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Abstract 

A distribution of grain boundary curvature as a function of five independent crystallographic 

parameters is proposed and tested on some simple geometries.  The results show that the grain 

boundary mean curvature distribution (GBHD) is able to capture the curvature of a digitized 

microstructure though noise may arise from several sources.   

The GBHD is measured in two sets of three-dimensional electron backscattered diffraction 

(EBSD) data collected in an austenitic and a ferritic steel.  It is found that the grain boundary 

mean curvature varies with the boundary crystallography and is more sensitive to the grain 

boundary plane orientation than to the disorientation.  The grain boundaries with the smallest 

curvatures also have low grain boundary energy and large relative areas while the curvature and 

energy of more general grain boundaries are, on average, inversely correlated.   

The GBHD is also computed from a set of electron backscattered diffraction (EBSD) data 

collected from SrTiO3 annealed at 1470 ℃.  Unlike the steels, the average grain boundary 

curvature is found to be directly correlated with the grain boundary energy, suggesting that the 

microstructure of SrTiO3 at 1470 ℃ may contain many singular grain boundaries.  

The integral mean curvature of grain faces (𝑀𝑠) is analyzed for the grains in the steel samples 

and in SrTiO3.  Similar results are obtained in the three datasets.  For a given grain, its 𝑀𝑠 is 

closely related to its topological characteristics.  Grains with a small number of faces have 

positive 𝑀𝑠 and grains with many faces have negative 𝑀𝑠.  The grains with zero 𝑀𝑠 are those 

whose number of neighbors equal the average number of faces of their nearest neighbors.   

Various geometric, topological, and mean-field features are hypothesized to capture the 

evolution of grain faces in a high purity Ni sample.  The dataset was collected by the Suter group 

at Carnegie Mellon University using the high energy diffraction microscopy (HEDM) technique.  

It consists of two orientation maps of a given volume, one for the pre-anneal state and one for the 

after-anneal state between which the sample was annealed at 800 ℃ for 25 minutes.  By fitting 

the various features with a few machine learning models, we show that curvature does affect the 

evolution of grain faces but the effect is not deterministic.   

A face-averaged approximation is proposed to study the evolution of grain boundary 

properties.  The effectiveness of this face-averaged assumption is validated by a comparison 

between the true GBHD and the face-averaged GBHD.  The results show that the grain boundary 

area and curvature change vary with the grain boundary inclination systematically. 
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1.   Introduction 

1.1 Motivation 

Grain boundaries possess different properties than the bulk grains.  For example, excess volume 

[1], reduced activation energy for diffusion [2] and large dielectric constant [3].  Moreover, the 

property of a specific grain boundary depends on the way the crystallites on the two sides meet.  

Dimos et. al. [4] found the critical current density of a superconductor depends on the lattice 

misorientation across boundary.  Watanabe et. al. [5] demonstrated that the intergranular 

brittleness of the ordered intermetallic alloy Ni3Al can be relieved by careful design of the grain 

boundary distribution inside the material and superplasticity can be achieved.  Fujisaki et. al. [6] 

showed the coercivity of Nb-Fe-B sintered magnets depends on the grain boundary plane 

orientation via micromagnetic simulation.  These observations about grain boundaries have 

helped us design materials with advantageous properties and benefited our everyday life.  

However, we do not really understand grain boundaries systematically.  Despite the clear 

evidence from experiments and simulations that grain boundary properties are closely related to 

grain boundary structures, we have only limited knowledge about the relative abundance and 

diversity of grain boundaries.  The most important reason is that grain boundaries are inside 

dense solid materials, which makes them impervious to observation and measurement by most 

techniques.  In addition, the number of distinguishable grain boundaries is large (> 104) at the 

relevant resolutions.  Finally, the many grain boundaries within a bulk volume are not 

independent but are connected and form a network.  The property of the network depends not 

only on the grain boundaries that constitute the network but also on the way they are connected 

within the network.  

This thesis analyzes experimentally measured three-dimensional grain boundary networks.  

The focus is the grain boundary curvature, the grain boundary area change, and the grain 

boundary curvature change.  Other aspects of the microstructures, like grain boundary energy 

and grain face topologies, are also evaluated and their correlations are studied. 
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1.2 Hypothesis  

I. Grain boundary curvature varies with grain boundary crystallographic parameters and is 

correlated with grain boundary energy.  This correlation is inverse for non-singular 

boundaries and direct for singular boundaries, if there is an approximately constant 

chemical potential throughout the sample.  

II. There are correlations among the characteristics of grain faces, such as area and curvature, 

so that high temperature spontaneous changes can be predicted. 

III. Changes in the grain boundary population and grain boundary curvature are anisotropic.  

During grain growth, the population of low energy grain boundaries should increase.  

1.3 Objectives 

I. Measure grain boundary curvature from digital three-dimensional orientation maps and 

plot grain boundary curvature as a function of the five crystallographic parameters. 

II. Apply the grain boundary curvature distribution to experimentally collected EBSD data 

and analyze the correlation between grain boundary curvature, energy and population.  

III. Measure integral curvature of grain faces (𝑀𝑆) for the digital grains reconstructed from 

the experimental orientation maps.  Analyze the correlation between 𝑀𝑆  and the 

topological characteristics of a grain.  

IV. Track grain faces between two successively collected HEDM 3D orientation maps.  

Construct features to describe the geometric, topological and local mean-field features of 

grain faces.   

V. Analyze the correlation between different features of a grain face.  Train machine 

learning models predict grain face area and the change of grain face area. 

VI. Study the anisotropy of grain face area and curvature change.   
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2.   Background 

2.1 Grain boundaries 

Polycrystalline materials consist of small crystallites, or grains, in which atoms adopt a uniform 

crystal structure.  When two grains meet, the periodicity of atomic positions is maintained within 

each grain until a few nanometers away from the grain boundary which can be thought of as a 

watershed [7].  The atoms sitting no more than a few nanometers away from the other grain are 

affected by it and their positions deviate from their ideal positions.  The distorted regions are 

called grain boundaries.   

In this chapter, the basic concepts that describe a single piece of grain boundary are 

introduced in Sections 2.1.1 and 2.1.2.  Then some special grain boundaries and classic models 

that capture the essence of grain boundary structures are discussed in Section 2.1.3.   

2.1.1 Parameterizations of grain boundary crystallographic parameters 

Grain boundaries have five macroscopic degrees of freedom, two for the grain boundary plane 

orientation and three for the lattice misorientation between the two grains across the boundary 

[8]. The grain boundary plane orientation is usually given by the spherical angles θ and φ, as 

shown in Figure 2.1.  

 

Figure 2.1.  Illustration of spherical angles θ and φ. n is the grain boundary plane normal 

direction. 

The misorientation is the rotation that can take the grain on one side of the boundary to 

coincidence with the grain on the other side.  There are many ways to parameterize a 
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misorientation, including rotation matrices, axis-angle pairs, quaternions, Rodrigues vectors and 

Euler angles. 

Rotation matrices (𝒈 ) are 3 ⨉ 3 orthogonal matrices which express passive rotations 

following the convention of microstructure analysis [9].  In other words, a rotation matrix 

describes the rotation that take sample reference frame into the corresponding crystal reference 

frame.  The rotation matrix of a cubic crystal can be written by putting direction cosines for 

[001], [010] and [100] directions as matrix rows.  The advantage of the rotation matrix 

parameterization is that the combination of successive orientations can be computed easily by 

matrix multiplication.  However, rotation matrices are kind of redundant.  It takes nine numbers 

to write a rotation matrix while there are only three degrees of freedom for a rotation.  In other 

words, the numbers in the rotation matrix are not independent.  

From Euler’s rotation theorem, there always exists an axis that remains unchanged after the 

rotation.  In other words, there is always a direction [𝑢𝑣𝑤] that has the same indices in the two 

crystal reference frames across the boundary.  The axis-angle pair notation defines the rotation 

by specifying this common direction (rotation axis) and the corresponding rotation angle. The 

rotation axis and angle can be computed from the rotation matrix as following [10]: 

 cos(ω) =  0.5 × (trace(𝒈) − 1) 

𝑢 =  
𝑔23 − 𝑔32

2𝑠𝑖𝑛 (𝜔)
, 𝑣 =  

𝑔31 − 𝑔13

2𝑠𝑖𝑛 (𝜔)
, 𝑤 =  

𝑔12 − 𝑔21

2𝑠𝑖𝑛 (𝜔)
 

(2.1) 

An alternative way to compute the rotation axis is from eigendecomposition of the rotation 

matrix.  The rotation axis is the eigenvector of the rotation matrix which corresponds to the 

eigenvalue +1 [9].  The axis-angle notion is intuitive.  Moreover, the misorientation angle is a 

simple but informative metric for the difference between two misorientations if the crystal 

symmetry, which will be discussed in detail in Section 2.1.2, is considered properly.  The 

shortcoming of axis-angle notion is that the rotation axis will become indistinguishable as the 

misorientation angle approaches zero.  Also, the combination of rotations in the axis-angle 

notion is not straightforward.  To combine two orientations, one needs to convert the orientations 

to rotation matrices or quaternions to do the computation and then convert the result back.  

Quaternions (𝐪 = [𝑞1, 𝑞2, 𝑞3, 𝑞4]) are four dimensional vectors. A unit quaternion can be 

written from the axis-angle pair notation following [11]: 
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 𝑞1 = 𝑐𝑜𝑠 (
ω

2
) , 𝑞2 = 𝑢 × 𝑠𝑖𝑛 (

ω

2
) , 𝑞3 = 𝑣 × 𝑠𝑖𝑛 (

ω

2
) , 𝑞4 = 𝑤 × 𝑠𝑖𝑛 (

ω

2
) (2.2) 

In which 𝑢, 𝑣, 𝑤 are the components of the normalized rotation axis and ω is the rotation angle.  

The L2 norm of quaternions is 1, namely 𝑞1
2 + 𝑞2

2 + 𝑞3
2 + 𝑞4

2 = 1.  Quaternion notion is compact 

and powerful because orientation combination follows the rule of complex number 

multiplication and is easy to compute [11].  The parameterization is getting more and more 

popular in various fields for fast and robust orientation conversion calculations [12], [13].  

Rodrigues vectors 𝑹 = [𝑅1, 𝑅2, 𝑅3] are also closely related to the axis-angle notation and 

contain three components.  Rodrigues vectors can be calculated from axis-angle pairs as [9]: 

 
𝑅1 = 𝑢 × 𝑡𝑎𝑛 (

𝜃

2
), 𝑅2 = 𝑣 × 𝑡𝑎𝑛 (

𝜃

2
), 𝑅3 = 𝑤 × 𝑡𝑎𝑛 (

𝜃

2
) (2.3) 

Notice Rodrigues vectors have length tan (
𝜃

2
). The advantage of the Rodrigues vector notion is 

related to the application of crystallographic symmetries and this will be discussed in detail in 

Section 2.1.2.   

Euler angles describe the orientation by a successive set of rotations around a fixed set of 

axes. The set of axes can be used differently but the most popular convention is the Bunge Euler 

notion, in which the axis set is 𝑍’𝑋’𝑍’ and rotation angles are (𝜑1, 𝛷, 𝜑2).  Note this axes set is 

defined in the current, not a fixed, reference frame.  In other words, if there exists a fixed 

reference frame 𝑋𝑌𝑍, the first 𝑍’ axis is the same as the 𝑍 axis but the second axis 𝑋’ is 𝜑1 away 

from 𝑋 since the coordinate frame has rotated around 𝑍’ for 𝜑1 in the first rotation.  Similarly, 

the second 𝑍’ axis doesn’t coincide with the 𝑍  axis.  Rotation matrices can be written from 

Bunge Euler angle notation in the following way [9]: 

𝒈𝝋𝟏
𝒁′

= [
𝑐𝑜𝑠 𝜑1 𝑠𝑖𝑛 𝜑1 0

−𝑠𝑖𝑛 𝜑1 𝑐𝑜𝑠 𝜑1 0
0 0 1

] , 𝒈𝜱
𝑿′

= [
1 0 0
0 𝑐𝑜𝑠𝛷 𝑠𝑖𝑛 𝛷
0 −𝑠𝑖𝑛 𝛷 𝑐𝑜𝑠 𝛷

] , 𝒈𝝋𝟐
𝒁′

= [
𝑐𝑜𝑠 𝜑2 𝑠𝑖𝑛 𝜑2 0

− 𝑠𝑖𝑛 𝜑2 𝑐𝑜𝑠 𝜑2 0
0 0 0

] 

 𝒈 = 𝒈𝛗𝟏
𝒁′

𝒈𝚽
𝑿′

𝒈𝛗𝟐
𝒁′

 (2.4) 

𝒈𝝋𝟏
𝒁′

, 𝒈𝜱
𝑿′

 and 𝒈𝝋𝟐
𝒁′

 are for the three successive rotations and 𝒈, the rotation (misorientation) of 

interest, is the matrix product of 𝒈𝝋𝟏
𝒁′

, 𝒈𝜱
𝑿′

 and 𝒈𝝋𝟐
𝒁′

.  The Euler angle convention is widely used to 
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record experimental data. [14, 15]  Notice 𝜑1 and  𝜑2 will become indifferentiable when 𝛷 is 

small.  

2.1.2 Bi-crystal symmetry and the grain boundary fundamental zone 

Parameterization of the five degrees of freedom enables us to define a grain boundary.  However, 

two grain boundaries with different parameters are not necessarily unique because of symmetry.  

The symmetry of grain boundaries is defined in the context of two three-dimensional component 

crystals containing a unique interface, namely the boundary plane, and is referred to as bi-crystal 

symmetry [16].   

Bi-crystal symmetry comes from the symmetry of the component crystals and is related to 

their relative orientations, or the misorientation, and the specific position of the boundary plane.  

While point symmetry always hold, there may or may not be one- or two- dimensional 

translation symmetry in the boundary plane depending on the misorientation and the plane 

normal [16], [17].  

Because of the symmetry elements, it is possible that grain boundaries with different 

parameters are physically identical.  It is well known that the crystallographic parameters have 

duplicates under crystal symmetry.  For example, [100] and [01̅0] are indistinguishable under 

cubic symmetry.  The duplications produced by bi-crystal symmetry are similar to those 

produced by crystal symmetry but are more complicated and can result in unnecessary confusion 

in the analysis of grain boundaries.  One way to avoid the duplication is to analyze only the grain 

boundaries in the fundamental zone (FZ), which originated from the concept of fundamental 

domain in topology.   

The misorientation FZ is also referred as the set of disorientations.  As discussed above, a 

misorientation can have many equivalent representations.  Disorientation is the name of a special 

misorietation whose rotation angle is the minimum among its equivalent representations and 

whose rotation axis lies in the standard stereographic triangle.  A physically distinct grain 

boundary can have many equivalent misorientation representations but one and only one of them 

lies in the FZ and can be called the disorientation.  The Rodrigues vector is the best 

parametrization to visualize the misorientation FZ (Figure 2.2). With the Rodrigues vector, the 

geometry of FZ can be expressed neatly as [18]: 
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 √2 − 1 ≥ 𝑅1 ≥ 𝑅2 ≥ 𝑅3 > 0 

𝑅1 + 𝑅2 + 𝑅3 ≤ 1 
(2.5) 

𝑅1, 𝑅2  and 𝑅3 are the three components of the Rodrigues vector.  In some other 

parameterizations like Euler angles, the misorientation FZs have distorted shapes and are 

difficult to illustrate.  

 

Figure 2.2.  The fundamental zone of cubic symmetry in Rodrigues space. (a) The outline of 

the truncated cube is the fundamental zone of orientation space. The red truncated tetrahedron 

is the fundamental zone of misorientation space, also known as the Mackenzie cell. (b) the 

Mackenzie cell. Figure reprinted from Reference [19]. 

Note that although we have just discussed the difference between the concept of 

misorientation and disorientation, many writers do not make this distinction and the term 

misorientation is often used to refer to disorientation.  To be consistent with such convention, 

both misorientation and disorientation mean disorientation in the following document unless the 

term symmetrically equivalent misorientation is mentioned. 

The grain boundary plane fundamental zone (GBPFZ) is associated with the common 

rotation axis and is more complicated.  In centrosymmetric crystals, all rotation axes in the bi-

crystal frame have inversion symmetry and thus the GBPFZ is at most a half sphere.  If the 

common rotation axis has extra symmetry, the GBPFZ will be reduced to a smaller region [9], 

[10].   

The exact grain boundary fundamental zone can be obtained by combining the misorientation 

fundamental zone and the boundary plane fundamental zone.  There is simulation evidence that 

the consideration of grain boundary plane fundamental zone reveals a stronger structure-property 



 8 

correlation than that of the misorientation fundamental zone [21].  However, usually only the 

misorientation fundamental zone is considered.  One reason is that the grain boundary plane 

fundamental zone depends on the symmetry of the rotation axis and is different for each 

misorientation.  Also, the duplications produced by in-plane symmetries are much fewer 

compared to those produced by lattice point group symmetries.  In the following discussions, the 

fundamental zone stands for misorientation fundamental zone in Rodrigues vector space and 

grain boundary plane distributions will be plotted on a hemisphere, even if this is larger than the 

GBPFZ.  

2.1.3 Classical models 

General grain boundaries have complicated structures.  Still, there are some simple but classical 

models that can help us build some intuition about the nature of grain boundary structures.  In 

following section, we’ll introduce tilt and twist boundaries, symmetric and asymmetric 

boundaries, low angle grain boundaries (LAGB) and high angle grain boundaries (HAGB), 

coherent and incoherent boundaries and the coincident site lattice (CSL) model.   

Tilt and twist are two elementary grain boundary types defined by the relative position of the 

misorientation axis and the grain boundary plane.  In tilt boundaries (Figure 2.3), the 

misorientation axis lies in the boundary plane.  In twist boundaries (Figure 2.4b), the 

misorientation axis lies normal to the boundary plane.   

 

Figure 2.3.  Illustration of a low angle symmetry tilt grain boundary constructed by edge 

dislocations. Figure reprinted from Reference [22]. 

Note a problem with this classification is that the twist and tilt nature is not definite but 

depends on the parameters.  Because one grain boundary can have different parameters due to 
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symmetry, it is possible that a grain boundary is classified as tilt by one set of parameter and 

twist by another set of parameter [23].  Also, natural grain boundaries are rarely perfect facets 

and have mixed tilt and twist characters.  Nevertheless, some bi-crystal experiments, in which 

the tilt/twist character is carefully controlled, have indicated that the grain boundary of the same 

misorientation but different tilt/twist character have more than 10 times different mobility at the 

same temperature [2]. 

According to the misorientation angle, grain boundaries can be classified into low angle grain 

boundaries (LAGBs) and high angle grain boundaries (HAGBs).  This classification is motivated 

by the assumption that small lattice mismatch, as in the case of LAGB, can be accommodated by 

dislocations.  The grain boundary shown in Figure 2.3 is a tilt LAGB.  Note that the set of 

dislocations in Figure 2.3 have the same Burgers vector and there is a reflection symmetry across 

the boundary.  In this case, the grain boundary is actually a symmetric tilt LAGB. An 

asymmetric tilt LAGB is shown in Figure 2.4a, in which there exists another set of edge 

dislocation of a different Burgers vector and the reflection symmetry is broken.  The grain 

boundary shown in Figure 2.4b constructed by two sets of crossing screw dislocations and has a 

twist character.  

 

Figure 2.4.  Illustration of (a) an asymmetric tilt grain boundary composed of two sets of edge 

dislocations and (b) a twist grain boundary composed of screw dislocations.  Figure reprinted 

from Reference [22]. 

It’s worth mentioning that the set of geometrically necessary dislocations needed to construct 

a LAGB boundary is determined by the lattice misorientation.  For example, in Figure 2.3, the 

dislocation separation 𝑑  is related to the misorientation angle 𝜃  and the dislocation Burgers 
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vector 𝒃 as 𝑡𝑎𝑛(
𝜃

2
) =

|𝒃|

2𝑑
, which can be simplified to 𝜃 =

|𝒃|

𝑑
 for small 𝜃 [24].  The magnitude of 

Burgers vector, |𝒃|, depends on the lattice parameter and is relatively stable.  As 𝜃 increases, the 

dislocations will be squeezed closer until their dislocation cores overlap and individual 

dislocations become indistinguishable.  In such case, the lattice dislocation model can no long be 

applied and the grain boundary becomes a HAGB.  The threshold misorientation angle that 

differentiates LAGBs and HAGBs is not deterministic, usually taken to be between 10° to 15° 

[19].   Some experiments have shown that there is a transition region between the highly ordered 

LAGB and the completely disordered general HAGB [2].   

Not all HAGBs have completely disordered structure.  Let’s ignore the grain boundary atoms 

for a moment and think only about the lattice sites.  When the two lattices meet at the interface, 

sometimes a portion of their lattice sites will overlap.  An example is given in Figure 2.5, in 

which the two lattices are misorientated by 36.87@[100].   

 

Figure 2.5.  Different views of a CSL lattice with 36.87@[100] (Σ5) misorientation. Right 

side: interface parallel to paper plane.  Left side: interface normal to paper plane. Red dashed 

line indicates a coherent boundary plane.  Blue dashed line indicates a incoherent boundary 

plane.  Reprinted from Reference [19].  

There are 3 motifs in Figure 2.5, triangles, circles and triangles inside circles.  The circle 

motif and the triangle motif stand for the two regular crystal lattice sites.  The triangle inside 
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circle motif stands for the common sites shared by both lattices.  Note the triangle inside circle 

motif forms a periodic lattice which has larger volume than the regular crystal lattices and is 

referred to as the coincident site lattice (CSL).  CSL lattices are named by the inverse coincident 

sites density as Equation 2.6.   

 
Σ =

volume of elementary CSL cell 

volume of elementary crystal lattice cell 
 (2.6) 

The lattice in Figure 2.5 is assigned as a Σ5 boundary.  Actually, all misorientations can result in 

some level of lattice coincidence and can be assigned a Σ number given two infinite lattices.  

However, Σ numbers of the general HAGBs are very large thus are not really informative. 

Remember the grain boundary type also depends on the boundary plane position.  It can be 

seen easily from the left side of Figure 2.5 that the a grain boundary with its boundary plane 

lying along the red dashed line is different from one with its boundary plane lying along the blue 

dashed line.  In the former case, the boundary is coherent as the two crystals match perfectly at 

the interface. In the latter case, the boundary is incoherent and the atomic structure at the 

interface is rather disordered.  

Real atoms on grain boundaries are relaxed and generally won’t sit on the exact perfect 

lattice position as in Figure 2.5.  However, it’s still legitimate to assume that atoms will stay 

close to the perfect lattice position, especially when the boundary plane is coherent and the 

coincident cite density is high.  There has been plenty experimental evidence showing that low Σ 

CSL coherent boundaries have relatively low energy and small activation enthalpy, especially 

the Σ3 in FCC material [25][26]. 

2.2 Grain boundary distributions 

Like all high dimensional spaces, the 5D grain boundary space can’t be presented directly in our 

3D world with full details.  The way to interpret the statistical information of grain boundary 

properties is to project them into lower dimension distributions.  In the following section, some 

existing grain boundary property distributions will be introduced, including the grain boundary 

disorientation angle distribution, grain boundary plane distribution (GBPD), grain boundary 

character distribution (GBCD) and grain boundary energy distribution (GBED). 
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2.2.1 Grain boundary disorientation angle distribution 

The simplest grain boundary distribution is the 1D disorientation angle (θ) distribution, for which 

the misorientation axes and grain boundary plane inclinations are ignored.  There are two points 

about the disorientation angle distribution.  The first one is that the largest disorientation angle is 

not 360° but varies for materials with different symmetry.  This document will focus on cubic 

materials whose largest possible disorientation angle is 62.8°.  The second point is that a random 

distribution of disorientation angles doesn’t look uniform. 

The random disorientation angle distribution was first presented by Mackenzie [27][28].  He 

showed that if a large number of points were sampled randomly in the grain boundary space, 

their disorientation angle distribution would peak at 45°, as show in Figure 2.6.   

 

Figure 2.6.  The grain boundary disorientation angle distribution sampled from random 

orientation distribution.  Figure reprinted from Reference [26]. 

The shape of the disorientation angle distribution is associated with the shape of grain 

boundary fundamental zone Figure 2.2.  The geometrical interpretation is as follows: if we 

intersect the FZ with a sphere of increasing radius, the intersections will correspond to contours 

of disorientation angles.  The intersection area would increase with the sphere radius until the 

first corner of the FZ, which corresponds to 45°/[100], is reached. The angle 45° stems from the 

4-fold symmetry of the [001] axis.  The intersection area will then start to decrease and reach 

zero when the last corner of the FZ is reached, which corresponds to a radius of 𝑡𝑎𝑛(
62.8°

2
).  A 

sphere of even larger radius will then sweep out the fundamental zone. 
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2.2.2 Grain boundary plane distribution 

The grain boundary plane distribution (GBPD) is the distribution of grain boundary area as a 

function of boundary plane, irrespective of the lattice misorientaions.  The reference frame is the 

crystal frame and GBPDs are presented in standard stereographic triangles.  Each grain boundary 

sits between two lattices and is converted to both crystal frames.  Only the crystal lattice 

symmetry, not the bi-crystal symmetry, needs to be considered because misorientation is ignored 

in GBPDs.  The distribution is normalized after all boundaries are counted to eliminate bias from 

the varying number of observations in different experiments.  The unit is multiples of random 

distribution (MRD), which indicates the relative areas in a normalized distribution.  The relative 

area expected in a random distribution is 1 MRD, higher and lower values correspond to 

boundaries that are over and underrepresented, respectively. 

2.2.3 Grain boundary character distribution 

The grain boundary character distribution (GBCD) is the distribution of grain boundary area as a 

function of the full five parameters.  Due to the 2D space limitation of paper, it’s usually 

presented as the grain boundary plane areas for a fixed misorientation.  Unlike GBPDs, GBCDs 

counts for the full five parameters and needs to consider the bi-crystal symmetry.  As mentioned 

in Section 2.1.2, there can exist some in-plane symmetry but it is fully enforced when computing 

the distribution and is obvious in the plots.  As a result, GBCDs are always presented in the full 

stereographic projection circles.  The unit is also MRD.   

To compute the GBCD, one needs to first choose the parameterization for the five degrees of 

freedom.  For the plane normal, the choice is fairly easy and is usually the spherical angles.  For 

the misorientations, it’s more complicated because of its 3D nature and the fact that one needs to 

take into account the bi-crystal symmetry.  The Rodrigues vector is one choice but there are two 

problems with it.  First, the partition of the parameters should be uniform but it’s not easy to 

realize within the Rodrigues vector fundamental zone.  The problem of segmenting the 

Rodrigues vector fundamental zone equally is essentially the same as dividing an irregularly 

shaped 3D object uniformly, for which there is no available analytic solution.  Second, the 

misorientation axes of LAGBs are indifferentiable.  Another choice is the Euler angles, first 

applied by Rohrer et. al. [29].  This is the convention that we are going to use for the grain 

boundary curvature distribution and it will be described in detail in Section 3.2. 
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It is worth noting that segmenting the full five parameters is not the only way to represent 

GBCD.  As a matter of fact, the smoothness of GBCD is undermined due to the finite resolution 

of segmentation.  Glowinski presented an alternative kernel based estimation of the GBCD [30] 

which surpasses the parameter segmentation by looking directly for grain boundary plane 

distributions of a fixed misorientation.  The kernel based method shows better smoothness and 

sharper peaks for some small Σ CSL boundaries.  However, the information in the full five 

parameter space is not integrated and the method can be slow if one is interested in many 

misorientations because the kernel based method searches for only a single misorientation each 

time.  The qualitative trends in the distribution are consistent in the partition based and the kernel 

based method.    

2.2.4 Grain boundary energy distribution 

The grain boundary energy distribution (GBED) is the distribution of grain boundary energy, or 

more precisely the excess free energy associated with grain boundaries, as a function of the five 

crystallographic parameters.  Grain boundary energy plays an important role in microstructure 

evolution since it provides the driving force for grain boundary migration [31][32]. 

It is well-accepted that the grain boundary energy is correlated to its crystallographic 

parameters [33]–[35].  Grain boundaries can be classified into two types depending on the local 

energy landscape: the singular boundaries, whose energy sits in local cusp, and non-singular 

boundaries, whose energy varies smoothly with the crystallographic parameters.  The energy of 

singular boundaries is exceptionally low at its exact crystallographic parameters, and changes 

dramatically with any small deviation in the crystallographic parameters.  In other words, the 

energy derivative is infinite, or un defined at the singular boundaries [31].  An example of 

singular boundaries is the coherent twins in FCC material [36]. 

There is no efficient way to estimate the energy of a grain boundary, unless it is a LAGB.  

The energy of LAGBs can be estimated directly from their misorientation angle, because a 

LAGB can be approximated by a set of dislocations, as shown in Section 2.1.3.  The dislocation 

core energy can be calculated given the Burgers vector and number of dislocations can be 

estimated from the misorientation angle using the LAGB dislocation model.  However, until now, 

there has been no simple deterministic model that can predict the energy of general HAGBs [32].  

There are two ways to obtain the grain boundary energy data: experimental measurements and 

molecular-dynamics simulation.  
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The experimental measurement of relative grain boundary energy is based on the assumption 

that local equilibrium prevails during grain growth at high temperatures.  As a result, when three 

grain boundaries meet at a triple junction, their tug of war results zero net force along the triple 

junction.   

A simple case is illustrated in Figure 2.7b.  If the vicinity of the grain boundary energy 

landscapes is smooth and the grain boundaries can’t reduce a significant amount of energy by 

rotation, the force balance will then involve only the balance of grain boundary surface tensions, 

which can be described by Young’s equations: 

 𝛾1 

𝑠𝑖𝑛 𝜃2,3 
=

𝛾2 

𝑠𝑖𝑛 𝜃1,3 
=

𝛾3 

𝑠𝑖𝑛 𝜃1,2 
 (2.7) 

𝛾 is the magnitude of grain boundary energy.  𝜃 is the angle between the grain boundaries and is 

called the dihedral angle.  The relative values of 𝛾1, 𝛾2 and 𝛾3 can be decoded by measuring 

dihedral angles and applying Equation 2.7.   

 

Figure 2.7.  Illustrations of the balance of interfacial energies at triple junctions.  (a) The full 

balance of surface tensions and torque forces. (b) The balance of surface tensions ignoring the 

torque forces.  Reprinted from Reference [31]. 

However, the assumption that grain boundaries can’t reduce a significant amount of energy 

by rotation is usually not valid.  First, grain boundary energy is generally anisotropic so the 

tendency of a grain boundary to change its orientation, which can be quantified as its associated 

torque, is not rare.  Second, the grain boundary energy landscape is not smooth.  There exist 

cusps in the energy landscape which correspond to grain boundaries of exceptionally low energy.  

For example, the coherent twin boundary in FCC materials [32][37].  The grain boundaries 
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sitting in the vicinity the cusps have a strong tendency to rotate themselves towards the low 

energy direction, which can result in torques of large magnitude.  A complete description of 

equilibrium condition requires the balance of both surface tensions and torque forces and is given 

in the Herrings equation： 

 

∑(𝛾𝑖𝒕𝒊 + 
𝜕𝛾𝑖  

𝜕𝒕𝒊 
) = 0

3

𝑖=1

 (2.8) 

𝒕𝒊  is the grain boundary trace direction in a plane normal to the triple junction.  
𝜕𝛾𝑖 

𝜕𝒕𝒊 
 is the 

direction orthogonal to both the boundary normal and the triple junction direction.  This equation 

can be written more concisely with capillary vectors as:  

 (𝝃𝟏 + 𝝃𝟐 + 𝝃𝟑) ×  𝒍 = 0 (2.9) 

𝝃𝟏, 𝝃𝟐 and 𝝃𝟑 are the capillary vectors defined by Cahn and Hoffman [38], [39] 

 
𝝃 =  𝛾𝒏 + (

𝜕𝛾 

𝜕𝜃 
)
𝑚𝑎𝑥

𝒌0 (2.10) 

In which 𝒏 is the grain boundary normal direction. d𝜃 is the orientation change in the boundary 

plane and 𝒌0 is the direction for which the angular rate increase of 𝛾 is the maximum.   

Each triple junction gives one specific case of Equation 2.9.  There are many triple junctions 

in a sample and the same grain boundary, or grain boundaries with the same crystallographic 

parameters, can appear in many triple junctions.  Solving the equations simultaneously will then 

yield the relative grain boundary energy distribution in the sample [40].  Rohrer et al. have 

extracted grain boundary energy data from several materials via this approach [41]–[43]. 

Molecular-dynamics (MD) simulation is another approach to obtain grain boundary energy 

data.  In theory, the analytic solution of a solid can be obtained by solving the corresponding 

many electron Schrodinger equation but the calculation is impedingly complicated.  Practical 

calculations are based on models with reasonable assumptions and simplifications, among which 

the embedded atom method (EAM) is a popular one.  The EAM model works well in systems 

with low symmetry, such as grain boundaries.  Reference [44] is a good review paper on EAM 

and the points about the model is summarized below.   
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In a simple case, the EAM model makes the assumption that the total energy of solids can be 

approximated by an embedding energy plus an electrostatic interaction.  The electrostatic 

interaction is basically a sum of all pair potentials as in the Lennard-Jones model.  The 

embedding energy accounts for the interaction of an atom with the background electron gas 

provided by its neighbors.  Its magnitude can be determined empirically by fitting experimental 

or DFT data.  Put together,  

 

𝐸𝑐𝑜ℎ = ∑𝐺𝑖 (∑𝜌𝑗
𝑎

𝑗≠𝑖

(𝑅𝑖𝑗))

𝑗

+ 
1

2
∑ 𝑈𝑖𝑗

𝑖,𝑗(𝑗≠𝑖)

(𝑅𝑖𝑗) (2.11) 

𝐸𝑐𝑜ℎ is the cohesive energy.  𝐺 is the embedding energy.  𝜌𝑎 is the spherically averaged atomic 

electron density.  𝑅𝑖𝑗 is the distance between atom i and j.  𝑈 is the pair potential.  With the EAM 

model, the system energy is written as a function of atom positions which can then be optimized 

simply.  One thing to note about calculating grain boundary structure based on EAM and energy-

minimization is that initialization is important.  Though the grain boundaries are usually defined 

by the five macroscopic parameters, the five parameters are actually not enough to capture the 

full details of the exact grain boundary atomic structure because the microscopic shifts can still 

vary.  Because energy-minimization techniques like conjugate gradient descent finds only local 

minima, different initializations which correspond to different microscopic shifts need to be tried 

for a given grain boundary to find an optimal minima.   

The steps to compute the grain boundary energy using an EAM model are as follows.  First, 

one needs to construct the atomistic structure of the grain boundary from its five macroscopic 

parameters by placing together two blocks of atoms following the given misorientation and 

boundary plane orientation.  Atoms being too close to the boundary are deleted.  Then the 

boundary conditions, which can be set as periodic in all directions or free surface parallel to the 

boundary plane, are specified.  Finally, the energy minimization algorithm is specified and the 

structure is allowed to evolve by itself, during which the atoms sitting on the grain boundary are 

relaxed and can move around locally to approach the minimum energy configuration.  Olmsted 

and Holm et al. investigated a large number of grain boundaries systematically by an EAM 

model with empirical interatomic potential [34][35].  Interestingly, the grain boundary energy 
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calculated by Olmsted and Holm et al., correlated well with the GBCD measured experimentally 

by Rohrer et al., [25][45].  

2.3 Curvature basics 

Curvature is an important concept in many fields.  From a materials science point of view, 

curvature plays a key role in deriving the equilibrium condition in a system with interfaces [31], 

[46].  From a mathematic point of view, curvature captures the essence of a general geometric 

shape and lies at the heart of differential geometry.  For example, two plane curves are congruent 

if and only if the signed curvature at all points of the two plane curves are equal [47].  In the 

following section, we’ll first go over some basic concepts in differential geometry that are 

related to our interest, including plane curves, space curves, surfaces and curvatures.  Then the 

interaction between curvature and other thermodynamic properties will be discussed.   

2.3.1 Differential geometry basics 

Differential geometry is a profound field which concerns the smoothness and properties of 

manifolds in high dimensions.  To avoid unnecessary confusion, we’ll restrict ourselves to 2D 

and 3D spaces in the following discussion.  Let’s begin with the simple case of a differentiable 

plane curves in two dimensions.  A curve α can exist in arbitrary dimensions but essentially has 

only one degree of freedom, which we’ll parameterize with 𝑠, the arc length of the curve.  Note 

choosing of the parameter is not trivial because parameterization affects the numerical 

complexity of differential equation [48].  Arc length is the most elegant choice for the 

parameterization because it guarantees that the key properties, like curvature, of the 

parameterized curve stays invariant.  In three-dimensional Cartesian coordinates, the expression 

for the curve 𝛼  is then 𝛼(𝑠) = (𝑥(𝑠), 𝑦(𝑠)).  The unit tangential vector of 𝛼(𝑠) at 𝑠  is then 

defined as 𝒕(𝑠) =  𝛼′(𝑠), where the prime denotes derivative.  The normal vector at 𝑠 is defined 

as 𝒏(𝑠) =
𝛼′′(𝑠)

||𝛼′′(𝑠)||
, in which ||𝛼′′(𝑠)|| denotes the norm of 𝛼′′(𝑠).  𝒏(𝑠) is, of course, orthogonal 

to 𝒕(𝑠).   

A concept more relevant to our purpose of interest is the space curve on a surface.  A surface 

is two dimensional and can be parameterized with two parameters, for which the convention is 

(𝑢, 𝑣).  A space curve embedded in the surface can still be parameterized with its arc length as 

𝛼(𝑠) = (𝑢(𝑠), 𝑣(𝑠)).  For a space curve, apart from the tangent vector 𝒕(𝑠) and the normal 
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vector 𝒏(𝑠), there is another important vector which is the binormal vector 𝒃(𝑠), defined as 

𝒃(𝑠) = 𝒕(𝑠) × 𝒏(𝑠) .  ×  denotes cross product.  The ordered triplet of unit vectors 

(𝒕(𝑠), 𝒏(𝑠), 𝒃(𝑠)) is called the Frenet frame of 𝛼 at 𝛼(𝑠) [47] and their spatial arrangement is 

illustrated in Figure 2.8.  The osculating plane is the plane spanned by 𝒕(𝑠) and 𝒏(𝑠).  The 

tangent plane is the plane spanned by 𝒕(𝑠) and 𝒃(𝑠).   

 

Figure 2.8.  Illustration of (a) local Frenet frame. (b) osculating circle and radius of curvature.  

Reprinted from Reference [45]. 

A surface is usually denoted as ℱ(𝑢, 𝑣) , which can be expressed as ℱ(𝑢, 𝑣) =

(𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣), 𝑧(𝑢, 𝑣)) in 3D Cartesian coordinates.  The surface properties of a surface are 

encapsulated its fundamental forms [49].   

The first fundamental form captures the intrinsic property of the surface by expressing the 

square arc length between two infinitely close points P(𝑢0, 𝑣0) and P’(𝑢0 + 𝑑𝑢, 𝑣0 + 𝑑𝑣) in 

terms of 𝑑𝑢 and 𝑑𝑣.  Using first order approximation, 𝑑𝑠2 = (ℱ𝑢𝑑𝑢 + ℱ𝑣𝑑𝑣)(ℱ𝑢𝑑𝑢 + ℱ𝑣𝑑𝑣) =

 ℱ𝑢 ∙ ℱ𝑢𝑑𝑢2 + ℱ𝑢 ∙ ℱ𝑣𝑑𝑢𝑑𝑣 + ℱ𝑣 ∙ ℱ𝑣𝑑𝑣2 , in which ℱ𝑢 =
𝜕ℱ(𝑢0,𝑣0)

𝜕𝑢
 and ℱ𝑣 =

𝜕ℱ(𝑢0,𝑣0)

𝜕𝑣
.  The 

coefficients are denoted as E, F, G by convention: 

 𝐸 = ℱ𝑢 ∙ ℱ𝑢 = 𝑥𝑢
2 + 𝑦𝑢

2 + 𝑧𝑢
2 

𝐹 =  ℱ𝑢 ∙ ℱ𝑣 = 𝑥𝑢𝑥𝑣 + 𝑦𝑢𝑦𝑣 + 𝑧𝑢𝑧𝑣 

𝐺 = ℱ𝑣 ∙ ℱ𝑣 = 𝑥𝑣
2 + 𝑦𝑣

2 + 𝑧𝑣
2 

(2.12) 

The expression for the first fundamental form of ℱ is then: 

 𝐼 = 𝐸𝑑𝑢2 + 𝐹𝑑𝑢𝑑𝑣 + 𝐺𝑑𝑣2   (2.13) 
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The second fundamental form captures the extrinsic property of the surface by expressing the 

distance from P’(𝑢0 + 𝑑𝑢, 𝑣0 + 𝑑𝑣) to the tangential plane to P(𝑢0, 𝑣0), which gives us an idea 

of how curved the surface is.  Here we need the second order approximation for the vector 𝑃𝑃′⃗⃗ ⃗⃗ ⃗⃗   

between P and P’: 𝑃𝑃′⃗⃗ ⃗⃗ ⃗⃗  =  ℱ𝑢𝑑𝑢 + ℱ𝑣𝑑𝑣 +
1

2
(ℱ𝑢𝑢𝑑𝑢2 + 2ℱ𝑢𝑣𝑑𝑢𝑑𝑣 + ℱ𝑣𝑣𝑑𝑣2).   Project 𝑃𝑃′⃗⃗ ⃗⃗ ⃗⃗   

onto the surface normal 𝒏 at P by taking the inner product and the terms containing ℱ𝑢 and ℱ𝑣 

will then vanish: 𝑃𝑃′⃗⃗ ⃗⃗ ⃗⃗  ∙ 𝒏 =
1

2
(ℱ𝑢𝑢 ∙ 𝒏𝑑𝑢2 + 2ℱ𝑢𝑣 ∙ 𝒏𝑑𝑢𝑑𝑣 + ℱ𝑣𝑣 ∙ 𝒏𝑑𝑣2) .  Denote the 

coefficients by 𝐿,𝑀, 𝑁 and the second fundamental form of the surface is then: 

 𝐼𝐼 = 𝐿𝑑𝑢2 + 𝑀𝑑𝑢𝑑𝑣 + 𝑁𝑑𝑣2   (2.14) 

From the coefficients of the two fundamental forms, we can write the Weingarten matrix: 

 

𝑾 = [
𝐸 𝐹
𝐹 𝐺

]
−1

[
𝐿 𝑀
𝑀 𝑁

] =  [

𝐿𝐺 − 𝑀𝐹

𝐸𝐺 − 𝐹2

𝑀𝐺 − 𝑁𝐹

𝐸𝐺 − 𝐹2

𝑀𝐸 − 𝐿𝐹

𝐸𝐺 − 𝐹2

𝑁𝐸 − 𝑀𝐹

𝐸𝐺 − 𝐹2

]  (2.15) 

The Weingarten matrix gives the relationship of two fundamental properties of the surface, the 

normal curvature and the tangent line direction.   

Let’s first step back to define the normal curvature of space curves.  A simpler analogy of 

normal curvature, which is defined for space curve in 3D space, is the curvature of a plane curve 

defined in 2D space.  The curvature of a plane curve at 𝛼(𝑠), denoted as 𝜅(𝑠), is given by 

𝛼′′(𝑠) = 𝜅(𝑠)𝒏(𝑠).  The magnitude of the curvature is ||𝛼′′(𝑠)||, which has an equivalent and 

more intuitive expression as the inverse radius of the osculating circle 𝜅(𝑠) =
1

𝑟
, as illustrated in 

Figure 2.8b.  Note that curvatures have signs, which are related to the direction of 𝒏(𝑠) .  

Similarly, normal curvature for a space curve in 3D space is defined as the component of 𝛼′′(𝑠) 

in the direction normal to ℱ.  While a point on a 2D plane curve has only one definite curvature, 

a point on a 3D surface has a set of normal curvatures which correspond to the family of space 

curves intersecting at that point.  On Figure 2.8, a space curve is the intersection of the surface 

and a given osculating plane.  The family of space curves can be acquired by rotating the 

osculating plane around the plane normal for 180°.  At a point (𝑢0, 𝑣0) , given the tangent 

directions (ℱ𝑢 , ℱ𝑣) and the Weingarten matrix, the normal curvature can be written as: 
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𝜅𝑛 =  [ℱ𝑢 ℱ𝑣]𝑾 [

ℱ𝑢

ℱ𝑣
] (2.16) 

The eigenvalues of the Weingarten matrix give the two extreme values of 𝜅𝑛 at (𝑢0, 𝑣0) and the 

two extremals are called the principle curvatures.  The corresponding eigenvectors give the 

principal directions.   

The mean curvature 𝐻 is the mean value of the two principal curvatures and the Gaussian 

curvature 𝐺  is the product of the two principal curvatures. With the osculating circle radius 

notion, if the two principle curvatures at the point of interest are 𝑟1 and 𝑟2 then 𝐻 =
𝑟1+𝑟2

𝑟1𝑟2
 and 

𝐺 =
1

𝑟1𝑟2
.  𝐻 and 𝐺 can also be written from the trace and determinate of the W: 

 
𝐻 = 

1

2
𝑡𝑟(𝑾) =

1

2

𝐿𝐺 + 𝑁𝐸 − 2𝑀𝐹

𝐸𝐺 − 𝐹2
 

𝐾 =  𝑑𝑒𝑡(𝑾) =
𝐿𝑁 − 𝑀2

𝐸𝐺 − 𝐹2
 

(2.17) 

2.3.2 Curvature in thermodynamic equilibrium 

The equilibrium condition in a system containing a curved surface is related to the geometry of 

that surface because intensive surface properties interact with intensive volumetric properties 

through curvature.  In this section, we’ll follow the derivation in Reference [46].  First, the way 

curvature relates to different properties will be reviewed.  Then an over simplified 

thermodynamic system will be analyzed to build some intuition about the importance of 

curvature. 

The unit of surface energy is “per area”, which is different from the “per volume” unit of 

other thermodynamic intensive variables.  However, the two units can be related to one another 

with help of curvature.  Consider an infinitely small smooth surface patch as in Figure 2.9.  Then 

𝒗 and 𝒖 are the two principal directions and 𝑟1 and 𝑟2 are the radii of the two principal curvatures.  

𝑑𝜑1 and 𝑑𝜑2 are infinite small so the arc lengths are approximately 𝑟1𝑑𝜑1 and 𝑟2𝑑𝜑2.  The area 

of the initial surface is 𝐴0 = 𝑟1𝑑𝜑1𝑟2𝑑𝜑2.  Now move this surface along the normal direction (𝑛) 

for an infinite small distance 𝛿𝑛.  Then the new surface area 𝐴1 = (𝑟1 + δn)𝑑𝜑1(𝑟2 + δn)𝑑𝜑2 

and the change in area is δA =  𝐴1 − 𝐴0 = (𝑟1 + 𝑟2)δn𝑑𝜑1𝑑𝜑2 + 𝑂(δn2).  The second order 
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term 𝑂(δn2) can be neglected.  Note the first order approximation for volume change is 𝛿𝑉 =

𝑟1𝑟2δn𝑑𝜑1𝑑𝜑2.  Thus, 

 
𝛿𝐴 =

(𝑟1 + 𝑟2)

𝑟1𝑟2
𝑟1𝑟2δn𝑑𝜑1𝑑𝜑2 = 2𝐻𝛿𝑉 (2.18) 

𝛿𝑉 is related to 𝛿𝐴 by the mean curvature 𝐻.  The physical meaning of this expression is that the 

volume swept by a small patch of surface is related to its area change by its curvature.  

Now we’ll go through Gibb’s derivation for the thermodynamic equilibrium for a system 

with a curved surface.  Consider an isolated system that consists of two phases 𝛼, 𝛽 and a curved 

surface s in the middle.  Generally, the immediate volume beneath the surface will be affected by 

the surface and a transition region exists.  Dealing with the transition region can be complicated 

so Gibbs imagined a hypothetical system in which there is no transition region and the interface 

is a straight dividing plane.  All the extensive properties of the two phases are continuous and 

uniform until the dividing plane.  Then all the excess properties associated with the transition 

region are assigned to the dividing plane as surface excess properties, so this hypothetical system 

has the same total properties as the original isolated system.   

 

Figure 2.9.  An infinite small patch of a smooth surface.  𝒏 is the plane normal direction.  𝒖 

and 𝒗 are the principle directions.  𝑟1 and 𝑟2 are radii of curvature and the point P.  Reprinted 

from Reference [45]. 

For above mentioned the system of 𝛼, 𝛽 and s, the following conclusions can be reached 

following the first law of thermal dynamics in an isolated system：  

 𝑑𝑈𝑠𝑦𝑠 = 𝑑𝑈𝛼 + 𝑑𝑈𝛽 + 𝑈𝑠𝑑𝐴 = 0 

𝑑𝑉𝑠𝑦𝑠 = 𝑑𝑉𝛼 + 𝑑𝑉𝛽 + 𝑉𝑠𝑑𝐴 = 0 
(2.19) 
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𝑑𝑛𝑘,𝑠𝑦𝑠 = 𝑑𝑛𝑘
𝛼 + 𝑑𝑛𝑘

𝛽
+ 𝑛𝑘

𝑠𝑑𝐴 = 0 

𝑈 denotes internal energy.  𝑉 denotes volume volume.  𝐴 denotes area.  𝑛𝑘 denotes the number 

of moles of component 𝑘.  Note 𝑉𝑠 = 0 because the surface is a dividing plane and has no 

volume.  The equilibrium condition for this isolated system is maximum entropy (𝑆 ), or 

equivalently, 𝑑𝑆𝑠𝑦𝑠 = 𝑑𝑆𝛼 + 𝑑𝑆𝛽 + 𝑆𝑠𝑑𝐴 = 0.  For each phase, 𝑑𝑆 =  
𝑑𝑈

𝑇
+

𝑃

𝑇
𝑑𝑉 − ∑

𝜇

𝑇
𝑑𝑛𝑘

𝑐
𝑘=1  

hold.  𝑇 is temperature and 𝑃 is preassure.  We can then write all the properties of 𝛽 in terms of 

𝛼 and 𝑠 according to Equation 2.19, one can get: 

 
𝑑𝑆𝑠𝑦𝑠 = (

1

𝑇𝛼
−

1

𝑇𝛽
) 𝑑𝑈𝛼 + (

𝑃𝛼

𝑇𝛼
−

𝑃𝛼

𝑇𝛽
) 𝑑𝑉𝛼 + ∑ (

𝜇𝑘
𝛼

𝑇𝛼
−

𝜇𝑘
𝛽

𝑇𝛽
)𝑑𝑛𝑘

𝛼

𝑐

𝑘=1

+ (𝑆𝑠 −
𝑈𝑠

𝑇𝛽
− ∑

𝜇𝑘
𝛽

𝑇𝛽
𝑛𝑘

𝑠

𝑐

𝑘=1

)𝑑𝐴 

(2.20) 

Remember 𝑑𝐴  can be related to 𝑑𝑉  through Equation 2.18.  The sign of curvature can be 

arbitrary but the convention is to define it as positive when the surface is convex relative to the 𝛽 

phase.  Plug 𝑑𝐴 = 2𝐻𝑑𝑉𝛽 = − 2𝐻𝑑𝑉𝛼 into Equation 2.20 and we’ll get  
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(2.21) 

Remember the equilibrium condition is that the coefficients of 𝑑𝑈, 𝑑𝑉 and 𝑑𝑛 all vanish such 

that 𝑑𝑆𝑠𝑦𝑠 = 0.  In other words, the thermal equilibrium, mechanical equilibrium and chemical 

equilibrium achieve at the same time so the system is in overall equilibrium.  In Equation 2.21, 

we can see that the thermal equilibrium condition 𝑇𝛼 = 𝑇𝛽  and the chemical equilibrium 

condition 𝜇𝑘
𝛼 = 𝜇𝑘

𝛽
 are the same as in a system without the surface.  However, the mechanical 

equilibrium condition is changed due to the existence of the surface and curvature is the key to 

relate the surface and volumetric properties. 
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2.4 Grain boundary migration and grain growth 

We have seen that the thermodynamic conditions of a system are changed by the presence of 

surface from a hypothetical isolated system in the previous section.  Perfect global 

thermodynamic equilibrium can never be truly achieved in polycrystals because grain boundaries 

are not thermodynamic equilibrium structures [50].  Nevertheless, a legitimate assumption which 

laid the foundation of grain boundary migration analysis is that local equilibrium prevails in the 

system at high temperature.  Note that all of the following discussions of local migration are 

restricted to the context of high temperature and no noticeable dragging effect so that the 

migration constraints are minimized [31].  In such a context, a small piece of smooth non-

singular grain boundary will migrate towards its local curvature center.  Another important class 

of grain boundary is the singular boundaries, or facets.  The migration of singular boundaries is 

different from that of the smooth boundary though the driving forces of both is same, which is 

the reduction in total grain boundary energy.  Finally, grain boundaries don’t stand alone but are 

connected in a network.  The evolution of the network is affected by both the motion of 

individual grain boundaries and the topological constraints on connections.  The spontaneous 

evolution of the grain boundary network at high temperature is also referred to as grain growth 

because the cooperative motion of all boundaries always results in an increase of the average 

grain size.  In the following section, we’ll first go over the local migration of the general smooth 

grain boundaries and then the motion of singular boundaries in Section 2.4.1.  Then theories of 

individual grain growth and some classic models for collective growth of multiple grains are 

summarized in Sections 2.4.2 to 2.4.4. 

2.4.1 Chemical potential in the vicinity of grain boundaries  

The elementary process of the grain growth is the migration of atoms from one position to 

another following local energy variations.  Thus, understanding the energy variation in 

polycrystalline materials is essential to understand microstructure evolution.  But what’s the 

source of energy variation during grain growth?  The answer is: grain boundaries.  Grain 

boundaries have anisotropic energy and their geometries (curvatures), inherited from the initial 

microstructure, are non-uniform.  Herring realized the important role of grain boundaries in 

volumetric energy variations and derived the chemical potential for a small volume immediately 
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beneath a grain boundary [31].  Note smooth boundaries and singular boundaries needs to be 

treated differently and we’ll go through details of the general smooth boundaries only.  

The system in Herring’s derivation is a quasi-ideal crystal, which is an ideal solution of 

material atoms and point defects without dislocations.  The fundamental assumption is that atoms 

move fast enough during grain growth so that thermodynamic equilibrium always holds within a 

small enough of region of the system.  In other words, within an infinitely small region, the 

system is in its minimum energy state so the total energy change is zero with respect to any 

infinitely small property fluctuation.  Now consider a small volume containing a piece of grain 

boundary.  If an infinitely small hump is built on the grain boundary, there will be a small change 

in the boundary normal direction (𝛿𝒏) and a small change in the grain boundary area (𝛿𝑑𝑆).  The 

total energy change in grain boundary energy is given by 𝛿 ∫𝛾(𝒏)𝑑𝑆 =∫𝛿𝛾(𝒏)𝑑𝑆0 +

∫𝛾(𝒏)𝛿𝑑𝑆.  The second term in this equation accounts for the energy contribution from area 

change assuming the grain boundary energy stays the same and is thus the same as the derivation 

in 2.3.2.  The first term accounts for the fact that because grain boundary energy is a function of 

grain boundary crystallographic parameters, change of grain boundary normal direction 𝒏 will 

result in a change of grain boundary energy.  Note 𝛾 is generally a function of both misorientaion 

and boundary normal direction but misorientation is fixed in current case.  The value of the two 

terms are given by: 

 
∫𝛾(𝒏)δ𝑑𝑆 = 𝛾 (

1

𝑅1
+

1

𝑅2
)δV 
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2

1
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) δV 

(2.22) 

Subscripts 𝒙 and 𝒚 denotes the principle directions at the point of interest.  Detailed derivation 

can be found in [31].  This change in surface energy has to be balanced with a change in volume 

energy, which is given by.  

 
−𝑝𝛿𝑉 + 𝜇ℎ

𝛿𝑉

𝛺0
 (2.23) 

In which 𝑝 is the effective pressure caused by the surface tension of the grain boundary.   𝜇ℎ is 

the chemical potential of point defects.  𝛺0 is the atomic volume so 
𝛿𝑉

𝛺0
 is the number of migrated 

atoms.  This pressure is not uniformly distributed in the crystal.  Nevertheless, we’ll assume that 
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it operates in a way similar to the hydrostatic pressure in the region immediately near the grain 

boundary.  The second term arise from the fact that a change in the grain boundary shape is 

possible only if some atoms have migrated.  The matter transportation mechanisms, volume 

diffusion and surface diffusion, are conservative so the migration of a set of atoms is equivalent 

to the migration of an equal amount of point defects in the opposite direction.  Setting the sum of 

surface energy change and volume energy change to be zero and realizing that the grain 

boundary energy in the volume is given by 𝜇 = 𝜇0 + 𝑝𝛺0, where 𝜇0 is the reference chemical 

potential, one gets the extra chemical potential in a volume immediately near the grain boundary： 

 
𝜇 − 𝜇ℎ − 𝜇0 = (𝛾 (
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(2.24) 

The beauty of Equation 2.24 is that the extra chemical potential is completely determined from 

the local boundary geometry.  Equation 2.24 is exact but the stiffness terms are difficult to 

measure in practice.  A simplified expression which is more commonly used is 𝜇 = 2𝐻𝛾 , in 

which 𝐻 =
𝑅1+𝑅2

2𝑅1𝑅2
 is the average mean curvature and the torque terms are ignored.   

The above line of reasoning does not apply to singular boundaries, which are usually seen as 

facets in the microstructure.  The reason is that the motion of facets is radically different from 

that of general boundaries.  If an infinitely small hump were to appear on a perfect facet, the 

second derivative terms in Equation 2.24 would approach infinity as the size of the hump 

approaches zero.  There is no way that the volumetric energy change can parallel this surface 

energy change.  As a result, though in theory there exists a critical hump radius for which the 

associated surface energy and volume energy can balance each other, in practice the critical 

radius is so large that it can never be nucleated.  Any smooth shape change on a facet will leads 

to an energy increase so a facet can only move parallel to itself. 

Herring also derived an average chemical potential of a perfect facet on the free surface of a 

single crystal but the expression is probably less robust since realistic singular boundaries rarely 

correspond to perfectly flat facets but facets with steps [51].  Nevertheless, the conclusion is that 

the magnitude of the average chemical potential in the vicinity of a singular boundary is related 

to its energy, the energy of the nearby free surface, the intersection angles of the two surfaces 

and the perimeter of its facet.   
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2.4.2 Mechanisms for grain boundary motion 

The grain boundary motion mechanism is related to the intrinsic boundary structure and we need 

to differentiate 3 types of grain boundaries here: the LAGBs, the general non-singular boundaries 

and the singular grain boundaries.  Note LAGBs are likely to be non-singular since their energy 

changes smoothly, but they have attracted special attentions because of their well-defined 

structure. 

Both LAGBs and general non-singular boundaries can be smooth and curved.  However, as 

introduced in Section 2.1.3, LAGBs are comprised of dislocations so their primary motion 

mechanism is the glide and climb of grain boundary dislocations.  On the other hand, the general 

non-singular boundaries are disordered regions and their motion mechanisms are mainly volume 

diffusion and surface diffusion.  The singular boundaries often have facet shape, of which the 

structure is highly organized.  The possible motion mechanisms include glide and climb of 

secondary grain boundary dislocations (SGBDs) and shuffling of pure steps.   

The glide and climb of dislocations in LAGBs are not much different from the glide and 

climb of lattice dislocations except for the fact that the whole set of dislocations need to move 

collectively to avoid large curvatures and lengthen of the grain boundary.  The diffusive motion 

of atoms near general non-singular boundaries is also similar to the diffusion inside the bulk 

lattice.  The less well-known is probably the motion mechanism of the singular boundaries.  In 

order to better illustrate that, we need to first further explore the structure of the singular 

boundaries.  

Let’s illustrate the singular boundaries with a coherent CSL boundary as we have seen in Figure 

2.5.  The boundary can be approximately by the periodic arrangement of a set of dislocations, 

which are called the structural dislocations or primary grain boundary dislocations (PGBDs).  

There is no essential difference between the PGBDs and the regular lattice.  An ideal coherent 

CSL boundary constructed from PGBDs has perfectly ordered atomic structure and is likely to 

correspond to a deep energy cusp.  However, in reality perturbations arise from one source or 

another.  Most near-CSL boundaries don’t have the perfect atomic arrangement but will always 

try to conserve the lowest energy structure as much as possible.  This conservation is realized by 

introducing another set of dislocations, the secondary grain boundary dislocations (SGBDs), to 

ensure that the coincidence of lattice sites is maintained as much as possible in the presence of 

perturbations.  SGBDs are differentiated from PGBDs mainly based on their different roles in 
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grain boundaries.  In some sense, the adaptation of CSL boundaries to disturbance via the 

SGBDs is similar to the adaptation of bulk lattices to perturbations via the dislocations that 

constitutes LAGBs.  By definition, SGBDs can have only very specific Burgers vectors and can 

reside only in the grain boundaries.  The possible Burgers vectors for SGBDs include the 

smallest translation vectors that connect two different motifs (circles and squares in Figure 2.5) 

in the CSL lattice and zero.  A SGBD can exist with zero Burgers vector because it has another 

character: the step height.  The Burgers vector captures in-plane translations of the boundary and 

the step height captures normal to plane translations, as illustrated in Figure 2.10.  A SGDB with 

zero Burgers vector is sometimes referred to as a pure step.  SGDBs with non-zero Burgers 

vector and non-zero step are sometimes referred to as disconnections. 

 

Figure 2.10  Illustration for the formation of grain boundary by bring two surfaces together. 

(a) Reference state with perturbations from dislocations. (b) A SGBD with non-zero Burgers 

vector and step height. (c) A SGBD with zero step height and non-zero Burgers vector. (d) A 

SGBD with non-zero step height and zero Burgers vector.  Reprinted from Reference [52] 

Now we can discuss the possible motion mechanisms for singular boundaries.  The glide of 

the primary dislocations is unlikely because the spacing between the primary dislocations would 

generally be small and their simultaneous glissile motion would result in the intersection of 

different slip planes thus block each other.  Then singular boundaries are also resistant to the 

simultaneous glide and climb because the such motion induce noticeable changes in the primary 

grain boundary dislocations thus perturbing the well-organized low energy structure of the 

boundary.  However, the secondary dislocations can move laterally by glide and climb.  More 

importantly, the presence of steps provides preferential sites that the atoms can transform from 
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one crystal to another by local shuffling.  In-situ TEM observation of a Σ5 grain boundary 

contained in a thin-film Au bi-crystal confirmed that the primary motion mechanism of singular 

boundaries is the shuffling of atoms not the climb and glide of SGBDs [53].  Most recently, 

Zhang, Han and Srolovitz proposed that the existence of disconnections may be more universal 

that the community had expected, not only in singular boundaries but also in the general non-

singular boundaries [54], [55].  They also argue that the motion mechanism of general non-

singular boundaries is not diffusion but nucleation and propagation of disconnections.  The 

theory remains to be examined by more experimental and computational works.  

2.4.3  Grain boundary migration 

Singular or non-singular, the migration of a piece of grain boundary can always be expressed at a 

high level as:  

 𝑣 = 𝑀𝑝 (2.25) 

Where 𝑣 is the grain boundary velocity.  𝑀 is the boundary mobility. 𝑝 is the pressure, or driving 

force.  The mobility term usually takes the form of 𝑀 = 𝐴0exp (
−𝐻

𝑘𝑇
), in which 𝐻 is the enthalpy 

barrier of migration and 𝐴0  is a pre-exponential term containing the activation entropy, the 

attempt frequency, the number of active sites, the number of atoms transferred per diffusive 

process or shuffling and the atomic volume.  The number of active sites term is important only 

when the migration mechanism is shuffling and corresponds to the number of steps.  It’s easy to 

notice that as temperature increases, 𝑀 increases exponentially.  This observation endorses our 

hypothesis that grain boundaries migrate rapidly in response to energy differences during grain 

growth because the temperature leads to large 𝑀.  As all other grain boundary properties, 𝑀 is 

also anisotropic and varies with the crystallographic parameters [2], [56]. 

2.4.4 Grain growth 

We have explored mechanisms of the grain boundary migration process and will now proceed to 

the theories of normal grain growth.  Such theories can be classified into two levels, the growth 

of a single grain and the increase of average grain size in a bulk volume.  Grain boundary energy 

anisotropy is ignored in most available theories [57].   

Under the assumption of isotropic grain boundary energy, the growth of a single grain is then 

decided by its integral mean curvature.  The most famous theory is Mullins “n-6 rule”, which 
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states that two dimensional grains with fewer than six sides will shrink and grains with more than 

six sides will grow and the growth / shrinkage rate depends on the number of sides [58]: 

 𝑑𝐴

𝑑𝑡
= 𝑘

𝜋

3
(𝑛 − 6) 

(2.26) 

A similar equation for the integral mean curvature of grains in three dimensions was derived by 

and MacPherson and Srolovitz [59]: 

 𝑑𝑉

𝑑𝑡
= −2𝜋𝑀𝛾(ℒ(𝑫) −

1

6
∑𝑒𝑖(𝑫)

𝑛

𝑖=1

) 
(2.27) 

In which 𝑀 is grain boundary mobility.  𝛾 is grain boundary energy.  ℒ(𝑫) is a natural measure 

of the linear size of domain 𝑫.  𝑒𝑖 is the edge length of triple line 𝑖.   

Both the Mullins and the MacPherson-Srolovitz equations apply to individual grains.  

Theories for the collective grain growth inside an entire volume are much less exact.  One of the 

earliest classic model in this field was brought up by Burke and Turnbull [60].  They assumed 

that the grain boundary energies are isotropic and the average grain boundary curvature is 

proportional to the average grain size, then 
𝑑�̅�

𝑑𝑡
= 𝐶

𝛾

�̅�
 where 𝐶 is a constant and �̅� is the average 

grain size.  Then �̅�2 + �̅�0
2 ≈ �̅�2 = 𝐾𝑡 in which 𝐾 is a constant and the initial average grain size 

�̅�0 is assumed to be small comparing to �̅�.  This is known as the parabolic grain growth law, for 

which a more common form is 

 �̅� = 𝐾𝑡𝑛 (2.28) 

𝑛, the grain growth exponent, equals 2 in the above analysis but values ranging from 1 to 4 have 

be observed experimentally [57].  Smith realized that topological space filling requirements also 

play an important role during the normal grain growth procedure.  For example, the coordination 

number z, defined as the number of edges meeting at one vertex, is fixed for any topologically 

stable structure.  𝑧 = 3 in two dimension and 𝑧 = 4 in three dimension, which agrees with the 

common observation of triple lines.  Another example is that there is a constraint on 𝐶, the 

number of cells, 𝐸, the number of edges, 𝐹, the number of faces and V, the number of vertices in 

a dense volume filled by polyhedrons [57]： 
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 −𝐶 + 𝐹 − 𝐸 + 𝑉 = 1 (2.29) 

It’s still not clear how such topological requirements come into play during the collective growth 

of many grains though it is well-accepted that grain growth is a cooperative procedure during 

which both the surface equilibrium and topological space-filling are important.   

2.5 Experimental techniques 

It wasn’t possible to collect 3D orientation maps before the development of electron backscatter 

diffraction (EBSD) in the last twenty years.  More recently, another emerging technique is high 

energy X-ray diffraction microscopy (HEDM), which collects the orientation maps non-

destructively and made it possible to study the evolution of one microstructure throughout time.  

EBSD and HEDM are the two most popular techniques for measuring orientation maps.  

2.5.1 Electron backscatter diffraction (EBSD) 

Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) based 

technique that measures the crystallographic orientation of the sample surface. [14]  In the 

experimental setup, the sample is placed beneath the electron beam and tilted 70° from the 

horizontal plane and a camera with a phosphor screen is placed in front of the sample.  When the 

accelerated electrons hit the sample, they will enter the sample surface and be diffracted by the 

crystal lattice.  The electrons that penetrate the sample surface by no more than a few nanometers 

have a high probably of escaping the sample, carrying the crystallographic information of the 

surface lattice.  Many of these electrons will be collected by the nearby EBSD camera and the 

resultant diffraction pattern, also known as the Kikuchi pattern, can yield the lattice orientation 

after post processing. [14]  Once the orientation of the current position is measured, the beam 

will move to the next position automatically and the process is repeated for the next position.  

There are two main sources of noise in the EBSD data.  The first source comes from the 

diffraction process and data collection.  For example, if there were a lattice defect near the 

sample surface, the well-defined Bragg condition will be undermined, and electrons diffracted by 

the defect will then contribute to noise.  Another example is the thermal vibration of the atoms, 

which is difficult to eliminate and also contributes to the background noise.  The second source 

comes from the post-processing procedure.  There is actually no way to resolve an accurate one-

to-one correspondence between Kikuchi patterns and orientations because of the various noise of 
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the first kind.  Experimentally, each collected Kikuchi pattern is processed by a technique called 

the Hough transformation and a voting mechanism is used to determine the best possible source 

orientation.  The orientation with the most votes will be determined as the sample orientation and 

the reliability of this orientation is quantified from the difference between the votes of the best 

orientation and the votes of other orientations.  Large differences indicate high reliability.  This 

variable is named confidence index (CI) in the TSL software, which is the commercial software 

used to process our data.  Noise arise from the fact that the voting result can be affected by the 

choice of parameters in Hough transformation.   

The orientations maps for our analysis were collected by a serial section technique which 

works as follows.  The electron beam will scan through a certain area of the sample surface 

following a pre-programed grid, which can be either hexagonal of cubic, and collect a slice of 2D 

data.  Afterwards, the top layer of sample will be milled away uniformly by focused ion beam 

(FIB) and the new surface will be scanned again.  This scan-mill cycle is repeated for tens of 

times for each orientation map.  The scanned position and the milling distance is controlled 

precisely by the data collection software.    

2.5.2 High energy X-ray diffraction microscopy (HEDM) 

The physical principle underlying HEDM is similar to that of EBSD in the sense that orientation 

information is reconstructed from unique diffraction patterns in both cases.  However, while 

EBSD (Kikuchi) patterns carry sample surface orientation information, HEDM patterns carry 

volumetric orientation information because the beam carries much higher energy and penetrates 

the entire sample.  The beam size is also very different.  While EBSD electron beams have rod 

shape and have nanometer-size [61], the HEDM X-ray beams have planar shape and can be as 

wide as one millimeter [62].  There are two classes of HEDM techniques and the one for 

orientation map collection is the near-field HEDM.  A detailed description of the technique can 

be found in Reference [62] and is summarized below.  

HEDM samples are usually rod shaped with a millimeter diameter.  During the experiment, 

the high energy X-ray beam (50 – 100 keV) is focused into a planar shape with micron height 

and millimeter width which is slightly larger than the sample diameter and the sample is placed 

in the beam path.  Because of the high beam energy, X-rays can penetrate through the sample 

and escape, carrying the lattice orientations of the illuminated sample volume.  Diffraction 

patterns are collected by a CCD detector placed behind the sample for two or three detector 
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positions.  For each illuminated area, the sample is rotated with a typically 1° interval for 180 

continuous intervals, giving 360 (two detector positions) or 540 (three detector positions) 

diffraction patterns.  The beam is then moved vertically for a fixed step size of a few microns 

and diffraction patterns of the next illuminated area are collected.  The process is repeated for 

tens of times so that orientation information of a 3D volume is collected.   

Sample orientations are resolved from the collected diffraction peaks with a forward 

modeling reconstruction (FMR) simulation technique.  In the simulation, the illuminated sample 

area is meshed with equilateral mesh triangles and the orientation of each mesh triangle is 

searched and the optimal orientation is determined as the one for which the diffraction peak 

matches the experimentally detected diffraction peaks the best.  The optimal orientation of each 

mesh triangle is determined independently.  However, once all orientations of a layer are 

determined, initializing the neighboring layer’s orientations with previous layer orientations will 

accelerate the process.   

The biggest advantage of HEDM is that it is non-destructive.  During the HEDM experiment, 

the vertical position of the beam is adjusted, and the sample is rotated to enable various angular 

diffraction geometries for each vertical position.  Such diffraction measurements do no harm to 

the sample.  As a result, one can anneal a sample and measure its orientation map several times 

during annealing intervals.  The resulting data allows close examination of the sample 

microstructure evolution.   

2.6 Machine learning basics 

Machine learning models provide an effective way to analyze data correlations and have been 

proven useful in various fields [63].  As will be discussed in Section 3.1 and Chapter 6, it is 

possible to study the EBSD or HEDM collected 3D microstructures with the help of machine 

learning models.  We introduce here the fundamental elements of a machine learning model and 

the typical workflow to build such a model.  The 3D microstructure application and results are 

presented in Chapter 6 and Section 7.2. 

2.6.1 Founding elements 

What is machine learning?  One concise definition is given by Mitchell [64]: “A computer 

program is said to learn from experience 𝐸  with respect to some class of tasks 𝑇  and 
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performance measure 𝑃 , if its performance at tasks in 𝑇 , as measured by 𝑃 , improves with 

experience 𝐸.” 

A computer program, or machine learning model, can be considered as a function that takes 

some data as input and generates some target data as output.  Specifying a model includes 

specifying the functional form of the model and specifying the exact parameters of this model.  

The functional form is an assumption that defines the underlying data distribution or how the 

input data (predictor variables, 𝑿) are related to the output data (response or target variable, 𝑦).  

Common functional forms include the linear relationship (𝑦 = 𝜷𝑿 + 𝜖 ) and the generalized 

linear relationships like that in the Gaussian distribution.  Based on the functional form, or more 

general model assumptions, one can then determine an objective function, based on which model 

parameters can be learned from a given set of experience.  The objective function is also known 

as the loss function or the cost function, and common examples include the mean squared loss 

(MSE =
∑ (𝑦𝑖−�̂�𝑖)

2𝑛
𝑖=1

𝑛
) for regression tasks and the logistic loss ( ∑ −𝑦𝑖𝑙𝑜𝑔(�̂�𝑖) − (1 −𝑛

𝑖=1

𝑦𝑖)𝑙𝑜𝑔(1 − �̂�𝑖)) for regression tasks, in which 𝑦𝑖 is the true target variable value and �̂�𝑖  is the 

model prediction. 

The experience available to a machine learning model is the training data we provide it, 

which usually takes the form a 2D numerical matrix in the python convention.  Each row of the 

matrix describes one data instance, and columns of the matrix correspond to feature vectors.  

Note that multi-dimensional data instances are allowed, but they are usually reshaped to one 

dimension during implementation for better computation performance.  The way a model learns 

from experiences with respect to a given objective function is through some optimization 

techniques, among which iterative gradient descent is the most popular approach [65].  Other 

gradient-free optimization techniques include evolutionary algorithms [66] and Bayesian 

optimization [67]. 

Many possible tasks can be accomplished by machine learning models, including but not 

limited to classification, regression, clustering, and dimension reduction [68].  We are primarily 

interested in the regression task, in which the model needs to output a one-dimensional number 

�̂�𝑖 ∈ ℝ for each n-dimensional instance 𝑋𝑖 ∈ ℝ𝑛 .  In other words, the model needs to solve a 

function 𝑓 that takes 𝑋𝑖 as input and produces �̂�𝑖 = 𝑓(𝑋𝑖 ).   

The model performance can be measured by the value of its objective function.  However, 

the objective function values can be nonintuitive.  For example, the value of MSE would depend 
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on the intrinsic scale of y.  One intuitive evaluation metric for linear regression tasks is the 𝑅2 

score, which is defined as 𝑅2 =
𝑆𝑆𝑅

𝑆𝑆𝑇𝑂
= 1 −

𝑆𝑆𝐸

𝑆𝑆𝑇𝑂
.  𝑆𝑆𝑇𝑂 = ∑ (𝑦𝑖 − �̅�𝑖)

2𝑛
𝑖=1  is the total sum of 

squares, denoting the total variance.  𝑆𝑆𝑅 = ∑ (�̅�𝑖 − �̂�𝑖)
2𝑛

𝑖=1  is the regression sum of squares, 

denoting the amount of variance explained by the model.  𝑆𝑆𝐸 = ∑ (𝑦𝑖 − �̂�𝑖)
2𝑛

𝑖=1  is the error sum 

of squares, denoting the amount of variance not captured by the model.  The 𝑅2 score provides a 

good performance reference for various kinds of tasks.  However, note that 𝑅2 should only be 

applied to linear models [69].  Also, note that the value of objective functions may include 

regularization terms (Section 2.6.2).  One can report the final MSE or other metric values, like 

the mean absolute error (MAE =
∑ |𝑦𝑖−�̂�𝑖|

𝑛
𝑖=1

𝑛
), as the model performance regardless of the 

objective function [68].   

2.6.2 Typical workflow 

Real-word datasets usually have various kinds of problems, like incomplete entries and outliers, 

and the first step of building a model is to clean the data.  Incomplete entries can be filled 

systematically, or one can simply disregard the corresponding instances.  Outliers are trickier 

since the boundary between a useful data instance and an outlier is usually blurred [70] and are 

usually handled case-by-case depending on the problem and objective at hand.  Examples of 

outliers in microstructure analysis include low confidence index (CI) pixels in orientation maps 

[61] and unrealistically extreme data value measurements.  Other optional preprocessing steps 

include data transformation, which may improve model performance, and resampling, which is 

common in classifications with imbalanced datasets [71].  Exploratory data analysis [72] is often 

recommended if the expected trend within the dataset is unknown. 

The next step is to select a model to fit the available data.  The model should be selected 

based on the task (classification, regression, clustering) and the data at hand.  Specifically, what 

is the expected relationship between the predictor and the response, and how many data instances 

are available?  One should select a model with appropriate capacity, or complexity.  For example, 

linear models can only capture linear relationships, thus have small capacities.  Universal 

approximators like neural networks are, in theory, able to learn any kind of relationship, and thus 

have large capacities.  Models with insufficient capacity are associated with large bias and small 

variance and may not be able to capture the true trend within data.  This problem is known as 

underfitting.  On the other hand, models with too large capacity are associated with small bias 
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but large variance, and may capture too many details, even noise, within the given training 

dataset.  This is known as overfitting.  Neither overfitting nor underfitting is wanted, but 

underfitting is generally worse because overfitting is more controllable.  In the case of overfitting, 

methods like regularization or feature selection techniques can be applied to limit model capacity 

and improve performance [68].  Data availability is also often an issue when the model capacity 

is too large.  The required number of training instances usually increases with the model capacity.  

Given limited training data, an under-trained complex model may perform worse than a well-

trained simple model even if the complex model better describes the true trend.  The general 

approach is to start with a complex model and tune the model compacity with regularization 

techniques. 

Once the data is ready and a suitable model is picked, training can start.  Training refers to 

the process of optimizing model parameters so that the model achieves a better objective 

function value when evaluated on a given set of training data.  Popular gradient-based 

optimization techniques include gradient descent, stochastic gradient descent, accelerated 

gradient descent, and conjugate gradient descent [73].  Advanced implementations like Adam 

[74] is usually a mix of several such techniques.  The model converges when the objective 

function stops improving, or the gradient update is too small, and the training process finishes.  

As mentioned in the previous paragraph, a common problem with the training process is 

overfitting, which is indicated by the fact that the model performs great on the given training 

data but generalizes poorly when evaluated on some unseen data.  A well-trained model should 

be able to both fit the training data well and generalize to unseen data with good performance.   

The model generalization performance cannot be interpreted from its training performance 

because of overfitting.  A small portion of the available data should be separated from the 

training set for test purpose.  If the model has hyperparameters, which differ from the usual 

parameters as they should be set by the user and not learnt from data, then a third set of data, 

known as a validation dataset, should be reserved for hyperparameter tuning.  Examples of 

hyperparameters include the number of clusters in the k-means algorithm and the learning rate in 

neural networks [68].  In summary, given a model with hyperparameters, the available data 

should be divided into three sets: the training dataset, the validation dataset and the test dataset.  

The model is first trained with the training dataset and then tuned with the validation dataset, 

after which evaluated on the test dataset for an approximated true generalization error.  The ratio 
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between the three datasets is usually around 6 : 2 : 2.  Note that there may exist some 

randomness in the dividing of test and training datasets, and cross-validation [75] is usually 

applied for better reliability.   

2.6.3 Correlation and causation 

Note that most statistics and machine learning models solve only correlation, or association, but 

not causation.  Pearl [76] differentiates the two as “An associational concept is any relationship 

that can be defined in terms of a joint distribution of observed variables, and a causal concept is 

any relationship that cannot be defined from the distribution alone.”  In other words, if X is said 

to cause Y, then different values of X may correspond to different distributions of Y, and the 

distribution of Y changes as the value of X varies [77].  Causation infers association, but the 

reverse is not true.  

It is difficult to conclude causation because most research can be classified as observational 

studies, in which all not possible factors are collected and the treatment, or exposure, is not 

random, and the hidden variables, known as confounding variables, may affect the results.  For 

example, in our research, stress accumulation near grain boundaries are not observed, and we 

simply observed the microstructures without trying to control them.  Wasserman [77] 

summarizes the condition for reliable causal inference as “(i) the results are replicated in many 

studies, (ii) each of the studies controlled for plausible confounding variables, (iii) there is a 

plausible scientific explanation for the existence of a causal relationship.”   

There are two main frameworks to study causal relationships, which include the 

counterfactual model and the directed graphs [77].  We confine the focus of this research to 

correlations, though causal relationships can sometimes be argued for the impact of curvature. 
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3.   The grain boundary curvature distribution 

3.1 Data preparation 

The experimentally collected 2D maps were processed using an open source software 

DREAM.3D [78].  In this chapter, we’ll go over the structure of data in DREAM.3D, the data 

needed for the grain boundary curvature distribution, and the pipeline for data processing.  

3.1.1 Data structure 

DREAM3D files store data in the HDF5 structure [79], which is a well-developed data structure 

suitable for large datasets.  As mentioned in 2.5.1, the raw EBSD data are collected as slices and 

one volume usually contain tens of slices.  Each individual slice is virtually a three-dimensional 

matrix containing several types of data, including the coordinates of each scan position, the 

lattice orientation at that position, the reliability of the orientation and the material phase.  Three-

dimension because each type of data forms a two-dimensional matrix and the different data types 

gives the third dimension.  The 3D matrices of the slices are concatenated and reshaped to yield 

an integrated four dimensional matrix in the HDF5 format [79].  Note that because each type of 

data has exactly the same size, the correspondence between difference data is implicit.   

When the HDF5 file is written, both the data in the matrix and the size of the matrix are 

recorded.  One can view, extract and even modify the data as long as the data size is consistent 

with the recorded matrix size.  The benefit of the data size constraint is that the likelihood of 

messing up the data is minimized.  In practice, one usually needs to manipulate the data in many 

ways and an operation often depends on another.  If no constraint is enforced on the 

manipulation, a mistake can trigger a cascade a problem.  Imagine one is only interest in the 

high-quality orientation data, so he / she filtered vertex orientations by the corresponding CI 

values but forgot to do so for the coordination data.  If the orientations and Cis corresponds to 

the small CI voxels have been deleted without recording indexes of the deleted data, then there 

would be no way to trace the correspondence between the orientations and coordinates anymore.  

This problem can’t happen to HDF5 file because the file won’t allow writing of inconsistently 

shaped data.  

From the 4D vertex data matrix one can then process the data and make other matrices to 

store intermediate data.  We haven’t really go into the topic of data process but the point is that 
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the matrices for data of the same level always have the same shape [78].  For example, vertex 

coordinate x and vertex coordinate y are both at the vertex level so they should have the same 

shape.  The grain centroid and grain size are both at the grain level so they should have the same 

shape.  This concept seems trivial but actually makes the data processing much easier.   

3.1.2 Data process pipeline  

The raw 2D orientation maps are available at the grain boundary data archive [80].  The first step 

of data processing with DREAM.3D was reading in the data, during which voxels with low 

image quality (≤ 120) or confidence index (≤ 0.1) were set as ‘bad’ data.  Next, centroid and 

misorientation based algorithms were used to correct misalignments between the 2D sections.  

Then the volume was segmented into grains by examining the voxel orientations.  The 

orientation of each voxel was compared to its neighbors and voxels with orientations that 

differed by ≤ 5° were grouped together and assigned a unique grain identification (ID) number.  

Furthermore, grains had to have at least 100 voxels and at least two neighboring grains.  After 

this process, the microstructure contained gaps created by groups of fewer than 100 voxels.  The 

gaps were eliminated by dilating neighboring grains uniformly and the volumetric reconstruction 

was completed.  Various properties, like grain size (from the number of voxels within the same 

grain and the voxel size) and grain orientation (from the average orientations of the voxels within 

the same grain) can then be calculated.  

The voxels that make up the data create stair-stepped boundaries that must be smoothed to 

extract grain boundary plane and curvature distributions.  Meshing algorithms were used to 

model the grain boundaries as triangular nets and two different smoothing algorithms, including 

a multi-material marching cube algorithm and a quick mesh algorithm, were used to create 

smoothly curved grain boundaries [81]–[83].  The details of the parameters and the effects of the 

meshing and smoothing procedures on the results are discussed in Section 3.3.  At this stage, the 

reconstruction is complete and the microstructures are composed of discrete grains with unique 

identification (ID) numbers, bounded by a triangular mesh.  Associated with each triangle in the 

mesh are the grain ID numbers on each side, the orientations of the grains on each side, the 

misorientation across the triangle, the surface normal, the area, and the curvature.  This makes it 

possible to map these quantities locally and to define how they are distributed over the 

crystallographic and topological parameters.   
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3.2 Grain boundary curvature distribution 

As a first step, grain boundary mean curvature was calculated locally for the triangles using a 

cubic-order algorithm derived by Goldfeather and Interrante [84].  For every triangle, a patch of 

its neighborhood was extracted and fit to a cubic order polynomial whose equation was 

established using the locations (centroid coordinates) and normal vectors of the triangles in this 

neighborhood.  The size of the neighborhood patch was chosen to include the 2nd and 3rd nearest 

neighbors in our calculation.  A least-square fit was used to solve for the coefficients of the 

polynomial and write the Weingarten matrix of this local surface patch.  As mentioned in Section 

2.3.1, Eigenvalues 𝜆1 and 𝜆2 of the Weingarten matrix correspond to the principle curvatures and 

the value of mean curvature was determined as 
𝜆1+𝜆2 

2
.  Signs of mean curvatures are usually 

defined as positive for convex and negative for concave and the sign of grain face curvatures 

followed this convention.  However, notice only the absolute values of triangle mean curvatures 

were used in grain boundary curvature distribution as a function of crystallographic parameters.  

The reason lies in the exchange symmetry between neighboring grains.  While convex and 

concave are explicit for an individual grain, there is no way to define such a property for the 

grain boundary network between grains.  

After the calculation of curvature values, each triangle was then classified into a discrete 

distribution according to its crystallographic parameters using the same methods that have been 

used to compute the grain boundary character and energy distributions [85]–[87].  Briefly, the 

five grain boundary parameters are the three Euler angles (𝜑1,𝛷, 𝜑2), specifying the lattice 

misorientation, and the two spherical angle, (𝛩,𝜑) , specifying boundary normal direction.  

Because of bi-crystal symmetries, there are many indistinguishable representations of each 

boundary in the complete domain of boundary types.  We used a sub-domain in which 𝜑1, 𝛷,𝜑2 

range from 0 to 90 ° and 𝛩, 𝜑 range from 0 to 90 ° and 0 to 360 °, respectively [8].  This sub-

domain was the smallest regular-shaped volume whose parameters can be easily partitioned and 

contains an integer multiple of the fundamental zone.   

This sub-domain was discretized into bins of equal volume such that there were 9 bins per 

90°.  In other words, 𝜑1,𝜑2 and 𝛩 were partitioned between 0-90° with 10° interval and 𝑐𝑜𝑠(𝛷), 

𝑐𝑜𝑠(𝜑) were partitioned between 0-1 with a 
1

9
 interval.  The five parameters of every triangle 

were examined and its triangle curvature value was added to the corresponding bin in the sub-
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domain.  Symmetry operators were applied and it was also added to all bins corresponding to the 

indistinguishable representations.  The number of triangles, or curvature values, in each bin was 

also tracked.  With cubic symmetry, each triangle has 36 physically indistinguishable 

representations in this sub-domain.  The number 36 is calculated as following.  First, there is an 

exchange symmetry between the two lattices which has an order of 2.  Then 
48

2
, or 24, proper 

symmetry operators can be applied to both lattices and the triangle normal can be parameterized 

in either lattice.  As a result, there are 2 × 24 × 24 × 2 = 2304  symmetrically equivalent 

parameterizations.  The subdomain contains a 
90

360

90

180

90

360

90

180

360

360
=

1

64
 of the full domain. So there 

are 
2304

64
= 36 copies of each distinct boundary in the sub-domain [8]. 

Note the 36 representations can contain multiplicity, which is similar to that of the crystal 

symmetry: cubic symmetry has a symmetry order of 48 but a [100] orientation has only six 

different parameterizations: [100], [010], [001], [ 1̅00 ], [ 01̅0 ], [ 001̅ ].  During the 

parameterization of misorientations, it’s possible that one triangle is given the same parameters 

by 𝑁 different symmetry operators and is putted into the same parameter box 𝑁 times.  However, 

multiplicity is not a problem because the curvature values in each bin are normalized by the 

number of values in that bin after all triangles are checked. This gave us the symmetry averaged 

mean curvature for the grain boundary mean curvature distribution (GBHD).   

3.3 Validation of the method 

It should be recognized that curvatures measured from discrete voxelized data are necessarily 

approximations of the true grain boundary curvature.  Intuitively, the accuracy of this 

approximation should depend on the resolution of the data (the size of a voxel compared the size 

of a grain) and the way that the triangular mesh that represents the grain boundary is smoothed.  

Furthermore, when the curvature of an individual triangle is classified in the discrete five-

parameter distribution, it will be averaged with boundaries that have similar parameters.  

Therefore, the symmetry averaged curvatures will also be affected by the discrete nature of the 

distribution.  To understand how these factors influence the curvature measurement, we 

examined the effect of the data processing on the measured curvatures of simulated spherical 

grains.  The data was processed with DREAM.3D version 4.2 [78] 
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Ten spheres were created and labeled with different resolutions.  For example, S4 stood for a 

sphere with 4 voxels per radius.  While it was arbitrary in these simulations, we selected a voxel 

size of 0.2 𝜇𝑚.  We constructed the spheres at the center of an assembly of eight other grains that 

all have the same disorientation (45°/[100]) with center grain.  So while there are eight distinct 

grain boundaries surrounding the sphere, they have crystallographically indistinguishable 

misorientations.  In the following tests, the meshing algorithm was chosen as the multi-material 

marching cube and the smoothing method was the Laplacian smoothing.  

 

Figure 3.1.  Shapes of S6 and S28 after different reconstruction procedures. (a) voxels of S6. 

(d) voxels of S38. (b) shape of S6 after smoothing with smoothing I. (e) shape of S28 after 

smoothing I. (c) shape of S6 after smoothing III. (e) shape of S28 after smooth. 

Two of the spherical grains are illustrated in Figure 3.1.  Figure 3.1a is an example of a low-

resolution sphere (S6).  In this case, there are six voxels per radius and the cube shaped voxels 

make a rather crude approximation for the sphere.  Figure 3.1d shows a higher resolution sphere 

(S28) which has 28 voxels per radius and is more accurately reproduced.  The triangular mesh 

has to be smoothed to remove stair-stepped structures.  The parameters for the smoothing routine 

are the number of iterations and a weighting factor, λ, which controls how far a node moves on 

each iteration and varies between 0 (no smoothing) and 1 (maximum).  For smoothing I, II, III, 

and IV, the values of λ/iterations were 0.05/50, 0.1/100, 0.2/200, 0.4/400, respectively, which 

results in increasingly strong smoothing.  The effects of these different parameters are illustrated 

in Figure 3.1.  With smoothing I, S6 (Figure 3.2(b)) is a fairly good approximation of a sphere.  
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However, voxel-like steps can still be seen on the surface of the higher resolution sphere S28 

(Figure 3.2(e)), indicating inadequate smoothing. When smoothing III was applied, the higher 

resolution sphere S28 (Figure 3.2(f)) became smooth and sphere-like while the lower resolution 

sphere, S6 (Figure 3.2(c)), was over-smoothed and is more like an octahedron than a sphere.  

This illustrates that fixed smoothing parameters are not be ideal for all grain sizes. 

The results for the curvatures computed for the triangles associated with the different spheres 

and different smoothing processes are summarized in Figure 3.2.   

 

Figure 3.2.  Average triangle curvatures for spheres of different resolutions and smoothing 

parameters.  The bars represent the standard deviations of triangle curvatures when spheres are 

smoothed with smoothing II. 

The dashed line indicates the ideal curvature value calculated from sphere radius (R-1) and the 

markers are the average values of the triangle curvatures for each sphere.  The difference 

between a marker and the corresponding point on the dashed line measures the quality of the 

reconstruction.  The smaller the difference, the better the reconstruction and the better the 

calculated curvature approximates the true curvature.  From the plot, we can see that the optimal 

smoothing parameters are related to the resolution, which can be interpreted from feature size.  

Lower resolution spheres are smoothed better with smaller smoothing parameters while larger 

smoothing parameters worked better for the higher resolution spheres.  This is consistent with 

the visual interpretation of Figure 3.1.  The Laplacian smoothing method makes changes in the 

mesh nodes in proportion to local gradients.  The low resolution sphere (S6) has larger gradients 
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between voxels and was therefore smoothed in a few iterations.  The higher resolution sphere, 

S28, had smaller gradients, so more iterations and larger values of λ were required for optimal 

smoothing.  The three exceptions to this trend in Figure 3.2 are S4, S6, and S9 with smoothing 

VI; in this case they were so over smoothed that their shapes were no longer stable. 

As illustrated in Figure 3.2, the reconstruction quality and smoothing parameters affect the 

results and should be selected to best match the physical measurements.  More precisely, we 

need to know the resolution of grain boundaries within our sample to properly mesh the data and 

measure the triangle curvatures.  It is important to keep in mind that the resolution is not a single 

value, because there are both highly curved and very flat boundaries within the same 

microstructure.  Also, unlike the ideal spherical geometries, grain boundary resolution is not 

linearly related to grain size.  To understand the range of curvatures in our data, the distribution 

of triangle curvatures in the austenitic steel is plotted in Figure 3.3. 

 

Figure 3.3.  Triangle curvature frequency in the austenitic steel, produced with smoothing II. 

Though the specific shape of the histogram depended on the smoothing parameters, results 

given by the four smoothing routines were similar and smoothing II was selected for this 

example.  For reference to Figure 3.2, the ideal sphere resolutions, as log(number of voxels in 

volume), were calculated from the corresponding curvature values and labeled on the upper 

horizontal axis in Figure 3.3. It can be seen that the number of triangles with large curvatures is 

small compared to those with small curvatures. In both samples, more than half of the triangle 
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curvatures have absolute values less than 0.5 𝜇𝑚−1 (59.5 % for austenite, 55.6 % for ferrite).  In 

other words, most of the grain boundaries in our microstructure maps were relatively flat and 

were comparable to the surfaces of the larger ideal spheres.  Clearly the emphasis should be 

placed on getting accurate curvature values for the most populous, low curvature boundaries.   

For this reason, smoothing II was selected for the following study since it gave the best relative 

accuracy in the low curvature regime and acceptable accuracy for the higher curvatures.  

When the curvature distribution is considered as a function of the crystallographic parameters, 

it is affected by the discrete binning and symmetry averaging procedures.  When the discrete 

triangles are classified according to their crystallography, they are grouped into bins of finite 

width and averaged.  When the curvature of a particular type of grain boundary is retrieved from 

these discrete bins, it is the average of 36 separate bins.  Therefore, it is reasonable to expect 

there would be a disparity between triangle curvatures and symmetry averaged curvatures. 

 

Figure 3.4.  (a) Curvature distribution of S6, (b) Curvature distribution of S28. 

The curvature distributions at the fixed misorientation between the center sphere and the 

surrounding grains were computed for the ten spheres and the distributions are plotted for S6 and 

S28 in Figure 3.4.  For S6 (Figure 3.4a), the ideal curvature was 0.83 𝜇𝑚−1 and it should be 

uniform.  The average curvature is somewhat lower (0.65 𝜇𝑚−1), as expected from Figure 3.2, 

and the individual values vary from 0.22 𝜇𝑚−1 to 2.8 𝜇𝑚−1.  For the higher resolution case 

represented by S28 (Figure 3.4b), curvature varied in a much smaller range (from 0.11 𝜇𝑚−1 to 

0.26 𝜇𝑚−1) and the average value (0.15 𝜇𝑚−1) was much closer to its ideal curvature (0.16 

𝜇𝑚−1).  The symmetry averaged curvature distribution information for the other spheres are 

summarized in Figure 3.5, in which the mean triangle curvature and the ideal curvature are also 

shown for comparison.  Based on these tests, we conclude that while high curvatures are 

underestimated, most curvatures are accurately reproduced. 
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Figure 3.5.  Average curvature of the distribution for the 10 spheres when smoothing II is used 

for the reconstruction.  The dots are mean symmetry averaged curvatures.  The squares are 

mean triangle curvature.  The error bars are standard deviations. 

3.4 Conclusion 

The mean curvature data quality depends on the microstructure resolution characteristic and the 

smoothing routine.  The best smoothing routine should be chosen based on the resolution 

characteristic of the majority grain boundaries, though high curvatures are generally 

underestimated.  With an appropriate smoothing routine, grain boundary mean curvatures can be 

accurately measured from discrete triangular mesh triangles and successfully reproduced by the 

symmetry averaged grain boundary curvature distribution (GBHD).   
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4.   GBHD in the austenitic and ferritic steels 

4.1 Material overview and statistics of the orientation map 

The two steel samples had been studied for their grain boundary population and energy 

distributions.  The data was collected by Beladi and detailed description of sample processing 

can be found in Reference [41], [42] and are summarized below. 

The austenitic sample has face-centered cubic (FCC) structure and its composition was 0.6C–

18Mn–1.5Al (wt.%).  This composition belongs to the twinning-induced plasticity (TWIP) steel 

class in which the population of twin boundaries is large.  The sample was produced by ~ 60 % 

cold rolling, followed by 1 min anneal at 800 °C. Its microstructure map covered 65 × 40 × 20 

μm3 volume and 3185 grains.   

The ferritic sample has body-centered cubic (BCC) structure and its composition was 0.04 

C–1.52 Mn–0.2 Si–0.22 Mo–0.08 Ti–0.033 Al (wt.%). The sample was hot rolled at 

temperatures between 1000 and 1200 °C to reduce 70 % of its height. It was then reheated to 

1200 °C at rate of 5 °C s-1 and was held for 300 s. Afterwards, it was cooled down to 890 °C, 

held for 20 s and then deformed to a strain of 1 at a strain rate of 1 s-1. Finally, the sample was 

cooled to 650 °C at 10 °C s-1 and held for 600 s, followed by water quenching.  Two orientation 

maps was collected from different volumes of the ferritic steel.  One was 40 × 35 × 14 μm3 and 

contained 1113 grains and the other was 30 × 50 × 22 μm3 and contained 558 grains. 

The grain size distribution is shown in Figure 4.1.  There is an obvious cut-off in the grain 

size distributions, which resulted from the choice of minimum grain size in the reconstruction 

step.  Note that this kind of cutoff is unavoidable in experimental data analysis for two reasons.  

One is that the experimental measurements have finite resolution and imperfect reliability.  Any 

grain smaller than the map step size cannot be detected.  Then it’s difficult to differentiate 

between realistic tiny grains which are constituted by no more than a few voxels and small 

clusters of noise.  The reason is that the density of grain boundary is high near small grains and 

the diffraction of electrons will be affected if there is a lattice defect, like a grain boundary, near 

the point of interest. As a result, voxels of small grains usually have low CI values in EBSD data.  

The other reason is that for a grain to be meshed properly and its properties, like curvatures, 

measured accurately, the grain needs to have a minimum size.  
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Figure 4.1.  Log normalized grain size distribution of (a) austenitic steel, (b) ferritic steel. 𝐷 in 

the x axis is grain diameter and < 𝐷 > is the average grain diameter in the volume. 

4.2 Integral mean curvature of grain faces 

To analyze grain boundary curvature as a function of grain size and topology, we consider the 

curvature integrated over grain faces and entire grains.  The integral mean curvatures of grain 

faces (𝑀𝑆) for every reconstructed grain was calculated using Equation 4.1: 

 
𝑀𝑆 = ∑(∑  𝐻𝑖𝑗 

𝒏𝒕

𝒊

× 𝐴𝑖𝑗 )

𝒏𝒇

𝒋

 (4.1) 

where 𝐻𝑖𝑗  is the mean curvature of the ith triangle on the jth face of the grain and A𝑖𝑗  is the 

triangle area.  The number of faces of the grain is 𝑛𝑓 and the number of triangles on one face is 𝑛𝑡. 

Note that the grains near the sample periphery were likely to be biased by the free surface.  

There are different criteria that can be used to remove biased grains.  The most straightforward 

one is to remove all grains in contact with the free surface.  However, that would result in a 

preferential removal of large grains.  An alternative criterion suggested by Rowenhorst [88] is to 

remove all grains whose centroids fell within 2 < 𝑅 > of the free surfaces of the sample where 

< 𝑅 > is the average grain radius.  The centroid grain removal criterion were applied to the 

austenite sample (< 𝑅 > = 1.2 𝜇𝑚 ) and the larger volume of the ferrite sample (< 𝑅 > =

1.1 𝜇𝑚). After this filtering, 1885 grains remained in the austenite and 538 grains remained in 

the ferrite.  

Grains were categorized into topological classes according to their numbers of faces and the 

results are shown in Figure 4.2.   
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Figure 4.2.  Integral mean curvature of grain faces (𝑀𝑠) as a function of number of faces of 

grains (F).  The markers represent average 𝑀𝑠for each grain class and the error bars show the 

standard deviation within the grain class.  Only unbiased grains are included in the plot.  

The domain of the horizontal axis was limited to 40 to emphasize the points near the zero 

crossing; this excludes only 3.4 % of the grains.  The integral mean curvature was positive for 

grains with a smaller number of sides and negative for grains with a large number of sides.  This 

is consistent with theories of grain growth that suggest grains with many sides grow and those 

with few sides shrink.  Note that for grains within each class, 𝑀𝑠 is a distribution rather than a 

constant.  The ferrite data is noisier than the austenite data, especially for classes with a large 

number of faces (> 25).  This is probably because there are fewer grains in the ferrite sample.  

For ferrite, the classes with 𝐹 > 25 faces contain no more than 5 grains.  Most of the grains with 

between 3 and 20 faces and have smaller standard deviations in both datasets.  Note that the 

standard deviation increases again for grains with the fewest faces and the largest curvatures.  

This is probably because larger curvatures are not measured as accurately as smaller curvatures, 

as illustrated in Figure 3.2.  The integral mean curvature crosses zero at about 17 grain faces for 

both the austenitic and ferritic steel.  We tested different reconstruction procedures, such as using 

a minimum grain size of 16 voxels, but it did not alter the results. 

Rowenhorst et al., [88] proposed that zero curvature grains were those whose numbers of 

faces (F) were the same as the average numbers of faces of their nearest neighbors, <FNN>.  We 

tested the same idea on the austenitic steel data (Figure 4.3).  The normalized integral mean 
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curvature of grain faces is calculated as 𝒢’ = 𝑀𝑠/𝑅, where 𝑅 is the radius of the grain.  The set of 

grains for this local topology analysis was limited to ones whose nearest neighbors also fall 2<R> 

from free surfaces of the sample, leaving 930 grains for analysis in austenite.  The grey dots in 

Figure 4.3 are normalized grain curvatures of individual grains.  Red squares are average 

normalized grain curvature for each 𝐹 − < 𝐹𝑁𝑁 >  class.  The line for the average in each class 

passes almost exactly through the point with 𝐹 − < 𝐹𝑁𝑁 > = 0 and 𝒢’ = 0.  The results for the 

ferritic steel are not shown because after grains with incomplete neighbors were also removed, 

there were not enough grains left to support a statistical analysis.  

 

Figure 4.3.  Normalized integral curvature of grain faces (𝒢’) as a function of 𝐹 − < 𝐹𝑁𝑁 > in 

austenite. 𝐹 − < 𝐹𝑁𝑁 >  is difference between number of faces of one grain (𝐹 ) and the 

average number of faces of its nearest neighbors (< 𝐹𝑁𝑁 >).  Only grains that are unbiased 

themselves and have unbiased neighbors are included in the plot. 

4.3 GBHD as a function of plane normal for fixed misorientations 

In the remainder of this document, we refer to the symmetry averaged GBHD simply as the 

GBHD.  From the previous study [41], [42] we know that Σ3 boundaries have high population, 

which means that our measurements of these boundaries are the most reliable.  Therefore, we 

examine the curvature as a function of the grain boundary plane orientation for grain boundaries 

with a 60° disorientation about the [111] axis (Σ3) for the austenite and ferrite samples.  In 

Figure 4.4, the curvature is plotted in stereographic projection with [001] and [100] pointing 
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normal to the plane of the paper and to the right, respectively.  The grain boundary populations 

and relative energies, reported earlier [41], [42] are shown for comparison.  Note that the grain 

boundary populations are not identical to those reported earlier because, in this case, they were 

computed using DREAM.3D [78].  

 

 
Figure 4.4.  Curvature, population, and energy distributions for austenite (a-c) and ferrite (d-f) 

for all grain boundaries with a Σ3 (60°/[111]) disorientation. (a), (d) Grain boundary 

curvature. (b), (e) Grain boundary plane population. (c), (f) Grain boundary energy.  In (a-c), 

the squares mark locations in the [111] zone.  Each distribution is plotted in stereographic 

projection. 

For the austenite sample, the most significant feature appears at the position of the coherent 

twin.  This is the minimum curvature, maximum population, and minimum energy.  This is the 

boundary that is terminated by (111) planes on both sides and is very flat.  It is interesting to note 

that there is a maximum in curvature for boundaries that are 90° from the twin position and the 

maximum is reached at the positions of the (110) boundary planes.  This is consistent with the 

observation that twins are usually plate shaped grains whose dominant surface plane is (111), but 

are bound by much smaller perpendicular surfaces.  The high curvature results from the 
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geometric necessity of joining the two parallel (111) planes to bound the grain.  Note that the 

population and energy distributions are relatively featureless for these orientations. 

The distributions for the ferritic sample are nearly opposite that of the austenitic sample.  The 

lowest curvatures occur in the [111] zone with the minimum curvature, energy, and maximum 

population occurring at the positions of the (2̅11), (1̅1̅2), (12̅1) symmetric tilt grain boundaries 

(these are indistinguishable grain boundaries).  The maximum curvature (1.0 𝜇𝑚−1 ) and 

minimum population occur at the position of the (111) twist grain boundary.  It should also be 

pointed out that the range of the area distribution for the austenitic sample is much larger than for 

the ferritic sample, with a maximum population larger than 300 MRD for the austenitic steel but 

only about 9 MRD for the ferritic steel. 

 

 
Figure 4.5.  Curvature, population, and energy distributions for austenite (a-c) and ferrite (d-f) 

for all grain boundaries with a Σ9 (38.9°/[110]) misorientation.  (a), (d) Grain boundary 

curvature, austenite.  (b), (e) Grain boundary plane population, austenite. 

Σ3 boundaries are special for their low energy and large population.  To better understand the 

distributions, a less unique misorientation (Σ9 (38.9°/[110])) is also examined and the results are 

in Figure 4.5.  For the Σ9 boundaries, maximum grain boundary populations in both samples are 
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about 2 MRD, which are lower than 320 and 9 MRD of Σ3 boundaries.  At the same time, the 

energy is noticeably higher, especially for ferrite sample in which maximum energy increases by 

50 %, from 0.8 r.u. of Σ3 boundaries to 1.2 r.u. for Σ9 boundaries.  Maximum curvatures of Σ9 

boundaries are found approximately in the [11̅4] zone for austenite and in [110] zone for 

ferrite.  The minimum curvatures of Σ9 boundaries lie on the [2̅21] zone and near the (2̅21) 

position in the ferrite sample but are rather spread out in the austenite sample. 

 

Figure 4.6.  Comparison of the curvature and relative energies of grain boundaries in the [111] 

zone of austenite, beginning at the (11̅0) orientation.  Because of bicrystal symmetry, the 

values repeat in periods of 60°. 

When comparing the curvature, population, and energy distributions, it seems clear that for 

both samples, the curvature is correlated to the crystallography of the grain boundary, as 

hypothesized in Section 1.2.  Furthermore, the comparison of curvature and energy shows 

systematic variations.  The two boundaries thought to be singular, the (111) Σ3 boundary in 

austenite and the (1̅1̅2) Σ3 boundary in ferrite, have the minimum curvature, minimum energy, 

and maximum population.  This implies a direct correlation between curvature, energy, and 

population.  However, this is not the case at all points.  For example, if we compare the energy 

and curvature of the grain boundaries in the [111] zone for austentite (Figure 4.6) we see an 

inverse correlation between energy and curvature.  Because these are among the highest energy 
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and lowest population of the Σ3 grain boundaries, we also assume that these are non-singular 

orientations. 

4.4 Discussion  

The results in Section 3.3 indicate that measuring curvatures from a discrete triangular mesh 

using the method of Goldfeather and Interrante [84] is accurate provided that there is sufficient 

resolution compared to the range of curvature to be measured.  A basic limitation will always be 

that there is a wide range of grain sizes with different curvatures and no single smoothing 

procedure will be ideal for all grains.  Fortunately, the largest fraction of boundaries has 

relatively low curvatures that are more accurately measured and these will dominate the 

distribution.  For example, the curvatures of specific grain boundary types, as illustrated in 

Figure 4.4 to Figure 4.6, will be the average of values from the majority low curvature grain 

boundaries that are accurately measured and the minority high curvature boundaries whose 

curvatures are underestimated.  So, the while the underestimated curvature of some boundaries 

will affect the results, the effect will be diluted by the majority boundaries that are measured 

more accurately. 

Because the curvature-energy product is the driving force for grain growth, there is an 

extensive literature, dating back to the work of Smith [89], relating grain topology, integral mean 

curvature, and the tendency of grains to grow or shrink.  Theoretical treatments of the problem 

led to the prediction that grains with more than 13 or 14 faces grow and those with fewer shrink 

[90]–[92].  Rowenhorst et al., reported that zero curvature grains had 15.5 sides [88] and in the 

current work we find it is about 17.  The difference between the value we report and that 

reported by Rowenhorst et al., might not be significant.  Note that while the data follow the trend 

of decreasing integral mean curvature with an increasing number of faces, the curvatures of 

grains with between 15 and 20 faces are less than the standard deviation, so the exact point 

where the curvature is zero is not clear.  We note that the average numbers of sides per grain in 

the austenite and ferrite was 13.6 and 13.7, respectively, which are consistent with the number 

reported for β-Ti (13.7) [88].  

MacPherson and Srolovitz [59], [93] recently showed that the number of sides alone does not 

determine the growth rate of a grain.  Using data from more than 2000 β-Ti grains, Rowenhorst 

et al. [88] demonstrated the validity of the idea that zero curvature grains were those whose 
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numbers of faces (F) were the same as the average numbers of faces of their nearest neighbors, 

<FNN>.  The fact that we get the same result from an austenitic steel (see Figure 4.3), which has a 

significantly different microstructure, suggests that this is a general feature of microstructures 

undergoing grain growth. 

The observations reported in Figure 4.4 and Figure 4.5 provide clear evidence that the mean 

curvature of the grain boundary depends on its crystallographic parameters.  In an isotropic 

system, one would expect the curvature be dictated by the size of the grain face.  While it seems 

sensible that the grain and face size will still play a role, there is a clear effect of the grain 

boundary plane orientation (Figure 4.4 and Figure 4.6).  In Figure 4.4a the curvature for the 

60°/[111] boundary in austenite varies from 0.3 𝜇𝑚−1  at the position of the (111) twist boundary 

to 1.2 𝜇𝑚−1 at the (110)-type positions 90° away.  There are also significant curvature variations 

for the 60°/[111] boundary in ferrite, even though the anisotropy in the grain boundary 

population is 30 times smaller.   

The data in Figure 4.2 show that there is a strong correlation between curvature and the 

number of sides.  Because it is known that grains with more sides are larger, there is also an 

intuitive correlation between curvature and grain size [29], [88], [94].  When the GBHD is 

computed, all grains are included.  This means that for a single crystallographic type, triangles 

from small, higher curvature, shrinking grains are averaged together with triangles from large, 

lower curvature, growing grains.  Despite this, there is still a crystallographic correlation.  One 

might think this is because the GBHD is area weighted, so the larger grains have a more 

significant effect on the distribution than small grains.  However, the large growing grains 

necessarily share boundaries with smaller shrinking grains, so one cannot attribute the 

distribution solely to the large grains. 

While the GBHD is clearly sensitive to crystallography, there is no single correlation 

between curvature and energy or curvature and population.  The one trend that is clear is that the 

lowest energy boundaries also have small curvature and large areas.  If these boundaries are 

presumed to be singular and in contact the same mean-field chemical potential, then the 

curvature should be directly proportional the energy and inversely proportional to the area [95].  

This is certainly obvious from the distributions plotted in Figure 4.4.  However, there are also 

examples of opposite correlations.  One example is illustrated in Figure 4.6.  As noted in Section 
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2.4.1, non-singular boundaries in contact with a constant mean-field chemical potential should 

have curvatures that are negatively correlated to the energy. 

Some of the preceding arguments are based on a mean-field chemical potential for the 

interfaces.  It should be noted that each individual boundary is not assumed to have the same 

chemical potential.  However, computing the curvature of a certain type of boundary involves 

averaging over many boundaries at different chemical potentials.  The average curvature that 

results is therefore representative of mean chemical potential of the boundaries with the same 

crystallography.    

The data in Figure 4.4 and Figure 4.6 show only a small portion of all grain boundary types.  

When the data is examined for all grain boundaries, the curvature is not strongly correlated to the 

population or energy, although the curvature and energy have a weak negative correlation.  The 

absence of a strong correlation may be because of the competing behaviors of the singular and 

non-singular interfaces.  Unfortunately, at the present time, is it not obvious how to classify the 

boundary types into these categories.  It should also be pointed out that the lower the population 

of a boundary, the greater uncertainty there is in the curvature and energy measurement, so this 

may also play a role and mask any correlations that might exist.  What we can say with 

confidence is that for the most commonly observed grain boundaries, the dominant trend is that 

low curvature boundaries have low energy and larger areas.  However, there are no strong 

overall correlations between curvature and energy or area, similar to the area-energy correlation 

that was observed in many materials [96].  

4.5 Conclusion 

The curvatures measured for an austenitic steel and a ferritic steel show the expected trend that 

the integral mean curvature of the grains decreases as the number of grain faces increases.  The 

curvatures are also related to grain topology.  In austenite, when the number of faces on a grain is 

equal to the average number of faces of its neighbors, it has zero integral mean curvature.  We 

find that the crystallography of the grain boundary strongly influences the curvature.  The lowest 

curvature grain boundaries also have the lowest grain boundary energies and highest grain 

boundary areas.  However, when all grain boundaries are considered, the curvature is not 

strongly correlated to energy or area and this might be the result of conflicting mechanisms that 

determine the curvatures of singular and non-singular boundaries. 
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5.   GBHD in polycrystalline SrTiO3 

We apply the same techniques described in Chapters 3 and 4 to analyze the grain boundary 

curvature in a ceramic sample and explore in more detail the correlations among the grain 

boundary properties, including relative area, energy, and curvature. 

SrTiO3 is selected for this study for two reasons.  First, we already have some knowledge of 

the types of grain boundaries that exist in SrTiO3 and their energetics [87], [97].  Second, there is 

considerable current interest in grain boundary motion in SrTiO3 because of the grain growth 

anomaly that occurs in the temperature range of 1350 °C to 1425 °C [98], [99].  In this region, 

the grain growth rate constant decreases by two orders of magnitude, while in most cases the 

grain growth rate constant is expected to increase with temperature [100].  The decrease in the 

rate constant is the result of an increasing concentration of relatively slowly moving grain 

boundaries.  There is also a change in the distribution of grain boundary planes, with the fraction 

grain boundaries with the (100) orientation increasing in the region where the grain growth rate 

constant decreases [101].   In the same temperature range, there is a decrease in the grain 

boundary energy [102].  These observations have been interpreted as evidence for a grain 

boundary structural transition.  However, microscopic studies of the boundaries do not provide 

strong evidence for such a transition [103]–[105].  Shih et al. [103] reported a tendency for larger 

grains to have atomically flat (100) oriented grain boundaries.  Sternlicht et al. noted no 

difference in the structure of the fast moving and slower boundaries [105].  The same group 

reported that the boundaries move by the motion of steps and that on the microscopic level, the 

boundaries were made up of a limited number of low index atomically flat orientations [104], 

[105].  

5.1 Material overview and statistics of the orientation map 

The data was collected at Carnegie Mellon by Dillon [86].  A polycrystalline ceramic was 

prepared from commercially available SrTiO3 powder (Sigma-Aldrich Corp., St. Louis, MO, 99 % 

pure).  The powder was dry-ground for approximately ten minutes in an alumina mortar and 

uniaxially compacted at 1000 psi to form a 1⁄2" diameter pellet.  The pellet was fired in air in a 

box furnace (Lindberg/Blue M 1700°C box furnace, Riverside, MI) according to the following 

heating schedule.  The furnace was heated at 10 °C/min to 900 °C.  After a 10 h dwell, it was 
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heated at 5 °C/min to 1340 °C.  After another 10 h dwell, it was heated at 20 °C/min to 1470 °C, 

held at that temperature for 30 min, and then furnace cooled to room temperature.   

Three-dimensional EBSD data was collected using procedures that have already been 

described in detail [86].  The sample was milled with a Ga+ ion focused ion beam (Nova 600, 

FEI Co., Hillsboro, OR) and the backscattered diffraction patterns were collected using an EBSD 

detector (Hikari, EDAX, Mahwah, NJ).  The sample was ion milled 30 kV and 7 nA, and the 

EBSD data were acquired on a hexagonal grid using a 30 kV beam at a current of 9.5 nA.  The 

in-plane EBSD resolution was 300 nm, and the spacing between layers was also 300 nm.   

The design of the heat treatment and the choice of EBSD parameters were determined from 

the requirement that the data should cover thousands of grains, which is necessary for analyzing 

the distribution of grain boundary properties as a function of the five independent 

crystallographic parameters.  To obtain data from this many grains in a reasonable period of time, 

one must consider the spatial resolution of EBSD orientation maps, the amount of time it takes to 

record the orientation maps, and the amount of time it takes to remove a layer of material by 

serial sectioning.  The latter two parameters are characteristics of the instrument; for the 

instrument used for this study, we were limited to samples with average grain diameters between 

1 and 5 𝜇𝑚  (although for more modern instruments, the upper bound on the grain size has 

increased considerably).  The limits arise because if the grains are too small, it is not possible to 

resolve the interface shapes and if the grains are too large, the rate of ion milling and data 

acquisition make the length of the experiment impractical.  The in-plane EBSD resolution was 

300 nm and the spacing between layers was also 300 nm.  Two volumes were collected, one 

consisting of 36 layers and another consisting of 40 layers.   

In the first step, the data was cropped and cleaned using the TSL OIM software.  Each area in 

the two volumes was cropped to 69.3 𝜇𝑚 ⨉ 38.4 𝜇𝑚 or 63.6 𝜇𝑚 ⨉ 76.8 𝜇𝑚.  The EBSD data 

were cleaned using two iterations of grain dilation with a minimum grain size of 10 pixels.  This 

procedure considers any grouping with fewer than 10 pixels, or disorientations of > 5 °, to be 

insufficient to define a grain and assigns their orientation to match the orientation of an adjacent 

grain.  A single average orientation was assigned to each grain, with an individual grain being 

defined as a set of pixels whose disorientations lie within 5 ° of one another.  These maps, as 

shown in Figure 5.1, were used as the input for the remainder of the analysis.   
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Figure 5.1.  Two volumes of SrTiO3. (a) 69.3 𝜇𝑚 ⨉ 38.4 𝜇𝑚 ⨉ 10.5 𝜇𝑚 (b) 63.6 𝜇𝑚 ⨉ 88.8 

𝜇𝑚 ⨉ 11.7 𝜇𝑚.  In each case, the grains are colored by orientation, according to the color key. 

The orientation maps were reconstructed using DREAM.3D version 6.4 [78], with 

procedures similar to that of the steel datasets.  The misorientation threshold was 5°.  The 

minimum grain size threshold was 100 pixels.  Note different meshing technique, quick mesh 

instead of multi-material marching cubes, were used for mesh triangle generation. An example of 

a reconstructed grain, boundaries represented by the triangular mesh, is presented in Figure 5.2. 

 

Figure 5.2.  The mesh around a reconstructed grain, (a) colored by the absolute value of the 

mean grain boundary curvature, triangles with a larger than 0.5 𝜇𝑚−1 mean curvature were 

not shown. (b) The same grain in (a) but colored by the grain boundary normal direction. 
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There was a total of 3032 grains.  The grain size distribution and the grain face distribution 

are shown in Figure 5.3.  The average (spherical equivalent) grain diameter (𝐷) was 3.3 𝜇𝑚.  

The largest grain in the sample had an equivalent diameter of 14.5 𝜇𝑚, which was about five 

times the average diameter.  The average number of neighbors per grain (taken to be equivalent 

to the number of grain faces), was 11.9. 

 

Figure 5.3.  The distributions of diameters and numbers of faces for all grains in the two SrTiO3 

volumes.  (a) Log of normal grain size distribution. < 𝐷 > is averaged grain diameter. (b) 

Distribution of the number of grain faces.  All grains are included for the plot.  

As mentioned in Section 4.2, the grains near the sample free surface were probably biased. 

Different criteria can be applied to remove such grains.  If we had removed all incomplete grains, 

which were in contact with the sample free surface, then there would be 1377 grains left in the 

two volumes.  The remaining grains had an average equivalent diameter < 𝐷 > of 3.1 𝜇𝑚 and 

an average number of faces of 12.7.  If grains were filtered according to their centroid positions 

and only the ones whose centroids fell more than < 𝐷 > away from the free surface (< 𝐷 >  = 

3.3 𝜇𝑚) were kept, there would be 887 grains left.  The average grain diameter < 𝐷 > of the 

remaining grains was then 3.5 𝜇𝑚 and the average number of grain faces was 14.2.  It can be 

noticed that both criteria removed over 50 % grains in the volume.  Nevertheless, neither 

criterion introduced substantial changes in the log normalized size distribution nor the number of 

faces distribution except for the tail of the largest grains.  Most of the largest grains were 

removed by the shape completeness criterion.  On the other hand, while the centroid criterion 

removed more grains than the complete shape criterion, the largest grains were more likely to be 

kept.   
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As one would expect, the topological characters (number of faces) of one grain is not 

independent of its size.  The number of faces is plotted as a function of grain diameter in Figure 

5.4, in which only the complete shape grains are included.  It can be seen that small grains tend 

to have fewer faces, while large grains have more faces.  However, the correlation is not 

deterministic.  For example, there are two grains of very similar sizes but drastically different 

number of faces.  One has 6.7 m equivalent diameter and 38 faces. The other is slightly bigger 

in size, 6.9 m equivalent diameter, but has only 13 faces.  

 

Figure 5.4.  The number of faces, F, plotted as a function of grain spherical equivalent 

diameter, D.  The color bar indicates number of grains in the corresponding bin.  Only 

complete grains are included in the plot. 

5.2 Integral mean curvature of grain faces 

The integral mean curvature of grain faces (𝑀𝑠) was calculated according to Equation 4.1.  We 

filtered the grains by their centroid positions in the analysis of 𝑀𝑠, after which 887 out of 3032 

grains were left.  The values of 𝑀𝑠 for every grain have been classified by grain size and results 

are shown in Figure 5.5.  Each point is the average of 𝑀𝑠 in that size class and the bar shows the 

standard deviation of 𝑀𝑠 within that size class (note that, for clarity, six grains with diameters 

larger than 10 𝜇𝑚 were excluded from this plot).   

A clear trend appears that smaller grains have positive curvatures (are convex) and larger 

grains have negative curvatures (are concave).  The cross over from positive to negative 
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curvature occurs for grains with diameters of about 3.8 𝜇𝑚, which is greater than the mean 

diameter (3.3 𝜇𝑚).  With reference to Figure 5.3a, this shows that the majority of grains have 

positive curvature.  Because grain boundaries move toward their centers of curvature, the smaller 

convex grains should tend to shrink and the larger concave grains should tend to grow.  

However, note that within each size class, there is a range of curvatures and in many cases the 

distribution spans positive and negative curvatures.  This might arise from uncertainties in the 

measurement, but it also might arise from local fluctuations in curvature that depend on a grain’s 

neighbors [88].  If so, then not all grains of the same equivalent diameter have the same sign of 

curvature.  The largest grains have strongly negative curvatures and are expected to grow and 

consume the smaller grains. 

 

Figure 5.5.  Integral mean curvature of grain faces (𝑀𝑠) as a function of number of faces of 

grains (F).  The markers represent average 𝑀𝑠 for each grain class and the error bars show the 

standard deviation within the grain class.  Only unbiased grains are included.  

Considering the relationship between the grain size and the number of grain faces illustrated 

in Figure 5.4, a similar relation between curvature and number of grain faces should be observed.  

Figure 5.6a shows the average and standard deviation of integral mean curvatures for grains with 

different numbers of faces (note that, for clarity, nine grains with more than 40 faces were 

excluded from this plot).  The mean values of 𝑀𝑠 are positive for grains with fewer than 16 sides 

and the mean values of 𝑀𝑠 are negative for grains with 16 or more sides.  However, as before, 

there are a range of classes (between 11 and 21 faces) where both positive and negative values 
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fall within one standard deviation of the mean.  The results in Figure 5.6a are consistent with the 

observation in the steal datasets (Figure 4.2), affirming the well-known connection between the 

number of grain faces and the curvature, that grains with few (many) faces have positive 

(negative) curvatures, are convex (concave), and are likely to shrink (grow) [58], [59], [90].  The 

distribution of integral mean curvatures in each topology class suggests that the number of grain 

faces alone does not uniquely determine the integral curvature for 3D grains.  This is in contrast 

to a 2D isotropic model, where the number of neighbors determines the curvature. 

The effect of nearest neighbors would have been clearer in a plot like Figure 4.3.  As pointed 

out in reference [88], only grains whose nearest neighbors are all unbiased, namely centroids 

separated from the nearest free surface by more than the average grain diameter, should be 

considered in the analysis of < 𝐹𝑁𝑁 >.  However, when this condition was enforced, too few 

grains remained for this analysis.  We conducted the 𝐹 − < 𝐹𝑁𝑁 > analysis with the 887 grains 

used in Figure 5.5 and Figure 5.6a, which are unbiased themselves but may have biased 

neighbors.   

 

Figure 5.6.  (a) Integral mean curvature (𝑀𝑠) of grain faces as a function of the number of 

grain faces, F, for each grain.  For each category, the circle is the mean values and the line 

shows one standard deviation.  (b) Normalized integral curvature of grain faces (𝒢′) as a 

function of 𝐹 − < 𝐹𝑁𝑁 >.  𝐹 − < 𝐹𝑁𝑁 > is the difference between the number of faces of one 

grain (𝐹) and the average number of faces of its nearest neighbors (< 𝐹𝑁𝑁 >).  Only unbiased 

grains are included. 

It is interesting to note that the correlation between 𝒢’ and 𝐹 − < 𝐹𝑁𝑁 > is actually robust even 

though biased neighboring grains were included.  In Figure 5.6b, the individual grain data points 

are shown as grey circles, and the averaged values for each topology class (𝐹 − < 𝐹𝑁𝑁 >) are 
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shown as red squares.  It can be seen that for the class averaged values, 𝒢’ and 𝐹 − < 𝐹𝑁𝑁 > are 

almost linearly correlated and a fitted line will pass through the origin almost exactly.  We 

conclude that the close correlation between and 𝐹 − < 𝐹𝑁𝑁 > previously observed in metals [88]  

(Figure 4.3) also occurs in this ceramic.   

5.3 GBHD as a function of plane normal ignoring misorientations 

The distributions of the relative areas of grain boundaries, their relative energies, and their 

curvatures, when classified by crystallography, show correlations.  In Figure 5.7, the relative 

areas, energies, and mean curvatures are plotted as a function of the boundary plane orientation, 

ignoring the boundary misorientation.   

 

Figure 5.7.  Variations of grain boundary properties plotted as a function of grain boundary 

plane orientation (ignoring the grain boundary misorientation).  (a) the absolute value of 

curvature, for which the unit is 𝜇𝑚−1; (b) relative area, for which the unit is multiples of 

random distribution (MRD); (c) relative energy, for the which the unit is a procedure defined 

relative units (r.u.). 

The distribution of grain boundary planes illustrated in Figure 5.7c shows a preference for 

grain boundaries with (100) orientations and the minimum is near (111).  This is consistent with 

earlier measurements. [14, 18]  The relative grain boundary energy was lowest near (100) and 

highest near (111).  This inverse relationship with the relative grain boundary area is expected 

based on measurements in other systems. [3, 24, 25]  The absolute value of the curvature also 

depends on the orientation of the grain boundary plane.  In this case, the minimum curvature was 

at the (100) orientation and the maximum curvature was at the (111) orientation.  These results 

show a direct correlation between the curvature and the energy and an inverse correlation 

between the curvature and the relative grain boundary area.  These results show a direct 

correlation between the curvature and the energy and an inverse correlation between the 
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curvature and the relative grain boundary area.  As an example, faces of a single grain with these 

characteristics are shown in Figure 5.2.  The black arrows indicate two grain faces with mostly 

(100) orientations and low curvature.  Such flat (100) faces are common in the microstructure 

and have been observed in several experimental studies [103], [106].  The yellow arrow indicates 

a grain face with (110) orientations and relatively high curvature.  

The correlations suggested by the results in Figure 5.7 can be tested.  Specifically, we can 

determine the average value of one property for all of the boundaries that have a second property 

within a certain range.  For example, when we average the energies of all grain boundaries that 

have relative areas within a 0.05 MRD range, the correlation in Figure 5.8a is obtained.  Note 

that although there is some scatter, there is an inverse correlation between the quantities.  When 

the curvatures of all boundaries within a 0.05 MRD range are averaged, there is also an inverse 

correlation (see Figure 5.8b).  When the curvatures of all boundaries within a 0.05 r.u. range of 

the relative energy are averaged (Figure 5.8c), there is a positive correlation over the majority of 

the domain (> 0.8 r.u.).  All three of these trends are consistent with the trends observed in 

Figure 5.7,  though the standard deviations of these quantities are large compared to the 

variations among the mean values. 

 

Figure 5.8.  Correlations between average values of grain boundary properties.  (a) The 

average energies of all boundaries in a 0.05 MRD range of relative area. (b) The average 

curvatures of all boundaries in a 0.05 MRD range of relative area. (c) The average curvatures 

of all boundaries in a 0.05 r.u. range of relative energy.  In each plot, only averages 

determined from at least three observations are included. The standard deviations of the 

average energies in (a) and curvatures in (b) and (c) are 0.2 r.u., 0.12 𝜇𝑚−1, and, 0.08 𝜇𝑚−1, 

respectively. 

5.4 GBHD as a function of plane normal for fixed misorientations 

It is also possible to examine these grain boundary properties as a function of grain boundary 

plane orientation at a fixed misorientation and one example is illustrated in Figure 5.9.  The 
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relative areas of different grain boundary planes are shown in Figure 5.9b.  The maxima in the 

distribution are centered on the orientations of the symmetric tilt boundaries at (031) and (01̅3).  

The secondary maxima are at the (100) and (1̅00) orientations.  Being perpendicular to the 

misorientation axis, they are twist boundaries.  An energy minimum (see Figure 5.9c) is also at 

the symmetric tilt grain boundary position and there are other local energy minima near the twist 

grain boundary positions, consistent with the inverse correlations evident in Figure 5.7 and 

Figure 5.8.  The low curvatures at the twist boundary positions and the symmetric tilt positions 

are consistent with the correlation to energy and inverse correlation to area in Figure 5.7 and 

Figure 5.8.  The examination of the distributions at other misorientations (not shown) exhibit 

similar trends.   

 

Figure 5.9.  The (a) curvatures, (b) relative areas, and (c) relative energies as a function of 

grain boundary plane orientation for boundaries with a 40 ° misorientation around [100].  Each 

distribution is plotted in stereographic projection.  The (031) and (0 1̅3) orientations are 

marked by black squares and the (100) and (1̅00) positions are marked with triangles.  This is 

also the position of the misorientation axis. 

5.5 Discussion  

The integral mean curvature of grain faces (𝑀𝑠) in SrTiO3 follows a very similar trend to that of 

the austenite and ferrite data, suggesting that there are no significant differences in the relation 

between the neighborhood topology and curvature for metallic and ceramic polycrystals.   

If one compares the distribution of grains as a function of the number of sides (Figure 5.3b) 

and the integral mean curvature as a function of the number of sides (Figure 5.6a), it is clear that 

far more grains have positive curvature than have negative curvature.  Therefore, more grains are 
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convex and, presumably, shrinking than there are concave (negative curvature) growing grains.  

By conservation, all volume lost from shrinking grains must be gained by growing grains.  

Interestingly, when we plot the cumulative volume as a function of the number of sides (Figure 

5.10) using all 3032 grains within the two sample volumes, we see that 50 % of the total volume 

is in grains with more than 16 neighbors.  So, while there are fewer concave grains with more 

than 16 neighbors, they are on average larger than the grains with fewer than 16 neighbors.   

 

Figure 5.10.  The cumulative distribution of grain volume fraction as a function of grain faces 

(𝐹), in which all grains are included.  The dashed line corresponds to 𝐹 = 16 and cumulative 

volume fraction = 0.5. 

Given the relationships between grain size, number of neighbors, and integral mean curvature, 

one might assume that the correlation between curvature and grain boundary crystallography 

would be weak.  However, Figure 5.7 and Figure 5.9 show that this is not the case.  It is 

important to emphasize that the curvatures in these figures were classified only by 

crystallography, meaning that the value at every orientation is the average of data from grains of 

all sizes.  In other words, grain boundaries with (100) orientations have lower curvatures (are 

flatter) on average then boundaries of (111) orientation, regardless of the size of the grain.  Note 

that this is an unsigned curvature.  Because of grain exchange symmetry, the sign of the 

boundary curvature is not unique.  If a grain boundary is convex in the reference frame of one 

grain, it is concave in the indistinguishable reference frame of the other.  The fact that the 

crystallographic correlation is independent of grain sizes arises because of the requirement that 

single boundaries join large and small grains. 
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As suggested in Section 4.4, one possible explanation for the relationship between a grain 

boundary's curvature and crystallography is the tendency of an interface to have a uniform 

chemical potential when local equilibrium occurs in the microstructure.  Remember the chemical 

potential of a nonsingular interface [31] is expressed as 𝜇 =  2𝐻𝛾, if ignoring second derivatives 

(Equation 2.24).  Assuming that there is a mean-field chemical potential, and individual 

interfaces have chemical potentials that approximate this value, then the curvature and the energy 

should be inversely related.  This is reasonable, because curvature increases the interface area 

and the energy penalty for this curvature increases with the energy of the boundary.  However, 

this is not consistent with the SrTiO3 data, which shows curvature and energy to be directly 

proportional. 

The observations that H and 𝛾 are not inversely related suggest that these boundaries may not 

be continuously curved surfaces.  Evidence for the existence of facets can be found in Figure 

5.9c, where there are abrupt minima in the grain boundary at the positions of the symmetric tilt 

and twist boundaries.  If a grain boundary were made of singular interfaces, then there is a 

different prescription for determining the chemical potential, which was described by Herring 

[107] and Taylor [95].  For the case of singular interfaces, 
1

𝑅
 is undefined and 𝛾  is not 

differentiable, so Equation 2.24 is inoperable.  When a singular (flat) interface moves along its 

normal, the change in energy occurs at the periphery of the facet and to the boundaries connected 

at the periphery, as illustrated schematically in Figure 5.11.  We illustrate this point in the next 

paragraph. 

Imagine a ridge that is infinitely long in the y-direction, as in Figure 5.11.  We can describe 

its energy change per unit length in the y-direction when the flat top surface moves in the z-

direction.  As illustrated in Figure 5.11, this hypothetical ridge is bounded by three facets of two 

types.  The top facet is of type 2.  The left and right facets are of type 1.  If the top facet in Figure 

5.11a moves downward by ∆𝑧, its area increases by 𝐴′ –  𝐴 =  2𝛿𝜎2.  At the same time, some 

area of the lateral type 1 facets ( 2𝛿𝜎1 ) is eliminated.  The exact energy change 

(2𝛿𝜎2𝛾2∆𝑧cot(𝜃) − 2𝛿𝜎1𝛾1∆𝑧/sin(𝜃)) depends on the energies of 𝜎1 and 𝜎2 (𝛾1  and 𝛾2 ), the 

distance the facet moves (∆𝑧), and the angle between the facets (𝜃).  This illustrates the key 

difference between the energy changes that occur during the motion of a singular and non-

singular boundary.  For the non-singular case, the energy change is determined completely by the 

radius of curvature and the energy of the grain boundary of interest.  For the singular case, it is 
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determined by the details of the specific geometry (𝜃 in the simplified case illustrated in Figure 

5.11) through the weighted mean curvature [95] and the boundary energy of both the boundary 

of interest and peripheral boundaries.  In polycrystalline microstructures, a grain boundary, 

singular or non-singular, is usually connected to many different types of grain boundaries, 

although the types of these neighbors are not completely random [108].  Considering all of the 

possibilities for 𝜃 , 𝛾1 , and 𝛾2 , it is difficult to draw a general conclusion about the relation 

between measured curvature and energy in the presence of singular interfaces.  If such 

boundaries are present in larger numbers, it is not surprising that the inverse correlation between 

curvature and energy is not observed.   

 

Figure 5.11.  Schematic of a ridge, assumed to extend infinitely in the + and – y directions, 

formed when two surfaces of type 1 meet a surface of type 2.  (a) Initial position. (b) After 

surface 2 retracts by an amount ∆𝑧.  (c) Illustration of the changes in the surface area. 

If the SrTiO3 grain boundary network were dominated by singular interfaces, we have a 

reasonable idea about what we would observe in our experiment.  First, we will not measure zero 

curvature.  The discretized nature of the data and the meshing of the boundary will lead to a 

minimum but finite curvature.  Second, we would also measure energy minima at these 

orientations.  In other words, low energy would correlate with low curvature, as we observe.  

Another consideration is that if the interfaces were mostly singular, one might expect a finite 
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number of interfaces, but instead we observe a continuous range of interface orientations.  This 

difference can be reconciled if the boundaries are faceted on a length scale smaller than the 

resolution of the EBSD maps.  In this case, we would see a continuous range of orientations, 

even if the boundaries were composed of different combinations of more elementary orientations.  

In fact, there is TEM evidence that is consistent with that idea.  Sternlicht et al. [104], [105] 

reported that, regardless of the macroscopic boundary orientation, on the microscopic level grain 

boundaries in SrTiO3 are made up of nanometer-scale flat terraces that mostly have {100} and 

{110} orientations separated by steps that also create {100} and {110} orientations.  The steps in 

the micrographs are larger than the minimum possible step heights, usually by a small integer 

multiple, but it is not obvious that they could be considered facets.  However, migration of such 

boundaries would require changing the areas of both the larger atomically flat terraces and the 

smaller multi-layer steps by a process analogous to that illustrated in Figure 5.11.   

The observation that grain boundaries are microscopically made up of more elementary low 

index orientations is not inconsistent with surface observations.  Relative surface energies are 

found to be reasonable predictors of relative grain boundary energies [109]–[111] and it has been 

reported that in this temperature range, SrTiO3 surfaces are fully faceted and made up of low 

index orientations [101]. 

Finally, it is worth noting that these measurements are consistent with changes that are 

observed for SrTiO3 grain boundaries in the so-called "anti-thermal" region where the boundaries 

migrate more slowly [100].  Measurements have shown that there is an increase in boundaries 

with low energy and with the (100) orientation [101], [102].  Here, we find these (100)-oriented, 

low energy boundaries also have a minimum curvature.  Therefore, they have the lowest driving 

force for migration.  While this does not explain why such low curvature, low energy boundaries 

form in this temperature range, it is consistent with the phenomenological observation of slower 

grain boundary migration. 

5.6 Conclusion 

Using 3D EBSD, we have measured the distribution of relative areas, energies, and curvatures in 

SrTiO3 annealed at 1470°C.  The integral mean curvatures of grains vary such that small grains 

with fewer than 16 sides have positive curvatures and larger grains with more than 16 sides have 

negative curvatures.  The number of excess neighbors correlates strongly with the normalized 
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integral mean curvature.  The curvature is positive (negative) if a grain has fewer (more) 

neighbors than the average of its neighbors.  The grain boundary curvature is inversely correlated 

to the grain boundary area, such that flat boundaries make up a relatively larger portion of the 

grain boundary area.  Also, grain boundary curvature is correlated to grain boundary energy, 

such that lower energy boundaries are flatter and relatively larger.  This latter correlation 

suggests that the grain boundary network is dominated by singular boundaries.  
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6.   Grain face features from HEDM datasets 

In the previous two chapters, we analyzed three sets of EBSD orientation maps and came up with 

three conclusions.  First, the integral grain curvature is correlated with its topological character, 

like the number of faces, and a mean-field character, defined as 𝐹 − < 𝐹𝑁𝑁 >.  Second, the 

different properties of grain boundaries, including population, energy, and curvature, are 

correlated.  Third, the correlation between grain boundary energy and curvature is different for 

general boundaries, whose energy landscapes are smooth, and singular boundaries, whose 

energies sit in cusps.  The validity of the third conclusion is not indisputable, since a robust and 

reliable discrimination of singular and non-singular boundaries is not yet 

available.  Nevertheless, the first two conclusions are well-supported by experimental 

evidence.  The various properties of a microstructure are clearly correlated. 

However, direct evidence of how these properties affect the microstructure evolution was 

missing due to the destructive nature of the EBSD technique.  The materials are milled away 

during the collection of orientation maps, so it is not possible to observe the evolution of 

microstructures via EBSD.  This problem can be resolved with a non-destructive technique, like 

high energy diffraction microscopy (HEDM).   

We will analyze two orientation maps collected via HEDM in the remainder of this 

document, which depict the before and after annealing state microstructures of a high purity Ni 

sample.  Previous studies of these data have been published in references [112]–[114].  The 

focus of this research is the evolution of grain faces.  Different grain face characteristics were 

first summarized as many numeric features, and these features were then analyzed with the help 

of machine learning models.  Some grain face characteristics, like the crystallographic 

parameters, were not efficiently captured by our features and were analyzed separated.  

This chapter intends describe the material in use (Section 6.1), the preprocessing concerns 

(Section 6.2), the feature engineering details (Section 6.3 - 6.7), and the machine learning models 

of choice (Section 6.8).  Detailed sample statistics and analyses are presented in the following 

chapter (Chapter 7).  
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6.1 Sample overview 

The sample in use is high purity Nickel.  The diffraction experiment was conducted at the 

Advanced Photon Source at Argonne National Laboratory by Hefferan et al. [112].  A detailed 

description of the sample information and experimental set up can be found in Reference [115], 

and the most important points are summarized below.   

The sample was machined to be a 1 mm diameter rod from a 99.999 % purity Nickel rod 

bought from Alfa Aesar.  Before orientation map collection, the sample has been annealed at 

750 ℃ for 2 hours to yield a fully recrystallized initial microstructure of appropriate grain size.  

The annealing atmosphere was 97 % N2, 3 % H2.   

Six sets of nf-HEDM diffraction patterns of the same material volume were collected for six 

different anneal states, from which the microstructure map were resolved by a forward modeling 

technique [112].  The first set of diffraction patterns was collected for the 750 ℃ annealed 

sample, after which the sample was annealed again at 800 ℃ for about 30 minutes to enable 

microstructure evolution, and then followed by the collection of the second set of diffraction 

patterns.  This anneal-measure cycle was repeated five times and six successive microstructures 

were collected.  The anneal conditions are summarized in Table 6.1.  In this research, we focus 

on the grain face evolutions in the last two states (anneal-state-4 and anneal-state-5).  

Table 6.1.  Heat treatment history of Ni. Reprinted from Reference [112]. 

Anneal State Duration (min) Temp (°C) Environment 

0 120 750 97%N2, 3%H2 

1 +23 800 97%Ar, 3%H2 

2 +30 800 97%Ar, 3%H2 

3 +25 800 97%N2, 3%H2 

4 +35 800 97%N2, 3%H2 

5 +25 800 97%N2, 3%H2 
 

The orientation recovery process in HEDM is completely different from that in EBSD, but 

the recovered orientation data are both presented in the form of sequential map slices [61], [62].  

The orientation maps were constructed from the data by Hefferan et al. [112], using a hexagonal 

grid of 2.0 𝜇𝑚 in-plane resolution and 4.0 𝜇𝑚 z-direction resolution.  These map slices were 

converted to square grids (2.8 𝜇𝑚 by 2.8 𝜇𝑚) and reconstructed to be 3D microstructures by 

Bhattacharya et al. [114], using DREAM.3D version 6.4 [78]. The misorientation threshold was 
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2°, and the smallest grain contained 27 voxels.  In the as-collected maps, anneal-state-4 covers 

395 ⨉ 404 ⨉ 84 voxels, and the anneal-state-5 covers 398 ⨉ 404 ⨉ 104 voxels.   

This research is based on the grain tracking results from Bhattacharya et al. [114]  A grain 

face is considered tracked if the grains on its two sides are tracked across the two anneal states.  

Detailed statistics of the tracked faces are given in Section 7.1.1. 

6.2 Data preprocessing 

Several processes need to be finished before good quality data can be retrieved from two 

sequential DREAM3D files, between which the tracking of grains has been solved.  Specifically, 

a shared volume needs to be extracted between the two datasets.  The data volumes need to be 

aligned.  The experimentally measured grain faces should be examined and bad measurements, 

or outliers, should be excluded.  Note we will not discuss recovering orientation maps from 

diffraction patterns, reconstructing 3D microstructures with DREAM.3D, or tracking grains.  

Please refer to references [112], [114], [115] for this information.   

6.2.1 Datasets shared volume and alignment 

The HEDM technique enables one to measure a sample volume repeatedly.  However, if 

interruptions, like ex-situ heat treatments as in our case, happened during the measurements, then 

the measured sample volumes and the local coordinate system associated with each volume may 

not coincide exactly.  Specifically, the anneal-state-5 covers a slightly larger volume (398 ⨉ 404 

⨉ 104) than anneal-state-4 (395 ⨉ 404 ⨉ 84).  This volume difference may induce biases when 

analyzing grain faces near the sample boundary, so we decided to use only the volume covered, 

or shared, by both states.   

The extraction of the shared volume is based on Bhattacharya’s work of tracked grains. [114]  

The assumption is that grain growth is an approximately uniform process and the tracked grains 

should overlap the most in the shared volume.  A coordinate descent algorithm was implemented 

accordingly.  At the start of the algorithm, the two volumes were placed such that voxels at the 

(0,0,0) positions coincided.  The grain ID of every voxel was compared, and the overlapping 

volume of the tracked grains was recorded (in voxels).  Then the volume of anneal state four 

(𝑉𝑎𝑛4) was shifted in the x-direction for a range of steps and the best x-shift that gave the largest 

overlapping volume, as well as the largest overlapping volume, was recorded.  The shift range 

was decided from the sample size difference in x-direction (398 – 395 = 3) to be [–10 : 1 : 13] 
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(between –10 and 13 and with a step size of 1).  Similar shifts were repeated in the y and z 

directions and then back to the x-direction.  This x, y, z shift cycle ended when the largest 

overlapping volume did not change after a complete shift cycle, which indicated that the 

algorithm has converged.  The shared volume was then calculated by comparing the best shifts 

and the sample dimensions.   

In our datasets, the volume shared between 𝑉, the sample volume in anneal-state-4, and 𝑉′, 

the sample volume in anneal-state-5, was calculated to be the same size as 𝑉, though the search 

algorithm did not force such a constraint, confirming a good experimental setup.  Note if the 

experimentally measured volumes were far apart physically, the shift ranges need to be bigger.  

In all the following analyses, the volume of anneal-state-5 was cropped and only the shared 

volume was kept.  

Note the volume of anneal-state-4 and the cropped volume of anneal-state-5 still sat in their 

local coordinate systems.  The next step is to align their coordinates, which is important if one 

wants to track mesh nodes across different sample volumes directly for the purpose of measuring 

migration distance or mobility.  We discuss two straightforward ways to align sample volumes 

here and leave the details of grain face migration until Section 6.6. 

The best shift vector from the shared volume extraction process serves as the first method to 

align sample volumes.  Another way is to take the average centroids shift from the tracked grains 

to be the shift between the two volumes.  Similar to the first method, the underlying assumption 

is that the grain growth process is approximately random, or at least not strongly biased, in the x, 

y and z directions so the average shift of grain centroids should be zero if the two volumes are 

well aligned.   

Neither of these two methods is perfect.  The first method is straightforward, but the 

resolution is limited by the voxel size of the dataset.  Sub-voxel alignments, in our case 

dimensions smaller than 2.8 𝜇𝑚 ⨉ 2.8 𝜇𝑚 ⨉ 4 𝜇𝑚, are not achievable.  The second method is 

not restricted by resolution, but the centroid shift of every tracked grain pair is considered as, 

probably unfairly, equally important.  In our datasets, results from the two methods differed by 

0.7 𝜇𝑚, 0.7 𝜇𝑚, and 2.8 𝜇𝑚 in the x, y, and z directions respectively.  We aligned the sample 

volumes following the second method.  The second method can probably be improved by 

assigning a size-dependent weight factor to the shifts of tracked grains.  Better alignment may 

also be achieved with the help of advanced machine learning models like the generative 
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adversarial neural network [116], [117].  However, detailed optimization on the alignment is out 

of the scope of this research.   

6.2.2 Concerns about experimentally measured grain faces 

To start with, we would like to point out that the focus of this and the following chapter is grain 

faces.  The grain growth community has been traditionally more interested in grains, probably 

because the most fundamental insights about the evolution of microstructures, also known as the 

grain growth process, was inspired from the evolution of soap bubbles.  For soap bubbles, it is 

natural to start the study with individual bubbles because bubble surfaces are isotropic and the 

driving force, pressure, is constant within each bubble.  However, this situation does not apply to 

grain growth.  Grain boundaries are anisotropic and local driving forces can vary significantly 

within one single grain [118], so we think grains are not the indisputable reasonable entity to 

start the analysis of microstructure evolution.  To illustrate the point, the microstructure of 

anneal-state-4 is displayed as a voxel-based grain collection (Figure 6.1a) and as a mesh-based 

cellular network (Figure 6.1b).  It can be seen that grain faces can also be considered as a basic 

element of the microstructure if one takes the point of view from a grain boundary cellular 

network, instead of a grain collection.   

We are interested in grain faces because of this slightly different perspective they provide.  

Also, analyses of grain faces do not contradict analyses of grains.  Some properties of grains, like 

integral curvature, which is believed to be correlated with the growth of grains [73, 97], are 

based on properties of grain faces.   

 

Figure 6.1.  Microstructure of anneal state 4, (a) as voxel-based grains and (b) as mesh-based 

grain boundary network. 

Because of the discrete nature of the experimental method, measurements from the small 

grain faces are usually less reliable than measurements from larger faces.  The reasoning is 

similar to that of the small (< 27) voxel groups, which are considered as noise rather than grains 
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during the DREAM.3D reconstruction.  There are two main sources of small grain faces.  One is 

the physically small grain faces, and the other is measurement artifacts.  Remember that 

experimental measurements have finite resolution and accuracy so one should not try to interpret 

every detail in the dataset.      

Some measurements, like mean curvature, depend on mesh quality.  The meshes in this 

research are generated by the DREAM.3D quick mesh method and are smoothed using two 

different smoothing techniques, including DREAM.3D Laplacian smoothing [78] and a 

topology-faithful nonparametric smoothing method [119].  Neither of these smoothing 

techniques is perfect.  Laplacian smoothing handles mesh triangles near triple lines poorly.  

Nonparametric smoothing generates overall smoother shapes but can produce more poorly 

shaped triangles on grain faces.  Exact data values vary with smoothing methods, but the general 

trend is similar.   

Another issue worth mentioning is the integrity of grain faces.  We defined a grain face as the 

interface between two grains.  Following this definition, it is possible that a grain face contains 

multiple isolated pieces.  An example is shown in Figure 6.2, in which the two pieces are cut 

apart by another plate-shaped grain.   

 

Figure 6.2.  Example of a two-piece grain faces, (a) in the grain pair and (b) on individual 

grains. 

The two pieces in Figure 6.2 represent the physical structure of the sample and are unlikely 

to be an artifact.  In other cases, a grain face is composed of a large piece and some small 

satellite pieces which are likely to be artifacts of the reconstruction.  We point out this problem 
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because it causes problems when attempting to track mesh nodes, which will be discussed in 

detail later (Section 6.6.1). 

6.2.3 Outliers 

Data instances with extreme values are often considered to be different from those with moderate 

values and are called outliers.  The interpretation and handling of outliers vary from case to case 

because outliers are usually associated with dual roles.  Such unusual values may hold the key 

information of interest, or they may arise from noise that serves only to distort the underlying 

general trend [120].  The boundary is often blurred, and one needs to balance between the 

objective of capturing the central trend and the risk of ignoring informative critical events 

depending on the problem at hand.   

Because this is the first time grain faces have been tracked, we had to develop a criterion to 

separate reliable data from outliers.  A tracked grain face was determined as an outlier if any of 

the four conditions was satisfied: 1) 𝐴 < 20 𝜇𝑚2; 2) 𝐴′ < 20 𝜇𝑚2; 3) (𝐴′ −  𝐴) / 𝐴 > 10; 4) 

(𝐴′ −  𝐴) / 𝐴 < − 0.9.  𝐴 and 𝐴′ stand for the area of a tracked grain face, in anneal-state-4 and 

anneal-state-5.  The first two conditions require that grain faces are large enough in both states, 

in which 20 𝜇𝑚2 amounts to approximately four mesh triangles.  The last two conditions are 

designed to filter out grain faces with dramatic area changes.  Note the outlier thresholds are 

empirical.  Some outlier grain faces probably result from imperfect measurements or data 

processing artifacts, but some are possibly good measurements of true grain faces.  Similarly, not 

all non-outlier grain faces are necessarily good measurements with physical counterparts.   

Elementary mesh triangles are also filtered.  Unrealistic measurements, defined as the 

magnitude of triangle mean curvature value larger than 1 𝜇𝑚−1, or triangle area large than 7 

𝜇𝑚2 or triangle minimum interior angle smaller than 10° were not used in calculations of grain 

face features.  The threshold values are determined by referencing the dataset resolutions and the 

99 % or 1 % percentiles of the measurement distributions. 

6.3 Crystallographic features 

We start to discuss feature engineering for grain faces in this and the next few sections.  A grain 

face is defined as the collection of grain boundary triangles that sit between the same two 

resident grains.  Each characteristic of one grain face is summarized in one number, and a 

characteristic of all grain faces compose a data column, or feature.  
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6.3.1 Misorientation 

The misorientation of a grain face is straight forward, identical to the misorientation of a grain 

boundary.  We did not adopt the misorientation data as a feature directly.  The reason is that, in 

the Euler angle convention, three numbers are needed to fully describe a misorientation, but we 

would like to confine features to be one number for each face.  There are two reasons for this 

preference.  The first one is that the interpretability of results, primarily feature importance, will 

be compromised if one-number features are mixed with multi-number features.  Second, the 

available training data (at most tens of thousands of tracked grain faces) is limited and we do not 

plan to train models with huge capacities, such as neural networks.  It is questionable that a 

moderate-capacity model can learn the multiple-number features properly when they are mixed 

with the one number-features in the full feature matrix.    

The misorientation features are defined as distances from target misorientations, calculated 

following Equation 6.1, in which 𝑀𝑖 stands for the misorientation of a grain face and 𝑀 stands 

for the target misorientation. tr() is the trace operator [121], [122].  Note that before applying 

Equation 6.1, both 𝑀𝑖 and 𝑀 need to be converted to its representation within the fundamental 

zone.  Proper crystallographic symmetries were applied on 𝑀𝑖 and 𝑀, and the misorientation 

distance was determined as the smallest distance among the symmetrically equivalent copies.  

The most interesting target misorientation is Σ3 (60° / [111]) [35], [123].  Some other low sigma 

misorientations, like Σ5, Σ7, Σ9, may also be informative, but the general misorientations should 

be relatively featureless [19].  

 
𝛽 = arccos(

tr(𝑀𝑖𝑀
𝑇) − 1

2
) (6.1) 

6.3.2 Plane normal 

Describing the plane normal of a grain face is much trickier since a grain face is usually 

composed of many grain boundary triangles, each with its own plane normal.  The plane normal 

features are also distance-based.  A few target plane normal directions were chosen: [111], [110], 

[100], [112].  For every grain boundary (mesh triangle), the distance between the triangle normal 

(𝑛𝑖) and the target normal (𝑛) is calculated following Equation 6.2. [121], [122].  Note both 𝑛𝑖 

and 𝑛  should be given in crystallographic reference frames.  Similar to the misorientation 

distances, proper symmetry operators were applied and the smallest one was determined as the 
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normal distance for a given grain boundary (𝜂𝐺𝐵).  Then the target normal distance of a grain 

face (𝜂𝐺𝐹) was determined as 𝜂𝐺𝐹 = ∑ (𝜂𝐺𝐵
𝑗 )𝐽

𝑗=1 /𝐽, in which 𝐽 is the number of mesh triangles on 

the grain face.  The standard deviations of the mesh triangle target normal distances were also 

recorded to characterize the variations of plane normal directions.  

 

𝜂 = √
𝜁1

2 + 𝜁2
2

2
 , 𝜁𝑘 = arccos(𝑛𝑖,𝑘 ∙ 𝑛𝑘) (6.2) 

6.4 Geometric & topological features 

The status of a grain boundary cellular network is described if the crystallographic information 

(namely what grain boundaries exist in this network), geometric information (namely what are 

the shapes of the boundary boundaries), and the topological information (namely how the grain 

boundaries are connected) are known.  Combinations of these three fundamental types of 

information may also be useful.   

A topology-faithful smoothing technique designed by Maddali et. al. [119] was applied to 

prepare the microstructure for features discussed in this section.  The topology-faithful 

smoothing handles the smoothing of triple lines better than the DREAM.3D Laplacian 

smoothing method [82].  However, we note that the topology-faithful smoothing creates more 

poorly smoothed pits in the interior of grain faces.  Such pits do not seem to have a significant 

effect on curvature calculations but can lead to noise in grain boundary plane normal related 

properties.  As a result, we applied to topology-faithful smoothing to calculate grain face features 

and used DREAM.3D Laplacian smoothing for plane normal related calculations.   

6.4.1 Geometric features 

Three kinds of geometric features were designed: area (𝐴), integral absolute mean curvature 

(|ℋ|) and average absolute mean curvature (|ℍ|).  Note the absolute values of mean curvatures 

are used due to the switching symmetric, similar to what has been discussed for the GBHD 

(Section 3.2).  The calculation of |ℋ| is similar to the integral mean curvature of grain faces 

(Equation 4.1), except that absolute mean curvatures are used and there is no need to integrate 

over different grain faces.  |ℍ| is the average of absolute mean curvature, calculated as |ℍ| =
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∑ (|𝐻|𝑗)𝐽
𝑗=1 /𝐽.  |𝐻| is the unsigned triangle curvature and 𝐽 is the number of triangles on the 

given grain face.  

These features haven been measured for both the before-anneal dataset (anneal-state-4) and 

the after-anneal dataset (anneal-state-5).  The change of a feature is always calculated as feature 

value in anneal-state-5 minus the feature value in anneal-state-4.  

6.4.2 Topological features 

Three types of topological features are calculated for each grain face, including the number of 

corners, the number of edges and the integral dihedral angles.  Identifying corners in 3D 

microstructures is non-trivial.  Sun et. al. [124] reported that discretization artifacts exist even in 

simulated 3D microstructures, which are generally considered to have high quality clean shapes.  

Our datasets were collected from experiments and enclosed many twins with complicated shapes, 

meaning there is probably many more noise and measurements are likely to be less reliable [113], 

[114].  Several corner and edge determination methodologies can be found from literature [124]–

[126], among which Li et. al. [125] faced a situation similar to ours.  Li et. al. [125] proposed the 

idea of canonical quadruple nodes, which do not necessarily have physical counterparts but are 

more robust to certain kinds of noise.  The same approach was taken in by Liu et. al. [126]. 

We identified quadruple nodes by checking the connectivity of voxels.  As shown in Figure 

6.3, every grid position inside the sample volume has eight neighboring voxels, each with a grain 

ID (Section 3.1.2).   

 

Figure 6.3.  Illustration of voxels (the eight small cubes) and mesh grid positions (circular 

points sitting on the corners of voxels).  

All mesh grid positions inside the sample volume were examined.  If no less than four unique 

grain IDs were found among the eight voxels neighboring a mesh node, the set of unique grain 

IDs was recorded and served as identifiers of quadruple nodes.  Note a unique set of grain IDs 

was recorded only once.  Though some physical corners, which are enclosed in the same set of 
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four connected grains, are ignored in this approach, it is efficient since the majority grain ID set 

duplications have originated from discretization artifacts.  There is no efficient way to 

differentiate the physical duplicated grain ID sets from the noise duplicated grain ID sets, so we 

decided to ignore all duplications.   

Most of the grain ID sets have four members, consistent with what would be expected for 

quadruple nodes.  However, larger grain ID sets, with five or six members, corresponding to 

quintuple or sextuple nodes, are also observed.  The population of the quintuple nodes is small 

with respect to the population of quadruple nodes and the population of sextuple nodes are 

basically ignorable. These super nodes may have resulted from the limited experiment resolution.  

For example, a quintuple node might have resulted from a sub-resolution triple line and two 

quadruple nodes, as mentioned [125].   

The number of corners (𝐶) of a grain face was calculated by comparing the two resident 

grain IDs of a given face to the ID sets defining quadruple, or quintuple, nodes.  If the two IDs 

labeling the grain face were found in one four grain set, 𝐶 was increased by one.  If the two IDs 

labeling the grain face were found in one five grain set, 𝐶 was increased by two.  Six grain sets 

were ignored since there were very few of them.  

The number of edges was calculated from the connection of mesh triangles.  DREAM.3D 

labels each mesh node with a unique ID and records the three nodes constituting each mesh 

triangle.  These two data contain the full connection information of the mesh triangles. To find 

the triangles that share a common edge, one just needs to find the triangles containing the two 

corresponding mesh nodes.  Edges shared by three mesh triangles were identified, and the three 

grains enclosing these edges, which can be found from triangle labels (Section 3.1.2), were 

recorded.  Similar to the case of corners, it is assumed that an edge is defined by a unique set of 

three grain IDs.  This assumption was shown to be effective by some random visual 

checks.  However, a set of three grains might have defined more than one edges, or an edge 

might be shared by four grains.  The latter two cases were relatively rare and were ignored in the 

current research.   

The integral dihedral angles were also calculated from the connection of mesh triangles, and 

an illustration of the procedure is given in Figure 6.4.  The transparent blue surface in Figure 

6.4a depicts a grain face in anneal-state-4.  Two other grain faces sharing a triple line with the 

blue face are shown in transparent red.  A group of three mesh triangles sitting on this triple line 
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is highlighted in non-transparent colors and magnified in Figure 6.4b.  Dihedral angles were 

calculated within the three-triangle group, and were labeled as opposite, left or right based on the 

local arrangement of resident grains.  The opposite dihedral angle is straight forward.  The 

convention of left and right will be discussed in detail in Sections 6.6.4 and 6.7, where the 

motivation becomes more clear.  In short, the choice of left and right is arbitrary but needs to be 

kept consistent once made.  The calculation of dihedral angles was repeated in all group of three 

triangles sitting on edges of the objective grain face.  Integral dihedral angles were then 

calculated from dihedral angles within these group of three triangles.   

 

Figure 6.4.  (a) Three grain faces enclosing a triple line.  (b) A group of three mesh triangles 

on the triple line.  (c) Simplified 2D illustration for the grain boundary (mesh triangle) of 

interest, the left and right nearest neighbor, or connected, boundaries, and dihedral angles 

formed by this group of three grain boundaries. 

6.5 Mean-field features 

We have seen that 𝐹 − < 𝐹𝑁𝑁 >, a mean-field defined by the nearest neighbors of a given grain, 

is highly correlated with 𝒢’, the normalized integral curvature of grain faces, for a given grain 

(Figure 4.3 and Figure 5.5b).  Are there similar kinds of correlations for grain faces?  To answer 

this question, some mean-field features were designed for grain faces. 

The mean-field features are based on differences between a grain face of interest and its 

nearest neighbors.  The nearest neighbor grain faces refer to those connected to the grain face of 
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interest via shared triple lines and can be tracked by checking triple lines (Section 6.4.2).  All 

geometrical and topological features can be used to design a corresponding mean-field feature.   

  More generally, a mean-field feature can be defined to capture all kinds of unusual events 

among the nearest neighbor faces.  For example, we calculated the number of disappeared and 

appeared grains and grain faces within the nearest neighborhood of each grain face and recorded 

the number in fraction.  The motivation behind these features is that the vanish of a grain is 

likely to induce a large perturbation in the local neighbor. The nucleation of new grains is 

usually thought to be rare but have been identified in the Ni datasets [127].  The extinction and 

nucleation of grains and grain faces may play the role of critical events and thus correlated with 

the evolution of grain faces.  

6.6  Migration features 

The migration distances of grain faces are of interest because migration distances combined with 

curvature data yields grain boundary mobility (Equation 2.25), which is an important grain 

boundary property (Section 2.4.3).  To extract grain face migration distances, we first tracked the 

mesh nodes on the same grain face across the two datasets (Sections 6.6.1 and 0).  However, the 

direct distances between tracked mesh nodes do not correspond to out-of-plane migration 

distances so it is necessary to use projections (Section 6.6.3).  Finally, we also defined a local 

reference frame convention and extracted the migration direction of grain faces (Section 6.6.4). 

6.6.1 An optimal-transportation-based algorithm for grain face tracking 

In this section, the algorithm created by Maddali et al. [119] is briefly described.  The problem 

context is that given the two sets of mesh nodes, capturing the before and after annealing shapes 

of a grain face, one needs to determine the displacement vectors.  In other words, a mesh node in 

the before-anneal-state corresponds to which mesh node in the after-anneal-state or vice versa.     

Maddali et al. designed this algorithm based on three assumptions.  First, nodes in the before-

anneal-state follow the shortest possible path to complete the motion.  Second, every node in the 

before-anneal-state has a correspondence in the after-anneal-state.  Third, correspondences in the 

after-anneal-state are distributed as uniformly as possible.  The linear optimization formulation 

of the problem is given by Equations 6.3 - 6.6. [119] 
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𝐶𝑖𝑗 = argmin
𝜎𝑖𝑗
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(6.6) 

 

{𝑥𝑖} is coordinates of the set of mesh nodes in before-anneal-state.  {𝑦𝑗} is coordinates of the set 

of mesh nodes in after-anneal-state.  N and M are the number of mesh nodes in the before-

anneal-state and after-anneal-state.  𝜎𝑖𝑗 is a weight matrix indicating the correspondence between 

{𝑥𝑖} and {𝑦𝑗} .  The objective function, Equation 6.3, is derived from the first assumption.  

Equation 6.5 and 6.6 are from the second and third assumptions.  

This algorithm allows one to work with densities.  In other words, one mesh node can 

correspond to multiple mesh nodes according the density matrix 𝐶𝑖𝑗.  Nevertheless, we constrain 

the elements of 𝐶𝑖𝑗 to be binary, taking the value of either zero or one, in our implementation.  

Direct application of this algorithm works well in general cases.  An example of a tracked grain 

face in our dataset is given in Figure 6.5a, in which the blue surface depicts the grain face before 

annealing (anneal-state-4) and the yellow surface is the grain face after annealing (anneal-state-

5).  It can be seen that the black lines, which can be considered as the migration vectors of grain 

boundaries during annealing, look reasonable.  However, not all tracking results look as good as 

Figure 6.5a.  There remain at least two tricky problems.   

The first problem is illustrated in Figure 6.5b, in which the grain face has two pieces in both 

anneal-state-4 and anneal-state-5.  It is obvious that the long black lines connecting mesh nodes 

across the two pieces are not physical.  This problem roots from the requirement that the 

correspondences to be evenly distributed (Equation 6.6) and is most serious for the multi-piece 

grain faces.  One solution is to solve the correspondence of pieces first and then solve the 

correspondence of nodes within the paired pieces. 
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Figure 6.5.  Examples of grain faces tracked following the algorithm designed by Maddali et 

al.. [119]  Blue nodes and blue surface depicts the grain face in anneal-state-4. Yellow nodes 

and yellow surface depict the grain face in anneal-state-5.  Black lines indicate the 

correspondence of mesh nodes.  

The second problem resides in the intrinsic ambiguity of the term “grain boundary 

migration”.  Note the exact atoms constituting a piece of grain boundary change dynamically 

during the migration of a grain boundary [128], [129].  This problem is not obvious in traditional 

bi-crystal mobility experiments, in which the grain boundary shapes do not change throughout 

the experiment [19], [130].  However, the problem becomes significant when grain boundaries 

are examined in the context of real-word 3D polycrystalline materials, where grain boundary out-

of-plane migration and in-plane shape change happen at the same time.  The point can be 

illustrated with two simplified 2D examples in Figure 6.6.   

The tracking is correct in the two examples of Figure 6.6.  However, it is easy to notice that 

the length of the black lines, namely the direct migration distances, do not match the length of 

the green arrows, namely the out-ot-plane migration distances.  Figure 6.6a illustrates the case of 

grain boundary area change, and an experimentally measured grain face example can be found in 

the left piece of Figure 6.5b.  If a grain face goes through some area change during migration, 

both the area change and the out-of-plane migration (green arrow) will contribute to the direct 

migration distance (black line lengths).  Figure 6.6b demonstrates the problem of shift, which is 

even more general, and a real grain face example can be find in Figure 6.5a.  There are two 

possible sources for the shift.  The first one is related to the finite resolution of our discrete data.  
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Any coordinates misalignment and any randomness in the mesh nodes sampling process can 

cause the discrete mesh nodes to mismatch, thus inducing some incorrect migration distances.  

The second possible source is physical shifts like grain boundary sliding [131], [132]. Note that 

we always keep the focus on out-ot-plane migration distances when discussing grain boundary 

migrations in this document.  Grain face shape changes are left to be captured by geometric 

features like face area change (Section 6.4).  

 

Figure 6.6.  The blue nodes and lines depict a 2D grain boundary in the before-anneal-state.  

The yellow nodes and lines depict a 2D grain boundary in the after-anneal-state.  The tracking 

results are indicated by the black lines.  The out of plane migration distance is indicated by the 

green line.  

One possible way to extract a more accurate out-of-plane migration distance is to track only 

the nodes in a shared area.  Take the grain face in Figure 6.5a as an example.  One can first 

project the 3D mesh nodes onto a 2D plane (Figure 6.7b).  Work out a shared area in the 2D 

plane and which nodes reside in the shared 2D area (Figure 6.7c).  Then the corresponding 3D 

nodes can be considered as residing in a shared area.   

 
Figure 6.7.  Illustration of identifying nodes in the shared area by projecting 3D mesh nodes to 

2D.  (a) The same grain face as in Figure 6.5a.  (b) 2D projections of the mesh nodes.  (c) 

Points that sit inside the shared area are now indicated by stars. Points outside are not shown. 

Solid points in Figure 6.7b correspond to 3D mesh nodes that sit on boundary of the grain 

face, or triple lines.  Hollow points correspond to mesh nodes sitting in the interior of grain faces.  
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Lines indicate boundaries of the 2D polygons, returned by MATLAB [133].  The 2D plane in 

Figure 6.7 was defined from the average normal of all mesh triangles and the centroid of all 

mesh nodes.  The 2D intersections can be found with packages available in MATLAB [133].  

Note this method would fail if the grain face has slid a large distance. 

6.6.2 A nearest matching algorithm for grain face tracking 

A second way to track mesh nodes is to consider a pair of mesh nodes tracked if they are the 

nearest neighbor of each other.  Note that this nearest matching algorithm allows only 1-to-1 

correspondence between mesh nodes so not all mesh nodes will be tracked.  The optimal-

transportation-based algorithm allows 1-to-N relationship so all nodes have at least one 

correspondence.  Despite the simplicity, this nearest matching algorithm yields reasonable results, 

as can be seen in Figure 6.8.   

 

Figure 6.8.  (a) and (b) show examples of grain faces tracked following the nearest matching 

algorithm, similar to Figure 6.5.  However, only mesh nodes that were tracked are shown.  (c) 

Surfaces of the same grain face as in (b).  The red arrows indicate a high curvature surface 

where mesh nodes are unlikely to be tracked.  

Figure 6.8a illustrates the nearest matching result of the same face as in Figure 6.5b.  It can 

be seen that the result is less sensitive to the area change problem mentioned in the previous 

section.  However, the major drawback of this algorithm is that it biases against high curvature 

surfaces, as indicated in Figure 6.8b and Figure 6.8c by the red arrows.  

6.6.3 Out-of-plane migration distance from tracked nodes 

As discussed in Section 6.6.1, direct migration distances from tracked mesh node pairs are not 

equal to the out-of-plane migration distance.  Though one can never fully recover the true out-of-
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plane migration distances from datasets with a coarse time grid, such as the 25 min separated 

anneal-state-4 and anneal-state-5, a fair approximation of the values may be obtained by 

projecting migration distances from tracked mesh nodes along surface normals.  For example, if 

the black lines in Figure 6.6 are projected along the surface normal, then they would have the 

same length as the green arrows.  The surface normal directions of experimentally measured 

grain faces are usually less obvious than the case of Figure 6.6.  Nevertheless, three kinds of 

projections have been tried.   

A straight forward choice is to project migration distances along local surface normal 

directions.  One mesh node is usually shared by several resident mesh triangles, each with a 

slightly different triangle normal.  The surface normal at the mesh node can be calculated as the 

average of resident mesh triangles’ normal directions.   

However, as mentioned in Section 6.2.2, local triangle normal directions can be affected by 

mesh quality and may not be reliable, especially at positions near triple lines.  A second 

projection method was designed to resolve this problem, in which a median plane is assumed to 

exist between before-anneal and after-anneal grain face pair.  This median plane can be 

determined by fitting the mesh nodes with a linear regression model, or by training a supported 

vector machine (SVM) model to classify the before-anneal-state mesh nodes and the after-

anneal-state mesh nodes.  An example of an SVM median plane is given in Figure 6.9.   

 

Figure 6.9.  A pair of grain faces and a median plane solved by the SVM model.  Blue surface 

depicts the grain face in anneal-state-4. Yellow surface depicts the grain face in anneal-state-5. 

Purple surface shows the median plane, whose normal direction is pictured by the purple arrow.  

(a) and (b) shows the same grain face pair from different views. 

It can be seen that the normal direction of the median plane can approximate local surface 

normal directions well.  Note that not all grain faces can be fitted by a single median plane.  If 
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both grain faces have highly curved shapes (Figure 6.10a), then multiple median planes are 

needed (Figure 6.10b).   

 

Figure 6.10.  (a) A highly curved grain face pair and (b) median planes fitted by the SVM 

model.  Blue surface depicts the grain face in anneal-state-4. Yellow surface depicts the grain 

face in anneal-state-5.  Different colors in (b) indicating different node clusters.  

The median planes were fitted automatically in an iterative manner with the help of a good-

median-plane criterion.  The good-median-plane criterion was defined from the intuition that 

nodes from different mesh states should sit on different sides of the median plane, and the plane 

normal of the median plane should be close to at least one of the average triangle normal 

directions in the two states.  In the beginning, a to-be-clustered pool of nodes was initialized with 

all mesh nodes on the tracked grain face pair.  One median plane was fitted using the to-be-

clustered pool of nodes, and the good-median-plane condition was then checked.  If the good-

median-plane condition was not satisfied, then a K-means algorithm was run with the pool of 

nodes, and the nodes were then divided into two clusters.  Next, one median plane was fit within 

each cluster.  Once a good median plane was found for a cluster, all mesh nodes of this good 

cluster were removed from the to-be-clustered pool.  The check-cluster-fit cycle was repeated 

until 90 % of the mesh nodes has been fitted with good median planes or the maximum number 

of clusters has been reached.  Note the number of K-means clusters in each cycle is set as the 

number of bad clusters from the previous cycle plus one.   

The third method is not a projection method.  It is instead a decomposition method inspired 

from the idea that the height of a pillar becomes calculable if given the top and bottom surface 

areas and the volume of a pillar.  In the context of tracked mesh nodes, the top and bottom 
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surface areas are given by the triangle areas.  The volume enclosed by a set of mesh nodes can be 

calculated from the associated convex hull [133].  The out-of-plane migration distance may then 

be approximated by pillar heights.  One pillar is defined by six mesh nodes, three mesh nodes 

that form a mesh triangle on the before-anneal grain face and their correspondences on the after-

anneal grain face.  An example is shown in Figure 6.11. 

 

Figure 6.11.  Illustrations of pillars form by mesh nodes.  Blue surface depicts the grain face in 

anneal-state-4. Yellow surface depicts the grain face in anneal-state-5.  Pillar top surfaces are 

formed by mesh triangles in anneal-state-4.  Pillar bottom surfaces are formed by the three 

correspondences, found by the optimal-transportation-based tracking algorithm, of the mesh 

nodes of the top surface.  Pillar edges are shown by the blue and yellow lines.  

We made an important assumption that ℎ =
2𝑉

𝐴𝑡+𝐴𝑏
, where 𝑉  is the volume enclosed by a 

group of six mesh nodes.  𝐴𝑡 is area of the top surface and was set to be the before-anneal (blue 

in Figure 6.11) mesh triangle area by convention.  𝐴𝑏 is the area of the bottom surface and was 

set to be the yellow edge triangles in Figure 6.11.  The average value of ℎ, pillar heights, was 

taken to be the approximation for the migration distance of this grain face.  Note the values of ℎ 

depend pillar shapes so we include a pillar into the average only if both its top and bottom 

triangles have regular shapes, defined as the minimum interior angle larger than 10°. 

6.6.4 Migration direction 

Our interest in the grain face migration direction started with a simple question: is it true that a 

grain face always moves toward its curvature center?  Answering this question requires access to 

the migration direction and the curvature sign of the objective grain face.  We keep the focus on 

migration direction in this section and leave the topic of curvature sign, or more generally, 

curvature gradients, to the next section (Section 6.7).   

First let us clarify the concept of migration direction within this research.  It is defined within 

the pair of grains composing the grain face of interest, and is simplified to an indicator variable 
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of three possible values {1, 0, -1}, describing whether if the grain face moved toward the left 

grain, did not move, or moved toward the right grain.  It is defined this way because an indicator 

variable is simpler than a full three-dimensional migration vector, thus is probably more robust 

to various kinds of noise.  As discussed in Section 6.6.1, our discrete measurements only allow 

for limited accuracy.  Then the dimension of the indicator variable, one, is also consistent with 

that of the mean curvature.  Of course, there is no natural way to differentiate left from right 

between two grains, but it is also not important.  What matters is the relativity of left or right is 

always kept consistent across different datasets, including the before-anneal state (anneal-state-4) 

and the after-anneal state (anneal-state-5), and for different features.  In this research, we defined 

the left and right grains arbitrarily in anneal-state-4 and then kept this convention consistent in 

anneal-state-5.   

The migration direction of a grain face was extracted in two different ways.  The first one 

was from the sign of the grain face out-of-plane migration vector, calculated as the average of 

the mesh node out-of-plane migration vectors, from all mesh nodes on the grain face of interest.  

The second was from the relative positions of the grain face centroid, the centroid of the left 

grain and the centroid of the right grain.  The relative grain face position was calculated as 𝑝 =

 
𝑑𝑙

𝑑𝑙+𝑑𝑟
, where 𝑑𝑙 and 𝑑𝑟 are the distances between the grain face centroid, and the left and right 

grain centroids, for anneal-state-4 and anneal-state-5.  The grain face was considered moved left 

if p, of anneal-state-4, was smaller than p’, of anneal-state-5, by a threshold value (0.01). 

6.7 Quasi curvature gradient features 

Consistent with the migration direction (Section 6.6.4), quasi curvature gradients of a grain face 

were defined within the two grains composing the grain face.  A gradient is introduced by a 

curved grain face, and the chemical potential in the vicinity of the convex side will be higher 

than that in the vicinity of the concave side (Section 2.4.1).  Grain face integral curvature may 

serve as a reasonable descriptor for this curvature induced gradient.  Note that the calculation of 

grain face integral curvature requires a reference grain to be defined, which was always chosen 

as the left grain in anneal-state-4, and was kept consistent with the definition of migration 

direction (Section 6.6.4), in this research.  

We also calculated some quasi curvature gradients, inspired by questions such as if a grain 

face prefers to move toward the smaller grain.  In other words, the size difference (𝑉_𝑑𝑖𝑓𝑓), or 
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even more generally, the number of faces difference (𝐹_𝑑𝑖𝑓𝑓), between the two grains were 

calculated as quasi curvature gradients.  

6.8 Machine learning model choice 

Each grain face feature, discussed in Sections 6.3 - 6.7, represents one physical property of a 

grain face.  One way to check our understanding about a grain face property is to try predicting 

the corresponding feature from the other features.  Many machine learning models in the 

regression analysis family can be applied for this kind of prediction: linear regression [77], 

support vector regression[134], regression trees [135], and neural networks [68].  Among these 

many choices, complicated models that are difficult to train, like neural networks, are not 

preferred because the available training data is limited, on the scale of 103 ~ 104.  The model of 

choice should be robust to feature correlation, since we know that some features, like the grain 

face area and the number of edges, are correlated.  The model should also support some kind of 

feature importance evaluation because we care about the interpretation of results.   Accordingly, 

three models were selected, including a regular linear regression model with forward feature 

selection [136], a LASSO regularized [137] linear regression model and an XGBoost regressor 

[138].  All models were implemented with the scikit-learn python package [139]. 

6.8.1 Linear regression 

Linear regression is one of the simplest, yet most fundamental models, in regression analysis and 

has a wide range of applications [77].  The linear regression model assumes that the one-

dimensional target variable 𝑦 ∈ ℝ1 is linearly correlated with the p-dimensional predictor 𝑿 ∈

ℝ𝑝: 𝑦 = 𝜷𝑿 = 𝛽0 + 𝛽1𝑥1 + ⋯+ 𝛽𝑝𝑥𝑝 + 𝜖.  𝜷 ∈ ℝ𝑝+1 is the slope coefficients that need to be 

determined, in which the extra dimension comes from the interception.  𝜖 stands for the error 

term that is not predicted by the model.  One efficient way to solve for 𝜷 is to consider the 

residual sum of squared errors (RSS), ‖𝑦 − 𝜷𝑿‖2
2 , as the objective function and solve the 

parameters iteratively via gradient descent.  Second-order methods, which solve for 𝜷 directly, 

were not used in this research since they are expensive and are more sensitive to correlated 

variables.  

The slope coefficients 𝜷 can be considered as a reference for relative feature importance if 

the predictor 𝑿 is normalized.  In this research, we normalized 𝑿 within each column (feature) 

such that the feature values fall between zero and one.  A large 𝛽𝑖 then suggests that a small 
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difference in 𝑥𝑖 can leads to a large change in 𝑦, and 𝑥𝑖 can thus be considered as important.  

However, this reference is not perfectly reliable, as it is prone to multi-collinearity [140], [141].  

We thus implemented two feature selection techniques, forward selection and LASSO 

regularization, to improve the interpretation, and possibly prediction, of the simple linear 

regression model.  

6.8.2 Forward selection 

Forward selection is a common wrapper method [136].  The model starts with no feature and 

works iteratively.  A feature, which gives the most significant model performance improvement, 

is selected in each iteration and the process continues until a new feature no longer improves 

model performance, or all features have been selected.  The model performance improvement 

was defined as an increasement in the adjusted 𝑅2 score (𝑅𝑎𝑑𝑗
2 ) on the training data [142] in this 

research.  𝑅𝑎𝑑𝑗
2 = 1 −

(1−𝑅2)(𝑛−1)

𝑛−𝑝−1
, in which 𝑛 is the number of training instances and 𝑝 is the 

number of predictors.  Note that useless predictors are compensated in 𝑅𝑎𝑑𝑗
2  so the model will 

select a predictor only if it contributes a non-trivial 𝑅2 score.  The 𝑅2 scores of the test datasets 

were not adjusted.  Other comparable wrapper methods include backward elimination, stepwise 

regression, and best subset selection [136] 

The models were trained with the RSS objective function, and the performance will be 

reported as (adjusted) 𝑅2  scores, mean absolute error (MAE), and root mean square error 

(RMSE), evaluated following a five-fold cross-validation process.  The relative feature 

importance can be interpreted from the selection order and the corresponding improvement in 

𝑅𝑎𝑑𝑗
2 .  The earlier a feature is selected, and the larger increase in 𝑅𝑎𝑑𝑗

2  it contributed, the more 

important the feature is.   

6.8.3 LASSO regularization 

Least absolute shrinkage and selection operator (LASSO) regularization is a common technique 

to prevent overfitting and perform feature selection [137].  A LASSO regularized linear 

regression model can be built from the vanilla linear regression by adding a L1 regularization 

term in the objective function and make it ‖𝑦 − 𝜷𝑿‖2
2 + 𝜆‖𝜷‖1.  The L1 regularization term 

enforces a constraint that the L1 norm of 𝜷 is smaller than a fixed value, which is related to 𝜆, 

thus forces some irrelevant coefficients of 𝜷 to be zero and achieves feature selection.  𝜆 ∈
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[0,+∞), a large 𝜆 corresponds to strong parameter shrinkage.  A zero 𝜆 enforces no shrinkage, 

and the resultant model is equivalent to a vanilla linear regression.  An infinite 𝜆 shrinks every 

coefficient in 𝜷 to zero.  Other similar regularization techniques include the ridge regularization 

[143] and the elastic net regularization [144].  LASSO was chosen because it best meets our 

interest of feature selection, which is usually not achieved with ridge and elastic net 

regularization 

In this research, the models were trained with the regularized RSS loss function.  The model 

was trained following a nested cross-validation [145] procedure.  In the first five-fold cross 

validation, the model selects the optimal hyperparameter 𝜆 from the best validation score.  In the 

second five-fold cross validation, the dataset is shuffled and the model performance is be 

reported as the average test 𝑅2 score, the average test MAE, and the average test RMSE.  The 

optimal 𝜆 varied between [0.1, 10] for the different regression tasks in this research. 

6.8.4 XGBoost 

XGboost [138] is based on the decision tree algorithm, in which the assumptions lie in the tree 

structure.  A tree is built greedily from top-down by asking Yes/No questions that lead to 

partition decisions.  The questions are about feature values, and the choice of question is 

motivated by the reduction in the objective function or the information gain [135].  Each interior 

node of the tree corresponds to a question.  Each leaf, or terminating node, corresponds to a cell 

of the partition and is associated with one value (if given a regression task) or one class label (if 

given a classification task) that applies to all instances within this partition.  Note that unlike 

linear regression, decision trees have large model compacity and are not confined to linear 

relationships. 

Decision trees can be sensitive to random noise in training examples, thus are usually 

combined with ensemble techniques, like bagging and boosting, to avoid overfitting.  XGBoost 

takes the boosting approach.  Many weak short trees are built sequentially, each trying to learn 

the error of the previous tree, and then combined in an additive way to yield the final prediction.   

Relevant model parameters include the learning rate, the number of trees to build, the 

maximum depth of each tree, the minimum total instance weight needed in a child, the fraction 

of columns to be used by each tree, and the fraction of training instances available to a single tree.  

These parameters were tuned in a grid search style for each regression task.  Two different losse 
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functions, MAE and RMSE, were tried and the model showed similar results.  Similar to the case 

of Lasso regularized linear regression, the hyper parameters were tuned with a first five-fold 

cross validation and the model performances, as MAE and RMSE, were evaluated following a 

second five-fold cross validation.  The tuned hyperparameters include the number of estimators, 

the learning rate, the fraction of training examples available to one tree, the fraction of features 

available to one tree, the minimum loss reduction required to make a further partition, and the 

minimum sum of instance weight needed in a child.  Note that the R2 score is not reported due to 

the non-linearity of XGBoost [69].  

The relative feature importance can be evaluated in XGBoost by checking the interior nodes, 

and the corresponding features, of each tree.  A feature is considered important if it is associated 

with a large gain in this research.  Other alternative feature importance references include the 

training instances a feature splits and the frequency the feature appears in the trees.  

6.9 Conclusion 

In this chapter, we present preprocessing concerns and methodologies of grain face data feature 

engineering from two succeeding HEDM 3D microstructures.  Various types of features are 

discussed, including crystallography, geometry, topology, mean-field, migration, and quasi-

curvature gradient.  Machine learning models that are suitable for the task are also reviewed.  

The results are presented in the next chapter.  
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7.   Grain face evolution in polycrystalline Ni 

The previous chapter (Chapter 6) has described what kind of grain face characteristics can be 

measured as numerical features for a pair of HEDM collected 3D microstructure and how the 

measurements were conducted.  This chapter presents the results.   

Similar to the analysis of grains (Sections 4.2 and 5.2), some grain face features are analyzed 

in pairs of two and as a function of each other (Section 7.1).  The various features are then 

analyzed collectively with the help of machine learning models (Section 7.2).  Some key 

evolution features, like area change and curvature change, are also plotted as a function of five 

crystallographic parameters and significant anisotropy is observed (Section 7.3). 

7.1 Measurements on the evolution of grain faces 

7.1.1 Statistics of the orientation maps 

The volume of anneal-state-5 was cropped following the method described in Section 6.2.1 and 

only the volume common to both states, which covers 395 ⨉ 404 ⨉ 84 voxels, was used.  The 

tracking of the grains across the two volumes was accomplished by Bhattacharya et al. [114], 

using an algorithm that compares the grain misorientation, the grain size, and the grain centroid 

position in the two states. 

The anneal-state-4 sample contains 2461 grains, in which 1357 grains are entirely enclosed in 

the sample volume and have complete shapes.  The anneal-state-4 sample contain 2240 grains, in 

which 1165 grains are entirely enclosed in the sample volume.  2076 grains are tracked across 

the two anneal states, among which 1029 grains are fully enclosed in the volume in both states.  

The grain size and number of faces distribution for the tracked grains are shown in Figure 7.1.   

The solid lines represent all tracked grains and the dash lines stand for the tracked complete 

grains which do not contact the sample free surface.  X-axis of the figures is limited and a few 

grains with extremely large sizes or number of faces are not shown.  To be specific, one big grain 

in anneal-state-4 and one big grain in anneal-state-5 has been excluded from Figure 6.1a.  38 

tracked grains in anneal-state-4 and 40 tracked grains in anneal-state-5 have more than 40 faces.  

It can be noticed that the log size distribution of all tracked grains is approximately normal with 

a slightly negative mean value.  The same distribution shifted more towards the negative side 
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when only the complete tracked grains are considered, indicating that large grains are 

preferentially removed. 

         

Figure 7.1.  The distributions of diameters and numbers of faces for the tracked grains in the 

two anneal states.  (a) Log normalized grain size distribution. 𝐷 is grain diameter. < 𝐷 > is 

the averaged grain diameter. (b) Distribution of the number of grain faces (𝐹).  

More statistics about the grains and grain faces are summarized in Table 7.1.  There are 

14003 grain faces in anneal-state-4 and 12588 grain faces in anneal-state-5.  10913 grain faces 

are tracked across the two states, among which 6942 grain faces have complete shapes and are 

fully enclosed in the sample volume in both states.   

Table 7.1.  Statistics of grains and grain faces in the two HEDM volumes. 

 Anneal-State-4 Anneal-State-5 

Annealing 
120 min 750°C, 

113 min 800°C 

120 min 750°C, 

113 + 25 min 800°C 

Shared Volume (voxels) 395 ⨉ 404 ⨉ 84 395 ⨉ 404 ⨉ 84 

# Grains 2461 2240 

# Inner Grains 1357 1165 

# Tracked Grains 2076 

# Tracked Complete Grains 1029 

# Grain Faces 14003 12588 

# Tracked Faces 10913 

# Tracked Complete Faces 

Faces 

6942 
 

Before getting into the data, we held three basic expectations about the evolution of the 

microstructure.  The total grain boundary area should decrease, providing the driving force.  The 
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number of grain faces should decrease while each grain face should grow larger.  All three are 

generally true in our measurements.  The total grain boundary area decreased during the 

annealing, from 14.3 ⨉ 106 𝜇𝑚2 in anneal-state-4 to 13.7 ⨉ 106 𝜇𝑚2  in anneal-state-5.  The 

number of grain faces also decreased, from 14003 to 12588.  The average grain face area 

increased, from 1023 𝜇𝑚2  to 1086 𝜇𝑚2.   

It is interesting to note the decrease in the total grain boundary area and the increase in the 

average grain face area are largely contributed by the untracked small grain faces.  There are 

3090 untracked grain faces in anneal-state-4 and 1675 untracked grain faces in anneal-state-5, 

which amount to only a small portion, 8.4 % and 4.1 % respectively, of the total grain boundary 

area in each state.  However, 97.3 % of the net grain boundary area decrease is supplied by these 

untracked small faces.  It is also noticed that the untracked grain faces are relatively small.  The 

average size was 388.3 𝜇𝑚2 in anneal-state-4 and 335.2 𝜇𝑚2 in anneal-state-5. 

As for the tracked faces, the average size of the tracked complete grain faces decreased 

slightly during the annealing, from 969.6 𝜇𝑚2 to 960.0 𝜇𝑚2.  On the other hand, the tracked 

incomplete grain faces, which contacted the sample boundary, have gained area from 1609.3 

𝜇𝑚2 to 1621.6 𝜇𝑚2.  Note these trends match the reported evolution data of grains between 

anneal-state-4 and anneal-state-5, including a drop in the average volume of tracked bulk grains, 

and an increase in the average volume of the surface grains [114].  It is also worth mentioning 

that the magnitude of face area changes seems small not because grain faces are inactive, but 

because the growing and shrinking components tend to cancel each other.  For example, the 

median area change among the tracked complete faces is − 9.2 𝜇𝑚2 but the median absolute area 

change among the tracked complete faces is 80.5 𝜇𝑚2.  Similarly, the median area change among 

the tracked incomplete faces is − 8.5 𝜇𝑚2 but the median absolute area change among the 

tracked incomplete faces is 144.2 𝜇𝑚2.   

In the following analysis, we focus on the tracked complete grain faces unless otherwise 

specified.  These grain faces of interest are further filtered according to their size and the size 

change fraction (Section 6.2.3), and 6453 non-outlier tracked complete faces are left for analysis.  

Note unrealistic mesh triangle measurements on the 6453 faces are also filtered and extreme 

curvature values are removed (Section 6.2.3). 
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7.1.2 Grain face edges and corners 

In theory, the number of edges should be precisely the same as the number of corners for a given 

grain face.  In practice, there are various kinds of noise, arising from the constraints of the 

experiment measurements and the 3D reconstruction.  The number of corners and number of 

edges were calculated following different routines discussed in Section 6.4.2 and the results are 

presented in Figure 7.2a, in which the x-axis is limited and a few data points are excluded.  The 

maximum number of edges was 24, and the maximum number of corners was 42. 

         

Figure 7.2.  (a) The distribution of 𝐸, number of edges, as a function of 𝐶, number of corners.  

(b) The distribution of 𝐸, number of edges, as a function of √𝐴, in which 𝐴 is the grain face 

area.  The color bar indicates number of grains in the corresponding bin.  Only non-outlier 

tracked complete grain faces are included in the plot.   

In Figure 7.2a, blocks with the darkest color sit along the diagonal line, suggesting that the 

𝐶 =  𝐸 relationship holds for the majority of grain faces.  There are more data points in the 

lower half of the plot, indicating that the number of corners (𝐶) was generally measured to be 

larger than number of edges (𝐸) for a given face.  Based on some random visual checks, we 

noticed that the measurements on 𝐸  are probably more reliable than that on 𝐶 , but detailed 

quantification of the calculation errors is nontrivial and is out of the scope of this research.   

We have seen that for grains, the number of faces is correlated to the grain diameter (Figure 

5.4).  For reference, the number of edges is plotted by a grain face length scale, √𝐴, in Figure 

7.2b and a clear linear correlation can be observed. 
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7.1.3 Grain face integral dihedral angle measurements 

We measured the integral dihedral angles of a grain face, from triple line triangle groups, 

following a local resident grain pair reference frame (Section 6.4.2).   

The results are presented in Figure 7.3.  The distribution of three locally defined integral 

dihedral angles, 𝐷𝐴_𝐿, 𝐷𝐴_𝑅 and 𝐷𝐴_𝑂, are very similar.  The peaks are all found near 120°, 

consistent with the arrangement of equilibrium triple lines (Section 2.2.4), though the dispersions 

of the distributions are also significant.  Some of the dispersion may have originated from grain 

boundary energy anisotropy, and some may have risen from artifacts in the meshing and 

smoothing routines.  Changes of the dihedral angles, ∆𝐷𝐴_𝐿, ∆𝐷𝐴_𝑅 and ∆𝐷𝐴_𝑂, are generally 

small and the peaks are found near 0° (Figure 7.3b).  The axis of  Figure 7.3b is limited to 60°, 

according to which 9, 5, and 1 data points are excluded for 𝛥𝐷𝐴_𝐿 , 𝛥𝐷𝐴_𝑅  and 𝛥𝐷𝐴_𝑂 

respectively. 

    

Figure 7.3.  Distributions of (a) integral dihedral angles, and (b) the change of integral dihedral 

angles, for the non-outlier tracked complete grain faces. 

7.1.4 Grain face area and integral absolute curvature change 

We are interested in predicting the grain face area change during annealing.  For grains, it is well 

known that big grains tend to grow and small grains tend to shrink.  Is there a similar trend for 

grain faces?  To test this idea, we plotted the average grain face area change, defined as 𝛥𝐴 =

 𝐴’ –  𝐴, for different size (𝐴) classes.  𝐴’ is the grain face area in anneal-state-5 (the after-

annealing state), and 𝐴 is the grain face area in anneal-state-4 (the before-annealing state).  The 

results are presented in Figure 7.4a, in which size classes are drawn with a step size of 250 𝜇𝑚2 
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and the x-axis has been cut, excluding about 0.5 % data points with extreme values.  It can be 

seen that the correlation between 𝛥𝐴 and 𝐴 is very weak.  Standard deviations are large, thus not 

shown.  For reference, the median standard deviation for the size classes in Figure 7.4a was 

467.5 𝜇𝑚2.   

The trend is much clearer when curvature is also considered.  In Figure 7.4b, 𝛥|ℋ|, the 

change of grain face integral absolute curvature, is binned and plotted as a function of |ℋ|, the 

grain face integral absolute curvature in anneal-state-4.  Note the unsigned triangle curvatures 

were used because of switching symmetry (Section 6.4.1).  Average data values in bins are 

indicated by black circles and stand deviations by the bars.   

    

Figure 7.4.  (a) Grain face area change (𝛥𝐴) as a function of the grain face area in the before 

annealing state (𝐴). (b) Grain face integral absolute curvature change (𝛥|ℋ|) as a function of 

the grain face integral absolute curvature in the before annealing state (|ℋ|).  Only non-outlier 

tracked complete grain faces are included in the plots.  

7.1.5 Grain face mean-field and area change 

𝛥𝐴, the grain face area change, is also plotted as a function of 𝐸 − < 𝐸𝑁𝑁 >, a mean-field 

parameter defined by the grain face’s nearest neighbors (Section 6.5).  The results are presented 

in Figure 7.5, in a way similar to Figure 4.3 and Figure 5.5b.  The correlation is very weak, 

though the faces with strong negative 𝐸 − < 𝐸𝑁𝑁 >  tend to grow and the faces with large 

positive 𝐸 − < 𝐸𝑁𝑁 > tend to shrink.  Also, note that this overall negative trend contrasts that 

for grains in Figure 4.3 and Figure 5.5b, where a positive 𝒢’ or 𝑀𝑠  corresponds to a trend of 

shrinking. 
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Figure 7.5.  𝛥𝐴 as a function of 𝐸 − < 𝐸𝑁𝑁 >. 𝐸 is the number of edges of the grain face in 

anneal-state-4.  < 𝐸𝑁𝑁 > is the average number of edges of the grain face’s nearest neighbor 

faces in anneal-state-4.  Only non-outlier tracked complete grain faces are included in the 

plots. 

7.1.6 Grain face out-of-plane migration measurements 

The out-of-plane migration measurements turned out to be uninformative.  Various models have 

been fitted but the results are far from significant.  The most important reason is probably that 

the distances traveled by the grain faces are too short to be measured accurately.  The cumulative 

distributions of the out-of-plane migration distances, calculated from methods discussed in 

Section 6.6, are shown in Figure 7.6.  

It can be noticed that results following different calculation routines differ from each other 

but are more or less similar, especially the results returned by the local normal projection method 

and the SVM projection method.  However, the out-of-plane migration distances are generally 

small.  Remember the sample resolution is 2.6 𝑢𝑚 in-plane and 4 𝑢𝑚 inter-plane.  It can be seen 

that the majority of grain faces are associated with sub-resolution out-of-plane migration 

distances.  This situation is tricky, especially considering that the two datasets were not perfectly 

aligned at a sub-resolution scale (Section 6.2.1).   

All steps leading the way to the final measurement value, including data collection, 

discretization, meshing, sample alignment, tracking, and projection, introduce some level of 

uncertainty.  Our migration distance values were small to start with, so the true trend was 

probably overshadowed by uncertainties from the various sources.  
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Figure 7.6.  Cumulative distributions of the out-of-plane migration distances for non-outlier 

and non-piecewise tracked complete grain faces.  The solid lines show results following and 

optimal transportation inspired tracking algorithm (Section 6.6.1).  The dashed lines show 

results following a nearest matching algorithm (Section 6.6.2).  The projection methods are 

specified in the legend. 

7.2 Analyzing data with machine learning models 

We have analyzed some features of grain faces in a pairwise style (Figure 7.4 and Figure 7.5).  

Though pairwise style analysis can be informative, as it allows direct two-dimensional 

visualization, it is not efficient.  The number of possible analyses grows quadratically with the 

number of available features so one has to be careful about which features to check.  This section 

presents results from three machine learning models, in which multiple features are evaluated 

together with much better efficiency. 

The training and test data have been limited to the non-outlier tracked complete grain faces.  

However, note that our definition of outlier is empirical.  The model performance varies with the 

exact data instances included in the training set.  For better reliability, all models are fitted 

following a five-fold cross-validation process (Section 6.8), and the average test results are 

reported.  In each prediction task, every predictor feature was normalize so that the values fall 

between zero and one while the target variable was left unchanged.   

7.2.1 Feature summary 

Table 7.2 presents a summary of features discussed in the previous chapter (Sections 6.3 - 6.6), 

in which the features are sorted into five blocks, corresponding to the crystallographic, geometric, 
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topological, mean-field, and quasi-curvature gradient feature types.  Note properties of anneal-

state-4 are denoted without an apostrophe (e.g. 𝐴), and properties of anneal-state-5 are denoted 

with an apostrophe (e.g. 𝐴’).   

Table 7.2.  Feature summary. 

Feature Name Feature Description 

𝐷𝑖𝑠𝑡_𝛴3 Misorientation distance to Σ3 

𝐷𝑖𝑠𝑡_111_𝐴𝑣𝑔 Average normal direction distance to (111) direction 

𝐷𝑖𝑠𝑡_111_𝑆𝑡𝑑 Standard deviation of normal direction distances to (111) direction 

𝐷𝑖𝑠𝑡_110_𝐴𝑣𝑔 Average normal direction distance to (110) direction 

𝐷𝑖𝑠𝑡_110_𝑆𝑡𝑑 Standard deviation of normal direction distances to (110) direction 

𝐷𝑖𝑠𝑡_100_𝐴𝑣𝑔 Average normal direction distance to (100) direction 

𝐷𝑖𝑠𝑡_100_𝑆𝑡𝑑 Standard deviation of normal direction distances to (100) direction 

𝐴 Grain face area in anneal-state-4. 

|ℋ| Grain face integral absolute mean curvature in anneal-state-4. 

|ℍ| Grain face average absolute mean curvature in anneal-state-4. 

𝛥𝐴 Grain face area change, from 𝐴’ − 𝐴. 

𝛥|ℋ| Grain face integral absolute mean curvature change, |ℋ|’ −  |ℋ|. 

𝛥|ℍ| Grain face average absolute mean curvature change, |ℍ|’ −  |ℍ|. 

𝐶 Grain face number of corners in anneal-state-4. 

𝐸 Grain face number of edges in anneal-state-4. 

𝐷𝐴_𝐿 
Grain face integral dihedral angle, along the local left side, in anneal-

state-4. 

𝐷𝐴_𝑅 
Grain face integral dihedral angle, along the local right side, in anneal-

state-4. 

𝐷𝐴_𝑂 
Grain face integral dihedral angle, along the local opposite side, in 

anneal-state-4. 

𝛥𝐶 Grain face number of corners change, 𝐶’ −  𝐶. 

𝛥𝐸 Grain face number of edges change, 𝐸’ −  𝐸. 

𝛥𝐷𝐴_𝐿 
Grain face integral dihedral angle change along the local left side, 

𝐷𝐴_𝐿’ −  𝐷𝐴_𝐿. 

𝛥𝐷𝐴_𝑅 
Grain face integral dihedral angle change along the local right side, 

𝐷𝐴_𝑅’ −  𝐷𝐴_𝑅. 

𝛥𝐷𝐴_𝑂 
Grain face integral dihedral angle change along the local opposite side, 

𝐷𝐴_𝑂’ −  𝐷𝐴_𝑂. 
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𝐸 − < 𝐸𝑁𝑁 > 

Difference between number of edges of a grain face,  𝐸 , and the 

average number of edges of the grain face’s nearest neighbor faces, <
𝐸𝑁𝑁 >, in anneal-state-4. 

|ℋ| − < |ℋ|𝑁𝑁 > 

Difference between integral absolute curvature of a grain face, |ℋ|, 
and the average integral absolute curvature of the grain face’s nearest 

neighbor faces, < |ℋ|𝑁𝑁 >, in anneal-state-4. 

𝑁𝑁_𝑃𝑜𝑠_𝐹𝑟𝑎𝑐 

Fraction of nearest neighbor grain faces with positive integral mean 

curvature in anneal-state-4, curvature habitant grain as one of the two 

grains defining the grain face of interest. 

𝑁𝑁_𝑇𝑤𝑖𝑛_𝐹𝑟𝑎𝑐 Fraction of twins among nearest neighbor grain faces in anneal-state-4. 

𝑁𝑁_𝐺𝑟𝑜𝑤_𝐹𝑟𝑎𝑐 Fraction of the nearest neighbor grain faces with positive 𝛥𝐴. 

𝑁𝑁_𝐸𝑥𝑡_𝐹𝑟𝑎𝑐 
Fraction of the nearest neighbor grain faces that went extinct during 

annealing, which existed in anneal-state-4 but not in anneal-state-5. 

𝑁𝑁_𝑁𝑢𝑐_𝐹𝑟𝑎𝑐 
Fraction of the nearest neighbor grain faces that nucleated during 

annealing, which existed in anneal-state-5 but not in anneal-state-4. 

𝑠𝑢𝑚(𝛥𝐴𝑁𝑁) Total area changes, 𝛥𝐴, of nearest neighbor grain faces.  

𝑁𝑁𝐺_ 𝐸𝑥𝑡_𝐹𝑟𝑎𝑐 
Fraction of the nearest neighbor grains that went extinct during 

annealing, which existed in anneal-state-4 but not in anneal-state-5. 

𝑁𝑁𝐺_ 𝑁𝑢𝑐_𝐹𝑟𝑎𝑐 
Fraction of the nearest neighbor grains that nucleated during annealing, 

which existed in anneal-state-5 but not in anneal-state-4. 

𝑚𝑎𝑥(𝛥𝐹𝑁𝑁𝐺) The maximum number of faces change among nearest neighbor grains. 

𝑚𝑖𝑛(𝛥𝐹𝑁𝑁𝐺) The minimum number of faces change among nearest neighbor grains. 

< 𝛥𝐹𝑁𝑁𝐺 > The average number of faces change among nearest neighbor grains. 

𝛥𝐷𝑖𝑠𝑡_𝐹_𝐿𝐺 
The change of distance between the grain face centroid and the local 

left grain centroid, 𝐷𝑖𝑠𝑡_𝐹_𝐿𝐺’ −  𝐷𝑖𝑠𝑡_𝐹_𝐿𝐺, given in fraction. 

𝑉_𝐷𝑖𝑓𝑓 
Volume difference among the two resident grains, as 𝑉𝑙𝑒𝑓𝑡 − 𝑉𝑟𝑖𝑔ℎ𝑡 , in 

anneal-state-4. 

𝐹_𝐷𝑖𝑓𝑓 
Number of faces difference among the two resident grains, as 𝐹𝑙𝑒𝑓𝑡 −

𝐹𝑟𝑖𝑔ℎ𝑡,, in anneal-state-4. 

𝐹 − < 𝐹𝑁𝑁 > 

_𝐷𝑖𝑓𝑓 

Topological mean-field difference among the two resident grains, as  
(𝐹 − < 𝐹𝑁𝑁 >)𝑙𝑒𝑓𝑡 − (𝐹 − < 𝐹𝑁𝑁 >)𝑟𝑖𝑔ℎ𝑡, in anneal-state-4. 

𝑀𝑠_𝐷𝑖𝑓𝑓 
Integral mean curvature of grain faces difference among the two 

resident grains, as (𝑀𝑠)𝑙𝑒𝑓𝑡 − (𝑀𝑠)𝑟𝑖𝑔ℎ𝑡, in anneal-state-4. 

ℋ 
Integral mean curvature of the grain face in anneal-state-4, curvature 

habitant grain as the local left grain. 
 

The correlation coefficients [77] between these features are plotted in Figure 7.7.      
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Figure 7.7.  Feature correlations.  Correlation coefficients are listed and are indicated by color, 

according to the color bar on the right. 

It can be noticed that the average plane normal distance features ( 𝐷𝑖𝑠𝑡_111_𝐴𝑣𝑔 , 

𝐷𝑖𝑠𝑡_110_𝐴𝑣𝑔, and 𝐷𝑖𝑠𝑡_100_𝐴𝑣𝑔) are very weakly correlated with other features, indicating 

that this kind of normal distance feature design, which summarizes the non-uniform plane 

normal information of an entire grain face into one single number, is probably not sensitive 

enough and useful grain face plane normal characteristics are not captured.  The standard 

deviations of plane normal distances (𝐷𝑖𝑠𝑡_111_𝑆𝑡𝑑, 𝐷𝑖𝑠𝑡_110_ 𝑆𝑡𝑑, and 𝐷𝑖𝑠𝑡_100_ 𝑆𝑡𝑑) are 

better correlated with other features.  For example, the correlation coefficient between 

𝐷𝑖𝑠𝑡_111_𝑆𝑡𝑑  and |ℋ|  was 0.38.  However, it is likely that there are not much useful 

crystallographic information within the standard deviation features, since the three standard 

deviation features, 𝐷𝑖𝑠𝑡_111_𝑆𝑡𝑑, 𝐷𝑖𝑠𝑡_110_ 𝑆𝑡𝑑, and 𝐷𝑖𝑠𝑡_100_ 𝑆𝑡𝑑, vary with similar trends 
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consistently.  The correlations probably have stemmed from confounding factors [146].  For 

example, large highly curved grain faces are likely to be associated with large plane normal 

variations. 

The quasi-curvature gradient features are also relatively undistinguished, suggesting that the 

evolution of a grain face is probably not biased by the relative size, or topological features, of the 

two resident grains defining this grain face.   

The average plane normal distance features, the quasi-curvature gradient features, and some 

dihedral angle features are not going to be fed into the models (Sections 7.2.2 - 7.2.4), for they 

are generally associated with small correlation coefficients, or there exists no physical ground to 

differentiate left from right.   

7.2.2 Grain face area 

It has been seen in Figure 7.2b that √𝐴, the square root of grain face area, is positively correlated 

with E, grain face number of edges.  We now try to predict 𝐴 with various other grain face 

features.  One feature that is obviously closely correlated with 𝐴 is |ℋ|, the integral absolute 

curvature of grain face, and has been removed from the pool of predictor features.   

The result of a linear regression model, fitted gradually with the forward feature selection 

technique (Sections 6.8.1 and 6.8.2), is shown in Figure 7.8, in which the number of selected 

features is indicated in the lower x-axis and names of the selected features are shown in the 

upper x-axis.  This simple linear regression model can predict 𝐴 with an over 0.6 test averaged 

𝑅2 score following a five-fold cross-validation process.  Considering that 3D microstructure data 

is always subject to various kinds of noises and the quantities we measure and try to predict have 

distributions (Chapter 4 - 5, Section 7.1), this result is reasonably good.  In comparison to other 

measurements reported in literature [36], [43], [88], a 0.62 𝑅2  score is also significant.  For 

reference, the best MAE is 576.10 and the RMSE is 887.01.  24 out of 26 features are selected, 

among which |ℋ| − < |ℋ|𝑁𝑁 >, 𝐸, and 𝐸 − < 𝐸𝑁𝑁 > can be considered as the most important 

predictors since they are the first three selected features and most of the model performance 

improvement is contributed by them.  The rest of the features helped only marginally.  

A 0.63 𝑅2 score can be attained by the LASSO regularized linear regression model (Section 

6.8.3).  The best MAE is 570.74 and the best RMSE is 889.31.  The slope coefficients are plotted 

in Figure 7.9a as a reference for feature importance (Section 6.8.1).  Three features with the 
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largest slope coefficients include |ℋ| − < |ℋ|𝑁𝑁 >, 𝐸 , and 𝐸 − < 𝐸𝑁𝑁 >, which match the 

three most important features in the forward selection linear regression model exactly.  However, 

note 𝐸 − < 𝐸𝑁𝑁 > is assigned a negative slope coefficient, though it is positively correlated with 

𝐴 (Figure 7.7). 

 

Figure 7.8.  Regression results on A, returned by a linear regression model with forward 

feature selection.  Training scores are given in adjusted 𝑅2.  Test scores are given in 𝑅2.  

 

Figure 7.9.  Relative feature importance, indicated by bar lengths, for response 𝐴, returned by 

(a) a LASSO regularized linear regression model, and (b) a XGBoost regressor.  Outward 

black bars in (a) correspond to positive slope coefficients.  Inward white bars in (a) correspond 

to negative slope coefficients.   

(b)(a)
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The XGBoost regressor (Section 6.8.4) reached a 419.99 RMSE and a 225.88 MAE, much 

smaller than that of the linear models.  The relative feature importance (Section 6.8.4) is plotted 

in Figure 7.9b.  Two features, |ℋ| − < |ℋ|𝑁𝑁 > and 𝐸, are identified to be most important by 

this model while 𝐸 − < 𝐸𝑁𝑁 > is attributed an importance much smaller than that in the two 

linear models.   

7.2.3 Grain face area change 

We then tried to predict 𝛥𝐴 , the area change of a grain face, which is the most intuitive 

descriptor for the grain face shape evolution.  𝛥|ℋ|, the integral absolute curvature change of 

grain faces, was highly correlated with 𝛥𝐴 and was removed from the pool of predictor features 

before fitting the model.   

The results of the forward feature selection linear regression model are presented in Figure 

7.10.  23 out of 26 features are selected, and a 0.24 𝑅2 score is reached.  The best MAE is 179.37 

and the best RMSE is 361.41.  From the model 𝑅2  score we see that 𝛥𝐴 is more difficult to 

predict than 𝐴.  Note that the values of MAE and RMSE do not contradict this conclusion.  MAE 

and RMSE are not scale invariant, so they can be used to compare models for the same task but 

cannot be used to compare different tasks given unnormalized target variables.   

 
Figure 7.10.  Regression results on 𝛥𝐴, returned by a linear regression model with forward 

feature selection.  Training scores are given in adjusted 𝑅2.  Test scores are given in 𝑅2. 
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It is interesting to note that the model performance does not saturate after the selection of the 

first few features.  This slow and graduate rise in 𝑅2 score suggests that, unlike the case of 𝐴, the 

variance in 𝛥𝐴 cannot be explained by only a few key features.   

The LASSO regularized linear regression model achieves a 0.25 five-fold cross-validation 

test 𝑅2 score, and the slope coefficients are plotted in Figure 7.11a as a reference for the relative 

feature importance.  The best MAE is 177.63 and the best RMSE is 361.32.  It is seen again that 

features selected in an early stage of the forward selection process, for example, the first four 

selected features in Figure 7.10, correspond to the long bars in Figure 7.11a, though the bar 

length rank and the selection order does not match exactly.  

The XGBoost regressor attains a 134.14 MAE and a 301.91 RMSE.  The relative feature 

importance is given in Figure 7.11b.  The longest two bars, 𝛥𝐸 and 𝛥|ℋ|, correspond to the first 

two selected features in the forward selection model, while some other relatively long bars 

corresponded to features selected in a late stage, for example, 𝑁𝑁_𝑁𝑢𝑐_𝐹𝑟𝑎𝑐 (21th).   

 

Figure 7.11.  Relative feature importance, indicated by bar lengths, for response 𝛥𝐴, returned by 

(a) a LASSO regularized linear regression model, and (b) a XGBoost regressor.  Outward black 

bars in (a) correspond to positive slope coefficients.  Inward white bars in (a) correspond to 

negative slope coefficients.   

7.2.4 Grain face integral unsigned mean curvature 

It has been seen in Figure 7.4 that 𝛥|ℋ|, the change of grain face integral absolute curvature, 

which is highly correlated with 𝛥𝐴 but contains extra information from curvature, is probably 

easier to predict than 𝛥𝐴.  We removed 𝛥𝐴 from the pool of predictors before predicting 𝛥|ℋ|. 

(b)(a)
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The results of the forward feature selection linear regression model are presented in Figure 

7.12.  24 out of 26 features are selected, and a 0.34 𝑅2 score is achieved.  The best MAE is 11.95 

and the best RMSE is 21.74.  The model performance improves most efficiently with the first 

three selected features: |ℋ|, 𝐴, and 𝛥𝐸.  

 

Figure 7.12.  Regression results on 𝛥|ℋ|, returned by a linear regression model with forward 

feature selection.  Training scores are given in adjusted 𝑅2.  Test scores are given in 𝑅2. 

 

Figure 7.13.  Relative feature importance, indicated by bar lengths, for response 𝛥|ℋ|, returned 

by (a) a LASSO regularized linear regression model, and (b) a XGBoost regressor.  Outward 

black bars in (a) correspond to positive slope coefficients.  Inward white bars in (a) correspond to 

negative slope coefficients.   

(b)(a)



 113 

The LASSO regularized linear regression model achieves a 0.34 𝑅2 score.  The best MAE is 

11.89 and the best RMSE is 21.74.  The slope coefficients are plotted in Figure 7.13a as a 

reference for the relative feature importance.  The longest two bars agree with the two first 

selected features in the forward selection procedure (|ℋ| and 𝐴).  All other features, including 

𝛥𝐸, are assigned relatively small slope coefficients. 

The XGBoost regressor attains a 9.96 MAE and a 19.40 RMSE.  The relative feature 

importance is given in Figure 7.13b.  |ℋ| is again assigned large importance, but 𝐴  is not 

anymore.  On the other hand, some features that are not selected in an early stage in the forward 

procedure are now assigned relatively large importance, for example |ℋ| − < |ℋ|𝑁𝑁 > (12th 

selected). 

7.2.5 Model performance summary 

The performance of the prediction tasks (Sections 7.2.2 - 7.2.4) are summarized in Table 7.3. 

Table 7.3.  Model performance summary 

 

 

Forward Selection LR LASSO LR XGBoost 

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE 

𝐴 0.62 887.01 576.10 0.63 889.31 570.74 - 419.99 225.88 

𝛥𝐴 0.24 361.41 179.37 0.25 361.32 177.63 - 301.91 134.14 

𝛥|ℋ| 0.34 21.74 11.95 0.34 21.74 11.89 - 19.40 9.96 
 

To give a better intuition about the model performance, the predictions are plotted as a 

function of the true corresponding target variable value in Figure 7.14.  Note that the two linear 

models behaved similarly in all tasks, so predictions from the forward selection linear regression 

is not shown. 

 
Figure 7.14.  Predictions (ŷ) from the LASSO regularized linear regression model and from a 

XGBoost regressor, plotted as the corresponding true target variable (y).  The training and test 

data was split randomly following a 8 : 2 ratio.  
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7.3 Anisotropy of grain face area change 

Grain face crystallographic information is not captured efficiently by the features we designed.  

Seven crystallographic features have been designed but the correlation with other features are 

generally uninformative (Figure 7.7).  One feature, 𝐷𝑖𝑠𝑡_𝛴3, was fed into the machine learning 

models but did not play an obviously important role in any of the models.  The misorientation 

feature can probably be improved if some compression techniques, like principle component 

analysis (PCA), has been applied instead of the misorientation distance to twin.   

However, as for the plane normal parameters, we do not see a straightforward way to 

construct good one-dimensional features for the grain faces, which contain many different plane 

normal directions within each one of it.  As a result, we returned to individual grain boundaries 

for the plane normal related anisotropy analyses and plotted the evolution features, such as area 

change and curvature change, as a function of the grain boundary plane normal direction.  

7.3.1 Grain face area change distribution of some low 𝚺 CSL misorientations  

Several possibly interesting misorientations are identified following the coincident site lattice 

(CSL) model [123], [147].  Specifically, the target misorientations include Σ3, Σ5, Σ7, Σ9, Σ27a, 

and Σ27b, which correspond to the twin related misorientations (Σ3, Σ9, Σ27a, and Σ27b) plus 

the next two lowest Σ misorientations (Σ5 and Σ7) (Equation 2.6).  A grain face is identified to 

have a target misorientation if the misorientation distance 𝛽 (Equation 6.1), between this grain 

face and the corresponding target misorientation, is smaller than the Brandon criterion (15 ° 

× Σ−0.5) [148].  The distribution of 𝛥𝐴 is plotted as a function of the misorientation type in 

Figure 7.15.  Grain faces with general misorientations, namely those that do not belong to any of 

these low Σ target misorientations, are gathered in the Others type.  Note only tracked complete 

grain faces are included.  

The grain face populations, indicated in the upper axis of Figure 7.15a, are consistent with 

our expectation for Ni (FCC material) [85].  Among the target misorientation types, Σ3 has the 

largest population.  Σ9 has approximately 1/3 population of Σ3 and is the second most common 

misorientation.  Σ5 and Σ7, which are not related to Σ3, have relatively few observations.  A 

distribution of 𝛥𝐴 exists in every misorientation class and the median 𝛥𝐴 of all classes are not 

far from zero.  Σ3 grain faces are more likely to be associated with substantial area changes, 

while 𝛥𝐴 distributions of rest misorientation classes are relatively similar.  
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Figure 7.15.  Distributions of 𝛥𝐴 for several misorientation classes, given in (a) box plot, and 

(b) empirical cumulative distribution function (CDF). 

7.3.2 Face-averaged grain face area change as a function of plane normal direction  

It has been seen in Figure 7.7 that plane normal distance features averaged over a given grain 

face are not informative, so we decided to focus back to the individual grain boundary triangles 

to study plane normal related anisotropies.  However, analyzing the evolution of individual grain 

boundaries, like grain boundary area or curvature change, requires a successful tracking for 

every piece of each grain boundary, which is very tricky as discussed in Sections 6.6 and 7.1.6.  

This problem needs to be simplified by some reasonable assumptions, and we took a face-

averaged approach.  For example, the face-averaged grain boundary (unsigned mean) curvature 

in anneal-state-4 can be calculated as |ℋ̅| = |ℋ| / 𝐴, in which |ℋ| is the grain face integral 

absolute curvature as before (Table 7.2) and 𝐴 is the grain face area.  Note that |ℋ| is a grain 

face property and |ℋ̅| is a grain boundary property.  In other words, we assume that every grain 

boundary, or mesh triangle, on a given grain face has the same curvature.   

The validity of this assumption is not apparent, so we tested it by calculating |ℋ̅| for every 

non-outlier grain boundary (Section 6.2.3) and plotted it as a function of plane normal following 

the GBPD routine.  The result is presented in Figure 7.16c, in which the true grain boundary 

(unsigned) curvature distribution (Figure 7.16b) and the relative grain boundary area distribution 

(Figure 7.16a) are also shown for reference.  Note that all non-outlier tracked grain boundaries, 

not just those on the complete grain faces, were used in Figure 7.16c to keep the data consistent 

with Figure 7.16 a and b.   
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Figure 7.16.  The distribution of grain boundary (a) area, (b) unsigned mean curvature, and (c) 

face-averaged unsigned mean curvature, as a function of grain boundary plane orientation 

(ignoring the grain boundary misorientation).  

It can be seen that the values in the face-averaged curvature distribution (Figure 7.16c) are 

generally smaller than the values in the true curvature distribution (Figure 7.16b) and the amount 

of anisotropy in Figure 7.16c is smaller than that in Figure 7.16b.  The reason is probably that 

high curvature triangles tend to have small area and are preferentially smoothed in the face 

average procedure.  However, note that the trends in Figure 7.16 b and c are very similar, 

suggesting that the face-averaged distribution provides a good reference for the true distribution.   

We then applied this face-averaged method to evolution features and calculated the face-

averaged grain boundary area change (∆�̅�) and the face-averaged grain boundary (unsigned 

integral) curvature change (∆|ℋ̅|), in which ∆�̅� =  ∆𝐴 / 𝑛 and ∆|ℋ̅| =  ∆|ℋ| / 𝐴.  The results 

are presented in Figure 7.17.   

 

Figure 7.17.  The distribution of grain boundary (a) face-averaged area change and (b) face-

averaged (unsigned mean) curvature change, as a function of grain boundary plane orientation 

(ignoring the grain boundary misorientation). 
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Figure 7.17a shows that 𝛥Ā varies with the grain boundary plane normal.  The values lie in a 

range between − 0.010 𝜇𝑚2 and 0.025 𝜇𝑚2, covering both positive and negative numbers.  The 

peak sits at the (111) position.  The (100) orientations are associated with positive 𝛥Ā and the 

(101) orientations are associated with negative 𝛥Ā.   

The change in grain boundary curvature shows a different trend (Figure 7.17b).  Note that 

there are no positive values in Figure 7.17b, so the interpretation of the red color at (111) 

position is different from that in Figure 7.17a.  In Figure 7.17b, the red color indicates that the 

(111) position corresponds to the smallest, nearly zero, change in the curvature magnitude.   

The zero curvature change at the (111) position (Figure 7.17b) is interesting.  Note that both 

flattening grain faces (negative ∆|ℋ̅|) and sharpening grain faces (positive ∆|ℋ̅|) are included in 

Figure 7.17b.  Does the zero change arise because (111) boundaries really do not change in 

curvature, or because the negative component from the flattening faces and the positive 

component from the sharpening faces cancels each other?  To answer this question, we plotted 

∆|ℋ̅| for grain boundaries on the flattening and sharpening faces separately (Figure 7.18).   

 

Figure 7.18.  The distribution of grain boundary face-averaged unsigned mean curvature 

change as a function of grain boundary plane orientation for (a) flattening grain faces with 

negative ∆|ℋ̅| and (b) sharpening grain faces with positive ∆|ℋ̅|. 

It can be seen that ∆|ℋ̅| is not zero at the (111) positions in Figure 7.18.  Nevertheless, the 

(111) position still corresponds to the slightest curvature decrease on the flattening faces and the 

least curvature increase on the sharpening grain faces. 

7.4 Discussion 

The engineering of geometric features is straightforward since the elementary data has been 

provided by DREAM.3D in a well-structured form.  The out-of-plane migration data is most 



 118 

tricky.  No distinct pattern has been discovered in the data, probably because the out-of-plane 

migration distances are too small (Section 7.1.6), thus overshadowed by the various noises 

introduced in the data collection procedures (Section 6.6).  The topological features are also non-

trivial, as the simple concepts of edge and corner are ambiguous in the context of discrete 3D 

microstructures.  It is also difficult to quantify the quality of measurements directly for the same 

reason.  

We measured grain face edges (E) as triple lines from mesh triangles, and corners (C) as 

quadruple, or quintuple, nodes from voxels (Section 6.4.2).  The two features match for the 

majority grain faces (Figure 7.2a), indicating that the two features are highly correlated and both 

measurement approaches are approximately correct.  This high correlation is confirmed in Figure 

7.7, with a 0.84 correlation coefficient.  Note that zero-corner, and zero-edge, grain faces are 

observed.  Zero corners usually happen for twins, where a grain face is only connected to a total 

of three grains.  Zero edges usually happen for small faces whose boundary is defined a few 

quadruple lines.  Quadruple lines are not counted as edges in this research so they appear to have 

zero edges.  It has come to our notice that the edge measurements are usually better than corner 

measurements according some visual checks, though the exact reason is unclear.  Note that the 

correlation coefficient between 𝐴 and 𝐸 (0.64) is also more significant than that between 𝐴 and 𝐶 

(0.55). 

The correlation between 𝐸  and √𝐴  is even more clear, and approximately linear (Figure 

7.2b).  Note that √𝐴 can be considered as a linear measurement of grain face size, and 𝐸 plays 

the role of a primary topological feature. Very similar correlations have also observed for grains, 

between the number of faces (𝐹) and equivalent grain diameters (𝐷) (Figure 7.2b).   

Dihedral angles were measure from mesh triangles groups sitting on triple lines, and then 

integrated over all triple lines of each grain face.  It is interesting to note that 𝐷𝐴_𝐿 and 𝐷𝐴_𝑅 are 

highly correlated with quasi-curvature gradient features (Figure 7.7).  One possible reason is that 

low energy boundaries are preferentially found on big grains.  Let us walk through an example of 

𝐷𝐴_𝐿  and 𝑉_𝐷𝑖𝑓𝑓  with the simplified 2D illustration in Figure 6.4c.  𝐷𝐴_𝐿 is negatively 

correlated with 𝑉_𝐷𝑖𝑓𝑓  (𝑉𝑙𝑒𝑓𝑡 − 𝑉𝑟𝑖𝑔ℎ𝑡 ), which means the larger 𝑉_𝐷𝑖𝑓𝑓 , the smaller 𝐷𝐴_𝐿 

(labeled as 𝐷𝐴_𝑙𝑒𝑓𝑡 in the Figure 6.4c).  The smaller 𝐷𝐴_𝐿 the higher energy 𝐺𝐵_𝑟𝑖𝑔ℎ𝑡_𝑁𝑁, 

according to the triple line equilibrium condition (Section 2.2.4).  𝐷𝐴_𝑅 is positively correlated 

with 𝑉_𝐷𝑖𝑓𝑓, for which the same reasoning applies.  𝐷𝐴_𝑂 is inversely correlated with 𝐷𝑖𝑠𝑡_𝛴3 
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and the correlation coefficient is – 0.36, meaning a grain face with a near Σ3 misorientation 

generally has a large 𝐷𝐴_𝑂 thus low energy.  This is consistent with the expectation that Σ3 grain 

faces have relatively low energy [45].  We have also expected 𝐷𝐴_𝑂 to be correlated with 𝐴 and 

𝛥𝐴, since some 2D measurements have shown that the length of a grain boundary is inversely 

correlated to its energy [149].  However, though the correlation between 𝐷𝐴_𝑂 and 𝐴 is positive, 

the correlation coefficient is marginally small (0.08).   

Various mean-field features are designed, from topological and geometric features, to capture 

the influence of nearest neighbor faces.  For grains, a mean-field defined as 𝐹 − < 𝐹𝑁𝑁 > is 

highly correlated with 𝒢’, the normalized integral curvature of grains faces (Figure 4.3 and 

Figure 5.5b), and possibly the change of grain size [88].  We see that similar mean-fields of grain 

faces, like 𝐸 − < 𝐸𝑁𝑁 >   and |ℋ| − < |ℋ|𝑁𝑁 >  are also likely to be informational.  For 

example, the correlation between 𝐴 and |ℋ| − < |ℋ|𝑁𝑁 > is remarkably high (0.70).  However, 

the correlation between 𝐸 − < 𝐸𝑁𝑁 >  and 𝛥𝐴, the change of grain face area, is meager, as 

shown in Figure 7.5 and Figure 7.7.   

Figure 7.7 suggests that 𝛥𝐴 is much more difficult to predict than 𝐴.  𝐴 is highly correlated 

with 𝐸 − < 𝐸𝑁𝑁 >  but 𝛥𝐴 is not.  The correlation between 𝛥𝐴 and 𝐴 is also weak (− 0.16 from 

Figure 7.7), though big faces generally have a slight tendency to shrink (Figure 7.4a).  Another 

possible guess is that 𝛥𝐴 may be correlated with E, since the “n − 6” predicts that the growth of 

an isotropic 2D grain, which is comparable to 3D grain faces, is completely determined by its 

number of edges.  However, we see the correlation between 𝛥𝐴 and 𝐸 is neither positive nor 

strong (− 0.10 from Figure 7.7).  This conclusion is confirmed in the machine learning models.  

The achievable 𝑅2 score is obviously higher in the task of 𝐴 (Table 7.3) and the predictions (�̂�) 

are closer to the true target values (y) (Figure 7.14).  

A curvature informed grain face shape change, like 𝛥|ℋ|, is easier to predict than the simple 

grain face area change (𝛥𝐴).  Figure 7.4b shows that |ℋ| may serve as a useful predictor for 

𝛥|ℋ| and the correlation is inverse.  This inverse correlation can be interpreted following the 

ideal of Equation 2.27 [59], which is simplified to Equation 7.1 in this research. 

 𝑑𝑉

𝑑𝑡
= −2∫ 𝑀𝛾𝐻𝑑𝑆

𝐹𝑎𝑐𝑒𝑠

= −2𝑀𝛾∫ 𝐻𝑑𝑆
𝐹𝑎𝑐𝑒𝑠

 (7.1) 
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𝐻 is the grain boundary local mean curvature and 𝑆 is the grain boundary area.  Equation 7.1 is 

defined for grains.  It suggests that the volume change of a grain is proportional to ∫ 𝐻𝑑𝑆
𝐹𝑎𝑐𝑒𝑠

, its 

integral curvature of grain faces, if grain boundary mobility M and grain boundary energy 𝛾 are 

approximately constant for the general boundaries.  Note |ℋ|  is the grain face version of 

∫ 𝐻𝑑𝑆
𝐹𝑎𝑐𝑒𝑠

, with 𝐻 replaced by |𝐻|, the unsigned mean curvature of grain boundary, and the 

integral confined to be within the grain face of interest.  Following this idea, we see that |ℋ| is 

proportional to the velocity of the corresponding grain face.  The inverse correlation between 

𝛥|ℋ|  and |ℋ|  then suggests that a growing grain face grows slower and slower, while a 

shrinking face shrinks faster and faster.  We also note that the majority grain faces are associated 

with negative 𝛥|ℋ| (Figure 7.4b), which agrees with the common experimental observation that 

the migration of grain faces slows down as the heat treatment goes on.  When machine learning 

models are fitted with |ℋ| and other features, a 0.34 𝑅2 score can be achieved for the prediction 

of 𝛥|ℋ|, slightly larger than that of 𝛥𝐴 but still much smaller than 𝐴. 

In all three prediction tasks, the non-linear model XGBoost performs better than the linear 

models, suggesting that high-order correlations exist among the various grain face features 

(Table 7.3 and Figure 7.14).  One example of such high-order correlations is illustrated in Figure 

7.2, in which a linear correlation between 𝐸 and √𝐴, thus a 2nd order correlation between 𝐸 and 

𝐴, is suggested.  

The relative feature importance has been interpreted in four ways in this research, including 

the correlation coefficient, the selection order in the forward selection model, the slope 

coefficients in the LASSO regularized linear regression, and the feature gains in XGBoost.  Note 

that these different models generally agree on a similar set of important features for each task.  

For example, |ℋ| − < |ℋ|𝑁𝑁 > and 𝐸 are identified to be the most important features by all 

three models in the prediction of 𝐴.  Similarly, |ℋ| is marked to be important in the prediction of 

𝛥𝐴 and 𝛥|ℋ| by all models.  The correlation coefficients between these predictor and target 

feature pairs are also significant.  This agreement confirms the significance of these features.   

However, the exact feature importance ranks generally do not match perfectly.  We note that 

one should not rely on the rank of a single model too much.  The relative importance from 

correlation coefficients and the linear models are inherently limited to linear relationships.  The 

slope coefficient interpretation, as in the LASSO linear regression model, is also prone to another 
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problem known as multicollinearity [140], [141].  Multicollinearity exists when predictors of a 

linear regression model are not independent.  The existence of multicollinearity is usually 

harmless to model performance, as long as the predictor correlations are not too serious, but may 

invalidate the interpretation of slope coefficients because the model may assign slope 

coefficients among the correlated predictors in an ungrounded manner.  An example is seen in 

this research.  In the prediction of 𝐴, 𝐸 − < 𝐸𝑁𝑁 > is assigned a negative slope coefficient by 

the LASSO regularized linear regression model (Figure 7.9a) though the two are positively 

correlated (Figure 7.7).  We have tried to predict 𝐴 with 𝐸 − < 𝐸𝑁𝑁 >  being the only predictor.  

In that case, the model assigns a positive slope coefficient to 𝐸 − < 𝐸𝑁𝑁 >.  The other methods 

are more robust to the correlation between predictors, but it is always worth remembering that 

the relative importance is more likely to be reliable if it is consistent among different models.   

In summary, three major conclusions can be drawn from the results of machine learning 

models.  First, mean-field features, defined following a logic similar to the 𝐹 − < 𝐹𝑁𝑁 > of 

grains [88], serve as useful predictors of grain face properties.  For example, |ℋ| − < |ℋ|𝑁𝑁 > 

has been assigned as one of the most significant predictors by at least one model in all tasks.  

Second, curvature does play an indispensable role in the evolution of grain faces.  This is 

supported by several consistent observations, including that 𝛥|ℋ| can be predicted better than 

𝛥𝐴, and that |ℋ| plays an important role in the prediction of 𝛥𝐴.  However, the grain face area 

change cannot be predicted with high accuracy given curvature and topological information.  The 

𝑅2 score achieved for the prediction of 𝐴 (0.63) is much better than that for 𝛥𝐴 (0.25), leading us 

to the third conclusion that the role of curvature is not deterministic and the correlation between 

grain face geometric and topologic changes is not perfect.  

There are several possible factors contributing to the poor prediction of 𝛥𝐴 .  First, the 

magnitude of 𝐴 is generally much larger than the magnitude of 𝛥𝐴, so 𝛥𝐴 is likely to be more 

sensitive to whatever measurement noises within the dataset.  The second possible reason is that 

there may exist some solutes within our dataset, dragging the grain faces and deviating their 

behaviors from ideal and continuous, since our sample is not of ultra-high purity (99.999 %) 

[115].  It is also possible that grain boundary evolution is not a continuous process by nature.  

Note that our 𝛥𝐴 is confined to the 25 minutes experiment time window while 𝐴 contains the 

entire life-time information of a grain face, in which a much longer time period is covered.  The 

worse prediction of 𝛥𝐴 might have originated from some critical events, whose effects are more 
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significant in shorter time intervals.  Possible examples of such critical events include grain 

boundary disconnection pile and stress accumulation [55].  Finally, note that grain boundary 

anisotropy may also affect the behavior of grain faces and grain boundaries.  

The misorientation dependent anisotropy in grain face area change is obvious in Figure 7.15, 

which shows that the Σ3 misorientation grain faces are generally more aggressive than other 

grain faces in terms of area change.  This observation is interesting because it does not match our 

expectation exactly.  It is known that the Σ3 misorientation is associated with low energy [45] so 

we expected it to have generally positive 𝛥𝐴.  Figure 7.15 shows that though some Σ3 grain 

faces are indeed associated with large area increase, there are also many Σ3 grain faces with 

significant area decrease, and the median 𝛥𝐴 is slightly negative.  We note that the negative 

median 𝛥𝐴 of Σ3 grain faces is probably not representative, since it is close to zero and only 

complete grain faces are included in Figure 7.15.  In other words, large grain faces have been 

preferentially removed (Section 7.3.1). 

The plane normal dependent anisotropy of grain boundaries is studied following a face-

averaged method, in which the tricky process of individual grain boundary tracking is 

circumvented by assigning a face-averaged value to all grain boundaries on that grain face.  The 

face-averaged method works probably because we have a large number (10913) of tracked grain 

faces so that each grain boundary normal direction is observed multiple grain faces. Note that the 

effectiveness of this method would be undermined if the number of tracked grain faces is small.  

The grain boundary face-averaged evolution distributions show that the (111) orientations are 

associated with the largest increase in area (Figure 7.17a) and the smallest change in curvature 

magnitude (Figure 7.17b and Figure 7.18).  These observations are probably related to the large 

population of coherent twins within Ni [85].  Remember that coherent twins with the (111) 

orientation sit in a deep energy cusp.  Non-coherent twins with near (111) orientations may 

decrease their energy by rotating to the (111) orientation, thus contributing to the (111) peak in 

Figure 7.17a.  The small magnitude of curvature change at the (111) orientation can also be 

explained by coherent twins, which cover a considerable population at the (111) position and are 

likely to be resistant to curvature change because of their relatively flat shape and low curvature 

(Figure 4.4).   

While significant anisotropy is noticed in the grain boundary population change and the grain 

boundary curvature change, the exact effect of grain boundary anisotropy is not clear.  It is 
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possible that curvature and topology would have played a more important role if the anisotropy 

was less significant.  There are two ways to test this hypothesis.  First, one can conduct another 

HEDM experiment for high purity Ni at a higher temperature, at which the amount of grain 

boundary anisotropy should be smaller, and compare the results with this research.  Alternatively, 

one can also repeat the measurements and predictions with a material that is known to be less 

anisotropic, like the ones with BCC structure.  The effect of solutes can be tested similarly, by 

repeating the measurements with various sample purity.   

7.5 Conclusion 

The majority tracked grain faces go through a decrease in the integral unsigned curvature, 

suggesting a deceleration in the evolution process.  Face integral dihedral angles are negatively 

correlated with the local grain size gradient, indicating that low energy boundaries are 

preferentially found on big grains.  However, the face integral dihedral angles are not obvious 

correlated with the face area change.  

The grain face area change is generally weakly correlated to other features and is difficult to 

predict, while a closely related curvature informed feature, the grain face integral unsigned 

curvature change, is easier to predict.  The R2 score of linear models and the visualization of 

prediction results show that the grain face area can be predicted much better than the grain face 

area change and the grain face integral unsigned curvature change.  One possible reason is that 

the evolution of grain faces is a noncontinuous process and is not entirely dominated by 

curvature.  The relative feature importance from machine learning models shows that the most 

important predictor for grain face area is a mean-field feature defined from the excess face 

integral unsigned curvature.   

A face-averaged method is designed to calculate the grain boundary area change and the 

grain boundary curvature change without tracking individual grain boundaries.  The method is 

applied to plot the face-averaged grain boundary curvature distribution (GBHD) and is validated 

by the fact that the face-averaged GBHD shows a very similar trend as in the true GBHD.  When 

the face-averaged grain boundary area change and the face-averaged grain boundary curvature 

change is plotted as a function of plane normal direction, the (111) orientations show the largest 

area change and the smallest curvature magnitude change.  This observation is probably related 
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to the large population of coherent twins within the material and provides evidence that 

anisotropy plays an important role in microstructure evolution. 
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8.   Conclusions 

This thesis focused on the study of experimentally measured three-dimensional microstructures, 

including an EBSD collected austenite dataset, an EBSD collected ferrite dataset, an EBSD 

collected 1470 ℃ annealed SrTiO3 dataset, and two HEDM collected Ni datasets.  The two 

HEDM Ni datasets record the orientations of the same sample, before and after a 25-minute 

annealing at 800 ℃.  Each dataset contains more than 1000 grains, and the grain boundaries 

were approximated by continuous meshes of triangles.   

Grains within the two steel datasets (austenite and ferrite) and the ceramic dataset (SrTiO3) 

showed similar topological and geometric characteristics.  The integral mean curvature of grain 

faces varies such that small grains with few sides have positive curvatures and large grains with 

many sides have negative curvatures.  The number of excess neighbors correlates strongly with 

the normalized integral mean curvature.  The curvature is positive (negative) if a grain has fewer 

(more) neighbors than the average of its nearest neighbors.  The results suggest that the grain 

boundary mean curvature is influenced by the grain size and by the number of nearest neighbors. 

We also measured the grain boundary mean curvature as a function of lattice, misorientation 

and grain boundary plane orientation.  The grain boundary mean curvature shows significant 

anisotropy and is correlated with the boundary area and energy.  The grain boundary mean 

curvature is inversely correlated to the grain boundary area in all three EBSD samples, such that 

flat boundaries make up a relatively larger portion of the grain boundary area.  In the steel 

samples, the lowest curvature grain boundaries also have the lowest grain boundary energies, 

while the curvature and energy of more general grain boundaries are on average inversely 

correlated.  In the SrTiO3 sample, the grain boundary mean curvature is on average correlated to 

the grain boundary energy.  Note that the correlation between curvature and energy is expected 

to be different for singular boundaries and general boundaries.  The observation suggests that the 

grain boundary network of 1470 ℃ annealed SrTiO3 is dominated by singular boundaries.  

Grain faces were tracked between the two Ni datasets.  Most grain faces are associated with a 

negative integral curvature change during the annealing, suggesting that the evolution of grain 

faces slows down as annealing goes on.  Other types of features were also engineered to capture 

different grain face characteristics, and machine learning models were trained to analyze feature 

correlations efficiently.  The results show that the grain face integral unsigned mean curvature 
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plays an important role in the prediction of grain face area change, validating the importance of 

mean curvature.  However, it is also noticed that the grain face area is much better predicted than 

the grain face area change, indicating that microstructure evolution is probably a discontinuous 

process and mean curvature alone does not determine the evolution of grain faces.   

The grain boundary area and the grain boundary curvature change were calculated following 

a face-averaged method, which has been shown to be credible by the grain boundary mean 

curvature distribution (GBHD) and the face-averaged GBHD of the same dataset.  It was found 

that both the grain boundary area change and the grain boundary curvature change vary with the 

plane normal directions.  The (111) direction is associated with the largest net area increase and 

the smallest curvature magnitude change.  This observation agrees with the large population of 

coherent twins within the material and suggests that coherent twins gain area and have relatively 

stable shapes during annealing.   
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