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AbstractÐDetails of a numerical method for reconstructing the grain boundary energy distribution over
the complete space of macroscopic boundary parameters are presented. The reconstruction is based on the
analysis of the dihedral angles between homophase grain boundaries of polycrystalline triple junctions.
Instead of the Herring equilibrium condition, the procedure uses the Ho�man±Cahn formalism of the
capillarity vector. This turns the reconstruction into the problem of solving a homogeneous system of alge-
braic linear equations. A numerical example demonstrating a reasonably good performance of the method
is also given. 7 2000 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

An e�ort is under way to develop a procedure for

determination of the relative grain boundary energy
from the geometry of equilibrated polycrystalline
microstructures [1, 2]. The objective is to map the
relative energy function over the whole space of

macroscopic boundary parameters. The project
poses considerable experimental challenges, mostly
due to the enormous number of triple junctions to

be characterized and analyzed. Also, from the nu-
merical point of view, the task of calculating the
relative energy from geometrical data is not trivial.

This paper is meant to provide computational par-
ticulars of the energy reconstruction.
The analysis of dihedral angles at triple lines is a

well-known method to investigate the anisotropy of

grain boundary energy. Some works of this kind
were limited to the energy dependence on grain mis-
orientation [3±7], others take into account bound-

ary inclinations with respect to the crystal lattice
[8±12]. The mentioned project di�ers from all pre-
vious studies because it attempts to cover the com-

plete space of ®ve macroscopic boundary
parameters.

The equilibrium condition for a triple junction in

the presence of anisotropy was given by Herring

[13]. The Herring relationship involves di�erentials

in the so-called ``torque term''. This makes the ap-

plication of that equation di�cult. The problem of

energy reconstruction is purely algebraic using the

Ho�man±Cahn formalism of the capillarity vector

[14, 15]. The equilibrium condition expressed in

terms of the capillarity vector allows one to deter-

mine the vector (times a constant factor) from the

geometry of the junctions. Then, a simple relation-

ship between the capillarity vector and the free

energy is applied to calculate the distribution of the

latter.

From the formal point of view, investigation of

grain boundaries is related to the analysis of a sur-

face stretched over a ®xed frame (anisotropic

Plateau problem), or the problem of the equilibrium

shape of a particle. However, the polycrystal's

boundary network, as a whole, has its own features

involving triple junctions and quadruple points. In

this work, only isolated triple junctions are taken

into account; the in¯uence of quadruple points is

neglected.

The relation to the equilibrium shape brings us to

the question of solvability of the problem. In the

case of anisotropic material, energies for some high

energy regions of the parameter space can be inac-

cessible. The question is, which part of the energy
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distribution can be obtained from purely geometri-
cal information? For the problem of reconstructing

the surface energy distribution from the shape of a
particle surrounded by a homogeneous medium, the
answer is clear: only the convex hull of the 1/g-plot
can be determined [16, 17]. The situation is more
complex for the polycrystalline boundary networks
[18]. We limit our discussion of this subject to the

assumption that, apart from experimental errors,
the geometry of equilibrated microstructure can
provide an approximation of the relative energy; for

low level of anisotropy, the approximation may co-
incide with the actual energy distribution.
Formally, the energy function with cusps corre-

sponding to faces with integer Miller indices is con-

tinuous, but not di�erentiable [19]. On the other
hand, the function is ``smoothed'' by only near-
equilibrium conditions, and by ¯aws in a real ma-

terial. From the viewpoint of measurements, ad-
ditional spread comes from experimental errors.
With Herring or Ho�man and Cahn equilibrium

equations, one assumes not only continuity but also
(piecewise) di�erentiability of the energy function
with respect to its arguments.{ That assumption

applies to the Ho�man±Cahn formalism of the
capillarity vector in general. Essential relations of
that formalism are re-derived in an appendix to this
paper. They are, however, obtained in a way di�er-

ent than presented in Ho�man and Cahn [14].

1.1. Preliminaries

Let the orientations of two neighboring crystal-
lites with respect to an external (sample) Cartesian

coordinate system be given by the special orthog-
onal matrices o-1 and o-2. (Quantities speci®ed in the
external coordinate system are over-lined.) Locally,

the grain boundary between the ®rst grain and the
second one is determined by two elements: ®rst, the
misorientation matrix m=o-1(o-2)T, and second, by a

unit vector n normal to the boundary and directed
towards the second grain, with coordinates speci®ed
in the Cartesian coordinate system of the ®rst crys-
tallite. Instead of the pair (m, n), however, it is fre-

quently more convenient to use a 4 � 4 matrix b

de®ned by

b �
�

m n
ÿnTm 0

�
; �1�

cf. Morawiec [22]. If b represents the boundary
between the ®rst and the second grain, the bound-
ary between the second grain and the ®rst one is

represented by bT. The pair (m, n) and the matrix b

will be used interchangeably. We will write bc(m, n)
if b is related to the pair (m, n) by (1). To express m

and n corresponding to b, we will use m=P1(b) and
n=P2(b).

Due to crystal symmetries, numerous di�erent
sets of boundary parameters, or di�erent matrices
of the type (1), may represent physically indistin-

guishable boundaries. The boundary energy distri-
bution g has the same value for all symmetrically
equivalent con®gurations, i.e.

g�b� � g�Sq�b��, �2�

where Sq (b) is the qth element of the list of matrices

equivalent to b. Let Ci be a 4� 4 matrix given by

Ci �
�

ci 0
0 1

�
,

with ci being a 3 � 3 special orthogonal matrix
representing a symmetry operation of the crystal
point group; the range of i is from one to the num-

ber of such symmetry operations. (We assume here
that the crystal symmetry point group contains
inversion.) With bc(m, n), the complete list of

matrices Sq (b) equivalent to b consists of CibCj,
Cib

TCj, Cib
ÿCj and Ci (b

ÿ)TCj, where bÿc(m, ÿn),
and the indices i and j cover all their range.

We will also need the relation between the capil-
larity vector and the surface tension [14]. Let the
vector s- be normal to a planar element of the

boundary surface, and let its magnitude, denoted by���
g
p

, be equal to the area of the element. With g
depending on the surface normal Ås=

���������
Ås � Åsp

(Thus, on
s-), the capillarity vector �xxx is de®ned by

d�g ���
g
p � � �xxx � dÅs :

The surface tension can be expressed via the capil-
larity vector: Let t

-
be a unit vector tangent to an

edge of unit length. The shift of the edge by an in-

®nitesimal vector dx- corresponds to the surface el-
ements dÅs � Åt � dÅx : The surface tension �sss � �sss�Åt �
at the edge, and the change of potential d�g ���

g
p �

caused by the shift, are related by d�g ���
g
p � � �sss � dÅx :

On the other hand, d�g ���
g
p � � �xxx � dÅs � � �xxx� Åt � � dÅx :

Hence, due to arbitrariness of dx- , the surface ten-

sion can be expressed as

�sss � �xxx� Åt : �3�

Readers are referred to the original papers [14, 15]
and to Appendix B for more on the capillarity vec-

tor.

2. RECONSTRUCTION METHOD

Let the capillarity vectors �xxx1, �xxx2 and �xxx3 corre-
spond to three boundaries of which a triple junction

is built. By assumption, tensions at the junction are
equilibrated. Because of (3), this means that the
component of �xxx1 � �xxx2 � �xxx3 perpendicular to the
junction vanishes, i.e.

{ For a discussion of more general surfaces see Taylor

[20, 21].
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� �xxx1 � �xxx2 � �xxx3� � Åt � 0, �4�

where t
-
is tangent to the junction [14]. All vectors

in (4) must be speci®ed in one coordinate system; it
is assumed to be the one referred to the sample. On
the other hand, one wants to calculate the free

energy with respect to the system of the crystal, and
there are three crystals involved in the above re-
lation. Thus, in order to make use of (4), the vec-

tors �xxxs (s = 1, 2, 3) must be expressed via
components of xxx � xxx�b� given in the crystal coordi-
nate system.
Before giving that relation, we need to list the tri-

ple junction data obtained directly from the exper-
iment; these are: vector t

-
, vectors normal to grain

boundaries n-s, and special orthogonal matrices o-s

representing orientations of the grains at the junc-
tion. Grain misorientations are calculated from
orientations by m1 � Åo 1�Åo 2�T, m 2 � Åo 2�Åo 3�T and

m3 � Åo 3�Åo 1�T: The normals in the crystal coordinate
system are ns � Åo �s� Ån �s�: Now, with bsc(ms, ns), the
components of the capillarity vector in the crystal

coordinate system xxx�bs� and those in the sample
coordinate system �xxxs are related by xxx�bs� � Åo �s� �xxx�s�:
Hence, the equilibrium condition (4), written with
the explicit use of Cartesian coordinates, takes the

form{

eijkÅtk Åo s
ljx

l�bs� � 0, �5�

where e denotes the Levi±Civita permutation sym-
bol. This relation is our basis for determining an
approximation of the sought ®eld xxx � xxx�b�:
To proceed with numerical calculations, the space

of boundary parameters is discretized by a tessella-
tion into cells. The cells are enumerated by an index

b. Each point b belongs to a certain cell, and a cer-
tain index corresponds to it. Within the cell, the
®eld xxx�b� is approximated by a vector xxxb assigned

to the cell. The relation (5) can be written as
Ab

ilx
l
b � 0, where Ab

il �WeijkÅtk Åo s
lj if bs is a point of

the cell b, and Ab
il � 0 otherwise; the constant W is

chosen in such a way that Ab
�i �lA

b
�i �l � 1 (no sum-

mation over i ). The measurement is designed to
provide a large number (0106) of triple junctions,
and a set of relations (5) corresponds to each triple

junction. Therefore, we add to A an index J (J=1,
. . . , Jmax) enumerating the junctions, so we have

Ab
Jilx

l
b � 0: �6�

This is a system of 3Jmax linear equations with
respect to xlb: It is solved by a iteration method

which does not require the transposition of the
matrix of the system.{ In the kth iteration step, the

unknown xlb is denoted by xlb�k�: The initial form of
xb is given by xb�0� � P2�b�, where b is a point of
the cell b. For the kth step approximation, the

quantity

dJi�k� � Ab
Jilx

l
b�k� �7�

represents the deviation of the left-hand side of (6)
from zero. The capillarity vector is modi®ed by

xlb�k� � xlb�kÿ1� ÿ oAb
JildJi�kÿ1�, �8�

where o is a relaxation parameter. Because the sys-
tem (6) is homogeneous, xlb can be determined only

up to a constant factor. That factor is established
by the following normalization procedure: in each
step, xlb�k� obtained from (8) is replaced by N�k�xlb�k�,
where N[k ] is de®ned by N�k��xlb�k�xlb�k��1=2 �
�xlb�0�xlb�0��1=2:
Once the capillarity vector is known, the energy

distribution g is determined from g � xxx � n: More

precisely, g(b) is approximated by g�b� � xlb�K �n
l,

where b corresponds to the cell containing b, K is
the last iteration step, and the vector n is given by

n=P2(b).
Finally, there is an important additional element

to the above construction which must be taken into

account, namely the presence of symmetries. As we
already mentioned, it manifests itself by the fact
that numerous di�erent sets of boundary par-

ameters (or points in di�erent cells) may correspond
to physically identical boundaries. There are a num-
ber of possible approaches to deal with symmetry.
First, one can determine the ®eld xxx in the complete

®ve parameter space, with the condition that the
vectors in symmetrically equivalent locations are re-
lated. The second, more economic method, is to

determine the ®eld xxx in the asymmetric domain, i.e.
in the sub-domain of the space in which each physi-
cally distinct boundary is represented only once.

The third option, which is applied in our test, is to
use a proper sub-domain larger than the asym-
metric domain; this is analogous to the method
employed earlier [23]. To relate xxx at symmetrically

equivalent locations, we use (5) not only for bs but
also for all points Sq (bs) located in the sub-domain.
This means that for each set of equations (5) a

group of equivalent equations is created. When cal-
culating dJi�k� in (7) the average of all deviations in
that group is taken.

3. TEST OF THE RECONSTRUCTION PROCEDURE

The simplest method of testing the computational

side of the procedure is by creating a valid} model
of the energy distribution, and then reconstructing
it from computer generated triple junction data,
with geometrical parameters of the junctions based

{ Summation over all indices which appear twice in the

formula, including s. There will be no summation over in-

dices taken in parentheses or squares brackets.

{ The transposition would be computationally awkward

because of the size of A.

} That is, satisfying the symmetry conditions (2).
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on the assumed model. From the numerical view-

point, the task of generating equilibrated junctions

is considerably more complicated than the recon-

struction itself. Details concerning the construction

of the model function and the generation of junc-

tion geometry are given in Appendix A.

We wrote simple programs for the generation

of junctions and for the reconstruction of the

energy distribution. One of the programming dif-

®culties is how to deal with the size of the ®ve

parameter space. Moreover, with our programs,

the generation of junction geometry, as well as

the reconstruction of the relative energy are

lengthy processes. The results of reconstruction,

however, are reasonably good.

In the test we use as an example, Jmax=2 �
105 triple junctions (i.e. sets of t

-
, o-s and n-s, s=1, 2,

3) were generated using the procedure described in

Appendix A. The assumed crystal symmetry was

cubic. The model energy distribution was uniform

except some cusps. We chose the cusps to be

located at the misorientations de®ned by coinci-

dence lattice relationships of the f.c.c. structure with

S in the range from 1 to 13b. The relationships are

enumerated in the standard order as Sn with n= 0,
1, . . . , 8, i.e. S0=1, S1=3, . . . , S8=13. The cusp
at S0=1 is independent of boundary inclination. In
the remaining cases, the centers of the cusps had in-

clinations of the densest lattice planes for particular
misorientations. The half-widths of the cusps are
given by the criterion wn � �p=12�Sÿ1=2n , and their

depths are determined by an � Sÿ1=2n :
The iteration process of reconstruction converges;

though we stopped it arbitrarily after K = 15 iter-

ations, in the future a reasonable termination cri-
terion is needed. Figure 1 contains some sections
through the model and reconstructed distributions.

4. CONCLUDING REMARKS

Although, the program we used was only provi-
sional and some of its elements must be improved,

it shows that the numerical part of the energy
reconstruction can be performed using simple alge-
braic tools. A number of aspects of the reconstruc-
tion remain to be investigated. One of them is to

Fig. 1. Sections through the model (left) and reconstructed (right) energy distribution. Figures (a) and
(b) are stereographic projections of one hemisphere of the g-plots corresponding to the misorientations
of ([111], 38.218)1 S7 and (110], 50.488) 1S11, respectively. (That is, for the ®xed misorientations, the
dependence of g on boundary inclination is plotted.) For all ®gures, the isolines 1.00, 0.97, 0.93, 0.85
and 0.75 were chosen. The value of 1.00 corresponds to the outer contour; the values assigned to other

contours sequentially decrease towards centers of the cusps.
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determine the level of robustness of the procedure
with respect to experimental errors, and to include

it in the error analysis of the whole measurement.
There is also a problem of a practical nature: how
to deal with the vast amount of information con-

tained in a function of ®ve variables. An analogous
function is applied for descriptions of orientational
correlations of molecules in molecular ¯uids, but

only some sections are approached numerically; see,
e.g. Lazaridis and Karplus [24].
An alternative approach to the reconstruction

would be to apply the series expansion similar to
that used by Gale et al. [25] for determination of
surface energy anisotropy. Details of such a pro-
cedure for the ®ve parameter boundary energy dis-

tribution remain to be explored.
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APPENDIX A

Three distinct steps in the generation of the geo-

metry of triple junctions are described in some
detail below.

Model of g function

The model we use is based on the uniform energy

distribution with cusps. The cusps are shaped in
analogy to Read±Shockley's [26] expression for
energy of low angle boundaries gA x(1ÿln(x )). We
use a function f de®ned as

f �x, a� � ax�1ÿ ln�x�� � �1ÿ a� for 0 < xR1,

f �0, a� � 1ÿ a and f �x, a� � 1 otherwise,

where x determines a ``distance'' from the center of
a cusp, and a (0 R a R 1) corresponds to its depth.
To proceed further a de®nition of the distance in
the space of boundary parameters is needed. The

distance w between boundaries b and b ' can be
de®ned by w 2

(b, b ')=kbÿb 'k2/2, where the norm k�k
of a matrix X is given by kXk � �tr�XTX��1=2, [22].
Assuming that bc(m, n) and b 'c(m ', n '), the quan-
tity w 2

can be expressed as

5ÿ tr�mTm 0 � ÿ n � n 0 ÿ �mTn� � �m 0 Tn 0 �: �A1�
Moreover, it has to be taken into account that sym-

metries a�ect the metric properties of the space. In
the symmetric case, the distance w S

between two
boundaries is given by the smallest of all values of

w for all representative of the equivalency classes to
which the boundaries belong. Formally, one has
wS�b, b 0 � � min qfw�b, Sq�b 0 ��g, where Sq (b ')
denotes the qth point symmetrically equivalent to
b '.
We also need a special cusp at m=I3=identity;

that cusp is independent of the boundary incli-
nation. Let the distance between orientations m and
m ' be given as w 2

� � km ÿ m 0k 2=2: Analogously to
w S

, the distance wS
� is de®ned by wS

��m,
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m 0 � � min qfw��m, S �q�m 0 ��g, where misorientations
S �q�m� symmetrically equivalent to m are cimcj and

cim
Tcj, for all ci and cj.

Finally, the energy distribution is assumed to
have the form of the product

g�b�AF0�b�
Y
k

Fk�b�, �A2�

where F0�b� � f �wS
��P1�b�, I3)/w0, ao),

Fk�b� � f �wS�b, b(k ))/w(k ), a(k )), bk determines the
location of the kth cusp, wk is its half-width, and ak
corresponds to its depth. It may look involved, but
it is quite simple. Function f equals 1 everywhere
except a cusp. Thus, the product of such functions
equals 1 everywhere except a number of cusps.

Complicated arguments of particular factors f just
specify locations and shapes of the cusps.

Determination of xxx from the model g function

Let bc(m, n). For a ®xed misorientation m, with

components n
j
treated as independent variables,

one can write

xi � @g

@n j
�dij ÿ nin j � � nig:

To get xxx, the derivatives @g/@n i
are needed. Based

on (A2), they can be expressed as

@g
@n j
� F0

X
l

@Fl

@n j

Y
k�k6�l �

Fk:

Taking into account that (for x R 1) @f(x, a )/@x=
ÿaln(x ) and using (A1) one has

@Fk

@n j
� a�k� ln�wS�b,

b�k��=w�k���n j
�kq� �mjim

�kq�
li nl�kq��=�2w�k�wS�b, b�k���,

where �mkq , nkq ��: Sq�bk� corresponds to a point

closest to b among those symmetrically equival-
ent to bk. The above sequence of relations (in
reverse order) allows us to determine xxx from the
model of g for all of its domain except some iso-

lated points (e.g. centers of the cusps). In practical
terms, the presence of those points is immaterial
due to the numerical and statistical nature of the

procedure.

Generation of triple junctions' geometry

The ®rst step in the construction of an equili-
brated triple junction is to generate three random

grain orientations o-
s
(s = 1, 2, 3), and to calculate

the misorientations m1 � Åo 1�Åo 2�T, m 2 � Åo 2�Åo 3�T,
m3 � Åo 3�Åo 1�T: Moreover, a random unit vector is
taken as the direction t

-
of the triple line.

The main task is to determine the three normals
to the boundary planes in such a way that the equi-

librium condition is satis®ed. The vector n-1, normal
to the ®rst boundary, is chosen randomly with a
condition that it is perpendicular to the junction

(n-1�t-=0). As for the normals n-2 and n-3, they are cal-
culated by minimizing F � zzz � zzz, where zzz�� �xxx1� �xxx2�
�xxx3� � Åt and �xxxs are the capillarity vectors for particu-

lar boundaries. The vectors �xxxs are given by �xxxs �
�Åo �s��Txxx�b�s��, where xxx at the point bs�: �ms, ns���ms,
Åo �s� Ån �s�� is obtainable directly from the model of g
in a way described in the previous subsection. With
®xed o-

s
, t
-
and n-1, the quantity F is a function of n-2

and n-3; the latter are requested to satisfy the con-
ditions Ån 2 � Åt � 0 � Ån 3 � Åt : A standard numerical

procedure is used to determine n-2 and n-3 which
minimize F. If the minimum of F does not reach a
su�ciently small value, the junction is rejected and

new t
-
and n-1 are generated.

The described procedure does not simulate a
microstructure; it is limited to generating individual

equilibrated triple junctions. Moreover, the vector
n-1 is generated randomly, which means that we
allow all crystallographic planes as the boundary

plane n1. Nevertheless, the generated junctions are
considered to be su�ciently good for testing the
reconstruction method.

APPENDIX B

This appendix introduces the capillarity vector

via the classical variational technique. We begin
with a reminder of some simple facts from the
elementary di�erential geometry of surfaces. (See,
e.g. Goetz [27].) Let a surface S be parameter-

ized by (u
1
, u

2
), and let x

i
=x

i
(u

a
) (i= 1, 2, 3,

a=1, 2) denote Cartesian coordinates of a point
of the surface. It is assumed that the functions

x
i
(u

a
) are of class C2. The dot will be used to

denote derivatives with respect to u
a
, e.g. Çx i

a �
@x i=@ua�: The ®rst fundamental form (metric

tensor) of the surface is de®ned as gab � Çx i
a Çx i

b: The
relation gabg

bm � dma de®nes the contravariant
form g

bm
of the metric tensor. The vector product

s
i
of tangent vector Çx i

1 and Çx i
2 can be expressed

as

si � eijkeab Çx j
a Çx k

b=2:

The vector s
i
is normal to the surface and satis®es

s
i
s
i
=det( gab) We use

���
g
p

to denote
�����������������
det�gab�

p
: It is

assumed that there are no singular points, i.e. for
each point of the surface

���
g
p 6�0: Vector ni � si=

���
g
p

is a unit vector normal to the surface. Both
���
g
p

and
n
i
depend on Çx i

a via dependence on s
i
, e.g. ni �

ni�si�Çx i
a��: Later on, we will use the following re-

lations involving derivatives of s
k
:
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�a� @sk

@ Çx i
a

Çx i
b � dabsk, �b�

@sk

@ Çx i
a

ni � ÿ ���
g
p

Çx k
bg

ab and �c�

d

dua

 
@sk

@ Çx i
a

!
� 0:

�A3�

The second fundamental form is de®ned as bab �
ÿÇx i

a Çn i
b: It is directly related to the mean curvature

H via 2H � gabbab�baa:
One wants to minimize the total energy which is

given by G � �
S g dS � �S g ���

g
p

du1 du 2, where g
depends on n

i
, g(n i

) > 0, and dS � ���
g
p

du1 du 2: For
a particle of ®xed volume V (bounded by a closed
surface), one additionally has 3 V � 3

�
V dV ��

V �@x i=@xi �dV � �Sxisi du1 du 2: Taking that con-
dition into account, the Lagrangian L=L(x

i
, Çx j

a � is
given by

L � g
���
g
p ÿ lxisi: �A4�

The case of the surface stretched on a ®xed frame
corresponds to l=0. When the particle is con-
sidered, l is a constant related to its volume.

The necessary condition for the integral
�

L�xi,
Çx j
a �du1 du 2 to assume a minimum is
�@ 2 L=@ Çx i

a @ Çx
j
b �dadbd id jr0 for all da and d

i
(e.g.

[28]). For L given by (A4), that condition is equiv-
alent to the convexity of g

���
g
p

as a function of s
i
.

This requirement seriously limits the scope of our
analysis, but it does not a�ect the properties of the

capillarity vector which are given below.
With pai � @L=@ Çx i

a and E i� dpai =du
aÿ @L=@xi, the

surface minimizing the energy of the system is gov-

erned by the parameter invariance conditions pai Çx i
b

� dab L, and by the Euler±Lagrange equations
E

i
=0. (See, e.g. [28].)

The Ho�man±Cahn capillarity vector xxx is de®ned
by

xi � @

@ si
�g ���

g
p �:

Using xxx the moments pai can be expressed as pai �
�xk ÿ lxk�@sk=@ Çx i

a: Due to equation (A3), one has

pai Çx i
b � dab�xk ÿ lxk�sk: Thus, the parameter invar-

iance conditions lead to

xknk � g, �A5�
which is the ®rst of the Ho�man±Cahn relations
concerning the capillarity vector. Using (A3c), E

i

can be written as

E i � �_xka ÿ lÇx k
a�
@sk

@ Çx i
a
� lsi: �A6�

For L which does not explicitly depend on u
a
,

there occurs E i Çx i
m � 0 (cf. [28]). Multiplying (A6)

by Çx i
b and using (A3), one gets E i Çx i

b � �_x
k

a ÿ

lÇx k
a�dabsk� _x

k

bsk, and therefore,

_x
k

bsk � 0: �A7�

From the above relation and from _ga� _x
k

ank�xk Çnk
a,

one obtains

_ga � xk Çn k
a,

which is the second of the relations emphasized by
Ho�man and Cahn [14].
Because of E i Çx i

b � 0 the Euler±Lagrange

equations are reduced to one scalar condition
E ini � 0: For E

i
given by (A6), using (A3b), one

obtains E ini� ���
g
p �3lÿ gab _x

k

a Çxk
b�: Hence, one has

gab _x
k

a Çx k
b � 3l: �A8�

It can be shown that E
i
n
i
can be equivalently

expressed as E ini� ���
g
p �3l� bab Çx i

a Çx
j
b hij �, where hij�

gdij� ���
g
p 2�@ 2g=@ si @s j �: This is an invariant form of

the formula ®rst obtained by Herring [13] in re-
lation to the chemical potential near the surface of
a particle; see also [29] and [15]. For constant g,
one has hij � gdij, and the Euler±Lagrange
equations lead to 2H � baa � ÿ3l=g, which means
that the mean curvature is constant. If l=0, one
gets H = 0, i.e. the well-known fact that the mean

curvature vanishes for minimal surfaces. As for l$
0, a closed simple surface with constant H is a
sphere [30].

Let us also notice that because @
���
g
p
=@ sk � nk, the

vector xk can be expressed as xk � gnk � ���
g
p

@g=@sk:
Due to (A5), the second (``torque'') term is a linear

combination of Çxk
a (a=1, 2), i.e. one can write xk�

gnk � ta Çx k
a: Using the relations of Gauss and

Weingarten, one obtains _x
k

a � �_ga � tbbab�nk � �tb;a ÿ
gbba�Çxk

b, where the semicolon denotes the covariant
derivative. Because _x

k

a is perpendicular to n
k

[equation (A7)], there occurs

_ga � babtb � 0 and _x
k

a � �tb;a ÿ gbba�Çx k
b: �A9�

Substitution of the second expression into (A8)
leads to ta;a � 3l� 2Hg: Thus, by the divergence
theorem, for a surface stretched on a frame, the
energy weighted average of the mean curvature�
SHg dS is determined by the value of the torque
term t a

on the boundary S. For a closed surface,
because of

�
S t

a
;a dS � 0, the integral

�
SHg dS is

equal to ÿ3l/2 times the area of S.
Finally, let us concentrate on the case of a

particle. Vector _x
k

a is tangent to the surface, so it

can be expressed as _x
k

a � Ab
a Çx k

b; see equation (A9).
The observation of Ho�man and Cahn [14] that
Ab

a � const � dba or x
i
=ax i

+d
i
(with constant a

and d
i
) allows one to relate the above consider-

ations to the Wul� construction. A pedal of S with
respect to a point c

i
is composed of points

pi � ci � nink�xk ÿ ck�, [16]. For c i
=d

i
the translate
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p
iÿc i

of the pedal is given by piÿ ci�nink�xkÿ ck�
� aninkxk� anig: This leads to the Frank's [16] ver-

sion of the Wul� theorem (limited by the convexity
requirement mentioned above): for the surface mini-
mizing G, there exists a point c

i
such that the g-plot

is the scaled pedal of the surface with respect to

that point. The relation x i � axi � d i also allows us
to determine the constant l. Equation (A8) leads to

a = 2/(3l ), and the substitution of x
i
in the for-

mula for volume 3 V � � x ini dS and equation (A5)
give 9lV = 2Gmin, where Gmin is the minimal value

of G (attained for that surface).
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