Computational Resources for Integrated Computational Materials

Ale Strachan
Center for Predictive Materials Modeling and Simulation,
School of Materials Engineering, Purdue University
strachan@purdue.edu
Simulation/computing tools and usage scenarios

Math software / databases analysis

Electronic Structure → MD → Mesoscale FP, DD, etc. → FEA/Thermo

Basic level
- Simulations/tool to help students understand difficult concepts or perform complex calculations

Advanced user level
- Simulations relevant for industrial and research applications

Expert level
- Students interested in computational science & engineering
Basic level user scenario

• Objective
 • Help students better understand concepts taught in class
 • Perform calculations not possible without computing
 • Help achieve course’s learning objectives

• Target
 • MSE core courses

• Students
 • No background on simulations or computing
 • Minimal overhead in getting students started with modeling

• Faculty
 • Little or no background on simulations/computational
Basic level user: required resource features

- Simulation tools
 - User friendly
 - Easily and widely available
 - High-level, interactive visualization

- Instructional material tightly coupled with the tool
 - Lectures, notes and tutorials
 - Brief introduction to the physics of the simulation tool
 - Topic to be addressed
 - Detailed tutorial to run the simulation
 - Assignments and quizzes
 - Learning objectives
Objectives

- Train students in industrial/research grade computing and simulation

Target use

- Technical elective, senior design, and independent research courses

Students

- Expected to learn the details of the simulation tool
- Develop basic knowledge of scientific computing

Faculty

- Some expertise in specific simulation
Advanced user level: required resource features

- Simulation tools
 - Powerful and flexible
 - Access to significant computational resources
 - User friendly and accessible

- Supporting material
 - Detailed tool descriptions
 - Model physics, numerical approximations
 - Examples of the use of simulation for industrial problems
 - Best practices
 - Reproducibility of results, documentation & data management
 - Verification and validation (V&V)
 - Uncertainty quantification
Expert scenario

• Objectives
 • High-level of expertise on physics and numerical aspects

• Target:
 • Technical elective courses, research

• Students
 • Background: basic programming skills
 • Outcome: able to add to or modify a computational tool
 • Outcome: trained in best practices in scientific computing

• Faculty/mentor
 • Some computational expertise
• Simulation tools
 • Open source or ability to add modules

• Supporting resources
 • Access to advanced scientific computing tools
 • Compilers and debuggers
 • Version control software
 • Training material
 • High performance computing
 • Best practices in computing and simulations
Open source

Cyber-enabled cloud scientific computing

Commercial

Resources: simulation codes and software

Open source

- abinit.org
- OOF: Finite Element Analysis of Microstructures
- >MyCode.f

Cyber-enabled cloud scientific computing

- NSF network: Purdue, UIUC, Northwestern, Berkeley/LBL, MIT, U of Florida, Norfolk, UT El Paso

Commercial

- Abaqus Unified FEA
- http://www.simulia.com
- http://www.thermocalc.com
Materials codes in nanoHUB

DFT tools
- SeqQuest (Sandia)
- Abinit

Molecular dynamics
- LAMMPS, REBO, nanoMATERIALS

Finite elements
- OOF2

Mesoscale
- Virtual kinetics

Dislocation dynamics

PURDUE UNIVERSITY
General purpose resources

Cornell MATLAB Resource - http://www.cac.cornell.edu/matlab/
• 512 cores with MATLAB Parallel Computing Toolbox licenses
• Submit from your desktop MATLAB program
• Full-featured Linux desktop
• For researchers and educators
• Accessible from any web browser
• Still running after you close your browser
• Development resources
• Access to Grid resources
• File storage provided by nanoHUB

http://nanohub.org/tools/workspace
Example: learning module using online simulations

Objectives:
• introduce students to the atomic-level processes responsible for plastic deformation in metals
• help them develop a more intuitive understanding of how materials work at molecular scales

Contents:
• Two introductory lectures
• Laboratory assignment
• Learning objectives
Example: learning module using online simulations

Two online Lectures

1. Introduce topic and simulation tool
2. Step by step tutorial to run a meaningful simulation and analyze the results
Compare MD results with tensile tests

Stress vs strain

MD simulation

Nanoscale vs. macroscopic samples

Experiment

- Cold worked (30 mins. @ 500° C)
- Annealed (30 mins. @ 650° C)
- Work hardening
Explore atomistic processes

Initial structure

Final structure
Leveraging integrated computing research efforts

NSF: cyber-enabled predictive models for polymer nanocomposites: multiresolution simulations and experiments

- Ultimate mechanical properties of nanocomposites
- Poly-imides and PMMA with CNTs and graphene

Boeing – Purdue: atoms to aircraft

- Prediction of onset of irreversible deformation and damage propagation in epoxy formulations
- Cyclic loading and damage accumulation

www.newairplane.com
Leveraging integrated computing research efforts

Center for Prediction of Reliability, Integrity and Survivability of MEMS

PRISM device: Contacting RF capacitive switch

Mission:
• Accelerate the incorporation of MEMS in civilian and defense applications
• Increase our understanding of failure and reliability

• High fidelity simulations from atoms to device
• Uncertainty quantification and experimental validation
Summary

• Access to tools and training material to non-experts
 • Lower the barriers for incorporation of computing in core courses

• Close the gap between simulation tools and instructional material
 • Learning modules for learning and teaching
 • Examples/tutorials of modeling and simulations relevant for industrial applications (benefits reproducibility of results)
 • Leverage research efforts

• Encourage best practices in modeling and simulation
 • Reproducibility of results and documentation
 • Verification and validation, uncertainty quantification
Thanks

Michael McLennan, Gerhard Klimeck, Mark Lundstrom, George Adams, David Johnson