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Abstract

This thesis explores new approaches to enhance the efficiency and accuracy of materials

characterization in the scanning electron microscope (SEM) with particular emphasis on

electron backscatter diffraction (EBSD). The work addresses two challenges in the field: ac-

celerating data acquisition and improving the handling of orientation data acquired from

polycrystals. Firstly, we introduce an unsupervised dynamic sampling approach based on a

nearest neighbor heuristic for scanned microscopy modalities. Secondly, we present a varia-

tion on dictionary-based orientation indexing for EBSD using principal component analysis

(PCA) and numerical quantization which accelerates and improves the noise robustness of

the method. Thirdly, we cover two potential tools for multimodal image registration in the

SEM using approaches rooted in information theory. Lastly, we develop decision tree algo-

rithms for the efficient reduction of crystallographic orientations to the fundamental zone

of their respective Laue classes. By addressing key algorithmic obstacles in SEM-based mi-

crostructure characterization, this thesis aims to alleviate some of the challenges of handling

such materials science data in this era of big data.
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GLOSSARY

Axis-angle representation A method of describing rotations using a unit vector (axis)

and an angle of rotation around that axis.

Backscattered electrons Electrons that are scattered back from a sample in an SEM,

used in EBSD.

Bloch-wave ansatz A mathematical approach used in dynamical scattering simulations

for EBSD.

Bunge Euler angles A set of three angles (φ1, Φ, φ2) used to describe crystallographic

orientations.

Cathodoluminescence Light emission from a material when bombarded by electrons,

often observed in EBSD of ceramics and semiconductors.

Clifford algebra An algebraic structure generalizing complex numbers and quaternions,

relevant in some rotation representations.

Cross Mutual Information Function (CMIF) A technique for computing mutual in-

formation between two images over various spatial shifts.

Crystallite (see grain) A small, single crystal within a polycrystalline material.

Cubochoric coordinates A coordinate system that provides a volume-preserving bijec-

tion between a cube and a ball, useful for uniform sampling of orientation space.

Dictionary indexing An EBSD indexing method that compares experimental patterns

to a pre-computed dictionary of simulated patterns.
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xviii

Difference of Local Entropy (DoLE) Amethod for detecting key points in images based

on local entropy differences.

Dirichlet-Voronoi partition A partitioning of space based on distance to a specified set

of points, relevant in orientation space analysis.

Dynamical scattering A model of electron diffraction that accounts for multiple scatter-

ing events.

EBSD (Electron Backscatter Diffraction) Amaterials characterization technique that

provides information about crystal orientations, phases, and defects.

EDS (Energy-Dispersive X-ray Spectroscopy) An analytical technique used in con-

junction with EBSD for elemental analysis.

Edgeworth Cross Mutual Information Function (ECMIF) An extension of CMIF

using Edgeworth series expansions to estimate entropy.

Edgeworth series A method of representing a probability distribution as a series, used

here to approximate entropy.

Euler space The three-dimensional space defined by Euler angles, used to represent ori-

entations.

Euler-Rodrigues formula A mathematical expression relating rotation matrices to axis-

angle representation.

Forward model A simulation of the physical process that produces EBSD patterns from

a given crystal orientation.

Friedel’s law A principle in diffraction stating that the intensity of a diffracted beam is

the same for reflections (hkl) and (-h-k-l).

Fundamental zone The smallest region in orientation space that contains all unique ori-

entations for a given symmetry.

Grain A small, single crystal within a polycrystalline material.
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xix

Grain Reference Orientation Deviation (GROD) A measure of local misorientation

within a grain relative to its average orientation.

Homochoric inverse The process of converting from homochoric coordinates back to axis-

angle representation.

Homochoric representation An equal-volume mapping from the hemisphere of the 3-

sphere to a 3D ball, used in orientation analysis.

Homography A transformation used in image processing to map points between two

planes.

Hough transform An image processing technique used to detect lines, applied in EBSD

for identifying Kikuchi bands.

Ion-induced Secondary Electron (ISE) Electrons emitted from a sample when bom-

barded with ions, used in some microscopy techniques.

Jacobi polynomials A class of orthogonal polynomials used in the calculation of Wigner

d-matrices.

K-sphere (Kikuchi sphere) A reference signal on the 2-sphere used in EBSD simulations

and analysis.

Kernel Average Misorientation (KAM) A measure of local misorientation between a

central point and its neighbors.

Kepler’s equation An equation in orbital mechanics, related to the homochoric inverse

problem in orientation analysis.

Kikuchi bands Bands in an EBSD pattern formed by diffraction from crystal planes.

Klein-Gordon equation A relativistic wave equation used in the theoretical framework

of EBSD simulations.

Laue group A point group combined with inversion symmetry, relevant in crystallographic

texture analysis.
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xx

Lie algebra The tangent space at the identity of a Lie group, denoted as so(3) for rotations.

Marsaglia sampling A method for generating random points uniformly distributed on a

sphere.

Master pattern A simulated diffraction pattern representing the complete sphere of diffrac-

tion for a given phase and experimental conditions.

Modality Independent Neighborhood Descriptor (MIND) Amethod for multimodal

image registration that is robust to intensity variations.

Monte Carlo simulation A computational method used to model electron-matter inter-

actions in EBSD.

Orientation Distribution Function (ODF) A function describing the frequency of oc-

currence of particular orientations in a polycrystalline sample.

Padé approximant A rational function approximation of a power series, used in some

numerical methods for orientation calculations.

Pattern center The point of tangency between a sphere emanating from where the elec-

tron beam strikes the sample and the EBSD camera sensor.

Point group A group of symmetry operations that can be performed on an infinitely

repeating lattice of crystal unit cells without changing the lattice, given that the

origin stays fixed.

Polycrystal A material composed of many crystallites or grains, each with potentially

different orientations.

Quaternions A number system extending complex numbers, that can be used to represent

rotations in 3D space.

Radon transform An integral transform related to the Hough transform, used in some

EBSD indexing methods.

Riemannian manifold A smooth manifold with a defined metric, such as SO(3) for ro-

tations.
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xxi

Rodrigues space The space of Rodrigues-Frank vectors, useful for visualizing orientations

and misorientations.

Rodrigues-Frank vector A representation of rotations that scales the axis of rotation by

the tangent of half the rotation angle.

Shannon entropy A measure of the amount of information contained in a piece of data,

used here in image analysis.

Shoemake sampling A method for uniform random sampling of orientations in SO(3).

Skew-symmetric matrix A square matrix whose transpose equals its negative, related

to the representation of rotations.

SO(3) The special orthogonal group in three dimensions, representing all possible rotations

in 3D space.

Space group A group of symmetry operations, including translational operations, that can

be performed on an infinitely repeating lattice of crystal unit cells without changing

the lattice.

Spherical coordinates A coordinate system for representing points on a sphere, often

used in EBSD analysis.

Spherical harmonic indexing An EBSD indexing method using spherical harmonics to

compute cross-correlations in the frequency domain.

Spherical harmonic transform (SHT) A technique for representing functions on a sphere

using spherical harmonics.

Super-Fibonacci approach A method for creating low-discrepancy sequences over SO(3)

for uniform orientation sampling.

Texture The distribution of crystallographic orientations in a polycrystalline material.

Wigner D-matrix Matrix elements of the rotation operator which are needed to rotate

spherical harmonics.
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xxii

Wigner little-d matrix A component of the Wigner D-matrix, used in spherical har-

monic calculations for rotations.

Zone axis A direction parallel to the intersection of two (or more) families of lattices

planes, visible as intersections of Kikuchi bands in EBSD patterns.
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CHAPTER I

Introduction

Within materials science and engineering, the rapid advancement of characterization tech-

niques has led to new frontiers in understanding and exploiting the complex relationships

relating materials processing, structure and properties. Over the past century, a variety of

experimental techniques and methods have been crafted to peer at the intricate details of

materials, revealing insights that once were beyond reach. With this explosion in the capa-

bilities and variety of analysis techniques has come a wealth of data, growing both in size

and complexity. This presents a formidable challenge to materials engineers who are tasked

with distilling beneficial knowledge from this vast information landscape.

At the forefront of this challenge is the field of electron microscopy, and in particular the

Scanning Electron Microscope (SEM). It possesses the ability to capture high-resolution im-

ages from material surfaces using a variety of signals, having become an indispensable tool

for characterizing the morphology, composition, and crystallographic texture of materials

from the nanoscale to microscale. For example, one such technique, electron backscatter

diffraction (EBSD) enables the mapping of crystalline phase as well as lattice orientation

and strain. It has helped to revolutionize our understanding of microstructure-property re-

lationships in poly-crystalline ceramics and metals. However, the power of characterization

in the SEM comes at a cost; a single EBSD scan can easily produce a map consisting of

millions of data points representing position, orientation, and phase, while the underlying

EBSD patterns yielding such a map require billions of bytes to store. Moreover, the rise

of in-situ and dynamic studies investigating the evolution of material structure and prop-

erties then adds an additional temporal dimension, while serial sectioning studies add an

1



1.1. DYNAMIC SAMPLING AND COMPRESSED SENSING 2

additional spatial dimension. The task of handling and analyzing these large datasets is

compounded by the fact that SEM-based characterization usually involves multiple modal-

ities. For example, a typical study might combine EBSD with energy-dispersive X-ray

spectroscopy (EDS) to map out the chemistry profile, or with electron channeling contrast

imaging (ECCI) to visualize defects and strain fields. Collating these multimodal datasets

is a difficult task requiring expertise as the interface of materials science and data science.

In the face of these challenges, materials engineers have increasingly turned to advanced

computational methods, particularly computer vision and machine learning to accelerate

and automate SEM data analysis, especially EBSD data. The goal of this thesis is to provide

a handful of new tools to aid the materials scientist in two aspects: 1) more rapidly acquire

scans in the SEM 2) better handle SEM imaging modalities and orientation data.

1.1 Dynamic Sampling and Compressed Sensing

One avenue to the first goal is the development of algorithms for dynamic sampling and

sparse data collection. By selecting a subset of raster points to visit during imaging, dynamic

sampling can significantly reduce the resources required for data acquisition without drastic

compromise to accuracy. This is particularly valuable in reducing the duration of high-cost

experiments, such as 3D serial sectioning experiments that currently require several weeks

of continuous polishing and EBSD scans. It is also useful in the context of high-throughput

experiments meant to screen a large number of materials compositions and/or processing

conditions.

Another path to the improvement of characterization throughput is the deliberate rapid

acquisition of noisy images combined with fast and noise-robust analysis. This principle

is presented in the context of orientation mapping in via EBSD pattern acquisition. The

leveraging of physics-based forward models to solve the orientation indexing is the common

theme in this approach to alleviating the time cost of data collection. Conventionally,

these expensive modelling based approaches to orientation indexing have been considered

at the far end of the speed-accuracy Pareto frontier. By applying compressed sensing using

principal component analysis, orientation indexing can be accelerated while maintaining

noise-robustness qualities.

Algorithms for Crystallography Z. Varley



1.2. MULTIMODAL IMAGE REGISTRATION 3

1.2 Multimodal Image Registration

Several contributions to the second goal of this thesis are presented beginning with image

registration. Multimodal image registration in the SEM resides in its own niche among

image registration problems. Often the non-linear distortions present between SEM imag-

ing modalities do not reach the magnitude of those found in multimodal medical imaging.

Further, unlike histological multimodal imaging registration (e.g. fluorescence microscopy

images registered unto corresponding light microscopy images), the local image texture and

image gradients in SEM modalities often share significant information. This situates multi-

modal SEM image registration closest to multimodal remote sensing registration problems

such as the alignment of near infrared (NIR) satellite images with their visible (VIS) spec-

trum counterparts. However, prior knowledge of the relative vantage of satellites in remote

sensing make those registration problems comparatively simpler.

To this end, we propose two new approaches to registration for SEM imaging modali-

ties. The first tool is a multimodal key-point detection method based on the information

content in images at various scales. This tool is meant to rapidly estimate the registration

parameters between two images without the need to traverse over an optimization land-

scape that so often contains false local optima. The second tool is an improvement on a

drop in replacement for cross-correlation meant to handle multimodal data. The cross mu-

tual information function (CMIF) measures the shared information content between two

images as a function of discrete pixel shifts of the moving image (although generalizable to

other groups via non-commutative harmonics). This function is expensive to evaluate using

conventional binning approaches, motivating the development of a generalized Edgeworth

series based approximation, dubbed the Edgeworth CMIF (ECMIF).

1.3 Fundamental Zone Reductions

Once EBSD orientation maps, or other orientation data, have been acquired, many differ-

ent analysis techniques can be used to extract a variety of downstream summaries such as

grain size and shape distributions, maps of preferred texture, and more. Crystallographic

orientations require careful treatment as they very often possess discrete rotation symme-
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tries, and intermediate results such as misorientations between adjacent points in an EBSD

map must be reduced to the Rodrigues fundamental zone (RFZ) before continuing with the

larger task at hand. We propose a new decision-tree approach to this reduction to help alle-

viate the computation burden in tasks where this underlying reduction problem dominates

the overall runtime.

1.4 Hypotheses

Pursuantly, the specific hypotheses that I propose are:

• Rasterization-based scans, (e.g. BSE micrographs or EBSD orientation maps), ac-

quired in the electron microscope can be subsampled using dynamic sampling, and

then infilled, yielding at twofold reduction in scan time while maintaining an error rate

(grayscale pixel values different by 10% relative deviation or misorientations exceeding

3◦) not exceeding 1%.

• EBSD patterns can be indexed using compressed sensing via principal component

analysis and physics-based forward models to index patterns one order of magnitude

faster than conventional pattern matching without compressed sensing, with at least

identical indexing accuracy.

• Orientations may be reduced to crystallographic orientation fundamental zones 50%

faster than either existing brute force approaches which are based on enumerating

equivalent orientations or their angles.

1.5 Thesis Outline

In this thesis, we explore several avenues to improve the accuracy and throughput of char-

acterization in the SEM, with an emphasis on backscattered electron (BSE) micrographs

and electron backscatter diffraction (EBSD) orientation maps.

Chapter II covers the essential crystallography background, including orientation and

texture representations, the principles and physics of EBSD, as well as existing techniques

for EBSD-based orientation determination.
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The main body of the thesis is partitioned into four primary chapters. Chapter III details

the proposed methodology for dynamic sampling of rasterization-based scans in the SEM

to accelerate data acquisition, as hypothesized. It covers the sampling approach, scoring,

selection criteria, image completion strategies, implementation details, and performance

analysis.

Chapter IV focuses on the use of compressed sensing via principal component analysis

(PCA) for noise-robust high speed EBSD pattern indexing. The PCA dictionary indexing

(PCADI) is introduced, including the PCA calculation, k-nearest neighbors search, dynamic

quantization, and results bench-marking its indexing speed and hardware utilization and

evaluating its disorientation distributions on a test Nickel dataset.

Chapter V presents two aforementioned novel tools proposed for multimodal image

registration for micrographs from the SEM, addressing the second hypothesis. These reg-

istration tools are evaluated using representative EBSD data, but the results are currently

preliminary and registration algorithm development is ongoing.

Chapter VI presents decision tree algorithms for the reduction of crystallographic ori-

entations to their fundamental zone equivalents. These methods are evaluated on uniform

samplings of orientation space, and on orientation distributions arising from the misorienta-

tion between pairs of uniformly drawn fundamental zone orientations. The third hypothesis

will be assessed individually in each of these subcases.

Finally, chapter VII summarizes the key findings of the thesis, revisiting the hypotheses

and discussing potential future research directions.
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CHAPTER II

Background

2.1 Orientation and Texture

The orientation of individual crystallites, or grains, and their collective distributions in a

material, exert a profound impact on physical, mechanical, and functional properties of

polycrystals. Quantifying orientations and their distributions is essential for establishing

structure-property relationships in order to optimize materials [1,7]. For a polycrystal, the

distribution of crystal orientations relative to a sample reference frame constitutes the bulk

texture.

To analyze orientations, we require a consistent mathematical framework to measure,

compare, and manipulate them. The three-dimensional (3D) rotation group, denoted SO(3)

provides the fundamental setting for the rotation of crystallites in 3D space relative to a

given reference frame. For a thorough overview of crystallographic orientations and texture

analysis, especially in the context of group theory, see [8].

2.1.1 SO(3)

The special orthogonal group SO(3) is a Riemannian sub-manifold of 3 × 3 real valued

matrices, denoted M3(R). Explicitly, defined with the set:

SO(3) = {R ∈ M3(R) | RTR = I and det(R) = +1} (2.1)

This Lie group (see Appendix A) is non-abelian, and each of its elements is represented by

at minimum three values, although an over-parameterization, or an embedding into a space

which is defined in more than three variables can confer numerous benefits to analysis.

6
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2.1.2 Orientation Representations

Axis-angle and so(3): The intuitive representation of an element R of SO(3) is simply

the unique 3 × 3 matrix which defines it. Eigendecomposition helps to characterize the

action of a matrix upon the vectors that it transforms. For the special case of the neutral

identity element, I, the eigenvalues are all equal to unity, while for a rotation of π radians,

two of those eigenvalues must be −1, and in the general case, one eigenvalue is unity while

the other two are of the form e±iθ where 0 ≤ θ ≤ π. There are no unique eigenvectors

for the three identical eigenvalues of one in the case of the identity rotation, while for the

general case the eigenvalue λ = 1 is associated with an eigenvector n, that is normalized

to a unit vector n̂, the axis of rotation. This direction vector consists of direction cosines,

with respect to the three coordinate vectors, (ex, ey, ez). By definition, vectors in 3D space

along this direction vector n̂ are unperturbed by R, while others undergo a rotation by a

certain angle. The trace, equal to the sum of the eigenvalues of a matrix is invariant to

change of basis, yielding:

tr(R) = 1 + eiθ + e−iθ = 1 + 2 cos θ (2.2)

These two pieces identify a rotation R = (n̂, θ) = (nxθ, nyθ, nzθ) = (θx, θy, θz) as an angle-

rescaled axis of rotation in a more compact and immediately apparent representation than

the 3×3 matrix. One can transform back from (n̂, θ) to R via the relationship independently

discovered by Euler and Rodrigues [9]:

R = expK = I + K sin θ +K2(1− cos θ), where K =


0 −θz θy

θz 0 −θx

−θy θx 0

 (2.3)

This formulation in equation 2.3 identifies rotations with the family of real 3 × 3 skew-

symmetric matrices, a vector space Sk(3,R), and the Lie algebra, so(3), of the Lie group

SO(3). Matrix exponentiation is the operation which takes vectors in the tangent space

so(3) to the elements in the group SO(3). This tangent space representation is useful for
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optimization of orientations under a given metric especially in the context of deep learning,

although careful integration with existing codebases and frameworks that offer “automatic

differentiation” is a necessity as the computation of the Jacobian of the exponential and

logarithmic mappings between so(3) and SO(3) from forward pass equations can be slower

and less numerically stable than explicitly implementing the left Jacobian for the chain

rule [10–12]. This treatment of Lie algebras and groups in the context of optimization

has been extended to 3D Euclidean motion and similarity transforms, but the underlying

relationship between Jacobian and Lie derivatives remains the same (see Ch. 11 of [13]).

Bunge Euler Angles: In crystallography, one of the most commonly used represen-

tations of a rotation R is Bunge Euler angles. Euler angles define a rotation as three se-

quential rotations around the coordinate axes. A Bunge Euler angle triplet usually written

(φ1,Φ, φ2) denotes an intrinsic “ZXZ” ordering, as shown in Figure 2.1 below.

Figure 2.1: ZXZ Bunge angles rotation of reference frame (adapted from Figure 2.3 of [1])

Euler angles suffer from discontinuities and the degenerate identity element is repre-

sented by a line in Euler space:

(φ1,Φ, φ2) = (φ1, 0, 2π − φ1) (2.4)

However, despite these shortcomings, Euler space is periodic along each dimension as equa-
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tion 2.5 shows:

(φ1,Φ, φ2) = (φ1 + 2π,Φ, φ2) = (φ1,Φ+ π, φ2) = (φ1,Φ, φ2 + 2π) (2.5)

and this has led to highly effective numerical routines based on the fast Fourier transform

for convolutions and more generally harmonic analysis over the space of rotations as we will

see in subsection 2.3.3.

Positive Scalar Unit Quaternions: Quaternions, denoted H are a skew field in R4:

they are abelian under addition, possess an identity operation, and are distributive [8].

Intuitively, quaternions extend complex numbers, and are in turn are extended by Clifford

algebras [14]. A quaternion has a scalar part and three imaginary parts:

x ∈ H = (x0, x1, x2, x3) = x0 + ix1 + jx2 + kx3 (2.6)

and the units i, j, and k adhere to:

i · i = j · j = k · k = −1

i · j = k j · k = i k · i = j

j · i = −k k · j = −i i · k = −j

(2.7)

Quaternions multiply according to the following relationship:

xy = (x0y0 − x1y1 − x2y2 − x3y3,

x0y1 + x1y0 + x2y3 − x3y2,

x0y2 + x2y0 + x3y1 − x1y3,

x0y3 + x3y0 + x1y2 − x2y1)

(2.8)

Quaternions that have unit norm form a double covering of the rotation group:

x20 + x21 + x22 + x23 = 1 (2.9)

Each quaternion may be arbitrarily negated and it still represents the same rotation as seen
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in the fact that each component xi is paired with another component, nullifying the effect

of negating x (but note that the two versions can be visualized as forward versus backward

rotations to arrive at the same result):

Rx =


2x20 − 1 + 2x21 2x1x2 − 2x0x3 2x1x3 + 2x0x2

2x1x2 + 2x0x3 2x20 − 1 + 2x22 2x2x3 − 2x0x1

2x1x3 − 2x0x2 2x2x3 + 2x0x1 2x20 − 1 + 2x23

 (2.10)

and a unit quaternion can be related to the axis angle formulation as follows:

x = (cos
θ

2
, sin

θ

2
n̂) (2.11)

Quaternions are useful for efficiently computing the compositions of rotations, and have

thus received widespread adoption by computer graphics programmers. By using 4-tuples

instead of 3 × 3 rotation matrices composition only requires 16 multiplications and 12

additions instead of 27 multiplications and 18 additions [15]. However, an oft-overlooked

drawback of this representation when using standard libraries is that 16, 32, and 64-bit

IEEE 754 floating point numbers (each with 10, 23, and 52-bit mantissas respectively), can

struggle to store the cosine of half the angle of rotation at small angles [16]. This is because

the cosine of half of a near-zero angle is a value very slightly below unity. Table 2.1 shows

the apparent accuracy limitations present even for 64-bit floating point representations of

the scalar quaternion part near the identity.

Type Smallest Exact Round Threshold Min Angle (◦)

FP16 1− 2−10 = 1− 9.77× 10−4 1− 2−11 = 1− 4.88× 10−4 3.58

FP32 1− 2−23 = 1− 1.19× 10−7 1− 2−24 = 1− 5.96× 10−8 3.956× 10−2

FP64 1− 2−52 = 1− 2.22× 10−16 1− 2−53 = 1− 1.11× 10−16 1.708× 10−6

Table 2.1: Maximum exactly representable scalars, rounding thresholds to unity, and corresponding mini-
mum representable angles for floating point quaternions.

For applications in crystallography a minimum angle of 3.956 × 10−2 degrees provided

by 32-bit IEEE floats is often sufficiently below the noise level in estimations of orientation
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especially for the characterization of texture. In applications where small angles are impor-

tant such as refining orientations, using axis angle or rotation matrix representations could

be a necessary trade of speed in exchange for numerical precision.

Homochoric Representation: The Lambert equal area projection maps the S2 in 3D

space to the 2D disk. The homochoric mapping is an equal-volume generalization of the

Lambert equal area projection. It maps the hemisphere of the 3-sphere in 4D space to the

3D ball. For a given axis-angle pair (n̂, ω):

h = n̂
[3
4
(ω − sinω)

] 1
3

(2.12)

Cubochoric Representation: Cubochoric coordinates provide a volume-preserving

bijection between the three dimensional ball and the three dimensional cube, which in

turn provides an equal volume mapping from the cube to the positive scalar quaternion

hemisphere via the aforementioned homochoric inversions provided in (B.1) and (B.2), and

the conversion given by equation 2.11 [2]. This representation is useful for uniform sampling

of orientation space, and the sampling of rotations of crystals possessing (discrete) rotational

symmetry. Figure 2.2 shows how the cube is divided into six pyramids which are mapped

to divisions of the ball.

Figure 2.2: First figure of [2] showing exploded view of (a) cube and (b) ball subdivisions in 3D.

Equation 2.13 presents new compact formulae for converting from cubochoric coordinate
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magnitudes to homochoric coordinate magnitudes for 0 < cx ≤ cy ≤ cz ≤ π( 23 )

2 :
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√
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(2.13)

and the inverse from homochoric for 0 < hx ≤ hy ≤ hz:

|cx| =
2 · 6

2
3

√
h2x + hy

(
2hy +

√
h2x + 2h2y

)
4

√
h2x + h2y + h2z acos

(√
2(h2

x+hy

√
h2
x+2h2

y)
2(h2

x+h2
y)

)
π

2
3

√
hz +

√
h2x + h2y + h2z

|cy| =
6

2
3 3
√
π

√
h2x + hy

(
2hy +

√
h2x + 2h2y

)
4

√
h2x + h2y + h2z

6

√
hz +

√
h2x + h2y + h2z

|cz| =
6

2
3 3
√
π
√
h2x + h2y + h2z

6

(2.14)

and for any triplet where it is not true that 0 < cx ≤ cy ≤ cz for (2.13) or 0 < hx ≤

hy ≤ hz for (2.14), one may take the absolute value and then reorder the triplet in ascending

order. After evaluating (2.13) or (2.14) the original ordering must be restored followed by

copying the sign of the original coordinates. The semi-edge of the cubochoric cube is π( 23 )

2

and the radius of the homochoric ball is (3π4 )
1
3 giving each a volume of π2 which is the same

as the volume of the Northern hemisphere of the unit 3-sphere.

Rodrigues-Frank Representation: The Rodrigues-Frank vector scales the axis of
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rotation according to the tangent of the half angle [17]:

R = n̂ tan
ω

2
= (ρ1, ρ2, ρ3) (2.15)

This representation is highly advantageous for computations involving the various equivalent

rotations of an entity possessing discrete rotational symmetry, as the boundary planes

between these symmetry operators in Rodrigues-Frank space are planar. Rodrigues-Frank

vectors are composed according to the following relationship:

ρbρa =
ρa + ρb − (ρa × ρb)

ρa · ρb
(2.16)

for a composition of ρa followed by ρb.

Other Representations There are numerous other representations of rotations that

deserve mention. Just as the real valued 3 × 3 matrices describe rotations, the special

unitary group, SU(2) of 2 × 2 complex valued matrices with determinant of unity may

equivalently describe rotations. In another approach, rotations may be mapped to the

Clifford torus, and this representation can be used to map crystallographic texture to RGB

images [18]. Lastly, there are several embeddings and representations meant to alleviate the

effect of symmetry when computing statistics or predicting orientations of objects possessing

discrete rotational symmetries. The first method uses generalized spherical harmonics to

represent the orientation of crystallites, while the other constructs the embeddings directly

from the components [19–21].

2.1.3 Uniform Sampling of Orientation Space

There are several methods to uniformly sample orientation space. Taking four randomly

drawn values in the range [−1, 1] and normalizing them to form a unit quaternions does not

uniformly draw samples from orientation space. The first approach to uniform sampling is

that of Marsaglia, where two point pairs are drawn at random until each pair of coordinates

lie within the unit disk in the 2D plane, and thereafter the norm of the second pair is

rescaled to form a unit quaternion [22]. This approach requires rejection of points outside

of the unit disk, leading to higher computational cost. The method of Shoemake avoids this
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added cost by reformulating the sampling as follows [23]:

qS = (
√
1− u1 sinu2,

√
1− u1 cosu2,

√
u1 sinu3,

√
u1 cosu3) (2.17)

where u1 is uniformly drawn from [0, 1] while both u2 and u3 are uniformly drawn from

[0, 2π].

The methods of Marsaglia and Shoemake both independently draw samples which may

have “collisions”. A low discrepancy sequence or grid over SO(3) is often desirable in a

variety of contexts such as numerical integration or Monte Carlo simulation. Alexa’s super-

Fibonacci approach analyzes the volume-preserving mapping from the cylinder in 3D and

SO(3) to formulate a low discrepancy sampling grid over SO(3) using irrational numbers [24].

The original publication proposes the golden ratio and super-golden ratio:

qA = (
√
t sin

2πs

ϕ
,
√
t cos

2πs

ϕ
,
√
1− t sin 2πs

ψ
,
√
1− t cos 2πs

ψ
) (2.18)

where s = i + 1
2 , and t =

s
N for i ∈ [0, ..., N − 1] for a number of sampling points N . ϕ is

the golden ratio and ψ is the super golden ratio. The cubochoric approach maps uniform

grids in a 3D cube unto SO(3) using (2.13). The cubochoric and super-Fibonacci grid

construction approaches have comparable performance in terms of distribution quality and

speed of computation [18].

2.2 Electron Back-scatter Diffraction in the SEM

Electron backscatter diffraction (EBSD) is a powerful technique utilized in materials char-

acterization for crystalline and polycrystalline materials. EBSD leverages the interaction of

an electron beam with a polished sample surface to provide a wealth of information about

the local crystallographic information including orientation, phase, and defects. At the core

of EBSD is the interaction between a high-energy electron beam (typically 1 to 40 keV)

in a scanning electron microscope and the sample. The beam is focused down to a spot

size on the order of a few nanometers. The interaction volume is at most 5 µm deep, ren-

dering the SEM a surface characterizing analysis technique [25]. EBSD is often combined
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with other experimental signals. When the electron beam strikes the sample surface and

interacts with the atoms to produce characteristic X-rays, which can be analyzed using

energy-dispersive spectroscopy (EDS). In ceramics and semiconductors, cathodolumines-

cence light signals arise when secondary electrons scatter and excite valence electrons into

the conduction band and subsequently combine with a hole.

2.2.1 Experimental Geometry and Setup

The typical EBSD geometry is shown in figure 2.3:

Figure 2.3: Typical EBSD geometry (reproduced from [3] - CC 3.0 License.)

In EBSD, the sample normal is typically tilted down by 70◦ towards the direction of the

detector. This is done to maximize proportion of the backscatter electrons that are directed

towards the detector. The cost of this is a variety of distortions that can be introduced [26].

The geometry of the detector is generally fit after the fact using software on a per-pattern

basis, as a triplet of coordinates: the pattern center. The pattern center describes the

location in the image plane of the point of tangency with the Kikuchi sphere as well as the

distance from this point to the point of beam incidence and recent efforts have begun to

use global optimization to fit these values [27].
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2.2.2 Electron Diffraction Forward Model

In order to extract the most amount of information out of experimental data it is advanta-

geous to have a simulation of the physics involved in electron diffraction. This subsection

explains how a two step approach is used to simulate the backscatter electron signal in an

SEM.

Monte Carlo Simulation of Backscatter Electrons

The simulation of electron-matter interactions has often been cast in the language of Monte

Carlo modeling [28–31]. The forward model utilized in the present work bases its Monte

Carlo portion largely on the book by David C. Joy [32]. The Monte Carlo model makes

the simplification that during each step a stochastic but guaranteed removal of energy is

applied. This significant “continuous” slowing approximation makes the simulation more

computationally viable by in essence fitting the end result effect of discrete interaction

events. The inputs to the Monte Carlo simulation are the atomic number, atomic mass,

accelerating voltage, and the tilt of the sample. The output is used to approximate a 4D

probability distribution over outgoing direction (described by polar and azimuthal ϕ and ψ),

energy, and escape depth. These outputs are then used to perform a dynamical scattering

simulation.

Dynamical Scattering Simulation

Following the Monte Carlo simulation, the Klein-Gordon equation is made tractable with a

high-energy approximation and a Bloch-wave ansatz leading to an eigenvalue problem:

AC(j) = 2πλknΓ
(j)C(j), (2.19)

where C(j) are the Bloch-wave coefficients, Γ(j) are the complex eigenvalues, and kn is the

normal component of the incidence wavevector. The solution can be expressed as:

Ψ(r) =
∑
j

α(j)
∑
g

C
(j)
g exp

(
2πi
(
k0 + Γ(j)n+ g

)
· r
)

(2.20)
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for Bloch-wave excitation amplitudes α(j), where g is the lattice plane, r is the position, k0

is the exit direction (for BSE electrons). This solution is substituted into the form of the

backscattering probability equation for a direction k:

P (k) ≃ 1

z0
Z2 exp(−M)

N∑
i=1

∫ z0

0
dz |Ψk (ri; z)|2 (2.21)

yielding a probability over k and energy E:

P (k, E) ≃
∑
g

∑
h

SghLgh

Sgh =
∑
n

∑
i∈Sn

Z2
n exp

(
−M (n)

h−g

)
exp (2πi(h− g) · ri)

Lgh =
∑
j

∑
k

C
(j)∗
g α(j)∗Ijk(E)α(k)C

(k)
h

(2.22)

where Sgh is similar to a structure factor and Lgh comes from solving equation 2.19. The end

result of this forward model for electron backscatter diffraction is a probability distribution

over energy and S2 of backscattering electrons exiting the sample.

2.2.3 Automation of EBSD Indexing

The first experimental electron diffraction patterns were observed in 1928 by Nishikawa

and Kikuchi from the surface of a calcite sample, as well as ”cleavage faces of mica, topaz,

zincblende and a natural face of quartz” [4]. Figure 2.4 shows the first EBSD pattern

collected for calcite:
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Figure 2.4: Image reproduced from [4] showing the first ever EBSD pattern (adaptive histogram equalization
applied to show more details).

These images were indexed by manual inspection without computers. Since then, many

methods have been developed to automatically index Kikuchi patterns, particularly the

backscatter mode. The first procedure to introduce fully automatic indexing using the

computer was developed in 1992 using the Hough transform and Burns algorithm [33, 34].

The second technique published in 1993 utilized the Hough transform and butterfly mask

[35]. In 1997, the first software-directed and SEM-interactive automatic indexing method

brought dynamic focusing and calibration support for the SEM and used the Hough-Radon

transform without a butterfly mask to find the pattern center (PC) and at least 3 bands for

orientation determination. [36]. The Hough and Radon transforms are closely related. The

Hough transform fills the parameter space (angle and distance for lines) bins, input pixel

by input pixel, based on membership in a given bin, while the Radon transform calculates

each parameter space value one by one with the relevant input pixels [37].

2.3 EBSD Orientation Determination

In the years since the advent of Hough indexing, numerous methods including spherical

indexing, dictionary indexing, deep-learning based methods, and hybrid deep learning with

dictionary approaches have been developed to improve indexing speed as well as accuracy

in the face of shot noise in the SEM [5, 38–40]. Figure 2.5 shows that dictionary indexing
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overtakes other indexing methods in noise-robustness, and similar outcomes are also seen in

the later developed hybrid EBSDDI-CNN approach of [40]. Importantly, spherical indexing

with higher band count would likely improve the noise robustness towards the level of

dictionary indexing, but a GPU implementation is not currently publicly available, and

runtime becomes a major deterrent from adoption at high bandwidth. One goal of this

work is to retain the noise robustness of dictionary indexing while lowering its runtime to

be near that of Hough indexing (thousands or tens of thousands of patterns per second on

a consumer grade GPU).

Figure 2.5: Figure reproduced from [5] compares indexing methods at increasing noise levels: ”From left to
right are patterns, indexing results of Hough, DI, spherical indexing (SI) with 87 bands, and
EBSD-CNN.”

2.3.1 Hough Transform Indexing

The Radon and Hough transform are closely related to each other and they both transform

lines into points in their output space [37]. This transformed space is useful for EBSD

orientation indexing as Kikuchi bands may be identified and used to infer the orientation

of the crystalline lattice. Figure 2.6 shows the sinogram resulting from the radon transform
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of an example EBSD pattern. The zone axis at the intersection of each of the colored

lines traces a sine wave in the radon transform space. By using convolution filters or other

analysis methods the Kikuchi bands may be identified and then the relative angles between

them can be used to vote on a particular crystalline orientation. This approach forms the

basis of Radon and/or Hough transform based EBSD orientation indexing.
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Radon Transform Pattern with Lines

Figure 2.6: The Hough and Radon transform convert lines to points which facilitates calculating angles
between diffraction bands. The vertical axis is the distance of the line from the center of the
pattern and the angle tells the orientation of the line.

2.3.2 Dictionary Indexing

Dictionary indexing uses the physics-based forward model of EBSD to simulate the signal

on S2 (often called the Kikuchi or “K” sphere). From this reference signal called the

master pattern, a titular dictionary of possible idealized experimental observations can be

constructed. Each experimental observation may then be systematically compared to all of

these possible dictionary entries in order to procure a set of orientations that have simulated

patterns closest to that of the experimental observation. The most common metrics for these

comparisons are the normalized dot product, mutual information, and normalized cross

correlation. This approach leverages uniform grids over SO(3), particularly cubochoric

coordinates to sample orientation space. These orientations are then used to rotate the

K-sphere before an image is interpolated from the master pattern. The master pattern is

stored using an equal-area bijection between the circle and square, which readily permits

bilinear, bicubic or higher order interpolation with its equal volume pixels.
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2.3.3 Spherical Harmonic Indexing

Spherical harmonic indexing uses the mathematics of harmonics on S2 and on SO(3) to

compute the normalized cross correlation between a master pattern and an experimental

pattern over the rotations in the spectral domain where convolution is equivalent to element

wise products [38,41–44]. A function on S2 can be expressed as a series expansion of spherical

harmonics Y ℓ
m and spherical harmonic coefficients f̂ ℓm via the spherical harmonic transform

(SHT):

f(θ, ϕ) =

∞∑
ℓ=0

+ℓ∑
m=−ℓ

f̂ ℓmY
ℓ
m(θ, ϕ) (2.23)

where the coefficients are defined as:

f̂ ℓm =

∫ π

0
dθ sin θ

∫ 2π

0
dϕf(θ, ϕ)Y ℓ

m(θ, ϕ) (2.24)

where the spherical harmonics Y ℓ
m(θ, ϕ) have their physics-convention (as opposed to the

geographic convention) definition (θ is the polar declination and ϕ is the azimuthal angle):

Y ℓ
m(θ, ϕ) =

√
(2ℓ+ 1)!(ℓ− 1)!

4(ℓ+m)!
P ℓ
m(cos(θ))eimϕ (2.25)

with P ℓ
m(x) the associate Legendre polynomial of degree ℓ and order m, with coefficients

determined by:

f̂ ℓm ≈
∑
k

fkwkY ℓ
m (θk, ϕk) (2.26)

There are variety of ways to compute the spherical harmonic transform, including dif-

ferent sampling grids. Once the spherical harmonic coefficients for a signal on S2 have been

determined, the spherical cross correlation (SCC) over SO(3) can be computed via the in-

verse Fast Fourier transform. In the spectral domain, the SCC can be expressed as a simple

triple summation over the indices of the harmonics for an element wise product modified by

the entries of the unitary matrix in an irreducible representation of SO(3): the Wigner-D
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matrix.

(f ⋆ g)(R) =
∑
ℓ,m,n

f̂ ℓmĝ
ℓ
nD

ℓ
m,n(R) (2.27)

where a deliberately chosen “ZYZ” (and not “ZXZ”) intrinsic Euler angle convention with

angles (α, β, γ) yields real valued Wigner D coefficients:

Dℓ
m,n(α, β, γ) = dℓm,n(β)e

inαeimγ , (2.28)

with Wigner little-d given in terms of Jacobi polynomials Pm−n,m+n
ℓ−m (cos(β)) as:

dℓm,n(β) =

√
(ℓ+m)!(ℓ−m)!

(ℓ+ n)!(ℓ− n)!
cos

(
β

2

)m+n

sin

(
β

2

)m−n

Pm−n,m+n
ℓ−m (cos(β)) (2.29)

and these coefficients must be carefully computed and tabulated as at high degrees in ℓ,

numerical precision becomes a significant concern. Researchers have often resorted to virtual

extended numerical precision at a small cost to speed [45,46]. Others have developed FFT-

based methods to evaluate these coefficients at high degrees ℓ and their numerical evaluation

is an area of active research [47].

The key to spherical harmonics based indexing is decomposing equation (2.27) into two

separate rotations and the inverse 3D Fourier transform:

(f ⋆ g)(α, β, γ) = F−1

{∑
ℓ

f̂ ℓmĝ
ℓ
nd

ℓ
m,k

(π
2

)
dℓk,n

(π
2

)}(
α+

π

2
, β + π, γ +

π

2

)
. (2.30)

Conveniently the little-d matrix entries are only required for β of π
2 for this applica-

tion which simplifies their recursive calculation. Further, there are systematic zeros in the

spherical harmonic transform coefficients in equation (2.24) resulting from symmetry of the

master pattern signal f(θ, ϕ) that must be recognized to calculate equation (2.30) as rapidly

as is possible. Firstly, the signal in EBSD is real valued on the sphere so f̂ ℓm must have

conjugate symmetry, and our 3D inverse FFT may be a half-sized real-valued one:

f̂ ℓ−m = (−1)mf̂ ℓm (2.31)
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and a mirror within the xy plane, inversion symmetry, and n-fold rotations about the z-

axis each reduced the number of possible non-zero coefficients by a factor of 2, 2, and N

respectively.

2.4 More on the Homochoric Inverse

This section expands more on the homochoric orientation representation, specifically the

inversion of equation (2.12), but these results do not warrant their own chapter in the

dissertation.

The conversion of the homochoric vector back to the axis angle representation requires

a numerical approximation via a polynomial fit or other approach. In fact, this inversion is

closely related to the solution of Kepler’s equation, E − e sinE = l, which has seen several

centuries of research [48]. The homochoric inversion is the cube root of a scaled version of

Kepler’s equation with eccentricity e = 1. While the inverse has an exact integral represen-

tation [49], for rapid evaluation, both EMsoft and Kikuchipy use a polynomial fit on the

cosine of the half angle in terms of the squared homochoric modulus. The cosine of the half

angle modification makes the Chebyshev interpolation nodes equally spaced for polynomial

fitting, while the squared homochoric modulus is fitted as it is immediately available from

the sum of the squared components (save computation by having the polynomial fit absorb

the square root). The original and modified homochoric functions are plotted in Figure 2.7:

Algorithms for Crystallography Z. Varley



2.4. MORE ON THE HOMOCHORIC INVERSE 24

0.0 0.5 1.0 1.5 2.0 2.5 3.0
ω(radians)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

h

Homochoric Transformation
h= (34)1/3(w−sin(w))1/3

0.0 0.2 0.4 0.6 0.8 1.0
cos(ω2 )

0.00

0.05

0.10

0.15

0.20

0.25

h2

Modified Homochoric Transformation
h2= (34)2/3(cos(w2 ) − sin(cos(w2 )))2/3

Figure 2.7: (left) original homochoric conversion and (right) the modified homochoric equation

Few sources explain the full details of numerical estimations to this particular inverse and

we will address them here. Appendix B provides the polynomial fits taken from current

libraries to demonstrate how the rotation angle can be estimated from the homochoric

squared Euclidean norm. These polynomial fitting methods trade some accuracy compared

to Newton’s method in turn for a significant speed advantage, especially on GPU’s which

can do the reduction of the polynomial terms in parallel. Newton’s method can use as

initialization an invertible Padé approximant around ω = 0 of equation 2.12 such as the

following pair:

h ≈ ω
ω2

30 + 2

ω ≈15±
√
15
√
15− 4h2

h

(2.32)

and iterate for 3 to 4 steps to convergence. This estimate is crucial in evaluating the inverse

at Chebyshev nodes for polynomial fitting. Figure 2.8 shows the error in the inversion

estimate over the applicable angle range [0, π] as compared to the results of iterative methods

like Newton’s or Halley’s operating on the guess from equation 2.32 for 3 and 2 iterations

respectively:
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Figure 2.8: Uniformly spaced input angles are converted to homochoric moduli and then inverted and the
absolute error in the inversion in radians (logscale) is shown for both 32-bit and 64-bit floating
numbers

It is clear that the accuracy compromise is negligible, especially in the context of crys-

tallography and texture. Storing the length of the homochoric vector as the Euclidean norm

of its components can introduce further error into the estimates, and figure 2.9 shows the

lack of any effect in single precision:
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Figure 2.9: In 32-bit precision, uniformly sampled (Shoemake approach) scaled axis-angle vectors are con-
verted to homochoric vectors and then the angle is estimated from various methods.
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It’s apparent that there is not a significant change in the accuracy from the case of figure

2.8. However the results are different in the case of double precision as seen in figure 2.10:
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Figure 2.10: In 64-bit precision, uniformly sampled (Shoemake approach) scaled axis-angle vectors are con-
verted to homochoric vectors and then the angle is estimated from various methods.

In practice, the accuracy of the Kikuchipy coefficients results in a comparable prediction

as compared to EMsoft despite using 5 fewer coefficients. In general, Chebyshev polynomial

fits to the original and modified homochoric inverse have residuals shown in figure 2.11:
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Figure 2.11: Residuals of Chebyshev polynomial fits to inverse of equation 2.12 and modified inverse for
both single and double precision.

By using a modified homochoric inversion with equally spaced Chebyshev nodes with

respect to ω, the absolute error over the entire domain [0, π] is improved by more than two

orders of magnitude as compared to the unmodified inversion when the degree exceeds 5

for double precision. For single precision a fit with 8 terms is sufficient to reach machine

error. Conveniently, the highest error for polynomials with degree in excess of 15 is near

zero radians rotation angle which is exceedingly rare under a uniform drawing of orientation

space as figure 2.9 and 2.10 suggest; however this can become important when comparing

similar rotations. The historical approach has been to use enough terms (20 in the case of

EMsoft) that in practice render the error negligible.
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CHAPTER III

Dynamic Sampling of Scanned Modalities

3.1 Introduction

Electron backscatter diffraction (EBSD) performed in a scanning electron microscope (SEM)

offers a powerful and ubiquitous modality for the analysis of the microstructure of crystalline

samples, generating rich and quantitative orientation data [50]. Chiefly, EBSD can probe

a large mm-scale (≤ 106 µm2) field of view at a resolution of 40–100 nanometers, well

below common grain size ranges, allowing for grain-resolved data acquisition [51]. The

EBSD modality makes use of the standard line scanning approach made available by SEM

manufacturers; the diffraction patterns are acquired one line at a time, with user-defined

step size, resulting in discrete data sets on a 2-D square or hexagonal grid of sampling

points. Most SEMs, however, offer external scan controls, which enable the user to control

the beam directly to create alternative sampling schemes. In this paper, we explore an

unsupervised dynamic sampling scheme that can generate the same orientation data as the

standard EBSD technique, but with a significantly reduced number of sampling points; our

approach is not limited to EBSD and can be applied to any characterization technique that

allows for point-wise sampling of a region of interest.

Previous research has leveraged the coarse structuring of EBSD data for data acquisi-

tion speed and accuracy; for instance, non-local pattern averaging and reindexing seeks to

increase indexing noise-robustness by exploiting the spatial correlation of Kikuchi patterns

through nonlocal averaging during postprocessing [52]. Rapid EBSD is another approach

that relies on forescatter electron imaging to segment one serial section of the microstruc-

ture for static sparse EBSD sampling [53]. Other efforts, such as the “supervised learning
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approach for dynamic sampling” (SLADS), implement a supervised learning approach for

the pixel-wise dynamic sampling of a region of interest (ROI); this is applicable to general

image sampling problems, including EBSD applications [54]. SLADS trains a regression

model to predict the utility of the next sample pixel based on a number of calculated fea-

tures of the local neighborhood of already measured pixels; the pixels that are chosen for

acquisition are determined by maximizing the reduction of an error metric, the “expected

reduction in distortion” or ERD, i.e., one attempts to select as the next sample, the pixel

that will provide the maximum amount of information.

To our knowledge, apart from the SLADS algorithm, no other immediately relevant

work exists for pixel-wise dynamic sampling. SLADS’ offline training approach requires

data that is similar, including identical ROI dimensions, to the expected input for dynamic

sampling. Additionally, because continuous SLADS infilling (i.e., inserting data for non-

sampled points) does not necessarily ensure valid orientations, a discrete infilling mode was

utilized. The discrete SLADS infilling is an inverse-distance weighted mode interpolation

with a user-adjustable exponent for the weights. The infilling is not a trained part of

the dynamic sampling model, unlike the work presented here. Having to use the discrete

infilling mode means that SLADS can only be tested with synthetic data, wherein pixels take

discrete single-channel (gray-scale) values, not crystal orientations, which generally require

three parameters. Although the implementation of SLADS examined here for comparison

has least squares linear regression as its core model, subsequent development of SLADS

combined the approach with a neural network, resulting in SLADS-net [6]. It is important

to recognize that the SLADS-net accuracy was shown to be significantly improved over

the original SLADS, although the sampling run-time per pixel remained the same. The

work presented here is an unsupervised dynamic sampling method, with no need for offline

training.

3.2 Sampling Methodology and Test Datasets

3.2.1 Motivation

This section outlines a method by which 2D images may be dynamically sampled and

then infilled. The main motivation in design and implementation choices was runtime,
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to permit usage in electron microscopy applications. The average time needed to choose

measurements should be faster than the typical electron beam dwell times; however, this

is not strictly required to achieve an advantage over a full grid scan-line-based raster. To

make a dynamic pixel-wise sampling algorithm, measurements acquired as the sampling

progresses should be used to inform subsequent measurement choices. We have pursued

a different approach than the SLADS method which selects samples by maximal expected

reduction in distortion (ERD). The present work relies on a paradigm of scoring potential

measurements by a product of the distance to the nearest measurement and the variance of

the nearest K measurements.

3.2.2 Scoring and Selection

To filter candidate measurements, a function FILTER described in pseudo-code in algorithm

1 is defined. FILTER takes a set of pixels and returns a set of winning candidates for

measurement. It uses a value function V (p) to determine this winning set. This value

function V (p) of a pixel p is defined as the product of its minimum distance to a measured

neighbor and the standard deviation of all K neighbor values. The value V (p) of a measured

pixel p is arbitrarily low, as no pixel measurement will be made twice. The window function

WINDOW(p) facilitates non-maximal suppression by returning a set of nearby pixels, within

a square window of size W , excluding the pixel p itself. In this approach, pixels far from

their closest measured neighbor, and possessing a local neighborhood of measured pixels

with high variance are the most favorable measurements.

In algorithm 2, SAMPLE takes in an underlying image, an initial sampling SOBOL, a

stopping fraction STOP, and a filtering function FILTER. At the start of data acquisition,

no pixels have been observed, so the set of measured pixelsM is empty, and the set U holds

all pixels in the image. Firstly, a Sobol sequence, one possible low discrepancy quasi-random

sequence, is used to draw an initial exploratory sampling [55,56]. This choice is more favor-

able than fully random sampling due to lower collision rates. These initial measurements

are removed from the set of unmeasured pixels U and joined to the set of measured pix-

els M . Thereafter, the function FILTER continues to select pixels for measurement until a

cutoff fraction STOP of the image is reached.
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Algorithm 1
Scoring Function FILTER()

Input: unmeasured set: U, value function: V , fraction: F, window

function: WINDOW

C0 ← U

W 0 ← ∅

while |W |
|C| < F do

for candidate pixel c ∈ C do

if V (c) > V (n) ∀ pixel n ∈ WINDOW(c) then

W i+1 ←W i ∪ {c}

return W i

Algorithm 2
Sampling routine SAMPLE()

Input: image set: IMG, pixel set: SOBOL, stop percent: STOP,

function: FILTER()

M0 ← ∅

U0 ← {pixel p for p in IMG}

M i+1 ←M i ∪ SOBOL

U i+1 ← U i \ SOBOL

while |M |
|M |+|U | < STOP do

M i+1 ←M i ∪ FILTER(U)

U i+1 ← U i \ FILTER(U)

return M i

3.2.3 Implementation

Euclidean Distance Transform Implementation

The sampling algorithm is built upon PyTorch, a versatile machine learning library known

for its extensive tensor operations on both GPU and CPU, including just-in-time compi-

lation, and for its user-friendly interface and ease of installation [57]. One of the primary

motivations for opting for PyTorch is its straightforward installation process, which typi-
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cally requires just a few commands. For candidate scoring, our implementations assume a

single-channel image or an image that can be mapped to a single channel. In cases where

multichannel pixel values are involved, such as orientations in EBSD, these are filled in using

their nearest measured values. The source code is available under a 3-clause BSD license,

consistent with that of PyTorch at https://github.com/ZacharyVarley/DynamicSampling.

The first component of the score in the dynamic sampling strategy we propose is the

Euclidean distance to the nearest measured point. While it is possible to employ data

structures like k-dimensional trees (k-d trees) optimized for nearest neighbor searches in

low dimensions, a more efficient alternative exists that exploits the discretized nature of the

microscope grid. Crucially, our scoring mechanism doesn’t necessitate identifying which spe-

cific measurement is the closest; we merely need the distance to the nearest measurement.

Leveraging this insight, we utilize the Euclidean distance transformation (EDT). This ap-

proach allows us to calculate the distance to the nearest measured point for all unmeasured

points in linear time, O(N) according to the number of image pixels, which significantly en-

hances the algorithm’s efficiency. The repository “FastGeodis: Fast Generalised Geodesic

Distance Transform” has convenience Python wrappers with implementations written in

CUDA and OpenMP [58].

For the second part of the score, we use the windowed variance of the image, which can

be effectively calculated using several Summed Area Tables (SATs). Specifically, SATs are

computed for a mask of measurement locations, the sampled locations (with zeros where no

measurements exist), and the square of the sampled locations (again with zeros where no

measurements exist). These three SATs can then be used to calculate the variance within

any window by the difference in the expectation and square expectation. Variance values

for pixel windows that have fewer than three measurements within were set to unity so

that only the Euclidean distance decides between them. SATs also have O(N) construction

keeping the overall runtime linear in the number of pixels.

The pixel averaged runtime in µs of this implementation on both the CPU and GPU is

given in the first two rows of Table 3.1 below. It shows that the runtime per pixel when

sampling a random image is approximately constant on both devices, even as the resolution

increases dramatically. Further, the average time for most samplings is well below a modest
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10 µs dwell time, crucial to the adoption in SEMs for electron backscatter microscopy.

KeOps Implementation

While data structures and algorithm complexity analysis can indicate scaling, often it is im-

portant to benchmark against brute force approaches. Rapid brute-force k-nearest neighbor

queries can be carried out with the library KeOps, which seamlessly integrates with Py-

Torch [59]. The KeOps Python bindings (PyKeOps) compile optimized CUDA kernels at

runtime, and they are ideal for map-reduce type problems. Because the nearest k neighbors

are returned, the window size for variance calculation is not needed, and it is replaced with

the number of neighbors to consider. Table 3.1 below shows that the KeOps implementa-

tion permits dynamic sampling with dwell times below under 2 µs so long as the resolution

does not exceed 1024x1024.

Due to the improved performance, the KeOps implementation is the main implementa-

tion analyzed in the results. Parameter W is the window size of the filtering operation for

picking local optima in the scores, F is the top fraction of local optima to accept, K is the

number of neighbors used to calculate variance, and S is the Sobol coordinate seed size. If S

is a fraction, it refers to the fraction of the total number of pixels in the image, while if it is

an integer above 1 it refers to the exact number of pixels (useful notation for small ROIs).

Default values around W=3, F=0.25, K=3, and S=0.05 are suitable for most applications.

Implementation Image Resolution
128x128 256x256 512x512 1024x1024 2048x2048

EDT GPU 8.58± 0.13 3.96± 0.06 2.42± 0.03 1.82± 0.02 1.72± 0.03
EDT CPU 11.24± 0.26 6.62± 0.09 5.33± 0.18 5.83± 0.21 8.75± 0.38
KeOps GPU 0.94± 0.02 0.60± 0.04 0.56± 0.01 1.90± 0.01 7.49± 0.09

Table 3.1: Average compute time per pixel in µs (10 trials) across resolutions for random images. The
devices used for this benchmark were a Nvidia T4 GPU and 4 Intel Skylake CPU cores.

3.2.4 Image Completion

From the sampled pixels in the image, each unmeasured pixel is infilled as either the inverse

distance weighted or unweighted mean of the values of its K-nearest neighbors. As averaging

distinct crystalline orientations at grain boundaries falsely produces smoothed boundaries,

a single nearest neighbor imputation was utilized for EBSD data. Disorientation angles
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were calculated using Orix, a Python library for crystal misorientations [60].

3.2.5 Performance Evaluation

For orientation data, the disorientation angle between predicted and ground truth crys-

talline orientations was used to examine imputation fidelity. For grayscale micrographs,

the reconstruction peak signal-to-noise ratio (PSNR) in dB between a ground truth image

and its predicted reconstruction is used to evaluate the quality of the reconstructed images.

This metric is defined in equation (3.1) between images A and B in terms of their mean

squared error (MSE) and the maximum possible pixel value (MAX):

PSNR(A,B) = 10 · log10
(

MAX2

MSE(A,B)

)
= 20 · log10MAX− 10 · log10MSE(A,B)

(3.1)

3.2.6 Test Datasets

We chose three test datasets from scanned image acquisition techniques, which convention-

ally raster across the ROI without sampling. By sampling an entire dataset, we want to

show how image complexity can inform the ideal sampling time-accuracy trade-off.

The first test dataset is the MIDAS dataset provided by the Air Force Research Labo-

ratories’ Materials Directorate [61]. It is the same dataset used in Challenge 4 of the AFRL

additive manufacturing Modeling Challenge Series [62–64]. It consists of 900 consecutive

slices of EBSD, optical micrographs, and backscatter electron (BSE) micrographs from an

IN625 Ni-based superalloy sample. Data acquisition required 40 successive days and gen-

erated 3 TB, originally motivating the development of a novel dynamic sampling approach

to EBSD. The second dataset is a compilation of 961 secondary electron (SE) micrographs

of ultra-high carbon steel (UHCS) [65]. The primary micro-constituents were spheroidite,

carbide networks, and pearlite. All micrographs were provided at 645× 484 pixels, after re-

moving 38-pixel tall SEM banners at the bottom of each micrograph. The third test dataset

is 230 images of the nodal heart cells from a Sprague-Dawley rat acquired via confocal laser

scanning microscopy (CLSM) [66]. These micrographs were the result of a 204.8 x 204.8

µm scan with 0.2 µm step size. All images were resized to 605 x 564 pixels with bilinear
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interpolation before synthetic sampling experiments.

3.2.7 Image Complexity

Several metrics have been developed to evaluate the complexity of images, which can inform

the difficulty of their samplings and imputations. In this work, the complexity measure Q

is compared with image histogram entropy [67]. Q is a function of the mean 2×2 windowed

variance, V , and the image down-scaling factor S, as given in eq. (3.2). In eq. (3.3), s and

v are the logarithm (Q is invariant of base choice) of S and V respectively.

Q =
1

smax − smin

∫ smax

smin

[
1− 1

4

(
dv

ds

)2
]
+

ds (3.2)

dv

ds
=
S

V

dV

dS
(3.3)

For this implementation of Q, all images were rescaled with bilinear interpolation to have

their shortest length set to 512 pixels, and the images were further incrementally down-

scaled by factors of 1
4√2

down to 8 pixels, so that every fourth rescaling corresponded to a

halving: 512, 431, 362, 304, 256 . . . 8.

The image entropy based on the pixel intensity histogram is defined as follows:

H(X) = −
∑
x∈X

p(x) log p(x) (3.4)

where X contains the allowed intensity values in the image. All calculations used 256

grayscale levels. Both measures of image complexity are compared as metrics to gauge

sampling and imputation difficulty.

3.2.8 Microstructure Comparison

In order to test any sampling method a metric for comparing microstructures must be es-

tablished, and we have selected H, the Hellinger metric [68]. For two discrete probability

distributions P and Q, the Hellinger distance can also be defined in terms of the Bhat-

tacharyya similarity measure, β(P,Q) as is given by Eq. 3.5 and Eq. 3.6:
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β(P,Q) =
N∑
i=1

√
P (i)Q(i) (3.5)

H(P,Q) =
√
1− β(P,Q) (3.6)

This distance has been identified as suitable for comparing microstructure-derived prob-

ability distributions such as feature volumes and the affine moment invariant Ω3, describing

both grain size and shape respectively [69,70].

3.3 Results and Discussion

3.3.1 Example Samplings across Datasets

MIDAS Slice Dataset

The performance of k-NN-based dynamic sampling is examined for an example EBSD se-

rial section of the MIDAS dataset. This task represents the best-case scenario, as compared

to the subsequent non-EBSD examples. Due to additional pixel-wise indexing costs, EBSD

permits greater latitude in what constitutes a viable sampling dwell time as compared to

BSE or CLSM. Converting the 626×610 inverse pole figure (IPF) color map to grayscale per-

mitted k-NN-based dynamic sampling. This is not an injective mapping from orientations,

although collision (two adjacent grains sharing indistinguishably-close grayscale values) did

not occur in the entire image. Orientation values were imputed using the nearest measure-

ments during post-processing. The sampling was simulated offline, with the ground truth

orientation data as the source for pixel values. The user parameters set were W=3, F=0.5,

K=3, and S=8192. Fig. 3.1 shows the result of the dynamic sampling after 33% of the pixels

were sampled. For such coarse piece-wise constant images, k-NN dynamic sampling densely

measures boundaries as shown in (a), and the errors in (b) are found mostly along grain

boundaries. At 1 in 3 pixels sampled, the IPF maps of the ground truth and imputed ori-

entation values in (c,d) are visually indistinguishable. For this task, k-NN-based dynamic

sampling required an average of 2.1 µs wall-time per pixel to choose each measurement.

These measurements were selected with an average batch size of 10, 000 pixels, yielding a

mean batch time of approximately 21 ms. A batched sampling approach aids application
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by permitting several milliseconds of delay per batch for microscope IO control.

 error  samples

 original  infilled

Figure 3.1: (top left) binary map indicating disorientation angle over 2◦ (top right) sampling locations (bot
left) ground truth (bot right) nearest neighbor imputed orientation map (Oh IPF coloring)

UHCS Micrograph Dataset

Despite lacking the thick border that the MIDAS dataset images possess, the already single-

channel UHCS dataset images were more easily sampled and imputed. Fig. 3.2 shows that

at a slightly lower final sampling fraction of 25%, the algorithm is better able to reconstruct

the example micrograph. Fig. 3.2 (b) shows a majority of the erroneous pixel values are

found in missed micrograph features, one of which is circled in red. Upon close visual
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inspection, the rest of the error can be observed in the slightly blurred appearance of the

micrograph in Fig. 3.2 (d). The user parameters were set to be W=3, F=0.5, K=3, and

S=8192. Averaged over 100 runs, the algorithm runtime was 136 ± 2.75 ms for all 25% of

the image or 1.74 µs per pixel. The averaged computation time per pixel is comparable to

the dwell time used for imaging in the SEM.

 error  samples

 original  infilled

Figure 3.2: (top right) binary map indicating sampling locations (top left) raw map of the absolute difference
between (bot left) ground truth and (bot right) imputed micrograph

CLSM Micrograph Dataset

For the CLSM dataset, the same user parameters were set to be W=3, F=0.5, K=3, and

S=8192. Averaged over 100 runs, the algorithm runtime was similar at 108 ± 4.49 ms for

all 25% of the image or 1.64 µs per pixel. As seen in Fig. 3.3 this micrograph sampling and

imputation shows promising visual fidelity and a compatible runtime with the instrument

at hand. According to its manual, the Zeiss laser scanning microscope (LSM) 5 Duo used

to acquire these micrographs has a dwell time of 1.76 µs on a fast scan speed setting of 9,
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which is used to quickly adjust parameters before further imaging.

 error  samples

 original  infilled

Figure 3.3: (top right) binary map indicating sampling locations (top left) raw map of the absolute difference
between (bot left) ground truth and (bot right) imputed micrograph

3.3.2 Comparison with SLADS

Figure 3.4 shows the sampling locations chosen under two different parameters for the

UDS. The acceptance factor of 0.01 is much more selective and requires more time to

complete the sampling because each batch has fewer points. The end result of the sampling

as measured by the PSNR in figure 3.5 shows that the proposed unsupervised dynamic

sampling approach outperforms SLADS, barring 10% sampling, when a Sobol sequence is

used to seed the initially measured batch of pixels. Overall, the PSNR differs by 2.0 at

maximum between the three sampling runs, but UDS does so without any prior exposure

training data, and purely based on a simple heuristic.
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10% 20% 40%

(a)

(b) 

Figure 3.4: For a candidate acceptance factors of (a) 0.01 and (b) 0.1 the resultant sampling masks for 10%,
20%, and 40% when using UDS.

Figure 3.5: Direct comparison of the PSNR for reconstruction of the same example micrograph dubbed
“microstructure” in reference [6].

MIDAS Volume

To further demonstrate the capabilities of UDS beyond application to 2D EBSD maps, UDS

was applied to the entire MIDAS dataset volume. The dataset was trimmed to exclude

pixels which only had BSE data, and to exclude incomplete slices. While the principles
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behind UDS can be extended to use 3D coordinates, we decided to apply UDS slice-by-slice

because there is not a clear way to known the transformation which brings the coordinates

from the previous slice into the reference frame of the next slice. In other words, running

the dynamic sampling algorithm on a volume successfully registered with the complete

dataset would misrepresent the current capabilities of UDS. For this simulated sampling,

user parameters set were W=3, F=0.25, K=4, and S=0.05 (image fraction). The initial

sampling was done with a 2D Sobol sequence. The individual EBSD slices were then infilled

using nearest neighbor imputation. For this example the real component of the fundamental

zone quaternion was use as the non-unique mapping of orientations to grayscale values. This

process was also repeated for static Random and Sobol sampling.

Figure 3.8 shows the result of sampling to 20%, 30%, 40%, and 50%. The chosen loca-

tions indicated in the sampling masks demonstrate that UDS was able to quickly locate grain

boundaries, and focus on exploring them. Few measurements were spent in data-lacking

periphery regions where Kikuchi patterns were still acquired. Using DREAM3D [71], grains

were segmented based on a misorientation threshold of 10 degrees and a minimum voxel

count of 1000. These grains were then analyzed for their Ω3 values and the equivalent sphere

diameters (ESD) were calculated. Figure 3.7 and Figure 3.6 show the Hellinger distance

between discretized versions of the Ω3 distributions, and their corresponding empirical cu-

mulative distribution functions (ECDF). Figure 3.6 also shows the grain size probability

plots assuming a log-normal distribution of the ratio of ESD to mean ESD. The grain size

distributions are essentially the same even with static random sampling at 20%. This im-

plies that the grain size distributions might be easier to estimate from a sub-sampled volume

than the Ω3 distributions, although that might not extrapolate to other microstructures.
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Figure 3.6: (a) dimensionless shape number Ω3 empirical cumulative distribution functions compared over
sampling approaches and sampling fraction (b) equivalent sphere diameter log-plots from the
sample synthetic sampling experiment.
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Figure 3.7: For uniform binning with 10, 100, and 1000 bins, the Hellinger distances are shown between
the Omega3 distributions computed from sampling and the corresponding distribution from the
original dataset.

Figure 3.8: Reconstructions at various sampling percents under the proposed dynamic sampling algorithm
of the medial slice in the 3D MIDAS dataset. The ground truth orientation map and masks of
the sampling locations are also shown.
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3.3.3 User Parameter Dependency

In order to explore the impact of various algorithm settings, a parametric study was con-

ducted on an example BSE micrograph from the IN625 MIDAS dataset. The following

subsections report on the importance of each of the user-configurable parameters.

Weighting, K-neighbors, Seed Size

All k-NN dynamic sampling methods perform better than a Sobol sequence sampling when

3% or more of the images had been observed, as seen in Fig. 3.9(a). Fig. 3.9(b) shows that

the inverse squared distance weighted mean infilling is consistently better than unweighted

mean infilling across all values of K except for a few ranges of percent pixels sampled. For

this reason, a weighted mean infilling is utilized henceforth. When comparing Fig. 3.9 (c)

and (d), the number of neighbors K is pivotal to sampling performance at both extremes

of F and W . However, comparing Fig. 3.9(e) and (f), the initial Sobol seed size has little

impact on the sampling performance, except at excessive sampling rates above 40%.
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 3.9: Percent of pixels sampled up to 50.0% vs. PSNR plotted across K number of nearest neighbors
and weighting.

Acceptance Fraction and Window Size

The impact of window size W appears to be contingent on the value of F , and vice-versa.

Sufficient rejection of poorly scoring local optima, whether by accepting fewer optima or by

broadening the optima window, leads to high PSNR. Comparing Fig. 3.10 column (a,c,e)

with column (b,d,f), we see that both acceptance fractions F and W are similar in their

impact on dynamic sampling performance. Whether the window size is 3× 3 or 7× 7, if F

is set sufficiently low as in image (b), the sampling performance is identical.
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 3.10: Percent of pixels sampled up to 50.0% vs PSNR plotted across several user parameters

3.3.4 Synthetic Runtime Results

Run-time results were studied across values of W and F . Fig. 3.11 shows heat-maps cor-

responding to (a) runtime required to sample 30%, and (b) 30% reconstruction PSNR.

Given K = 3 and S = 4096 determined from previously shown analysis, parameter settings

between F = 0.25 and F = 0.5, along with W = 3 were found to balance reconstruction fi-

delity and runtime. These are thus chosen as the default parameter values for the sampling

algorithm.
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(a) (b)

Figure 3.11: Across F and W , heatmaps of (a) time to 30% (log-scale legend) (b) PSNR at 30% sampled

3.3.5 Sampling Performance vs. Image Complexity

To extend these results, the algorithm’s performance was evaluated on the other two afore-

mentioned datasets. These images are naturally heterogeneous in visual appearance, as

they include varied steel micrographs and images from a 3D mouse heart cell scan. After

sampling all images in the dataset utilizing parameters W = 3, F = 0.3, S = 4096, and

K = 3, the resulting mean image complexity is plotted in Fig. 3.12 using image entropy and

Q score previously defined. Each discrete heatmap box shows the mean image complexity

that led to the corresponding reconstruction PSNR at a given percent of pixels sampled.

Both image pixel histogram nats (natural logarithm analogue of base 2 bits) in (a) and Q

score in (b) indicate that more complex images are more difficult to sample and impute.

However, nats in (a) show a noisier relationship with image complexity, but the contrast

is maintained across the range of image complexities. Complexity score Q is more binary

over these two datasets but lacks clear outliers at 2-3 % sampling and 8-10 PSNR.
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(a)

(b)

Figure 3.12: Heatmap showing the average image complexity that led to a given PSNR at each percent
sampled. Only mean values with more than 3 contributing data-points appear in the heatmap.
UHCS and CLSM datasets are combined for both plots.

3.4 Conclusion and Summary

In summary, we have developed a UDS algorithm for 2D images which leverages the par-

allel processing power of the GPU. As this algorithm requires no prior training, it can be

utilized for an arbitrarily shaped ROI. The current state of the art, pretrained SLADS-Net,

operates approximately 1000 times slower and produces imputed micrographs with slightly
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lower PSNR than UDS. The provided Python implementation is easily adoptable and re-

quires minimal to no tuning of default user parameters. We have analyzed its performance

as a function of two different image complexity measures across three different datasets.

When executed on modest (laptop) hardware, the algorithm implementation runs faster

than respective measurement acquisition times in a variety of imaging modalities. By using

the closest measured neighbor alone, multi-channel data such as orientations can be im-

puted. For real experimental orientation data, measuring 1 in 3 voxels results in visually

indistinguishable IPF maps. In the future, we aim to decrease this required sampling frac-

tion with the incorporation of information from previous serial sections and the utilization

of less costly modalities to further inform dynamic sampling in EBSD.

For EBSD applications in particular, this work has assumed that indexing can be per-

formed in real time as measurements are gathered. This may be true with Hough or Radon

transformation based approaches; however, dictionary indexing might not be able to be per-

formed in real time. A large hurdle to turning this slice-by-slice sampling into a truly 3D

sampling technique is establishing a practical method to realign the sample surface to the

same grid locations of the previous slice. Besides this, there are several other improvements

planned for UDS. The first planned change for this algorithm is an automatic stopping con-

dition. By periodically comparing the incremental changes in micrograph reconstruction

as sampling proceeds, a threshold in PSNR or mean disorientation angle could be used to

determine if sufficient sampling has been achieved. Further, electron microscope scan con-

trols often allow arbitrary floating point precision in beam control across the image plane.

By using non-discretized coordinates, reconstruction accuracy may improve sufficiently to

justify the associated sampling runtime of not caching possible grid queries. Thirdly, an

adaptive dwell time, where possible, could allow increased sampling speed and reconstruc-

tion accuracy. By briefly, but noisily, checking the center of undiscovered regions, small

image features might be more easily discovered.
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CHAPTER IV

PCA Dictionary Indexing

4.1 Introduction

Over the past three decades, Electron BackScatter Diffraction (EBSD) has established itself

as an indispensable tool for polycrystal microstructure characterization. By rastering the

electron beam across a region of interest (ROI) on a polished sample, and matching each

resultant diffraction pattern to a crystalline lattice state, rich data sets can be produced

which map crystalline orientation, phase, stress, and dislocation concentrations across the

ROI. Efforts to automate and enhance the EBSD indexing accuracy and efficiency have

been numerous. A first approach to automating the orientation indexing, Hough indexing,

uses its namesake transform (which produces peaks from lines/bands in images) along with

a voting scheme to automatically determine the Miller indices of diffraction bands in elec-

tron backscatter patterns (EBSPs) [72–74]. Thereafter, researchers developed physics-based

forward models of electron diffraction to simulate the expected backscatter electron inten-

sity as a function of the lattice state [75, 76]. The simulation of electron diffraction for a

given accelerating voltage, sample geometry, and crystalline cell, generates a reference sig-

nal on the 2-sphere (referred to here as the Kikuchi sphere or K-sphere). With this tool in

hand, two approaches to orientation indexing have been subsequently developed: dictionary

indexing and spherical indexing [38,77].

By iterating over a uniform sampling of the given crystallographic orientation fundamen-

tal zone (FZ), conventional dictionary indexing orients and then projects the K-sphere onto

a virtual camera sensor, to create a dictionary of possible idealized detector observations.

Orientations are determined by procuring the closest simulated pattern to each experimen-

50



4.1. INTRODUCTION 51

tal pattern; normalized cross correlation or pattern dot products are commonly used as

matching metrics. Dictionary indexing offers superb pattern noise robustness as compared

to traditional Hough based methods, but this comes at a dramatically increased computa-

tional cost from pattern projection and matching [78, 79]. For orientation FZ sampling, a

popular default target mean neighbor disorientation of 1.4◦ requires 330, 000 orientations for

high symmetry (cubic) materials such as Nickel; however, in the absence of symmetry, save

for inversion symmetry which follows from the application of Friedel’s Law to the diffraction

process, the same 1.4◦ target threshold requires just over 8 million sample orientations [80].

To address this low symmetry problem, a second approach leveraging physics-based for-

ward models, known as spherical indexing, introduced a complementary viewpoint to EBSD

orientation indexing. Therein, experimental EBSPs are instead back projected onto the 2-

sphere, and then a cross correlation over SO(3) is performed with the reference K-sphere;

the maximum in the cross-correlation is then associated with the desired orientation. In

order to dramatically speedup computations, the cross correlation is calculated in the fre-

quency domain via harmonics on SO(3) computed with real-valued Fast Fourier Transforms

explicitly leveraging systematic zeros due to the crystallographic K-sphere symmetry. With-

out needing a dictionary of potentially millions of diffraction patterns, spherical indexing

has similarly improved noise robustness over Hough indexing as individual diffraction bands

need not be identified, although indexing speed can suffer when an increased band-limit,

dictating the number of harmonics to be used, is required for noisy patterns [38]. This

band-limit is used to control the speed-accuracy trade-off to address the needs of each ex-

perimental dataset.

The present paper proposes and analyzes a modification to conventional dictionary in-

dexing which provides a control parameter, the number of PCA components utilized, akin

to the band-limit in spherical harmonic indexing, while maintaining the computational sim-

plicity and parallelisms arising from matching on the detector plane. Specifically, we project

both the dictionary and experimental patterns along the first p principal components of the

entire simulated EBSD dictionary. The resulting lower dimensional projections can then be

matched as is done in conventional dictionary indexing. The two important findings of our

work are 1) PCA compression marginally, and counter-intuitively, improves the indexing
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accuracy (and speed) via noise suppression as compared to conventional pattern match-

ing which uses all pattern pixels; and 2) neither half precision nor dynamic 8-bit integer

quantization modify the indexing results on a real world dataset.

4.2 Methods

4.2.1 PCA Calculation

PCA is a statistical analysis method used to reduce the dimensionality of data sets through

a low-rank linear approximation that maximizes the captured variance [81]. The principal

components in “principal component analysis” are formulated in two different ways here:

direct Singular Value Decomposition (SVD) of the centered data matrix or Eigenvalue

Decomposition (EVD) of the data covariance matrix. Let X be a data matrix with zero

column means of shape n× d where n represents the number of samples and d denotes the

number of features. In the context of pattern matching, n is the number of EBSPs, and d

is the number of pixels in each flattened pattern. The SVD of X is given by (4.1):

X = UΣVT (4.1)

where U is an orthogonal matrix n × d whose columns are called left singular vectors.

The columns of the d × d matrix VT are the right singular vectors. The diagonal matrix

Σ has entries corresponding to the singular values. In PCA, a user-specified number of

components, of right singular vectors with the highest singular values, are used as the new

basis of the data. SVD factorization algorithms that can be used for PCA are an area of

active research [82]. PCA via SVD directly on X is employed in the default implementation

of PCA in many public libraries, often among many other available algorithms.

Because the principal components of X are not necessarily integer vectors even if X only

contains integers, floating-point representations are required to compute them. In EBSD,

low-bit-depth representations like unsigned 8 or 16-bit integers are the usual space-saving

data storage formats for EBSPs. When cast as 32-bit floating point numbers, the entire

EBSD dictionary data set matrix X, can easily exceed the available computer memory,

especially for low symmetry materials. Therefore, an alternative incremental approach is
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desirable, one that avoids storing X in memory all at once.

To this end, the sample covariance matrix, given in (4.2), can be constructed by row,

column, or by block when appropriately iterating over X.

C =
1

n− 1
XTX (4.2)

And further, to find the principal components of X, the singular vectors and singular

values of the SVD of X can be acquired through the eigenvectors and eigenvalues of C. The

covariance matrix C can be factored according to (4.3):

C = QΛQT (4.3)

where Q is an orthogonal matrix whose columns are the eigenvectors of C, and Λ is a

diagonal matrix containing eigenvalues. Substituting the SVD of X from (4.1) into (4.2):

C =
1

n− 1
XTX

C =
1

n− 1
(UΣVT )T (UΣVT )

C =
1

n− 1
VΣTUTUΣVT

C =
1

n− 1
VΣTΣVT

(4.4)

When comparing (4.3) to (4.4), one observes that by a factor of 1
n−1 , (Σ

TΣ) is the eigenvalue

matrix of (ATA), meaning each square singular value σ2 is the eigenvalue λ(ATA). See

“Introduction to Linear Algebra” by Strang for a complete proof of the equivalent PCA

formulation [83].

We opt to use a generalized batched version of a waterfall method called Welford’s

online algorithm for variance and covariance [84–86]. This exact streamed algorithm facil-

itates a single pass covariance matrix calculation for pattern dictionaries that would not

fit in memory. Although at higher pattern resolutions, such as 256 × 256, the covariance

matrix itself stored in double precision is 64 × 2564 bits (34.3 GB), and at 512 × 512 res-

olution it is 550 GB in size. This prohibitive memory cost can necessitate either pattern
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binning to a lower resolution, or randomized PCA methods which skip covariance matrix

calculation, such as that of Halko et. al [87], and it is already available in PyTorch under

the name ”pca lowrank”. Another notable alternative being considered which ties PCA to

the Schrödinger equation is Algorithm 2 in Liu et. al in [88].

4.2.2 K-Nearest Neighbors and Dynamic Numerical Quantization

Once the dictionary’s PCA components are computed, and both the dictionary patterns

and experimental patterns are centered and projected, all that remains is to search for

the closest dictionary projection entries for each experimental projection. Each dictionary

pattern (or its PCA loadings) called xi and each experimental query pattern (or loading)

called qi compose d dimensional rows of the dictionary X and the queries Q, respectively.

The dimensionality of the data points, d, is either the number of pixels in each pattern or

the chosen number of principal components. The results of a KNN query are denoted as

KNNk(X, qi), where k signifies the number of nearest neighbors to be retrieved, as defined

in equation 4.5 below:

KNNk(X, qi) = argminSk

{
DIST(xi, qi)

∣∣xi ∈ X, |Sk| = k
}
, (4.5)

where DIST(xi, qi) can be any number of metrics such as a Minkowski distance given in

equation 4.6:

dist(xi, qi) =

 d∑
j=1

|xij − qij |p
1/p

. (4.6)

We opt to use a dot product based metric for pattern and PCA loading distances due to its

computational simplicity as seen in equation 4.7:

dist(xi, qi) = −
d∑

j=1

xijqij . (4.7)

There are many approaches to accelerate the KNN search task by approximation algo-

rithms, and they are broadly divided into locality sensitive hash functions (LSH), Product

Quantization (PQ), and graph based methods [89]. Treatment of especially high dimen-

sional datasets (several hundred dimensions), as is the case with the EBSD KNN problem,
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has been a recent focus area in the literature [90].

It is assumed that the structure of the EBSD dictionary is that of the given crystallo-

graphic fundamental zone embedded into image space. Grids on this embedded manifold

might not lend themselves well to clustering or graph traversal due to the “curse of dimen-

sionality” combined with the fact that incoming queries (experimental patterns or their

PCA loadings) are often noisy and out of distribution (far off of the ideal dictionary mani-

fold) compared to the dictionary patterns or their PCA loadings [91, 92]. To maintain the

noise robustness of full dictionary indexing, for now we avoid using approximate lookup

algorithms, and plan to explore their application in the future, both on the patterns them-

selves, and on their PCA loadings.

Instead, we focus on quantization methods, opting to simply use lowered numerical

precision in the form of 16-bit floats and 8-bit integers to improve the indexing performance.

This has been a recent area of development for accelerating both the training and inference

of neural networks [93]. By leveraging the FBGEMM and QNNPACK packages (on AMD64

and mobile processors respectively), we can dynamically transform the data before casting

to 8-bit integers, and then apply the appropriate inverse transform to closely estimate each

full 32-bit float dot product [94, 95]. The eight x86 Intel CPU cores used in this study

leveraged FBGEMM via PyTorch. Recent results using 2 bit quantization via lookup tables

have further accelerated operations, and we are considering exploring this technique as

well [96].

4.3 Test Dataset

The test dataset is a series of Nickel EBSD scans of the same region of interest taken at

camera gain levels elevated by 0, 3, 6, 9, 12, 17, 20, 22, and 24 dB respectively, shown in Figure

4.1, and referred to here as scans 1 through 10 [97]. We benchmark on scans 1, 5, and 10

for low, medium and high noise levels. The patterns were masked with a disk that included

2, 819 of the 3, 600 pattern pixels. This dataset is used to exhibit the performance of PCA-

based dictionary compression in the face of increasing noise levels, and to demonstrate

identical indexing results regardless of reduced precision distance calculations. From table

1 in the original publication, patterns within scans 5 and 10, required just 0.95 ms and
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0.25 ms of the exposure time as compared to 3.50 ms for scan 1 [98]. In this context, if

indexing can be performed reliably at 0.95 ms or 0.25 ms exposure, a relative speedup of

approximately 4× or 14×, respectively, could be achieved.
Or

ig
in

al
0 3 6 9 12 15 17 20 22 24

Le
ss

 M
ea

n
Le

ss
 D

yn
am

ic

Figure 4.1: Example patterns from the (4,4) point on the region of interest in the camera gain dataset. The
camera gain (in dB) is over each column. The middle and bottom rows show static and dynamic
background subtraction preprocessing steps.

4.4 Results and Discussion

4.4.1 PCA Components

Figure 4.2 shows example eigenvectors resulting from eigen-decomposition of the Nickel

EBSD dictionary at increasing dictionary size. The principal components stabilize once the

dictionary reaches 100, 000 entries. For reference, Figure 4.3 shows the result of the same

process (identical projection center, and Laue group) carried out with a faux master pattern

consisting of a checkerboard. Both eigen-decompositions have azimuthal oscillations in the

primary component radiating around the projection center in the upper left quadrant of the

detector plane. Generally, the directions appear visually similar, indicating that the pixel

intensity covariance matrix may be more heavily dependent on the symmetry at hand, and

the experimental geometry, rather than the specific appearance of the Kikuchi bands, or

more generally the signal on the 2-sphere.
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Figure 4.2: Representative principal components from the projection of the Nickel master pattern onto the
virtual detector plane. Lower rows use a larger sampling of the orientation fundamental zone.

Di
ct

io
na

ry
: 1

0k

Eigenvector 1 Eigenvector 10 Eigenvector 100 Eigenvector 1000 Eigenvector 2000

Di
ct

io
na

ry
: 1

00
k

Di
ct

io
na

ry
: 3

00
k

Faux Checkerboard Master Pattern

Figure 4.3: Representative principal components from the projection of a faux checkerboard master pattern
onto the virtual detector plane. Lower rows use a larger sampling of the orientation fundamental
zone.

4.4.2 Pattern Matching Speed and Hardware Utilization

Tables 4.1 - 4.3 show the indexing speed and compute utilization across dictionary size and

indexing mode, with increasing numeric precision. Each reported value is the average across

Scan 1, 5, and 10, as the performance is independent of the data content. Table 4.1 illus-

trates the EBSD indexing performance when using FBGEMM on 8 Intel Skylake CPU cores

(on Google Cloud) at INT8 precision. Patterns per second (pps) and Trillions of Operations

Per Second (TOPS) are provided for different dictionary sizes (100k, 200k, and 300k). A

clear trend of decreasing pps as the number of FZ samples increases is observed, indicating

increased computational load. Further, the TOPS tend to decrease with a reduction in the
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dimension of the entries, indicating a relative under-utilization of the hardware for smaller

dimensions. Overall, the results show that PCA with a compressed representation (e.g.,

500 PCA loadings instead of 2, 819 pixels) significantly improves the indexing performance

by a factor of approximately 4. Similar trends are observed in the Nvidia benchmarks at

both half and single precision. At half precision, when 500 PCA components were used

with a reduced dictionary size of 100k patterns, over 70, 000 pps throughput was observed.

For reference, a more powerful Nvidia 4090 achieved 35, 000 throughput using the Radon

transform [99]. The most accuracy-focused setting tested with a 300k pattern dictionary

and 1, 500 PCA components yielded around 12, 000 pps at half precision on a modest GPU.

While this increased GPU throughput is useful for very large datasets and real time in-

dexing applications, a corresponding identical matching can be achieved with 320 pps on a

consumer grade CPU. An accuracy-focused bandwidth of 158 for spherical indexing that is

comparable to the these PCA results on the CPU was benchmarked at around 50 pps on

a 24 core workstation [38]. Overall, the hardware utilization indicates that there is some

room for improvement. The theoretical FP32 throughput for the Nvidia T4 is 8.1 TOPS,

and our results are around 2−4 TOPS. For FP16, the gap widens to a 65 TOPS theoretical

limit and actual performance of 7− 15 TOPS.

FZ Samples 100k 200k 300k 100k 200k 300k

Patterns / Second TOPS

Full 2819 530 271 191 0.383 0.393 0.413

PCA 1500 880 457 334 0.265 0.276 0.300

PCA 1000 1287 639 454 0.258 0.257 0.272

PCA 500 2060 1001 719 0.206 0.201 0.215

Table 4.1: PPS and TOPS on 8 CPU cores using INT8 quantization.
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FZ Samples 100k 200k 300k 100k 200k 300k

Patterns / Second TOPS

Full 2819 18 991 9741 6537 13.7 14.1 14.1

PCA 1500 35 502 18 044 12 130 10.7 10.9 10.9

PCA 1000 55 485 27 441 18 979 11.1 11.0 11.4

PCA 500 72 417 36 988 24 498 7.3 7.4 7.3

Table 4.2: PPS and TOPS on a Nvidia T4 using FP16 precision.

FZ Samples 100k 200k 300k 100k 200k 300k

Patterns / Second TOPS

Full 2819 5819 2802 1867 4.2 4.1 4.0

PCA 1500 9594 4844 3372 2.9 2.9 3.0

PCA 1000 14 137 7017 4859 2.8 2.8 2.9

PCA 500 23 547 11 563 7926 2.4 2.3 2.4

Table 4.3: PPS and TOPS on a Nvidia T4 using FP32 precision.

4.4.3 Disorientation Distributions

Figures 4.4 - 4.7 plot disorientation angle Empirical Cumulative Distribution Functions

(ECDFs) of disorientations with respect to a reference indexing with a dictionary of 1 million

patterns on Scan 1. Figure 4.4 clearly shows that neither reduced precision with INT8

quantization nor with FP16 changed the indexing outcome, even at the maximum noise

level scan. This outcome indicates that dictionary based EBSD indexing could be a viable

approach for low symmetry materials, as 8 million entries of 1500 PCA components occupies

24 GB at half precision which can fit entirely into memory on some newer GPUs. Further

research is required to find the minimum bit-depth representation possible for dictionary

indexing on EBSD patterns or loadings, and it is possible that this floor is dependent on

the pattern noise level. For relatively noise free patterns, it may be sufficient to treat each

Algorithms for Crystallography Z. Varley



4.4. RESULTS AND DISCUSSION 60

0.0

0.2

0.4

0.6

0.8

1.0
Indexing Mode = Full DI Indexing Mode = PCA 1500 Indexing Mode = PCA 1000

Dictionary Size = 100 

Indexing Mode = PCA 500
GPU FP16
GPU FP32
CPU INT8

0.0

0.2

0.4

0.6

0.8

1.0

Dictionary Size = 200 

10−2 10−1 100 101
0.0

0.2

0.4

0.6

0.8

1.0

10−2 10−1 100 101 10−2 10−1 100 101 10−2 10−1 100 101

Dictionary Size = 300 

Disorientation (degrees)

Cu
m
ul
at
iv
e 
Fr
ac

tio
n

Figure 4.4: A grid of disorientation angle ECDFs across indexing mode and dictionary size for Scan 10
alone. Each plot line is colored and styled according to the numeric precision and compute
device utilized.

pixel or PCA loading as a single bit indicating the sign.

Figure 4.5 shows that a sufficient dictionary size is required to achieve accuracy on

the order of 2◦. In our analysis we have assumed that either gradient based optimization

(as is done in spherical indexing), or a pattern search (name of an optimization scheme)

refinement will follow the initial indexing. Local optimization in orientation space is much

less demanding than the initial indexing. Thus, the height of the plateau region in the

ECDF indicates the likely final indexing success (approximately 99%, 90%, and 50% on

Scans 1, 5, and 10). Figure 4.6 shows the relative deterioration of the indexing quality

moving from scan 1 to 10. For each plot the indexing success rate significantly drops as the

noise level increases.

Lastly, Figure 4.7 shows that using PCA compression has improved the disorientation

ECDFs when using 1500 components. Not shown in the plot, using the full rank PCA
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Figure 4.5: A grid of disorientation angle ECDFs across indexing mode and scan number with each plot line
colored according to the size of the dictionary.
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Figure 4.6: A grid of disorientation angle ECDFs across indexing mode and dictionary size with each plot
line colored according to the size of the scan number.
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loadings (same number of components - 2819 - as pixels), the indexing disorientation ECDF

lowered back to match that of conventional dictionary indexing. This suggests that there

exists an ideal number of PCA components to utilize before noise robustness lowers back

to that of the conventional pattern matching. That implies the existence of a certain

characteristic mode above whose frequency, additional loadings will fall below the noise

level present in the patterns. By truncating the linear transformation of the data, we avoid

incorporating those high frequency directions along which pattern noise could exceed the

signal strength. However, this effect is only significant in the presence of very high noise

levels. PCA indexing is orthogonal to other proposed methods to improve noise robustness,

such as NLPAR, or the eigendecomposition of the experimental dataset itself [52,98]. Here,

neither nearby experimental patterns, nor similar patterns contribute to noise suppression

for an individual experimental pattern.

Figure 4.8 shows the orientation maps for the best performing indexing mode, PCA

with 1500 components, across scan number and dictionary size. The ECDFs in Figure 4.6

implied that an indexing rate of only around 90% was achieved on scan 5 at most, but it

appears visually identically to scan 1 results because the discrepancies are all located at

grain boundaries, where the indexed orientation flipped from one grain’s orientation to that

of its neighboring grain.

To better understand how PCA with 1500 components is outperforming Full DI, we

map where the disorientation with the reference indexing exceeded 3° for both methods.

The maps in Figure 4.9 show that there is no clear single grain which contained all of

the patterns corrected by PCA 1500 as compared to Full DI. The disparities are sparsely

distributed both at grain boundaries and within grain interiors. Further, Table 4.4 shows

the confusion matrices for this same threshold, revealing that the discrepancy widens as the

dictionary size diminishes.
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Figure 4.7: A grid of disorientation angle ECDFs across dictionary size and scan number with each plot line
colored according to the indexing mode.
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Figure 4.8: A grid of inverse pole figure (IPF) Z-axis orientation maps across scans and dictionary sizes at
a fixed precision (FP32) and indexing method (1500 PCA components)
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Figure 4.9: Comparison on Scan 10 between PCA with 1500 component and Full DI IPF Z-axis color maps.
Top row legend: both methods exceed 3° disorientation to reference (black pixels), neither (blue)
PCA 1500 only (red) Full DI only (green).
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FZ Samples 100k 200k 300k

PCA 1500 Correct

Full DI Correct True False True False True False

True 10368 1185 12297 1315 12923 1340

False 2020 16227 1768 14420 1636 13901

Table 4.4: Confusion matrices for each dictionary size of the 1500 component PCA and Full resolution DI
across dictionary size.

4.5 Conclusion

Employing PCA and dynamic quantization, we have demonstrated a novel modification

to the conventional dictionary approach to EBSD orientation indexing. This innovation

allows for the processing of many hundreds of patterns per second on consumer grade

CPUs, widening access to noise robust indexing. On the GPU, we achieved comparable

indexing speeds to those reported for the Hough transform approach. Further, we observed

an unexpected marginal increase in the indexing accuracy as compared to conventional

dictionary indexing due to the suppression of higher frequency components during matching.

These results come with EBSDTorch, a new Python library for EBSD pattern analysis, that

inherits PyTorch’s portability and dynamic quantization routines.

4.6 Data Availability

The aforementioned test dataset, acquired by Ånes et. al, is available at the following

URL: https://doi.org/10.5281/zenodo.7498632. EBSDTorch code is hosted on Github at

the following URL: https://github.com/ZacharyVarley/ebsdtorch.
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CHAPTER V

Multimodal SEM Image Registration Tools

In the evolving field of materials characterization, the SEM has emerged as an indispensable

tool for revealing the intricate details of material structure across multiple scales. Not only

can a modern SEM acquire high-resolution micrographs, but it can generate diverse data

through various imaging modalities such as electron backscatter diffraction, ion-induced

secondary electron, forward scattered electron, and energy dispersive X-ray spectroscopy.

However, the wealth of information generated presents a significant challenge: how can

one accurately align and integrate these diverse data sources to extract meaningful insights

about material properties and behavior. Multimodal image registration in the SEM oc-

cupies a unique niche in the larger field of image alignment problems. In contrast with

medical imaging, SEM modalities typically do not exhibit large non-linear distortions; of-

ten the sample is relatively planar and a linear planar homography can describe much of

the coordinate transformations to register multimodal pairs. Further, similar to satellite

imaging registration problems local texture and gradient information are often correlated

between modalities. In this context, this chapter briefly introduces two novel tools designed

to advance multimodal SEM image registration.

5.1 Difference of Local Shannon Entropy Key Points

5.1.1 Rotation and Scaling Invariance

The preliminary results for DoLE key point matching for serial sectioning show promise for

general application to both serial sectioning and data collation due to their invariance. For

an example serial section from each of the 3D serial sectioning datasets, the EBSD (grayscale
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of IPF coloring used for key points) maps were warped onto either their corresponding BSE

micrograph for MIDAS and NIST, or ISE micrograph in the case of IN100. To show the

benefit of the DoLE key point approach, the EBSD maps were rotated every 1° through

359° about the center of the maps. The resultant rotation invariance is demonstrated in

Figures 5.1, where the number of discovered key point inliers (out of 5000) are plotted

against the rotation angle. In the disk local entropy implementation, the MIDAS image

pair led to approximately 250 inliers followed by 175 for NIST, and 125 for IN100. In the

box local entropy implementation, the local entropy kernel is no longer radially symmetric

and dramatic so-called ”grid effect” for the three roughly rectangular sample sections is

observed wherein every 90° the number of inliers spikes. If the NIST EBSD map is rotated

by 45°, 135°, 225°, 315° and the box filter implementation of DoLE is used, fewer than 25

inliers are discovered.

Figure 5.1: Inliers vs. centered Rotation Angle for IN100 / MIDAS / NIST for (left) disk local entropy
DoLE and (right) box local entropy DoLE. The y-axis ticks and grid lines are shared.

In Figure 5.2, the EBSD maps of the same example pairs were rescaled and the number

of inliers out of 5000 for each pair are plotted against rescaling factor. If the rescaling factor

exceeded 1.0, the BSE/ISE modality was instead rescaled by the inverse of the factor so

that the EBSD modality did not exceed the image canvas. Interestingly, the scale invariance

between the box and disk DoLE implementations are comparable. The peak number of

inliers for the IN100 pair is between 0.8 and 0.85 rescaling because the EBSD map had
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less padding outside of the sample region. For MIDAS and NIST, the true reduction factor

when mapping the EBSD to BSE/ISE is closer to 0.95. Further, the scale invariance suggests

invariance to axial stretching which is needed in the case of SEM systems without automatic

tilt correction.

Figure 5.2: Inliers vs. centered Rescaling Factor for IN100 / MIDAS / NIST for (left) disk local entropy
DoLE and (right) box local entropy DoLE. The y-axis ticks and grid lines are shared.

5.1.2 Registration Results

With a larger number of key points, the estimated homography between the EBSD maps

and the BSE/ISE micrographs becomes more accurate. Figure 5.3 shows the distribution

of inlier matches out of 18,000 for each of the three serial sectioning example pairs. For

IN100 and MIDAS the inliers are generally uniformly distributed within the sample, but

for NIST, the as-built sample microstructure texture over-emphasizes the curved exterior

borders to the top and left of the section. The homography estimation can suffer if the key

point inliers are selectively found within one region, and further improvements to DoLE,

perhaps non-maximal suppression of optima in the scale space, are warranted.
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Figure 5.3: (left) serial sectioning example pairs and (right) inlier matched image patches

Following the coarse DoLE key point registration with MIND loss optimization [100],

registration results are further improved, as shown in Figure 5.4. The IN100 EBSD map

is correctly stretched by several pixels towards the bottom of the section, and the MIDAS

EBSD is correctly shifted by marginal but important amounts. MIND loss optimization

improved the binned mutual information, which has been used a standard multimodal

registration tool in materials engineering for many years.
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Figure 5.4: Green and magenta color channels show the ISE/BSE and EBSD data registration results. Top
to bottom rows show IN100 / MIDAS / NIST results respectively. Left to right, the initial
unregistered images, DoLE key point registered, and DoLE + MIND refinement registration
results are displayed.

Under closer inspection, the NIST pair in Figure 5.5 indicates that MIND improved

the alignment, as the red arrows denote erroneous double boundaries which are corrected

following MIND loss optimization.
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Figure 5.5: DoLE key point registered, and DoLE + MIND refinement registration results on the NIST
as-built sample alone. Red arrows highlight refinement corrections.

5.2 Edgeworth Cross Mutual Information Function

Since its adoption in 1995, mutual information has been well established as a tool for the

registration of multimodal image data [101]. One decade later, August and Kanade proposed

using fast Fourier transforms to densely compute mutual information over discrete image

shifts based on binning masks [102]. Recently, this dense computation, called the Cross

Mutual Information Function (CMIF), via FFTs has been re-imagined in combination with

K-means clustering of intensities in lieu of pixel intensity binning [103]. All of these methods

employ a discretization of the pixel intensities to compute Shannon entropies of the marginal

and joint pixel distributions of a given discrete image shift. Here we propose to marry the

CMIR framework with well known asymptotic statistics based estimates of Shannon entropy

in terms of Edgeworth series in order to improve accuracy and speed [104–107].

Our first contribution is to show that the previously derived 4th order Edgeworth series

estimate of mutual information is correct (we suspect an error in the original implementa-

tion as suggested by the original author), which had been in question due to nonphysical

highly negative mutual information values in registration tests. Our second contribution is

to revisit these previous derivations of Edgeworth expansions for mutual information and

remove the constraint that each marginal probability distribution possess unit standard

deviation. It is not immediately apparent whether a “true” asymptotic estimate of the en-
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tropy of a pixel intensity distribution should be based on deviation from its standardized

form. We compare Edgeworth cross mutual information functions for examples with and

without standardization for both 3rd and 4th order expansions.

5.2.1 Theory

Shannon Entropy

For univariate and bivariate distributions with probability distribution functions (pdf’s)

p(x) and p(x, y), Shannon entropy is given by:

H(x) = −
∫
R
p(x) ln p(x)dx (5.1)

H(x, y) = −
∫
R2

p(x, y) ln p(x, y)dxdy (5.2)

where where
∫
R p(x)dx = 1 and

∫
R2 p(x, y)p(x, y)dxdy = 1. In both cases, the entropy is

calculated by taking the expected value of the negative logarithm of the pdf over the entire

domain.

Binned Mutual Information

The mutual information of a bivariate distribution measures the amount of shared informa-

tion between its two constituent variables and is given by:

I(x, y) = H(x) +H(y)−H(x, y) (5.3)

Intuitively, those bivariate distributions which are highly uniform and entropic along

their marginal distributions, but have relatively compact, impulse-like, low entropy joint

distributions will possess high mutual information. Mutual information may be normalized

in a variety of ways [108], although for the scope of this publication, mutual information

values are arbitrarily left un-normalized for simplicity. These integrals in equations (5.1) and

(5.2) can be evaluated numerically by discretization of their respective domains, yielding:

H(x) = −
N∑
i=1

p(xi) ln p(xi) (5.4)
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H(x, y) = −
N1∑
i=1

N2∑
j=1

p(xi, yj) ln p(xi, y2j) (5.5)

where N is the number of bins for the univariate distribution, and N1 and N2 are the

number of bins for each variable in the bivariate distribution. The mutual information can

then be computed using the discretized entropies with equation 5.3.

Edgeworth Series Mutual Information

Following an adaptation of the cited derivation (see appendix of [106] in French), the 3rd

order Edgeworth expansion estimate of joint entropy is given by:

H3E(x,y) = 1 + log 2π +
log (1− κ21,1)

2

− 1

12(1− κ21,1)3

(
κ230 + 3κ221 + 3κ212 + κ203

− 2κ311 (κ03κ30 + 3κ12κ21)

+ 6κ211
(
κ12κ30 + κ221 + κ03κ21 + κ212

)
− 6κ11 (κ21κ30 + 2κ02κ12κ21 + κ03κ12)

)
(5.6)

where κij is the ith and jth indexed cumulant according to variables x and y. As

expected, the estimate is invariant under the exchanging of x and y. If the distributions

are not necessarily centered and standardized, κij can be calculated from the so-called raw

bivariate moments µi,j according to the following well known equations [109]:
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κ1,0 = µ′1,0

κ2,0 = µ′2,0 − µ′
2
1,0

κ1,1 = µ′1,1 − µ′1,0µ′0,1

κ3,0 = µ′3,0 − 3µ′2,0µ
′
1,0 + 2µ′

3
1,0

κ2,1 = µ′2,1 − µ′2,0µ′0,1 − 2µ′1,1µ
′
1,0 + 2µ′

2
1,0µ

′
0,1

κ4,0 = µ′4,0 − 3µ′
2
2,0 − 4µ′3,0µ

′
1,0 + 12µ′2,0µ

′2
1,0 − 6µ′

4
1,0

κ3,1 = µ′3,1 − µ′3,0µ′0,1 − 3µ′2,1µ
′
1,0 − 3µ′2,0µ

′
1,1 + 6µ′2,0µ

′
1,0µ

′
0,1

+ 6µ′1,1µ
′2
1,0 − 6µ′

3
1,0µ

′
0,1

κ2,2 = µ′2,2 − 2µ′2,1µ
′
0,1 − µ′2,0µ′0,2 − 2µ′1,2µ

′
1,0 − 2µ′

2
1,1 + 8µ′1,1µ

′
1,0µ

′
0,1

− 6µ′
2
1,0µ

′2
0,1 + 2µ′

2
1,0µ

′
0,2

(5.7)

Where κ0,2 can be found by swapping the indices in the definition of κ2,0. The raw

moments are given by:

µ′i,j = E[xiyj ] (5.8)
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H4E(x,y) = H3E(x,y)−
1

48 (1− ρ2)4
(
k24,0 + 4k23,1 + 6k22,2 + 4k21,3 + k20,4

− 8ρ (k4,0k3,1 + 3k3,1k2,2 + 3k2,2k1,3 + k1,3k0,4)

+ 12ρ2
(
k23,1 + 2k22,2 + k21,3 + k4,0k2,2 + 2k3,1k1,3 + k2,2k0,4

)
− 8ρ3 (k4,0k1,3 + 3k3,1k2,2 + k3,1k0,4 + 3k2,2k1,3) + 2ρ4

(
3k22,2 + k4,0k0,4 + 4k3,1k1,3

) )
− 10

144 (1− ρ2)6
(
k43,0 + 6k23,0k

2
2,1 + 15k23,0k

2
1,2 + 20k23,0k

2
0,3 + 15k22,1k

2
0,3 + 6k21,2k

2
0,3 + k40,3

− 12ρ
(
k33,0k2,1 + 10k23,0k1,2k0,3 + 5k23,0k2,1k1,2 + 10k3,0k2,1k

2
0,3 + 5k2,1k1,2k

2
0,3 + k1,2k

3
0,3

)
+ 30ρ2

(
k23,0k

2
2,1 + 4k23,0k

2
1,2 + 6k23,0k

2
0,3 + 4k22,1k

2
0,3 + k21,2k

2
0,3 + k33,0

k1,2 + 4k23,0k2,1k0,3 + 6k3,0k2,1k1,2k0,3 + 4k3,0k1,2k
2
0,3 + k2,1k

3
0,3

)
− 40ρ3

(
k33,0k0,3 + 9k23,0k1,2k0,3 + 3k23,0k2,1k1,2 + 3k3,0k

2
2,1k0,3

+ 9k3,0k2,1k
2
0,3k3,0k

2
1,2k0,3 + 3k2,1k1,2k

2
0,3 + k3,0k

3
0,3

)
+ 30ρ4

(
3k23,0k

2
1,2 + 6k23,0k

2
0,3 + 3k22,1k

2
0,3 + 5k23,0k2,1k0,3 + 10k3,0k2,1k1,2k0,3 + 5k3,0k1,2k

2
0,3

)
− 12ρ5

(
5k3,0k

2
2,1k0,3 + 11k3,0k2,1k

2
0,3 + 11k23,0k1,2k0,3 + 5k3,0k

2
1,2k0,3

)
+ 2ρ6

(
11k23,0k

2
0,3 + 21k3,0k2,1k1,2k0,3

) )
(5.9)

where the mean and variance of each variable are zero and unity. Equations 5.6 and

5.9 provide estimates of the joint distribution entropy, while the marginal distribution is

estimated as to 4th order as:

H(x)4E(x) = 0.5 log(2πe)− κ230
12
− κ240

48
− 5κ430

72
(5.10)

and to 3rd order as:

H(x)3E(x) = 0.5 log(2πe)− κ230
12

(5.11)

If we relax the constraint that each marginal distribution have variance of one, we find

the following form of the 3rd order approximation:
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H3E(x,y) = 1 + log(2π) + 0.5 log(|Σ|)

− 1

12|Σ|3

(
κ302κ

2
30 + 3κ202κ20κ

2
21 + 3κ02κ

2
12κ

2
20 + κ203κ

3
20

− 2κ311 (κ03κ30 + 3κ12κ21)

+ 6κ211
(
κ02κ12κ30 + κ02κ

2
21 + κ03κ20κ21 + κ212κ20

)
− 6κ11

(
κ202κ21κ30 + 2κ02κ12κ20κ21 + κ03κ12κ

2
20

))
(5.12)

and for the 4th order approximation:
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H4E(x,y) = 1 + log(2π) + 0.5 log(|Σ|)

− 1

12|Σ|3

(
κ302κ

2
30 + 3κ202κ20κ

2
21 + 3κ02κ

2
12κ

2
20 + κ203κ

3
20

− 2κ311 (κ03κ30 + 3κ12κ21)

+ 6κ211
(
κ02κ12κ30 + κ02κ

2
21 + κ03κ20κ21 + κ212κ20

)
− 6κ11

(
κ202κ21κ30 + 2κ02κ12κ20κ21 + κ03κ12κ

2
20

))
− 1

48|Σ|4

(
κ402κ

2
40 + 4κ302κ20κ

2
31 + 6κ202κ

2
20κ

2
22 + 4κ02κ

2
13κ

3
20 + κ204κ

4
20

+ 2κ411
(
κ04κ40 + 4κ13κ31 + 3κ222

)
− 8κ311 (κ02κ13κ40 + 3κ02κ22κ31 + κ04κ20κ31 + 3κ13κ20κ22)

+ 12κ211
(
κ202κ22κ40 + κ202κ

2
31 + 2κ02κ13κ20κ31 + 2κ02κ20κ

2
22 + κ04κ

2
20κ22 + κ213κ

2
20

)
− 8κ11

(
κ302κ31κ40 + 3κ202κ20κ22κ31 + 3κ02κ13κ

2
20κ22 + κ04κ13κ

3
20

))
− 10

144|Σ|6

(
κ602κ

4
30 + 6κ502κ20κ

2
21κ

2
30 + 15κ402κ

2
12κ

2
20κ

2
30 + 20κ302κ

2
03κ

3
20κ

2
30

+ 15κ202κ
2
03κ

4
20κ

2
21 + 6κ02κ

2
03κ

2
12κ

5
20 + κ403κ

6
20

+ 2κ611κ03κ30 (11κ03κ30 + 21κ12κ21)

− 12κ511κ03κ30
(
11κ02κ12κ30 + 5κ02κ

2
21 + 11κ03κ20κ21 + 5κ212κ20

)
+ 30κ411

(
5κ202κ03κ21κ

2
30 + 3κ202κ

2
12κ

2
30 + 6κ02κ

2
03κ20κ

2
30

+ 10κ02κ03κ12κ20κ21κ30 + 5κ203κ12κ
2
20κ30 + 3κ203κ

2
20κ

2
21

)
− 40κ311

(
κ302κ03κ

3
30 + 3κ302κ12κ21κ

2
30 + 9κ202κ03κ12κ20κ

2
30 + 3κ202κ03κ20κ

2
21κ30

+ 9κ02κ
2
03κ

2
20κ21κ30 + 3κ02κ03κ

2
12κ

2
20κ30 + κ303κ

3
20κ30 + 3κ203κ12κ

3
20κ21

)
+ 30κ211

(
κ402κ12κ

3
30 + κ402κ

2
21κ

2
30 + 4κ302κ03κ20κ21κ

2
30 + 4κ302κ

2
12κ20κ

2
30

+ 6κ202κ
2
03κ

2
20κ

2
30 + 6κ202κ03κ12κ

2
20κ21κ30 + 4κ02κ

2
03κ12κ

3
20κ30

+ 4κ02κ
2
03κ

3
20κ

2
21 + κ303κ

4
20κ21 + κ203κ

2
12κ

4
20

)
− 12κ11

(
κ502κ21κ

3
30 + 5κ402κ12κ20κ21κ

2
30 + 10κ302κ03κ12κ

2
20κ

2
30

+ 10κ202κ
2
03κ

3
20κ21κ30 + 5κ02κ

2
03κ12κ

4
20κ21 + κ303κ12κ

5
20

))
(5.13)
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Where |Σ| is the determinant of the covariance matrix. When setting κ20 and κ02 to

unity we recover the original formulation in equation 5.9, and as expected the formulation

is equivalent under an exchange of x and y with the relaxed constraint.

Cross Mutual Information

The cross mutual information function is an intensity change invariant analogue to the cross

correlation between two signals. It can be estimated using the fast Fourier transform (FFT).

By systematically computing the bin occupancy going into equations (5.1) and (5.2) as a

function of shift, the shared information content as estimated by binned mutual information

may be densely computed over shifts. For Edgeworth series estimates of mutual information,

the bivariate k-statistics can be densely computed over discrete pixel shifts, instead, and

there are dramatically fewer raw moments in equation (5.7) used to compute the bivariate

k-statistics than there are combinations of grayscale intensity bins between the two images.

5.2.2 Preliminary Results

Figure 5.6 shows the result of applying the CMIF and ECMIF functions to an example im-

age pair from the classic IN100 dataset, with the two modalities as a grayscale rendering

of the EBSD map IPF coloring, and the intensity from the ion-induced secondary electron

images. The first 4 rows of results are for the standard and nonstandard formulations for

4th and 3rd order Edgeworth mutual information. This figure represents the first time that

mutual information has been densely computed over discrete shifts using Edgeworth’s series

expansion. The latter 3 rows show the conventional binned normalized mutual information

maps with 4, 16, and 32 bins. These required 16, 256, and 1024 cross correlations to com-

pute, while the Edgeworth series approaches required 10 and 15 cross correlations for 3rd

and 4th order approximations respectively. This is the time limiting step for these compu-

tations. The results generally show that the mutual information surfaces are comparable,

but the binned mutual information clearly more reproducibly has the peak value in near the

correct position at a variety of binning levels. Significant further investigation is warranted.
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Figure 5.6: Cross mutual information surfaces indicating the estimated mutual information (normalized per
image) between the example ISEI and EBSD scan with both the existing and new Edgeworth
series formulation. Additive Gaussian noise has been applied with the labeled σ for each column.
The ideal peak position indicating the correct offset is circled in red, and the actual locations
are in blue.
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CHAPTER VI

Decision Tree Reductions for Laue Classes

6.1 Introduction and Motivation

The reduction of a generic orientation from SO(3) to the symmetry reduced quotient space

SO(3)/K, for a given crystallographic (proper rotational) point group (C1, C2, C3, C4, C6,

D2, D3, D4, D6, T , or O in Schoenflies notation) is a common subproblem in many texture

analysis tasks. For example, when reconstructing time-sequential data volumes via High

Energy X-ray Diffraction Microscopy (HEDM), the tracking of grains across time-steps,

called grain matching, often requires O(n2) pairwise disorientation angle calculations where

n is the number of grains; see section C. of the methods in [110]. Another such example is

the computation of Grain Reference Orientation Deviation (GROD), wherein every voxel

within a grain must be compared to the average orientation of that grain, via a disorientation

angle computation, which can quickly grow in cost with increasing voxels per grain and grain

count [111]. A third and final example is the computation of Kernel Average Misorientation

(KAM), which measures local misorientations by computing the average disorientation angle

between a central voxel and all other voxels in a fixed kernel size [112]. Any improvements

to efficiency realized in reducing orientations to the fundamental zone provide immediate

benefits to a variety of such downstream analyses involving repetitive disorientation angle

calculations.

6.2 Theory and Background

The idea of a fundamental zone to represent the reduced (true) orientations of crystals was

put forth by V. P. Yashnikov and H.J. Bunge [113–115]. Formally, for a given space group
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KO, let SO(Ko) denote the admissible finite subgroup of SO(3):

SO(Ko) = {ko = e; k1; . . . kN} (6.1)

For a general rotation, g, of the crystal lattice it is either closest to one of the proper

rotational point group elements {ko = e; k1; . . . kN} or it is on the boundary, equidistant to

two or more of these elements:

D(ki) = {g; ki = argmin
ko...kN

dist(g, ki)} (6.2)

This provides a regular partition of all of SO(3) into topologically equivalent domains called

the Dirichlet-Voronoi partition dual to the given finite rotation set:

D(ko), D(k1) . . . D(kN ) (6.3)

6.2.1 Generator Adjacency

By enumerating both the generators of a given Laue group and their southern real hemi-

sphere S3− equivalent counterparts (negate each generator for the total double covering of

SO(3)), the correct convex hull of the generators can be procured [116]. The resulting tetra-

hedra from the Delaunay triangulation are each defined with four generators as vertices, and

their edges directly indicate which generators have touching Voronoi cells on the 3-sphere

(S3). Despite computing the convex hull in R4 without any constraint unto S3, the results

are identical with respect to adjacency because the angle between two points on S3 is a

monotonic function of their Euclidean distance in R4. Overall, this procedure is useful for

understanding the adjacency relationships amongst the generators in the proper rotational

point groups.

6.2.2 Infeasible Generators

Two proper crystallographic rotational symmetry groups, D6 and O, contain symmetry el-

ements whose Voronoi cells cannot be reached via the composition of two rotations both

within that group’s fundamental zone. We call these operations “(composition) infeasible
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generators.” Crystallographic misorientations, wherein there are two entities both possess-

ing their own crystallographic symmetry, inherit these results. In the following two sections,

we demonstrate the infeasibility of generators in the Laue groups D6 and O, all of which

are 180◦ rotations about [100], [010] or [010]. For Laue group D6, we show via constrained

optimization that while the maximum FZ angle is sufficient to reach the aforementioned in-

feasible generator’s Voronoi cell under composition, restricting the rotation axes to the FZ

prohibits reaching the infeasible generator (generator 4 in Table 6.1). Similarly, for Laue

group O, we prove the infeasibility of the generators corresponding to 180◦ rotations about

the [001], [100], and [010] axes (generators 2, 3 and 4 in Table 6.3). Although generators

19-24 in O are technically feasible under composition, the probability of reaching them via

composing two independently and uniformly sampled rotations from the fundamental zone

is vanishingly small.

Laue Group D6

The composition qaq
−1
b of two orientations, qa and qb both within the Laue D6 fundamental

zone (those orientations nearest to the identity amongst D6’s generators) cannot be closest

to the generator associated with 180◦ rotation about [001]. The 12 generators for the D6

group are given below as quaternions:
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Generator w x y z Description

1 1 0 0 0 identity operator

2 1
2 0 0

√
3
2 60 about [001]

3 1
2 0 0 −

√
3
2 120 about [001]

4* 0 0 0 1 180 about [001]

5
√
3
2 0 0 1

2 240 about [001]

6
√
3
2 0 0 −1

2 300 about [001]

7 0 1 0 0 180 about [100]

8 0
√
3
2

1
2 0 180 about [y = x√

3
]

9 0 1
2

√
3
2 0 180 about [y =

√
3x]

10 0 0 1 0 180 about [010]

11 0 −1
2

√
3
2 0 180 about [y = −

√
3x]

12 0 −
√
3
2

1
2 0 180 about [y = −x√

3
]

Table 6.1: Generators for Laue group D6 with the zone infeasible under FZ-FZ composition bolded.

In order to prove that the generator 4 zone is infeasible, it would be convenient if the

rotation angle magnitude of qaq
−1
b were bounded well below 180◦; however, the maximum

angle of the D6, θD6 = (2 arctan
√

15− 8
√
3) ≈ 1.6378 radians or 93.841◦, is clearly suffi-

cient under composition of two rotations to reach 180◦−θD6, the minimum possible angular

distance to the generator 4 zone. This fact necessitates for the sake of a proof, further

analysis beyond angle magnitude arguments. To proceed, we constrain two quaternions, qa

and qb, to the D6 FZ and work to minimize the angle between qaq
−1
b and the generator 4

zone. There are 14 boundary planes flanking the D6 RFZ. The boundaries are listed in the

following table:
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Generators RFZ Inequalities (from ±q)

5 w(2−
√
3)− z ≥ 0

6 w(2−
√
3) + z ≥ 0

7 w − x ≥ 0 w + x ≥ 0

8 2w −
√
3x− y ≥ 0 2w +

√
3x+ y ≥ 0

9 2w − x−
√
3y ≥ 0 2w + x+

√
3y ≥ 0

10 w − y ≥ 0 w + y ≥ 0

11 2w + x−
√
3y ≥ 0 2w − x+

√
3y ≥ 0

12 2w +
√
3x− y ≥ 0 2w −

√
3x+ y ≥ 0

Table 6.2: Laue group D6 generators that touch the RFZ, and their S3 bounds with the identity.

Via naive brute force, there are 2(14+14) = 268435456 possible combinations of active or

inactive inequality boundary constraints. This can be simplified by removing combinations

of active planar RFZ boundaries lacking any intersection points for either qa or qb. To

enumerate non-empty active boundary combinations, firstly, there exists the single case of

stationary points of the objective function with no zone constraints with respect to either

qa or qb. Next, there are 14 boundary planes of the D6 RFZ which can be the sole active

constraint. Next, there are 36 possible combinations of two active constraint bounding

planes that have nonempty intersection (12 for lateral-top, 12 for lateral-bottom, and 12

for lateral-lateral). There are 24 intersection points of 3 bounding planes, which define the

D6 dodecagonal prism RFZ. The overall problem is reduced to (1 + 14 + 36 + 24)2 = 5625

combinations of boundary inequalities.

However, we can further simplify the analysis by relaxing the RFZ bounds to include

additional points, and ignore solutions which are not contained in the true D6 RFZ. Instead

of constraining the FZ with all of the 14 planes that surround it (12 lateral planes and 2

axial planar cuts with normal vectors parallel to the RF z-axis), we simply retain the 2

axial planes and constrain the angle below the maximum known for the D6 RFZ (a ball

touching the D6 RFZ at all 24 vertices). As all points within the true RFZ are contained

in the relaxed RFZ, solutions to the relaxed optimization problem only need be intersected

with the true RFZ. This provides an upper bound on the proximity of qaq
−1
b to generator
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4.

Equation (6.4) gives the relaxed faux-RFZ constraints (applied to both qa and qb):

w2
i + x2i + y2i + z2i = 1

wi(2−
√
3)− zi ≥ 0

wi(2−
√
3) + zi ≥ 0

wi −
1 +
√
3

4
≥ 0

(6.4)

and to maximize the dot product (minimize the angle between) of the composition qaq
−1
b

with the generator 4 zone, we maximize the z-component of qaq
−1
b :

f(w1, x1, y1, z1, w2, x2, y2, z2) = qG4 · qaq−1
b

= −w1z2 − x1y2 + y1x2 + z1w2

(6.5)

First we recall the formulation for Lagrangian multipliers for constraints gk(x):

∇x1,...,xn,λ1,...,λM
L(x1, . . . , xn, λ1, . . . , λM ) = 0 ⇐⇒


∇f(x)−

∑M
k=1 λk∇gk(x) = 0

g1(x) = · · · = gM (x) = 0

(6.6)

yielding the following Lagrangian:
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L(w1, x1, y1, z1, w2, x2, y2, z2, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8) = −w1z2 − x1y2 + y1x2 + z1w2

+ λ1(w
2
1 + x21 + y21 + z21 − 1)

+ λ2(w
2
2 + x22 + y22 + z22 − 1)

+ λ3(w1(2−
√
3)− z1)

+ λ4(w1(2−
√
3) + z1)

+ λ5(w1 −
1 +
√
3

4
)

+ λ6(w2(2−
√
3)− z2)

+ λ7(w2(2−
√
3) + z2)

+ λ8(w2 −
1 +
√
3

4
)

(6.7)

We need to check the stationary points for all 26 = 64 combinatorial cases where the

six inequality constraints (controlled by λ3, λ4, λ5, λ6, λ7, λ8) are or are not active. As men-

tioned before, many combinations will have no stationary points at all (e.g. combinations

requiring points concurrently on distinct parallel planes), and some constraint relaxations

will yield invalid stationary points with either qa or qb, or both outside of the true FZ, and

these solutions are discarded. Following this procedure, there are two relaxed FZ solutions

which maximize the objective term and intersect the true D6 FZ. For all points parameter-

ized by the free variable t, the dot product with the zone 4 generator is maximally equal to

0.75:

(w1, x1, y1, z1) =

(√
3 + 1

4
,∓
√

1

2
− t2, t,

√
3− 1

4

)
(6.8)

(w2, x2, y2, z2) =

(√
3 + 1

4
, t,±

√
1

2
− t2,−

√
3− 1

4

)
(6.9)

(λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8) =

(
−1

2
,−1

2
,
1

2
, 0,

√
3− 1

2
, 0,

1

2
,

√
3− 1

2

)
(6.10)

and for both qa and qb, eqs. (6.8) and (6.9) each parameterize two halves of a circle
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touching only the vertices of the D6 RFZ, with the axis of qb offset relative to that of qa by

90◦ about [001]. The angle between the vector components of qa and qb is twice the angle of

rotation of qaq
−1
b . A maximal dot product of 0.75 corresponds to 82.8192... degrees rotation

which falls below the θD6 ≈ 1.6378 radians or 93.841◦. Constraining the rotation axes of qa

and qb yields a minimum achievable distance to the Zone 4 generator that could be within

its boundary. This means that each stationary point solution to the Lagrangian with a

sufficiently high dot product had to be exhaustively checked to lack a valid intersection

with the Zone 4 cell.
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Laue Group O

Generator w x y z Description

1 1 0 0 0 identity operator

2* 0 0 0 1 180 about [001]

3* 0 1 0 0 180 about [100]

4* 0 0 1 0 180 about [010]

5 1√
2

0 0 1√
2

90 about [001]

6 1√
2

0 0 − 1√
2

270 about [001]

7 1√
2

1√
2

0 0 90 about [100]

8 1√
2
− 1√

2
0 0 270 about [100]

9 1√
2

0 1√
2

0 90 about [010]

10 1√
2

0 − 1√
2

0 270 about [010]

11 1
2

1
2

1
2

1
2 120 about [111]

12 1
2 −1

2 −1
2 −1

2 120 about [-1-1-1]

13 1
2

1
2 −1

2
1
2 120 about [1-11]

14 1
2 −1

2
1
2 −1

2 120 about [-11-1]

15 1
2 −1

2
1
2

1
2 120 about [-111]

16 1
2

1
2 −1

2 −1
2 120 about [1-1-1]

17 1
2 −1

2 −1
2

1
2 120 about [-1-11]

18 1
2

1
2

1
2 −1

2 120 about [11-1]

19 0 1√
2

1√
2

0 180 about [110]

20 0 − 1√
2

1√
2

0 180 about [-110]

21 0 1√
2

0 1√
2

180 about [101]

22 0 − 1√
2

0 1√
2

180 about [-101]

23 0 0 1√
2

1√
2

180 about [011]

24 0 0 − 1√
2

1√
2

180 about [0-11]

Table 6.3: Generators for Laue group O with zones infeasible under FZ-FZ composition bolded.
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For group O, it suffices to show that generator 2 is not feasible under the composition of

two fundamental zone orientations, and by symmetrical equivalence (permuting the axes

via rotation retains O symmetry), then generators 3 and 4 are also infeasible under FZ-

FZ composition. It is important to note that while generators 19 through 24 are feasible

under FZ-FZ composition the probability of reaching them under joint uniform sampling

of the RFZ is exceedingly low (less than 1 in 109 verified numerically). Table 6.4 gives the

bounding inequalities for the RFZ of the octahedral Laue group.

Generators RFZ Inequalities (from ±q)

5-6 w(
√
2− 1) ≥ |z|

7-8 w(
√
2− 1) ≥ |x|

9-10 w(
√
2− 1) ≥ |y|

11-18 w ≥ |x|+ |y|+ |z|

Table 6.4: The 14 Laue group O generators that touch the RFZ, and their combined S3 bounds with the
identity.

Again we make the relaxation that our quaternion is only bounded along z and w. The

stationary points have to be similarly checked to lack any valid intersection with the Zone

2 generator.

6.3 Computational Methods

Algorithm 3 is a helper function that describes a modified sign function which returns 1

instead of 0 when the argument is 0. This helper function makes the following algorithms

more compact. Algorithm 4 similarly makes unit quaternion have positive real part by

negating it if necessary.
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Algorithm 3 Neg: Modified Sign Function

Input: quaternion component a

Output: modified sign function of a

if a < 0 then

return −1

else

return 1

Algorithm 4 MakePos: Make Positive Scalar

Input: quaternion w, x, y, z with w potentially negative

Output: quaternion with positive real component

if w < 0 then

return (−w,−x,−y,−z)

else

return q

6.3.1 Cyclic Groups: C2, C3, C4, C6

Algorithms 5 through 8 are each tantamount to switch statements along the z component

of the input quaternion. Additionally the reduced quaternions are gleaned directly from the

components so as to avoid invoking a separate subroutine to perform general quaternion

multiplication with a symmetry operator that most likely has known zeros. The reduction

for C2 in 5 checks if the absolute value of the z-component is less than w, and if it is not

then it modifies the quaternion via the only rotational operation in the group.

Algorithm 5 FZ Orientation Reduction for C2 Symmetry

Input: unit quaternion q = (w, x, y, z) with w ≥ 0

Output: Reduced quaternion q in C2 FZ

if |z| < w then

return q

else

return neg(z)(−z, y,−x,w)
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In 6, the 120-degree rotational symmetry changes the thresholds for the z-component

relative to w, but now the sign of the z component must also be checked if the quaternion

is not already in the FZ to discern if a +120 or -120 degree rotation is required to reduce

the quaternion.

Algorithm 6 FZ Orientation Reduction for C3 Symmetry

Input: unit quaternion q = (w, x, y, z) with w ≥ 0

Output: Reduced quaternion q in C3 FZ

if |z| < w√
3
then

return q

else

return 1
2(w, x, y, z) + neg(z)

√
3
2 (z,−y, x,−w)

Algorithm 7 FZ Orientation Reduction for C4 Symmetry

Input: unit quaternion q = (w, x, y, z) with w ≥ 0

Output: Reduced quaternion q in C4 FZ

if |z| ≤ (
√
2− 1)w then

return q

else if |z| > (
√
2 + 1)w then

return neg(z)(z,−y, x,−w)

else

return 1√
2
((w, x, y, z) + neg(z)(z,−y, x,−w))
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Algorithm 8 FZ Orientation Reduction for C6 Symmetry

Input: unit quaternion q = (w, x, y, z) with w ≥ 0

Output: Reduced quaternion q in C6 FZ

if |z| ≤ (2−
√
3)w then

return q

else if |z| > (2 +
√
3)w then

return neg(z)(z,−y, x,−w)

else if |z| > w then

return 1
2(w, x, y, z) + neg(z)

√
3
2 (z,−y, x,−w)

else

return
√
3
2 (w, x, y, z) + neg(z)12(z,−y, x,−w)

6.3.2 Dihedral Groups: D2, D3, D4, D6

The Dihedral groups require the most computational work to reduce relative to the cyclic

groups and T/O. This is due to the need for a preliminary check of which lateral face of

the RFZ the xy components face. For D2, given in 9, this is alleviated by the fact that the

lateral face may be determined by which component has the largest magnitude.

Algorithm 9 FZ Orientation Reduction for D2 Symmetry

Input: unit quaternion q = (w, x, y, z) with w ≥ 0

Output: Reduced quaternion q in D2 FZ

if w > max(|x|, |y|, |z|) then

return q

else if |z| = max(|x|, |y|, |z|) then

return neg(z)(z,−y, x,−w)

else if |y| = max(|x|, |y|, |z|) then

return neg(y)(y, z,−w,−x)

else

return neg(x)(x,−w,−z, y)

Figure 6.1 shows uniformly drawn (Shoemake) orientations plotted as Rodrigues-Frank
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(RF) vectors with the fundamental zone (the identity) for D2 flanked by the three other

symmetry operators. As all three of the other generators reside at infinity, each Voronoi

cell when projected and drawn in RF space has two separated antipodal regions as these

180◦ rotation generators are at infinity in this representation.

Figure 6.1: Uniformly sampled orientations plotted as Rodrigues-Frank vectors with truncated axes showing
the three other Voronoi cells flanking the cube shaped fundamental zone of D2.

However, starting with D3, a separate computations must be carried out in the case of

lateral RFZ boundaries with normals not parallel to a coordinate axis: computing
√
3|y|

to potentially then compute xrot ←
√
3
2 |y| +

1
2 |x| in algorithm 10. For D3 two of three

lateral boundaries require these computations. One important note here is that the helper

sign function neg is used in two ways here. Firstly, it denotes the check to return the

scalar part of the quaternion to be positive if needed as in: neg(x)(x,−w,−z, y). For

clarity this could also be expressed as (|x|,−w neg(x),−z neg(x), y neg(x)). Secondly, neg

compactly represents a separate branching of two possibilities in the return value as in:

1
2(w, x, y, z) + neg(z)

√
3
2 (z,−y, x,−w).
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Algorithm 10 FZ Orientation Reduction for D3 Symmetry

Input: unit quaternion q = (w, x, y, z) with w ≥ 0

Output: Reduced quaternion q in D3 FZ

if |x| >
√
3|y| then

xrot ← |x|

else

xrot ←
√
3
2 |y|+

1
2 |x|

if |z| < w√
3
and xrot < w then

return q

else if 1
2w +

√
3
2 |z| > xrot then

return 1
2(w, x, y, z) + neg(z)

√
3
2 (z,−y, x,−w)

else if |x| >
√
3|y| then

return neg(x)(x,−w,−z, y)

else

S ← neg(xy)

return neg(−Sx−
√
3y)12(−Sx−

√
3y, Sw −

√
3z, Sz +

√
3w,−Sy +

√
3x)

Figure 6.2 shows uniformly drawn orientations plotted as Rodrigues-Frank (RF) vectors

with the fundamental zone (the identity) for D3 flanked by the five other symmetry opera-

tors: two z-axial and three laterally positioned. As all three of the lateral generators reside

at infinity with 180 degree rotations, each Voronoi cell when projected and drawn in RF

space has two separated antipodal regions. The two z-axial ones sit at ±120 about z and

thus are not broken apart in this projection. This algorithm 10 begins by shifting the point

into the 180 about x-axis zone or either of the other laterals zones and then doing a unified

check first against the fundamental zone and then against the z-axial zones.

Algorithms for Crystallography Z. Varley



6.3. COMPUTATIONAL METHODS 97

Figure 6.2: Uniformly sampled orientations plotted as Rodrigues-Frank vectors with truncated axes showing
the five other Voronoi cells flanking the hexagonal prism shaped fundamental zone of D3.

From D2 to D3 the fundamental zone changed from a cube to a hexagonal prism, and

with D4 it is an octagonal prism flanked by 4 different lateral Voronoi cells and two z-axial

±90 degree rotation zones, and a third non-touching zone at 180 about the z-axis. Similar

to that of D3, the D4 algorithm 11 first reduces the rotation about the z-axis to quickly

and in a unified manner check the planar boundaries with the fundamental zone and then

with the lateral flanking zones.
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Algorithm 11 FZ Orientation Reduction for D4 Symmetry

Input: unit quaternion q = (w, x, y, z) with w ≥ 0

Output: Reduced quaternion q in D4 FZ

m,n← max(|x|, |y|),min(|x|, |y|)

if m > (
√
2 + 1)n then

y rot← m

else

y rot← 1√
2
(m+ n)

if |z| < (
√
2− 1)w and y rot < w then

return q

else if |z| > (
√
2 + 1)w and |z| > y rot then

return neg(z)(−z, y,−x,w)

else if |z| > (
√
2− 1)w and 1√

2
(|z|+ w) > y rot then

return 1√
2
((w, x, y, z) + neg(z)(z,−y, x,−w))

else if m > (
√
2 + 1)n then

if |y| > |x| then

return neg(y)(−y,−z, w, x)

else

return neg(x)(−x,w, z,−y)

else

return MakePos( 1√
2
(neg(xy)(−x,w, z,−y) + (−y,−z, w, x)))
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Figure 6.3: Uniformly sampled orientations plotted as Rodrigues-Frank vectors with truncated axes showing
the seven other Voronoi cells surrounding the octagonal prism shaped fundamental zone of D4.

D6 is similar to D4 with two more z-axial and two more lateral Voronoi cells, as seen

in figure 6.4. Algorithm 12 takes a similar path as the other dihedral groups to the achieve

the reduction.
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Figure 6.4: Uniformly sampled orientations plotted as Rodrigues-Frank vectors with truncated axes showing
the eleven other Voronoi cells surrounding the dodecagonal prism shaped fundamental zone of
D6.
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Algorithm 12 FZ Orientation Reduction for D6 Symmetry

Input: unit quaternion q = (w, x, y, z) with w ≥ 0

Output: Reduced quaternion q in D6 FZ

m,n← max(|x|, |y|),min(|x|, |y|)

if m > (2 +
√
3)n then

y rot← m

else

y rot←
√
3
2 m+ 1

2n

if |z| < (2−
√
3)w and y rot < w then

return q

else if |z| < w and 1
2(|z|+

√
3w) > y rot then

return 1
2(
√
3w + |z|,

√
3x− neg(z)y,

√
3y + neg(z)x,

√
3z − neg(z)w)

else if |z| < (2 +
√
3)w and 1

2(
√
3|z|+ w) > y rot then

return 1
2(w +

√
3|z|, x− neg(z)

√
3y, y + neg(z)

√
3x, z − neg(z)

√
3w)

else if |z| > y rot then

return neg(z)(z,−y, x,−w)

else if m > (2 +
√
3)n then

if |y| > |x| then

return neg(y)(y, z,−w,−x)

else

return neg(x)(x,−w,−z, y)

else

S ← neg(xy)

if |y| > |x| then

return MakePos(12(−Sx−
√
3y, Sw −

√
3z, Sz +

√
3w,−Sy +

√
3x))

else

return MakePos(12(−
√
3Sx− y,

√
3Sw − z,

√
3Sz + w,−

√
3Sy + x))
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6.3.3 Groups O and T

Group T is aided by the fact that the x = 0, y = 0, and z = 0 planes are the boundaries

dividing several of the Voronoi cells, and the sign may be quickly used to construct the

correct fundamental zone quaternion seen in the last return statement of Algorithm 13.

Further, figure 6.5 displays a coloring of a uniformly drawn sampling of Rodrigues-Frank

vectors with the per coordinate axis planar division boundaries between several of the zones

identifiable, except for the 180◦ rotations about each of the primary axes. Those zones are

divided into two regions in the projection and unlike the fundamental zone and the eight

other 120◦ rotation Voronoi cells.

Algorithm 13 FZ Orientation Reduction for T Symmetry

Input: unit quaternion q = (w, x, y, z) with w ≥ 0

Output: Reduced quaternion q in T FZ

if |x|+ |y|+ |z| < w then

return q

else if |z| > w + |x|+ |y| then

return neg(z)(z,−y, x,−w)

else if |x| > w + |y|+ |z| then

return neg(x)(x,−w,−z, y)

else if |y| > w + |x|+ |z| then

return neg(y)(y, z,−w,−x)

else

return 1
2(w + |x|+ |y|+ |z|,

x− neg(x)w + neg(y)z − neg(z)y,

y − neg(x)z − neg(y)w + neg(z)x,

z + neg(x)y − neg(y)x− neg(z)w)
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Figure 6.5: Uniformly sampled orientations plotted as Rodrigues-Frank vectors with truncated axes showing
the eleven other Voronoi cells surrounding the octahedron shaped fundamental zone of T.

Lastly, Octahedral symmetry has the greatest number of operators of any of the Laue

classes. The decision tree based reduction takes a similar path to the dihedral reductions in

first collapsing the points to a single octant by taking the absolute value and additionally

sorting the values into small, medium, and large. This allows for a unified check against

each of the rotations around the z-axis again by magnitude. After finding which type of

rotation (e.g. a 180◦ about a < 100 > direction), the particular signs or combination of

signs can be used to distinguish to which Voronoi cell a point belongs. Figure 6.6 shows

the 23 surrounding non-fundamental zone Voronoi cells.
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Figure 6.6: Uniformly sampled orientations plotted as Rodrigues-Frank vectors with truncated axes showing
the 23 other Voronoi cells surrounding the truncated cube shaped fundamental zone of O.

Algorithm 14 FZ Orientation Reduction for O Symmetry

Input: unit quaternion q = (w, x, y, z) with w ≥ 0

Output: Reduced quaternion q in O FZ

big,mid, sml← sort(|x|, |y|, |z|)

zone← DetermineGenType(q, big,mid, sml)

q← ReduceQuaternion(q, zone,big,mid, sml)

return q
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Algorithm 15 DetermineOGenType

Input: quaternion q = (w, x, y, z), big, mid, sml

Output: zone

if big < (
√
2− 1)w then

if w > sml + mid + big then

zone← 0

else

zone← 3

else if big < (
√
2 + 1)w then

if (
√
2− 1)(w + big) > sml + mid then

if w > mid then

zone← 1

else

zone← 6

else

if w + sml > (
√
2− 1)(mid + big) then

zone← 3

else

zone← 6

else

if big > 1
2(w + sml + mid + big) then

if big > (
√
2 + 1)mid then

zone← 2

else

zone← 6

else

if w + sml > (
√
2− 1)(mid + big) then

zone← 3

else

zone← 6
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Algorithm 16 ReduceOQuaternion

Input: quaternion q = (w, x, y, z), zone, big, mid, sml

Output: Reduced quaternion q

if zone == 0 then

q← q

else if zone == 2 then

q← neg(big)(−big,mid,−sml, w) if big == |x|

q← neg(big)(−big,−z, w, x) if big == |y|

q← neg(big)(−big, y,−x,w) if big == |z|

else if zone == 1 then

q← 1√
2
(w + big, x− neg(big)w, y − neg(big)z, z + neg(big)y) if big == |x|

q← 1√
2
(w + big, x+ neg(big)z, y − neg(big)w, z − neg(big)x) if big == |y|

q← 1√
2
(w + big, x− neg(big)y, y + neg(big)x, z − neg(big)w) if big == |z|

else if zone == 3 then

return 1
2(w + |x|+ |y|+ |z|,

x− neg(x)w + neg(y)z − neg(z)y,

y − neg(x)z − neg(y)w + neg(z)x,

z + neg(x)y − neg(y)x− neg(z)w)

else

if sml == |z| then

q← MakePos( 1√
2
(−neg(xy)x− y,neg(xy)w − z, neg(xy)z + w,−neg(xy)y + x))

else if sml == |y| then

q← MakePos( 1√
2
(−neg(xz)x− z, neg(xz)w + y,neg(xz)z − x,−neg(xz)y + w))

else

q← MakePos( 1√
2
(−neg(yz)y − z,−neg(yz)z + y,neg(yz)w − x,neg(yz)x+ w))

return q
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6.4 Reduction Benchmarks

Figure 6.7 summarizes the final speedup gain from using these decision tree based algo-

rithms instead of either exhaustive angle or bounds methods in both the general case of an

orientation uniformly sampled from SO(3) and in the case of reducing the orientations re-

sulting from the composition of two quaternions already residing in the fundamental zone

for a given Laue group. In the latter case, groups D3 and D4 are not advantageous over the

angle method and that approach should instead be utilized. However, for cubic symmetry

groups O and T, a significant speedup is realized by using decision tree based methods. As

compared to the angle exhaustion method roughly a twofold speedup is observed for cubic

symmetry. For group D6 a less significant 25% to 40% improvement was observed due to

the additional computation complexity of checking off-axis bounds and the relatively lower

number of symmetry operators.

Figure 6.7: Bar plot showing the relative speedup of the tree based method compared to the best of either
the angle and bounds methods for a given Laue group. Single hash indicates comparison with
the angle method while double hash indicates the bounds method.

Algorithms for Crystallography Z. Varley



CHAPTER VII

Conclusions and Future Work

7.1 Summary

The primary objective of this thesis was to provide a collection of numerical tools for the

analysis of crystallographic data, especially EBSD data. In particular, this work sought to

alleviate the big data and multimodal challenges posed by 3D serial sectioning experiments

in the SEM in three ways: dynamic sampling for scanned images, EBSD orientation indexing

acceleration, and decision tree algorithms for crystallographic fundamental zone reductions.

In addition, two preliminary results, one using key points and another using harmonics, in

the area of multimodal image registration were presented. In general, we sought to overcome

scale challenges and the multifaceted nature of microstructure characterization in the SEM.

The first tool, nearest neighborhood based dynamic sampling was proposed to provide

a rapid suggestion of new image pixels to acquire under a simple heuristic. The end result

was a dramatic reduction in the number of pixels required to measure functionally identical

data in EBSD and BSE imaging modalities, as well as optical modalities. The second

tool, an application of quantization and PCA to dictionary indexing of orientations in

EBSD dramatically reduced the computational burden of the historically slowest but most

noise-robust method of orientation indexing. Thereafter, two approaches to multimodal

image registration and their preliminary results were presented. Finally, decision-tree based

algorithms for the reduction of crystallographic orientations to their respective Laue classes

were proposed.
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7.2 Hypotheses Revisited

Revisiting the hypotheses, we begun with “Rasterization-based scans, (e.g. BSE micro-

graphs or EBSD orientation maps), acquired in the electron microscope can be subsampled

using dynamic sampling, and then infilled, yielding at twofold reduction in scan time while

maintaining an error rate (grayscale pixel values different by 10% relative deviation or mis-

orientations exceeding 3◦) not exceeding 1%”. This hypothesis is supported by the results

in Chapter III demonstrating a heuristic-based dynamic sampling algorithm operating at

speeds sufficient for electron microscopy applications. The target thresholds for accuracy

were maintained across a variety of settings for grayscale algorithms, while a single scan

was used to support this claim for orientation data from EBSD.

The hypothesis that principal component analysis can be used to improve the indexing

speed by an order of magnitude and accuracy for EBSD applications was supported by

analysis on a Nickel test dataset with varied noise levels in Chapter IV. We find that the noise

robustness was improved by PCA and that the speed threshold from the hypothesis was met.

These findings must be taken in context as the pattern size was relatively small at 60× 60.

Further, at high pattern noise levels the required number of PCA components needed to

maintain indexing accuracy at the level of conventional dictionary indexing brought the

relative speed improvement down to roughly 8-fold. For much larger patterns the benefit

of using PCA is greatly magnified. For example, the ratio of 1000 PCA components to the

number of pixels in a 60× 60 pattern versus a 256× 256 pattern is 28% versus 1.5%. Thus,

these findings are rather conservative in estimating the benefit of low rank approximations

to electron backscatter diffraction signals via PCA under the assumption that the higher

resolution patterns can index under a comparable number of PCA components, warranting

further investigation.

The hypothesis that fundamental zone reductions can benefit from decision tree based

algorithms which systematically identify the Voronoi cell to which an orientation belongs

was tested in Chapter VI. Compared to the other two methods for reduction, the decision

tree algorithm did not necessarily bring benefit for all of the Laue classes. However, for the

Octahedral and Tetrahedral symmetries in particular, an approximately two-fold improve-
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ment in reduction speed was observed in both the general case of orientations uniformly

drawn over SO(3) and in the sub-case where two uniformly drawn fundamental zone orien-

tations were composed together and then needed reduction to the fundamental zone. Thus,

one cannot say that the hypothesis is verified for all Laue classes. Certain Laue classes have

more expensive orientation reductions due to Rodrigues vectors having planar boundaries

that must be checked which do not coincide with a simple sum of the magnitude of the

components or sign check of an individual vector component.

7.3 Future Outlook

Beginning with dynamic sampling, the first major direction to pursue is the implementa-

tion of the proposed sampling heuristic on real world hardware. This task requires detailed

knowledge of the control board for the SEM or other scanned microscopy equipment. Al-

though this is considered beyond the scope of this thesis, several attempts to manually

control the beam position were made on one SEM using a vendor-provided software inter-

face resulting in a latency three orders of magnitude slower than the unsupervised dynamic

sampling computations.

For the topic of PCA-based dictionary indexing of EBSD patterns there are many re-

search directions to consider, particularly for scaling to higher pattern resolutions. One

naive approach to avoid large covariance matrices for larger patterns would be to bin the

patterns prior to eigendecomposition and to upscale the resulting eigenvectors to the same

size as the original patterns. This however, would implicitly ignore any information con-

tent in the patterns at a frequency above the binning rate. In lieu of this naive approach,

the eigendecomposition could be replaced by a streamed PCA algorithm which only retains

the top k principal components [117, 118]. However, neither approach leverages the prior

knowledge that the patterns arise from the convolution over SO(3) or one of its quotient

groups between a detector shaped mask projected onto S2 and the master pattern on S2.

Seeking out closed form expressions for the eigenvectors as a function of the master pat-

tern and detector projection center, in the language of spherical and generalized spherical

harmonics, could alleviate the computational burden of higher resolution patterns without

losing finer details.
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Another exciting area for future research is the potential integration of dynamic sam-

pling techniques with advanced EBSD indexing methods. For EBSD orientation maps, often

the local orientation gradient is relatively small, and the maps have low overall complex-

ity, suggesting subsampling could be tenable. Joining the unsupervised dynamic sampling

framework with real time dictionary indexing could make the theoretical time savings pre-

sented in this thesis possible.

With regards to the Edgeworth approach to estimating the marginal and joint entropy of

a underlying data distribution, two key approximations were made. Firstly, a Taylor series

expansion of (1 + x) log(1 + x) was truncated to two terms about x = 0 as x+ x2

2 to make

the integral over R and then over R2 tractable (see equations C.7 for marginals and C.37-

C.39 for joint distributions in Appendix C in citation [106]). The second approximation

was taking the truncated Edgeworth series. For the fourth order series, the truncation is in

equations C.1 and C.52. It could be fruitful to examine the difference between a second and

third order Taylor series truncation at a given Edgeworth series truncation and to compare

the end result to binned mutual information on exemplar datasets.

While optimized ECMIF and CMIF implementations which use FFT on the GPU via

PyTorch were originally developed with the aim of multimodal image registration, these

routines appear to be well catered towards exhaustively searching for the correct pattern

center for a given EBSD dataset. By projecting the periphery around a simulated EBSP in

addition to the EBSP itself for an entire EBSD dictionary, cross-correlation can be used to

densely compute normalized dot products, binned mutual information, or Edgeworth mutual

information as a function of discrete changes in the pattern center X and Y coordinate. The

original experimental pattern can be resampled to simulate the corresponding pattern center

Z coordinate change in the simulated pattern. An exhaustive search of the projection center

would help facilitate more widespread adoption of dictionary-based orientation indexing in

EBSD as it is a crucial input parameter for accurate indexing. In terms of applications

for multimodal image registration, image shifts have already seen generalization via non-

commutative harmonic analysis to other groups such as SE(2) and SIM(2) [119,120]. Cross

correlation based on convolution theorems for these frameworks can be similarly used to

compute mutual information over these non-commutative groups. For a detailed example
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with SE(2) see chapter 3 (particularly subsection 3.3.3) of the dissertation of Erik Franken

[121].

Another area of active research is the construction of embeddings into higher dimen-

sional Euclidean space for orientations so that statistics and distances may be immediately

estimated without explicitly considering the Laue class symmetry operators for a given crys-

talline orientation. Additionally, these embeddings admit a natural application for machine

learning, wherein neural networks and other regression tools treat orientations in the em-

bedding space. The foundational work in this area began with vector space embeddings

of orthogonal axial frames (solely applicable to orthorhombic crystals) [122, 123]. That re-

search gave way to locally isometric embeddings for various discrete quotient groups of

SO(3) [20]. One interesting direction to explore would be to relax the need for a local isom-

etry which facilitates statistics over the discrete quotient groups of SO(3), and merely seek

to construct the compact simply connected 4-manifold embedding in R5 which is guaran-

teed to exist for every compact orientable 3-manifold (see theorem 3 in citation [124]). The

end result would be 5-dimensional embeddings for each of the quotient groups of SO(3),

analogous to those developed for SO(N) itself (as proposed in citation [125]). The primary

application would be a simply connected parameterization of minimal dimension for crys-

tallographic orientations with generative machine learning applications for textures. An

alternative route towards the same ends for machine learning applications would be to de-

sign SO(3) quotient group invariant and equivariant neural network architectures as has

been achieved for SO(3) itself [126,127].

Lastly, further exploration is warranted of the implications of inaccessible Voronoi cells

on the 3-sphere in the context of reducing misorientations to the equivalent unique disorien-

tations for each combination of point groups. This could help alleviate the computational

burden of computing heterophase interface disorientations. Such an extension would be

welcome in the context of advanced manufacturing techniques like additive manufacturing,

where complex microstructures with multiple phases can be common.
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APPENDIX A

Lie Algebras and Lie Groups

One very useful construct in mathematics for many engineering applications is the Lie

algebra. A Lie algebra is a vector space g over a field F possessing an additional operation

called the Lie bracket:

[x, y] : g× g→ g (A.1)

which satisfies the following:

[x, x] = 0

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

[ax+ by, z] = a[x, z] + b[y, z]

[z, ax+ by] = a[z, x] + b[z, y]

(A.2)

for all x, y, and z in g and scalars a, b in F. A Lie algebra is often associated with a Lie

group, which is colloquially a continuous symmetry. Examples include the rotational groups

SO(3) and SO(2).
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APPENDIX B

Polynomial Fits for the Homochoric Inverse

Equations (B.1) and (B.2) provide the polynomial fit that transforms the squared modulus

of the homochoric vector residing within the 3D ball with radius (3π4 )
1
3 to the cosine of half

of the rotation angle ω:

||h||2 = h2x + h2y + h2z[
cos

ω

2

]
EMsoft

=0.9999999999999968− 0.49999999999986866||h||2

− 0.025000000000632055||h||22 − 0.003928571496460683||h||32

− 0.0008164666077062752||h||42 − 0.00019411896443261646||h||52

− 0.00004985822229871769||h||62 − 0.000014164962366386031||h||72

− 1.9000248160936107× 10−6||h||82 − 5.72184549898506× 10−6||h||92

+ 7.772149920658778× 10−6||h||102 − 0.00001053483452909705||h||112

+ 9.528014229335313× 10−6||h||122 − 5.660288876265125× 10−6||h||132

+ 1.2844901692764126× 10−6||h||142 + 1.1255185726258763× 10−6||h||152

− 1.3834391419956455× 10−6||h||162 + 7.513691751164847× 10−7||h||172

− 2.401996891720091× 10−7||h||182 + 4.386887017466388× 10−8||h||192

− 3.5917775353564864× 10−9||h||202

(B.1)
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[
cos

ω

2

]
Kikuchipy

=1.0000000000018852− 0.5000000002194847||h||2

− 0.024999992127593126||h||22 − 0.003928701544781374||h||32

− 0.0008152701535450438||h||42 − 0.0002009500426119712||h||52

− 0.00002397986776071756||h||62 − 0.00008202868926605841||h||72

+ 0.00012448715042090092||h||82 − 0.0001749114214822577||h||92

+ 0.0001703481934140054||h||102 − 0.00012062065004116828||h||112

+ 0.000059719705868660826||h||122 − 0.00001980756723965647||h||132

+ 0.000003953714684212874||h||142 − 0.00000036555001439719544||h||152

(B.2)

Three additional polynomial fits are reported for convenience and are included in ebsd-

torch:
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Table B.1: Polynomial Fits for EBSDtorch

Term Degree 8 Degree 10 Degree 15

1 1.0000000000000009 1.0000000000000000 1.0000000000000011

2 −4.9999943403867775e-01 −4.9999997124013285e-01 −5.0000000001869205e-01

3 −2.5015165060149020e-02 −2.5001181866044025e-02 −2.4999998320881969e-02

4 −3.8120131548551729e-03 −3.9144209820521038e-03 −3.9286161535054291e-03

5 −1.2106188330642162e-03 −8.9320268104539483e-04 −8.1591329178494823e-04

6 +4.9329295993155416e-04 +3.1181024286083695e-05 −1.9799194822372066e-04

7 −7.0089385526450620e-04 −4.3961032788396477e-04 −3.2864198721441472e-05

8 +3.0979774923589078e-04 +3.9657471727506439e-04 −6.3883724580092850e-05

9 −7.3023474963298843e-05 −2.6379945050586932e-04 +9.8721769583183007e-05

10 +9.1185355979587159e-05 −1.4930153501324233e-04

11 −1.4875867805692529e-05 +1.5269890325177250e-04

12 −1.1245608697316625e-04

13 +5.7371245559076731e-05

14 −1.9467448854651149e-05

15 +3.9512697022509176e-06

16 −3.6952915441964861e-07

Table B.2 lists the absolute error mean and maximum when sampling 100, 000 orienta-

tions via the Shoemake method for quaternions. The orientations are converted to scaled

axis angle vectors, then to homochoric vectors and back to scaled axis angle vectors, and

the round trip errors are tabulated. The purpose of listing the coefficients above for the 8

degree polynomial was to provide a polynomial fit for FP32 precision.
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Table B.2: Mean and Max Absolute Errors for Various Polyfits for the Homochoric inverse using FP64 and
FP32 Precision

Polynomial Fit FP64 Mean FP64 Max FP32 Mean FP32 Max

Newton’s Method 2.705895e-16 5.731526e-15 1.099045e-07 2.093613e-06

20 Deg (EMsoft) 1.251269e-09 3.373536e-09 9.572175e-08 2.749264e-06

15 Deg (kikuchipy) 9.766781e-10 5.534689e-09 8.984473e-08 2.749264e-06

15 Deg (EBSDTorch) 6.069131e-10 4.373372e-09 1.138714e-07 2.749264e-06

10 Deg (EBSDTorch) 5.397918e-09 2.103315e-08 1.128372e-07 2.749264e-06

8 Deg (EBSDTorch) 1.046371e-07 2.744118e-07 1.477597e-07 2.749264e-06
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APPENDIX C

Laue Group Generator Adjacency Graphs

Omitting the known cyclic groups and the fully connected graphs of D2 and D3, tables

(C.1-C.4) and figures (C.1-C.4) show the generator adjacency for D4, D6, T, and O.
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Gen ID 1 2 3 4 5 6 7 8

1 - 0 1 1 1 1 1 1

2 0 - 1 1 1 1 1 1

3 1 1 - 0 1 1 1 1

4 1 1 0 - 1 1 1 1

5 1 1 1 1 - 0 1 1

6 1 1 1 1 0 - 1 1

7 1 1 1 1 1 1 - 0

8 1 1 1 1 1 1 0 -

Table C.1: Adjacency matrix for Laue group D4.

1

2

3

4

5

6

7

8

Figure C.1: Adjacency graph for Laue group D4 (red edges indicate non-adjacent generators).
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Gen ID 1 2 3 4 5 6 7 8 9 10 11 12

1 - 0 0 0 1 1 1 1 1 1 1 1

2 0 - 0 1 1 0 1 1 1 1 1 1

3 0 0 - 1 0 1 1 1 1 1 1 1

4 0 1 1 - 0 0 1 1 1 1 1 1

5 1 1 0 0 - 0 1 1 1 1 1 1

6 1 0 1 0 0 - 1 1 1 1 1 1

7 1 1 1 1 1 1 - 0 0 1 1 0

8 1 1 1 1 1 1 0 - 0 0 1 1

9 1 1 1 1 1 1 0 0 - 1 0 1

10 1 1 1 1 1 1 1 0 1 - 0 0

11 1 1 1 1 1 1 1 1 0 0 - 0

12 1 1 1 1 1 1 0 1 1 0 0 -

Table C.2: Adjacency matrix for Laue group D6.

1

2

3
4

5

6

7

8

9
10

11

12

Figure C.2: Adjacency graph for Laue group D6 (red edges indicate non-adjacent generators).
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Gen ID 1 2 3 4 5 6 7 8 9 10 11 12

1 - 0 0 0 1 1 1 1 1 1 1 1

2 0 - 0 0 1 1 1 1 1 1 1 1

3 0 0 - 0 1 1 1 1 1 1 1 1

4 0 0 0 - 1 1 1 1 1 1 1 1

5 1 1 1 1 - 1 1 1 1 1 1 1

6 1 1 1 1 1 - 0 1 0 1 1 1

7 1 1 1 1 1 0 - 1 0 1 1 0

8 1 1 1 1 1 1 1 - 1 1 1 1

9 1 1 1 1 1 0 0 1 - 1 1 0

10 1 1 1 1 1 1 1 1 1 - 1 1

11 1 1 1 1 1 1 1 1 1 1 - 1

12 1 1 1 1 1 1 0 1 0 1 1 -

Table C.3: Adjacency matrix for Laue group T.

1

2

3
4

5

6

7

8

9
10

11

12

Figure C.3: Adjacency graph for Laue group T (red edges indicate non-adjacent generators).
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Gen ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 - 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0

2 0 - 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

3 0 0 - 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0

4 0 0 0 - 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1

5 1 1 0 0 - 0 1 1 1 1 0 0 1 0 1 0 1 0 1 0 1 1 1 1

6 1 1 0 0 0 - 1 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1

7 1 0 1 0 1 1 - 0 1 1 1 1 1 0 1 0 0 1 0 1 1 1 0 0

8 1 0 1 0 1 1 0 - 1 1 1 1 0 1 0 1 1 0 1 0 1 1 0 0

9 1 0 0 1 1 1 1 1 - 0 1 1 1 0 0 1 1 0 0 1 0 0 1 1

10 1 0 0 1 1 1 1 1 0 - 1 1 0 1 1 0 0 1 1 0 0 0 1 1

11 0 0 1 1 0 0 1 1 1 1 - 0 1 1 0 0 0 0 1 1 1 1 1 1

12 0 0 1 1 0 0 1 1 1 1 0 - 0 0 1 1 1 1 0 0 1 1 1 1

13 1 1 1 1 1 0 1 0 1 0 1 0 - 1 1 0 1 0 0 1 1 0 1 0

14 1 1 1 1 0 1 0 1 0 1 1 0 1 - 0 1 0 1 1 0 1 0 1 0

15 1 1 1 1 1 0 1 0 0 1 0 1 1 0 - 1 0 1 1 0 1 0 0 1

16 1 1 1 1 0 1 0 1 1 0 0 1 0 1 1 - 1 0 0 1 1 0 0 1

17 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 - 1 1 0 0 1 1 0

18 1 1 1 1 0 1 1 0 0 1 0 1 0 1 1 0 1 - 0 1 0 1 1 0

19 1 1 1 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 - 1 0 1 0 1

20 1 1 1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1 - 0 1 0 1

21 0 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 - 0 1 1

22 0 1 1 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 - 1 1

23 0 1 0 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 0 0 1 1 - 0

24 0 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 -

Table C.4: Adjacency matrix for Laue group O.
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1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18
19

20

21

22

23

24

Figure C.4: Adjacency graph for Laue group O.
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