8.21.  It is evident from Fig. 8.21 that within the same 

amount of “real”, or wall-clock time, more iterations were made in fitting the grain orientations 
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to the M1 structure than to the plank or tetrakaidecahedron structures.  The larger number of 

iterations per “real” time may be attributed to the number of successful changes to the grain 

orientations.  In the M1, plank, and tetrakaidecahedron structures, the fractions of iterations that 

were successful in changing the grain orientations are 0.06, 0.16, and 0.26 respectively.  After 

each successful iteration step, the GBCD must be calculated to reflect the change in grain 

orientation.  Therefore, the more successful iterations there are, the longer the “real” time 

required to calculate the changed GBCD.  Also, since the M1 structure contains variable grain 

boundary areas, a reduction in the GBCD calculation time may be observed when the affected 

boundary areas are relatively small.  The iterations per “real” time observation may be different 

if an exception was made to the grain assignment algorithm when assigning grain orientations to 

the plank structure.  Since the plank structure contains flat interfaces of the same area between 

all the grains, the calculation time of the GBCD can be greatly improved if all the triangular 

elements of the surface mesh were grouped into one boundary normal representation.     

The output OD is represented by the Euler angle plots shown in Fig. 8.22.  As seen in Fig. 

8.22, the output OD from the M1 structure matches the closest to the target OD.  The scatter 

observed in the output OD from the plank structure is due to the uniform grain sizes of the grains, 

which did not allow much freedom for the algorithm to have incorrectly matching grain 

orientations.  The output GBCD plots are shown in Fig. 8.23.  As seen in Fig. 8.23, the 

tetrakaidecahedron structure achieved the highest MRD of coherent Σ3 boundaries while only 

the M1 structure was able to match the Σ3, 9 and 27a boundary plane distributions observed in 

the target GBCD. 
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Figure 8.21  Plot of the error as orientations were assigned to the M1 (red), Tetrakaidecahedron (blue), and Plank 
(black) structures with the target OD being the rolling texture, and target GBCD obtained from a nickel sample that 
contains annealing twins.  Simulation time was set to be the same for all three structures.  The number of iterations 
performed on the M1 structure is 230,074, on the tetrakaidecahedron structure is 44,278, and on the plank structure 
is 102,440. 
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Figure 8.22  Euler angle plots showing the (a) target OD, rolling texture obtained from a rolled commercially pure 
copper, and assigned OD obtained after performing orientation assignment with the GBCD version of the algorithm 
on the (b) M1 structure, (c) Tetrakaidecahedron structure, and (d) Plank structure. 



 97 

 
Figure 8.23  (a) Target GBCD plots measured from a commercially pure nickel sample, and output GBCD plots 
after performing the GBCD version of the grain assignment algorithm on the (b) M1, (c) Tetrakaidecahedron, and (d) 
Plank structures. 
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Chapter 9 Synthesizing Annealing Twins 
 

9.1   Twin Insertion Algorithm 

 
In many of the FCC materials that are studied, annealing twins are an important feature of 

the structure, and as mentioned in Section 2.2.3, twinning events are one of the most important 

aspects of grain boundary engineering.  After the microstructure geometry has been defined by 

one of the microstructure generation methods described in Section 5.1, the twin insertion 

algorithm presented here will take the voxel structure and add additional grains to simulate the 

annealing twins.  The twin insertion algorithm assumes that twin grains always completely 

section the parent grain, and the parent grain will reside on either side of the inserted twin or that 

the twin does not reside on the edge of the parent grain.  The method of creating twins in the 

digital microstructures will help produce digital structures that are more representative of the 

experimentally observed microstructures that contain annealing twins. 

Prior to inserting annealing twins into the specified microstructure, the Σ3 cluster 

distribution must be characterized in order to facilitate the twin insertion algorithm.  Once the Σ3 

cluster distribution is characterized (referred to as the preexisting Σ3 cluster distribution), the 

algorithm will synthesize annealing twins in the structure such that the final Σ3 cluster 

distribution will match the target distribution.  To specify the target Σ3 distribution, Σ3 cluster 

sizes are listed in decreasing size.  At each iteration step, the algorithm will only attempt to 

match one specified Σ3 cluster size by inserting annealing twins into the grains and rotating the 

grain orientations to create incoherent Σ3 grain boundaries.  Therefore, the number of iterations 

is equivalent to the desired number of target Σ3 clusters. 
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After the target Σ3 cluster size is specified, the algorithm initiates the Σ3 clusters by 

utilizing the preexisting Σ3 clusters.  If the target cluster size is smaller than the preexisting Σ3 

cluster, the grains in the preexisting Σ3 cluster are used as the seed grains for synthesizing twins 

and initiating the Σ3 cluster growth.  If no preexisting clusters satisfy the size criteria, a grain is 

chosen at random to initiate the Σ3 cluster.  

Once the grain has been specified, twin insertion begins by identifying all the voxel 

positions that belong to the chosen grain, and calculating the center of mass and spherical 

equivalent radius of the grain.  If the radius of the grain is smaller than 5 voxels, the algorithm 

does not attempt to insert twins into the grain.  One of the eight variants of the <111> is chosen 

at random and the corresponding grain orientation for the twin is calculated by rotating the 

orientation of the parent grain 60° about the same <111> variant that was chosen.  A fixed 

number of attempts is made (arbitrarily set to 40) to insert up to 6 twins into the chosen grain by 

identifying the orientation of the grain and calculating the <111> (the variant that was chosen) 

boundary plane for the grain in the sample reference frame.  The calculation of the <111> 

boundary plane to insert into the grain is based on the basic definition of a plane in geometry, 

where a plane is a set of points that fulfill, 

tolerance)()()( ''' <−+−+− ooo zzcyybxxa     ( 9.1) 

grain  theof centroid),,( =ooo zyx     ( 9.2) 

)(),,(),,( ''' n•+= Dzyxzyx oooooo      ( 9.3) 

where D is the distance between the plane and the centroid of the grain, and the other definitions 

of the variables are based on Fig. 9.1 [143] .  The tolerance in Equation 9.1 determines the 

thickness of the grain, and is typically set as the minimum tolerance required by the grain with an 

additional random value that ranges from 0.8-1.3.  The distance from the centroid of the grain 
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(D) in Equation 9.3 is also chosen at random to have a value that is in the range of 0 to 5 voxels 

away from the spherical equivalent radius of the grain.  The choice of limiting the maximum 

value for D to be 5 voxels smaller than the grain radius is to avoid inserting twins on the edges of 

the chosen grain.  The D value is tracked as each twin is inserted into the grain such that any 

subsequently added twins are not allowed to appear within approximately 3 voxels from any 

previously inserted twins.  This ensures that as more twins are added into the grain, the twins 

will not intersect or overlap with one another.  The intersection of the twins is avoided to allow 

easier tracking of the Σ3 clusters. 

 
Figure 9.1  Schematic showing the calculation of the equation of a plane. 

 

 Once twin insertion completes on the specified grain(s), all the neighbors of every grain 

included in the current Σ3 cluster, with priority given to the neighbors around the first and last 

grains in the cluster, are tested as potential candidates for connecting to the current cluster 

through an incoherent Σ3 grain boundary.  To be accepted into the Σ3 cluster, the potential 

candidate must not cause the current Σ3 cluster to exceed the target cluster size.  If the potential 

grain belongs to a preexisting Σ3 cluster or a Σ3 cluster that was constructed during an earlier 

iteration step, the clusters are allowed to merge if the final cluster size does not exceed the target 

cluster size.  When two Σ3 clusters need to be merged, the grain orientations of the smaller-sized 
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cluster will be rotated such that the grain boundary between the two clusters will be an 

incoherent Σ3 boundary.  If the merged cluster was a preexisting cluster or if the single potential 

grain is accepted, annealing twins are synthesized in the accepted grain(s).  All the boundaries 

surrounding the current cluster are then analyzed to ensure that if any rotations performed on the 

grain orientations generated new Σ3 boundary relationships, the related grains are included in the 

current cluster count.  The procedure of finding potential candidates to add to the cluster is then 

repeated until either the current cluster size is larger or equal to the current target cluster size or 

no grains can be added further to the current cluster.  The pseudo code for the algorithm can be 

found in Algorithm 9.1. 

 An alternative to using Σ3 cluster sizes as the target for twin synthesis is to use only the 

number of twins as the target.  When only a desired number of twins is declared, the algorithm 

randomly chooses the grains in the structure and performs the same twin insertion method 

outlined above.  Once twins are synthesized in a grain, the grain is removed from the list of 

potential grains for inserting the next set of twins. 

 

Input: Structure, list of target cluster size, and list of preexisting Σ3 clusters 

Output: Structure with annealing twins 

for number of target clusters, do 
     Define target cluster size from input 
     if current cluster size = 0 
 if preexisting cluster exist and is smaller than target cluster size, then 
      adopt preexisting cluster into current cluster list 
      insert twins in the grains that reside in the preexisting cluster 
 else 
      randomly pick a grain and insert twins 
 end 
      else 
            while current cluster size < target size do 

     check all boundaries surrounding cluster to ensure all Σ3 have been accounted for 
      for neighbors of all grains in current cluster do 
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          if neighbor is part of preexisting cluster and adoption will not exceed target size, do 
    adopt neighbor and preexisting cluster into current cluster list 
    insert twins in the newly adopted grains 
          else 
    randomly pick a neighbor to adopt and insert twin 
          end 
      end for 
            end while 
     end 
end for 
Algorithm 9.1  The method for creating annealing twins in the structure to match Σ3 cluster distributions. 

 
 

9.2   Controlling Twin Width and Placement of the Annealing Twin 

 
The variables of tolerance and D found in Equations 9.1 and 9.3 allow the control of twin 

width and the location of the annealing twin respectively.  Figure 9.2a to c shows the increase in 

twin width or twin thickness as the tolerance value is increased from 0.5 to 3.0.  Because the 

method of inserting the twins only relies on performing a dot product between the voxel 

positions and the <111> normal, there are no resolution concerns associated with the twin width.  

The only concern involved with choosing an inappropriate tolerance value is that if the chosen 

parent grain is small, a large tolerance value may convert the entire parent grain to a “twin” grain, 

while a small tolerance value may result in creating a twin that consists of a string of 5 voxels.  

Therefore, a reasonable tolerance value is in the range of 0.5 to 2.   

 

 
Figure 9.2  Synthesized twin grain (red) with D=0 and tolerance values of (a) 0.5, (b) 1.5, and (c) 3.0. 
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Figure 9.3 shows the various placements of the synthesized twin (colored in red) as the 

distance from the center of the grain, D, is changed.  The green colored twin in Fig. 9.3 

represents a twin that is inserted with D=0.  From Fig. 9.3, it is clear that the variable D is a 

direct representation of the number of voxels to shift the center of the twin grain from the center 

of the parent grain.  As can be seen in Fig. 9.3c, as the D value approaches the radius of the 

parent grain, the twin grain approaches the edges of the parent grain. 

 
Figure 9.3  Synthesized twin grain (red) with tolerance=1.0 and D values of (a) -5, (b) 10, and (c) 20.  The green 
twin grain marks the location of where the twin grain would be if D was set at 0. 
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Chapter 10 Case Study – Large Inconel 100 
 

To demonstrate the capability of the twin insertion algorithm, the large experimental 

Inconel 100 structure was processed to remove the twin grains and was then regenerated with the 

twin insertion algorithm.  The texture measurements and twin statistics mentioned in Chapter 6 

are used as quantitative measures for determining whether the twin insertion algorithm was able 

to match the statistics observed in the experimental structure.  

 

10.1   Characterization of the Large Inconel 100 Structure 

 
The large Inconel 100 structure consists of 8518 grains, and is shown in Fig. 10.1.  As 

seen in Fig. 10.1, the Inconel 100 structure contains a substantial populations of annealing twins. 

 
Figure 10.1  The large Inconel 100 structure that consists of 8518 grains with dimensions (389 x 146  x 184 voxels). 
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10.1.1   Texture and GBCD Measurements 

 
The pole figures for the large Inconel 100 structure is shown in Fig. 10.2.  As seen in the 

pole figures, random texture is found in the material.  The GBCD for the Inconel 100 structure is 

plotted in Fig. 10.3.  The GBCD plots indicate the relative areas of the boundaries with the 

specified misorientation and interface normals.  The 900 MRD peak observed in the Σ3 plot is 

found at the location where the [111] vector is located on the stereogram.  Therefore, a relatively 

high area fraction of coherent Σ3 or twin boundaries were found in the material.  A slightly 

higher than random area fraction of Σ7 and Σ11 grain boundaries were also found. 

 
Figure 10.2  Pole figures indicating a random texture was measured in the large Inconel 100 structure. 
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Figure 10.3  GBCD plots measured in the large Inconel 100 structure showing a very high population of coherent Σ3 

grain boundaries while there is a slightly higher population of Σ7 and Σ11 boundaries than the other CSL boundaries.  

 
 

10.1.2   ΣΣΣΣ3 and Twin Boundary Fractions 

 

As mentioned in Section 6.2, the number and length fractions of the Σ3 and twin 

boundaries are measured by analyzing the triangular elements of the smoothed conformed 

surface mesh.  After the analysis, it was found that the number fractions of Σ3 and twin 

boundaries are 0.10 and 0.07 respectively.  The area fractions of Σ3 and twin boundaries are 0.27 

and 0.18 respectively in the experimental structure.  The twin boundary fractions will always 

have a lower value than the fractions of all Σ3 boundaries since the twin boundaries have the 

additional coherency requirement.  When comparing the difference between number and area 

fraction, the number fraction is much smaller than the area fractions for both the Σ3 and coherent 

Σ3 boundaries.  This indicates that the Σ3 boundaries have a larger average area than other 

boundary types.   
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10.1.3   ΣΣΣΣ3 Cluster Distribution 

 

The Σ3 cluster distributions measured from the large experimental Inconel 100 structure 

with the correct grain orientations and with randomly assigned grain orientations are shown in 

Fig. 10.4.  The Σ3 cluster distribution for the experimental structure shown in Fig. 10.4 is used as 

the target distribution for the twin insertion algorithm.  It should be noted that when the 

experimentally collected grain orientations were used, the largest Σ3 cluster is 98 grains, but 

when random grain orientations were used, the largest Σ3 cluster is 9 grains.  The high frequency 

of two-grain clusters indicates that many incoherent Σ3 boundaries were found in the structure.  

On the other hand, the high frequency of three-grain clusters can be attributed to the case where 

the parent grain has a single twin grain that separates the two halves of the original (single) grain.      

 
Figure 10.4  Σ3 cluster size distribution measured from the large experimental Inconel 100 structure.  It should be 
noted that the largest cluster size found was 98 grains where as for a random set of orientations, the maximum 
cluster size is only 9. 
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10.1.4   Grain Size 

 
The average spherical equivalent radii measured for the large experimental Inconel 100 

structure with the twins identified as individual grains and with the twins ignored are 5.41 voxels 

and 5.91 voxels respectively.  As mentioned in Section 6.4.1, the average grain size obtained 

with the twin grains included will yield smaller grain sizes, as consistent with the current values.  

The spherical equivalent grain size distributions for the experimental structure with and without 

including the twins as grains are shown in Fig. 10.5.  The two spherical equivalent radius 

distributions are very similar to each other with the exception that a higher fraction of the 

relatively larger grains can be found in the distribution where the twins were ignored.  The 

number fraction of grains with radii of approximately 2 voxels appears to be constant in the two 

distributions obtained with and without including the twin grains.  This is an indication that 

grains with radii measurements of approximately 2 voxels and below do not contain twin grains.   
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Figure 10.5  The normalized grain spherical equivalent grain size distribution for the experimental Inconel 100 
structure with the twins included as individual grains and with the twins ignored. 
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10.1.5   Twin Density 

 
The average twin density measured from the large Inconel 100 structure is 2 twins per 

grain, and the number fractions of twin clusters that have the corresponding number of twins per 

grain is shown in Fig. 10.6.  The plot in Fig. 10.6 indicates that the limit of inserting a maximum 

of 6 twins in any grain in the twin insertion algorithm is a reasonable value since there are very 

few grains that contain more than 6 twins in the Inconel 100 structure.   
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Figure 10.6  Number fractions of twin clusters that have the corresponding number of twins per parent grain found 
in the large experimental Inconel 100 structure. 

 
 

10.2   Twin Grain Removal 

 
The removal of the twin grains from the large Inconel 100 structure resulted in the 

cleaned structure shown in Fig. 10.7 that consists of 5665 grains.  Texture and GBCD 

measurements for the cleaned structure can be found below in Section 10.2.2.  Other twin 

statistics, such as grain size and twin boundary fractions can be found throughout Section 10.3. 
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Figure 10.7  The cleaned structure after having the twin grains removed by the technique outlined in Section 6.4.1.  
The cleaned structure contains 5665 grains. 

 

10.2.1   Classification of Coherent ΣΣΣΣ3 Boundaries 

 
The twin removal method described in Section 6.4.1 relies on the ability to identify 

coherent Σ3 grain boundaries in the structure.  A triangular element is considered coherent when 

the angle between the misorientation axis and the interface normal is less than 15°.  Since the 

smoothed conformed surface mesh contains artifacts, the mesh of a truly incoherent Σ3 boundary 

may contain a few coherent triangles while not all the triangular elements that make up a truly 

coherent boundary may pass the coherency test.  Fig. 10.8 shows the frequency of boundaries 

having specified fractions of coherent Σ3 triangular elements.  As seen in Fig. 10.8, most of the 

coherent boundaries have approximately 0.7 of their respective triangular elements satisfying the 

coherent Σ3 relationship.  Various threshold fractions can then be chosen to limit the number of 
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boundaries that will be classified as coherent Σ3 boundaries.  The twin cluster distributions were 

evaluated after imposing the various threshold fraction values on the classification of twin 

boundaries, and are shown in Fig. 10.9.  As the threshold value increases from 0 to 0.5, the 

frequency of large grain clusters decreases while the two-grain clusters increases.  This is due to 

the elimination of incorrectly classifying some of the incoherent Σ3 boundaries as twin 

boundaries.  When the threshold value becomes 0.7 however, the criteria is too restrictive and 

truly coherent Σ3 boundaries are being ignored.  For that reason, not enough twin boundaries 

were correctly classified, and twin clusters of all sizes decrease in frequency. 

After identifying the coherent Σ3 boundaries with the threshold for coherent triangular 

elements set at 0.5, the triangular elements that belong to these boundaries were isolated and 

plotted in the GBCD plot shown in Fig. 10.10.  As evident in Fig. 10.10, the coherent Σ3 

boundaries were correctly identified.   
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Figure 10.8  The number of grain boundaries found with the corresponding fraction of triangles that have the 

coherent Σ3 relationship. 
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Figure 10.9  The number of twin clusters containing the corresponding number of grains. 

 

 
Figure 10.10  GBCD plots showing the grain boundaries that were identified as coherent Σ3 boundaries and 
removed from the experimental Inconel 100 structure. 
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10.2.2   Texture and GBCD Measurements 

 
The pole figures and GBCD plots for the cleaned structure are shown in Figs. 10.11 and 

10.12 respectively.  As seen in Fig. 10.11, the texture is not significantly affected by the removal 

of the twin grains and the random texture remains after twin removal.  In Fig. 10.12, it can be 

seen that the coherent Σ3 peak has been reduced from 900 MRD in the experimental structure to 

200 MRD in the cleaned structure, indicating that a large portion of the twin boundaries have 

been removed.  The remaining 200 MRD of twin boundaries is contributed by the coherent Σ3 

triangular elements that were ignored during the classification of the coherent Σ3 boundaries.     

 

 
Figure 10.11  Pole figures showing random texture was measured from the cleaned structure (experimental Inconel 
100 after twin grains have been removed). 
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Figure 10.12  GBCD plots showing the remaining coherent Σ3 grain boundaries that were not removed by the twin 
grain removal method mentioned in Section 6.4.1.   

 
 

10.2.3   Problems of the Twin Removal Technique 

 
As is evident in Fig. 10.7, it appears that some twin grains have remained after the twin 

removal process.  The top surface shown in Fig. 10.7 has been repeated in Fig. 10.13a.  The twin 

and parent grain pair of interest is circled in black in Fig. 10.13a.  The green colored twin grain 

and the orange colored parent grain can be seen in more detail in Fig. 10.13b, and with a rotated 

view in Fig. 10.13c.  As observed in Fig. 10.13c, the green colored twin does not span the entire 

orange colored parent grain.  The main assumption of the twin boundary identification algorithm 

is that all twin boundaries span the entire parent grain.  Because the twin grain did not span the 

parent grain, the algorithm only sees one twin boundary since the grains on either side of the 

twin boundaries have the same identification number.  
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Figure 10.13  Demonstration of a twin grain that was not removed during the twin removal process.  The twin-parent 
grain pair of interest is highlighted in (a) with the black circle, and is shown in (b), and with a rotated view in (c). 

 
 

10.3   Twin Synthesis Results 

 
After inserting twins into the cleaned structure, the twin inserted structure contains 7942 

grains and is shown in Fig. 10.14.  As seen in Fig. 10.14, many flat twin grains can be seen 

throughout the structure.   
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Figure 10.14  The twin inserted structure obtained by inserting twins into the cleaned structure of Inconel 100.  The 
twin inserted structure contains 7942 grains. 

 
 

10.3.1   Texture and GBCD Measurements 

 
The pole figures and GBCD plots for the twin inserted structure are shown in Figs. 10.15 

and 10.16 respectively.  As seen in Fig. 10.15, the random texture observed previously in both 

the experimental and cleaned structure remains unchanged.  In Fig. 10.16, it can be seen that the 

coherent Σ3 peak has increased from 25 MRD in the cleaned structure to 2000 MRD in the twin 

inserted structure, indicating that a large area fraction of coherent Σ3 boundaries have been 

created in the cleaned structure.  The coherent Σ3 boundary population of 2000 MRD in the twin 

inserted structure is double the MRD value found in the experimental structure.  The higher 

MRD value may be caused by the exact twin relationships used to create the annealing twins in 
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the structure.  In the experimental structure, the uncertainty in measuring the grain orientations in 

the OIM and the cleanup procedures used on the structures creates coherent boundaries that can 

have both the lattice misorientation and boundary normal deviate from the exact twin boundary 

relationship.  In the twin insertion algorithm, no deviation was allowed in the lattice 

misorientation or the boundary plane orientation.  Hence in the GBCD plots for the twin inserted 

structure, the coherent Σ3 peak has less of a spread around the exact coherent Σ3 position than in 

the GBCD plots for the experimental structure.   

 
Figure 10.15  Pole figures indicating a random texture was obtained in the twin inserted structure. 
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Figure 10.16  GBCD plots measured in the twin inserted structure showing a very high population of coherent Σ3 
grain boundaries. 

 
 

10.3.2   ΣΣΣΣ3 and Twin Boundary Fractions 

 

The number and area fractions of Σ3 and twin boundaries found in the experimental, 

cleaned, and twin inserted structures are summarized in Table 10.1.  By comparing the number 

and area fractions of the Σ3 and twin boundaries for the cleaned structure and the experimental 

structure, it is clear that a high fraction of the coherent Σ3 boundaries were successfully removed 

from the experimental structure.  The number and area fractions of both the Σ3 and twin 

boundaries between the experimental and twin inserted structures are very similar with only a 

maximum difference of 0.02.  This indicates that the twin insertion code was very successful in 

creating both coherent and incoherent Σ3 boundaries in the cleaned structure.  
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Table 10.1  Summary of the number and area fractions of the Σ3 and twin boundaries found in the experimental, 
cleaned, and twin inserted structures. 

 Number Fraction Area Fraction 

Structure ΣΣΣΣ3 boundaries 
Coherent ΣΣΣΣ3 
boundaries 

ΣΣΣΣ3 boundaries 
Coherent ΣΣΣΣ3 
boundaries 

Experimental 
Inconel 100 

0.10 0.07 0.27 0.18 

Cleaned 
Structure 

0.09 0.03 0.09 0.05 

Twin Inserted 
Structure 

0.09 0.06 0.25 0.20 

 
 

10.3.3   ΣΣΣΣ3 Cluster Distribution 

 

The Σ3 cluster distributions measured in the experimental, cleaned, and twin inserted 

structures are plotted in Fig. 10.17.  As seen in the plot, after the removal of the twins, the Σ3 

cluster distribution observed in the cleaned structure becomes very similar to a distribution 

expected with randomly oriented grains.  It should be noted that the largest cluster size found in 

the experimental Inconel 100 consists of 98 grains while the largest cluster size found in the twin 

inserted structure consists of 103 grains.  Since the Σ3 cluster distribution measured in the 

experimental Inconel 100 was used as the target distribution for twin insertion, it is not surprising 

that the two Σ3 distributions observed in the two structures should be so similar.  However, the 

major differences to note are that the twin inserted structures contains a higher frequency of 

three-grain clusters and much lower frequency of four-grain clusters.  The reason for this 

discrepancy may be that a four-grain Σ3 cluster requires insertion of one twin in an isolated pair 

of grains, which is more difficult to perform when compared to inserting a twin in one isolated 

grain to form a three-grain Σ3 cluster. 
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Figure 10.17  Σ3 cluster size distributions measured from the large experimental Inconel 100, the experimental 
Inconel 100 structure with random orientations, cleaned, and the twin inserted structures.  It should be noted that the 
largest cluster size found for the experimental Inconel 100 is 98 grains, for a random set of orientations is 9 grains, 
for the cleaned structure is 17 grains, and for the twin inserted structure is 103 grains. 

 
 

10.3.4   Grain Size 

 
The average spherical equivalent radius measured for the twin inserted structure is 5.51 

voxels.  Since the twins were included in the average grain size measurement, the value is 

skewed towards a smaller grain size as compared to the average spherical equivalent radius of 

5.91 voxels observed in the cleaned structure.  The spherical equivalent grain size distributions 

for the experimental, cleaned, and twin inserted structures are shown in Fig. 10.18.  As seen in 

Fig. 10.18 the grains found in the twin inserted structures have a more uniform distribution than 

the cleaned or experimental structures.  This is because the twin insertion algorithm inserts twin 

grains of a fixed thickness into the cleaned structure.  If a distribution of twin thicknesses were 
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inserted, the grain size distribution would become more spread out and approach closer to the 

distributions observed for the experimental structure.   
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Figure 10.18  The distribution of spherical equivalent radius of the grains obtained from the experimental Inconel 
100, cleaned, and twin inserted structures. 

 
 

10.3.5   Twin Density 

 
The average twin density measured from the twin inserted structure is two twins per grain, 

which is the same as the value observed in the Inconel 100 structure.  However, from observing 

the number fractions of twin clusters that have the corresponding number of twins per grain in 

Fig. 10.19, there is a much higher fraction of twin clusters that have one twin per parent grain 

than the values observed for the Inconel 100 structure.  Consequently, the fractions of twin 

clusters that have 2 or more twins per parent grain are lower than the values observed in the 

experimental structure.  Despite the attempt to insert up to 6 twins per parent grain in the twin 
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insertion algorithm, perhaps the restriction of not allowing twins to reside within 3 voxels of 

each other is too high a threshold value.     
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Figure 10.19  Number fractions of the number of twins found per parent grain in the experimental and twin inserted 
microstructures. 
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Chapter 11 Conclusions 
 

By eliminating (or decreasing) the need to perform multiple thermal mechanical 

treatments on a material, computer simulation can speed up or make more thorough the study of 

the relationship between the GBCD and the material properties.  However, before these material 

property simulations can be performed, statistically representative microstructures, especially 

ones that contain annealing twins, must first be generated.  This dissertation focuses on creating 

synthetic microstructures that match the five-parameter GBCD obtained from experimentally 

observed microstructures.   

The main algorithm used in this dissertation is the grain orientation assignment algorithm.  

The orientation assignment algorithm has the capability to match the OD and the MD or the 

GBCD simultaneously.  The inclusion of weight variables in the simulated annealing method 

allows for user specification of the degree of matching in the OD and MD or GBCD.   

Through assigning grain orientations with using different textures and MD as the target 

distributions, a relationship was found between the OD and MD.  When the OD and MD are 

compatible with each other, both distributions can be fitted to the microstructures with ease.  On 

the other hand, when incompatible orientation and misorientation distributions are used as targets 

to fit in a structure, a compromise must be made.  The matching of the OD and MD is also 

dependent on the grain structure.  Even though the change of grain shape and grain size 

distribution had no measurable effect on the fitting of the OD and MD, the microstructural 

feature that most strongly affects the fitting is the number of neighbors shared per grain or an 

equivalent number of facets per grain. 

Even though an experimental GBCD was successfully fitted to a synthetic microstructure, 

the target and output GBCDs only matched qualitatively.  Quantitatively, it is impossible for a 



 124 

microstructure with equiaxed grains to attain the same area fraction of coherent Σ3 boundaries as 

a microstructure that is dominated with twin grains.  Therefore, to achieve a high fraction of 

coherent Σ3 boundaries, additional twin boundaries must be created in the microstructure.  

During the investigation of fitting the GBCD to various microstructures, it was found that having 

a distribution of grain boundary areas allows closer fitting of both the OD and GBCD to a 

synthetic structure.  However, a decrease in the number of neighbors shared per grain allows an 

easier matching of the OD and GBCD.  Therefore, the neighbors per grain and grain boundary 

areas have significant effects on the possible OD and GBCD that can exist in the structure.   

 Through the case study of removing and regenerating annealing twins in the 

experimentally reconstructed Inconel 100, it was demonstrated that by using the Σ3 cluster 

distribution as the target, the twin insertion algorithm was able to match some of the 

experimentally observed statistics.  Even though the random texture was maintained, a higher 

area fraction of coherent Σ3 boundaries was measured in the twin inserted microstructure as 

compared to the original experimental structure.  The higher MRD of the coherent Σ3 boundary 

can be attributed to the lack of deviation allowed for the orientation of the boundary plane as 

well as the lattice misorientation.  Since the twin insertion algorithm only regenerates Σ3 

boundaries, the Σ7 and Σ11 distributions could not be matched to the experimental distributions.  

The twin inserted structure was able to match experimentally measured number and area 

fractions of Σ3 and coherent Σ3 boundaries to within a value of 0.01.  The Σ3 cluster 

distributions obtained from the twin inserted structure and the experimental structure were very 

closely matched with the exception of the three-grain and four-grain clusters.  By measuring the 

Σ3 cluster distribution, the largest cluster was found to contain 98 grains in the experimental 
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structure.  Any observation of a two-dimensional section would not be able to reproduce the 

large cluster size that was observed in the fully-reconstructed 3D structure.   
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Chapter 12 Future Work 
 

12.1   Grain Orientation Assignment Algorithm 

 
In Section 8.8, the fitting of a rolling texture and a twin dominated GBCD to various 

microstructures indicated that the neighbors per grain and the distribution of grain boundary 

areas have an effect on the possible OD and GBCD that can exist in the structure.  However, the 

exact relationship between the boundary areas, OD and GBCD are still unknown.  If different 

microstructures with various distributions of boundary areas and neighbors per grain can be 

generated, further studies can be performed with the GBCD version of the grain orientation 

assignment algorithm to isolate the different microstructural parameters that may affect the 

possible GBCDs that can exist in the structures.  

 One of the major barriers involved with the GBCD version of the grain orientation 

assignment algorithm is that the time required by the code to perform the assignment is much too 

long for a single CPU.  The GBCD version of the code requires a run time of approximately six 

days to fit a set of OD and GBCD to a 200x200x200 voxel structure that contains 1550 grains.  

The first step to optimizing the code is to use performance analysis tools to identify the time 

spent on each function, and subsequently adjust certain lines of the code such that the run-time of 

the program will decrease.  The second step will involve parallelizing the code such that the 

work load can be distributed among multiple computers.  Once the code is parallelized, the 

synthetic microstructure should be enlarged such that approximately 15,000 grains can be used to 

more accurately describe the GBCD.  Therefore an estimate of three days will be needed to fit a 

set of OD and GBCD to a structure with 15,000 grains over 20 CPUs. 
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12.2   Twin Insertion Algorithm 

 
 Future work will involve fine tuning the variables involved in the twin insertion 

algorithm such that twin density and the distribution of grain sizes will match closer to the values 

observed in the experimental structure.  Controlled deviations of the lattice misorientation and 

twin boundary plane orientation from the exact definition of a coherent Σ3 boundary can be 

included in the twin insertion algorithm to create a GBCD that is closer to the experimentally 

observed GBCD.  Also, a distribution of twin thicknesses can be imposed on the twin grains such 

that the distribution of grain sizes will become more widely distributed following the 

experimental distribution.  

   

12.3   Studies of Grain Boundary Networks 

 
As mentioned in Section 6.3, the bond percolation theory is frequently used to analyze 

the percolation threshold [19, 119-127, 144].  In the future, the combination of the GBCD 

version of the grain assignment algorithm and the twin insertion algorithm will be able to 

generate many different grain boundary networks with various fractions of CSL boundaries.  

Percolation thresholds can then be easily analyzed as the five-parameter GBCD is varied.  On a 

similar note, homology metrics can also be used to describe the connectivity of the CSL 

boundaries in the different grain boundary networks [145]. 
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Appendix A  Probability Density Function, Cumulative 
Distribution Function, and Multiples of Random 
Distribution 

 
The probability density function is used to describe the probability distribution of a 

continuous function, f(x), and has the properties of  

( ) 0≥xf and ( ) 1=
∞

∞−

xf .      (A.1) 

The probability of having value X between the range of a to b is calculated as the area under the 

curve between values a and b in the probability density function plot with [146],   

( ) ( )dxxfbXaP
b

a

=<< .     (A.2) 

A direct way of obtaining the probability distribution is through the cumulative distribution 

function.  The cumulative distribution function, F(x), is the integration of the probability density 

function as shown by,  

        ( ) ( )dxxfxF
x


∞−

= .     (A.3) 

The probability of having value X between a and b can then be directly obtained from the 

cumulative distribution function with, 

)()()( aFbFbXaP −=<< .     (A.4) 

Since the cumulative distribution function provides probabilities, it is always a positive value 

( ( ) 0≥xF ), and as x approaches infinity or the limits of the integral, the cumulative distribution 

function approaches 1 as can be seen in Fig. A.1(B). 

The orientation distribution function is very similar to the probability density function 

with the exception that the summation of the function multiplied by the bins being equal to the 
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summation of the volume of the bins over the range of the orientation space rather than equal to 

1, as shown with, 

 
Ω Ω

=
0 0

)( dxdxxf ,      (A.5) 

where Ω is the range of the bins in orientation space.  Such a normalization of the orientation 

distribution function means that the area under the curve will depend on the range of the bins.  

Multiples of random is used as the units to negate the effects of the range of orientation space 

and to allow easy comparison with the distributions expected from a random material.   

Figure A.1 shows the visual comparisons between the three different methods of 

representing the distribution of misorientation angles obtained from the MacKenzie distribution 

and an experimental data set.  In all the plots, the blue lines show the standard MacKenzie 

distribution of misorientation angles expected in a random material, while the pink lines show 

the distribution of misorientation angles obtained from the corroded 2124 aluminum alloy 

sample discussed in Section 3.1.1.  Since the MacKenzie distribution represents the distribution 

of misorientation angles that is expected of a random material, the characteristic curve observed 

in the probability density function becomes a horizontal line of 1 MRD across all misorientation 

angles.  To obtain the corresponding MRD plot of the experimental data set, the probability 

density function is divided by the MacKenzie probability density function and subsequently 

normalized with Equation A.5.  As seen in Fig. A.1(C), experimentally observed materials often 

show larger populations of low angle grain boundaries than expected from the MacKenzie 

distribution. 
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Figure A.1.  The MacKenzie and an experimental distribution of misorientation angles represented with (a) 
probability density function, (b) cumulative distribution function, and (c) multiples of random distribution. 
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Appendix B  Algorithms for Microstructure Generation  
 

B.1  Plank Generator 

 

The Plank Generator algorithms can be found online at: 

http://latir.materials.cmu.edu/lisachan/codes/.  The algorithm named GenPlank.cpp generates 

plank structures that contain equal volume grains, while the algorithm named GenPlank2.cpp 

generates plank structures that contain grains of various thicknesses to model after the input 

grain size distribution. 

 

B.2  Voronoi Tessellation Growth 

 
 The Voronoi tessellation growth algorithm named voronoi_cell_nucl_BCCgrid-

NonPeriodic.c was used to generate the idealized tetrakaidecahedron structures used in this 

dissertation.  A copy of this algorithm can be found online at: 

http://latir.materials.cmu.edu/lisachan/codes/. 
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Appendix C  Algorithms for Characterization of the 
Microstructural Features 

 

C.1  Σ3 and Twin Boundary Fractions 

 

 The algorithms used for identifying the Σ3 and coherent twin relationships for each 

triangular element of the conformed surface mesh are named CountTwins.cpp and 

TruncateS3.cpp.  CountTwins.cpp identifies the triangular elements that have a coherent Σ3 

relationship, and outputs a list of grain pairs and their corresponding fraction of coherent Σ3 

triangular elements that make up the boundary.  This list can then be input into TruncateS3.cpp 

to remove identified coherent Σ3 boundaries that have less than a threshold fraction of triangular 

elements being coherent.  Both algorithms can be found online at: 

http://latir.materials.cmu.edu/lisachan/codes/. 

 

C.2  Σ3 Cluster Distributions 

 
To characterize the 3 cluster distribution, TwinStats.cpp and TwinStats-VCMD.cpp 

were used to analyze the microstructures.  TwinStats.cpp will identify all the grain clusters that 

are related with a 3 relationship, and output a list of grain clusters (groups of integers that are 

unique to each grain).  This list can then be fed into TwinStats-VCMD.cpp to calculate the center 

of mass and volume of each grain, and output distributions of grain cluster volume with respect 

to the number of grains per cluster.  Both algorithms can be found online at: 

http://latir.materials.cmu.edu/lisachan/codes/. 
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C.3  Twin Cluster Distribution and Twin Removal 

 

To characterize the twin cluster distribution, the list of coherent Σ3 boundaries obtained 

from CountTwins.cpp and TruncateS3.cpp is used as input files for LinkTwins.cpp.  

LinkTwins.cpp will take the pairs of integers that identify pairs of unique grains, and link the 

integers into clusters by matching the integer numbers.  LinkTwins.cpp has the additional option 

of reading in the structure information and removing the twin grains by having the first grain in 

the twin cluster consume the remaining grains in the cluster.  LinkTwins.cpp can be found online 

at: http://latir.materials.cmu.edu/lisachan/codes/. 
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Appendix D  Algorithms for Crystallography Generation 
 

D.1 Fiber Textures 

  
 The algorithm named TextureGen.cpp will generate a list of Euler angles that belong to 

either the <100>, <110>, or <111> fiber texture.  TextureGen.cpp can be found online at: 

http://latir.materials.cmu.edu/lisachan/codes/. 

 

D.2 CSL Boundary Lattice Misorientations 

 
 CSLgen.cpp will search through the Euler angle space and produce a list of any CSL 

sigma value (up to Σ49c) that is needed.  This algorithm can be found online at : 

http://latir.materials.cmu.edu/lisachan/codes/. 
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Appendix E  Orientation Assignment Algorithms 
 

E.1 Algorithm for Orientation Assignment - MD Version 

 

 The algorithm used for assigning grain orientations to the structure such that orientation 

distribution and misorientation distribution match the target distributions is named 

texturelist_ultimate.c.  The main algorithm and any necessary header files can be found online at: 

http://latir.materials.cmu.edu/lisachan/codes/texturelist/. 

 

E.2 Algorithm for Orientation Assignment - GBCD Version 

 
 The algorithm used for assigning grain orientations to the structure such that the 

orientation distribution and the five-parameter grain boundary character distribution match the 

target distributions is named texturelist_5DQuat.c.  The main algorithm and any necessary 

header files can be found online at: http://latir.materials.cmu.edu/lisachan/codes/texturelist/. 
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Appendix F  Twin Insertion Algorithm 
 
 The InsertTwin.cpp algorithm will take a structure and generate twins either based on a 

list of target 3 clusters, or randomly with a target number of twin grains.  When generating 

twins based on a list of 3 clusters, the algorithm requires the output from TwinStats.cpp such 

that any 3 clusters that existed in the structure prior to the start of the algorithm can be included 

in the statistics.  A copy of InsertTwins.cpp can be found online at: 

http://latir.materials.cmu.edu/lisachan/codes/ 


