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Abstract

A multi-phase field method is presented both in two and three dimensions to model grain
boundary migration and to study the effect of anisotropy in boundary energy on populations
during grain growth. The misorientation-dependent distribution of boundaries is correlated
to the anisotropy in boundary energy, which scales with the sum of surface energies for
grains on either side. These surface energies are inclination-dependent in the crystal frame
of reference. The steady-state morphology of isolated grains, shrinking with time, is different
for varying anisotropic conditions. For a given anisotropy of boundary energy, it is shown that
the evolution of grain boundary character is different in the case of isolated shrinking grains
when compared to that of polycrystalline grain growth. The effect of different boundary
conditions imposed at junctions is found to be the key factor influencing the development
of anisotropic grain boundary character in polycrystalline systems. In the later half of the
present work grain boundary energies for arbitrary boundary types are estimated through
use of appropriate interpolation methods and distance metrics. The anisotropy in boundary
populations is correlated to the anisotropy in interpolated energies to demonstrate that for
an initial random texture, an inverse relation between boundary energy and population holds

true across the entire grain boundary space.
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Chapter 1

Introduction and background

1.1 Motivation

In the case of polycrystalline materials, it is often observed that the distribution of boundaries
is non-random |57, 32]. This non-random or anisotropic distribution of grain boundaries can
have a significant effect on macroscopic properties of these materials, which include but are
not limited to fracture toughness, corrosion resistance or mechanical strength.

This has of course motivated the development of grain-boundary engineered materials,
which have a high population of special boundaries (known as ¥ or CSL boundaries), such
that these materials have better mechanical properties compared to conventional materials
having a random distribution of grain boundaries [51]. Some examples are worthy of men-
tion here - lead-acid battery materials having a high population of these special boundaries
(specifically 33 boundaries) show greater resistance to corrosion and failure, and nickel-based
alloys where the resistance to stress-corrosion cracking and the population of special GBs
scale with each other (see Fig,1.1). Hence the motivation to engineer materials which are
preferentially populated with certain boundaries types. And to produce such a non-uniform
distribution of boundaries, it is necessary to alter boundary properties accordingly (as an

inverse relation appears to exist between boundary energies and populations in metals and ce-
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ramics [57, 56, 32]). Hence the next obvious question - is there a natural correlation between
interface populations and interfacial properties, or in other words, given a set of interfacial
properties, can one predict interface distributions 7 If we turn this question around, we can
also ask - if we want a certain distribution of grain boundaries, what sort of anisotropic

boundary properties should we have ?
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Figure 1.1: (a) Intergranular corrosion and cracking in conventional lead-acid batteries hav-
ing low (13%) population of special boundaries compared to (b) which shows relatively
negligible cracking and has a high population (about 63%) of CSL boundaries introduced
through GBE. (¢) Maximum intergranular crack length and the fraction of special bound-

aries in a Ni-based alloy scale with each other. This figure was reproduced from reference
[51].

1.2 Background

Non-uniform grain boundary properties can play a significant role on their populations, and
result in grain-boundary texture in the material. Texture, in the present context, implies a
non-uniform distribution of crystallographic properties, indicating that either the grains (in
the polycrystalline framework) are preferentially oriented along certain directions, or certain
boundary types are more populated than others, or both. The material is then said to have an
oritentation texture or a boundary texture respectively. It is to be noted that grain boundaries

in three dimensions have five degrees of freedom - three related to the misorientation between
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the crystals on either side (needed to rotate one crystal to another), and two related to the
inclination of the boundary plane in space (see Fig.1.2). So grain-boundary texture can

either be misorientation or inclination based.

Three parameters for the Two parameters for

misorientation: Ag; ;. the orientation: ny;

Figure 1.2: Grain boundaries in three dimensions have five degrees of freedom - the first
three related to crystal misorientation, and the last two to the inclination of the boundary
normal in space. This figure was reproduced from reference [55].

Grain boundary properties, like energy or mobility can be related to macroscopic observ-

ables (like boundary velocity v) as

v =mvk (1.1)

where, m, v and k denote mobility, energy and boundary curvature respectively. In
curvature-driven models, grain boundaries move along the boundary normal towards their
centre of curvature. The mobility and energy terms are often combined as a reduced mobility
= my.

Grain boundaries (GB) meet at junctions, at angles determined by the relative energies
of the GB segments in these junctions. Knowing the values of these boundary energies,
one can use Neumann’s triangle for mechanical equilibrium, and show that these angles are
related by the following relation [4], if one assumes that the boundary energy is inclination

(or boundary-plane) independent .
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where, v and o denote the boundary energy and the included angle opposite to boundary.
In the isotropic case, where all boundaries have equal energies, boundaries meet at angles
equal to 120° at the triple junctions. When boundaries have different energies, they rotate

and lengthen till mechanical equilibrium is achieved at junctions (see Fig.1.3).

] i

=1

=

=1e

Figure 1.3: Grain boundaries rotate and lengthen at boundary junctions till mechanical
equilibrium is restored (figure reproduced from [23]).

In case, the boundary energies are inclination-dependent (that is varying with the bound-
ary normal), torque terms appear which tend to rotate boundaries to low-energy inclinations.
Herring’s equations for mechanical equilibrium at boundary junctions for such cases can be

expressed as (refer [4])

> (vf+ ?ﬁ) ~0 (1.3)

¥
where, ¢ is the inclination angle of the boundary, and # and 7 represent the tangent and
the normal vectors to the grain boundary respectively (see Fig.1.4).

An alternate way of representing inclination-dependent energies was given by Cahn and
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Figure 1.4: Torque terms tend to rotate bondaries to low-energy inclinations, when the
boundary energy is inclination-dependent. This figure was reproduced from reference [55].

Hoffman [5, 6], where they replaced energies v(n) and torques % by a single capillarity
vector £(n) (see fig.1.5). Cahn showed that the &-plot is similar to the v(n) Wulff plot, and
it gives a more complete description of surface energy anisotropy and expected equilibrium
shapes.

Regarding grain growth kinetics, the von-Neumann-Mullins relation [refer [45, 69]] ex-

presses the rate of grain growth in two dimensions as

0A

i —my (2T — ;0@) = —2mmy(1 — %) (1.4)

where, A, o; denote grain boundary area and turning angle at each grain corner (or triple
junction), as seen in Fig.1.6.

The simplest models of grain growth assume isotropic properties where all boundaries
have equal mobilities and energies irrespective of grain boundary type [3, 62|. As can be
derived from the previous relation, one expects that in two dimensions, grains having more
than six edges grow, while others shrink with time, during isotropic curvature-driven grain
growth. As stated earlier, boundary velocity v is proportional to curvature k = % Hillert

proposed a simple power-law equation relating mean grain radius R to time ¢ (in two dimen-

sions) [refer [22]]
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Figure 1.5: (a) Defining of &-vector (b) Similarity of the Wulff plot and the &-plot. These
were reproduced from Cahn’s paper [5].
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Figure 1.6: (a) Representation of grains in a two dimensional polycrystalline network -
whether a grain grows or shrinks with time depends on topological factors (as its number of
sides) (b) corresponding representation of idealized grain in three dimensions (reproduced
from reference [36]).
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V= am~yk (1.5)

resulting in RP — Rf = Bt,p = 2, R and Ry being the average grain radius at time ¢ = ¢
and t = 0 respectively. It has been shown by polycrystalline models of grain growth [3, 62]
that a power-law exists for domain growth, where the average grain area A linearly scales

with time ¢

A—Ag=Kt"n=1 (1.6)

In three dimensions, the von Neumann’s relation was generelized by Srolovitz et al. as

[36]

oV 3
o —2mmry (L(D) iy 1 6i<D)> (1.7)

1=

| =

where, L(D) denotes a linear measure of domain D, and e; represents the length of ith
triple line of domain D, 1 <1i < n (see Fig.1.6).

It has been shown, both in experimental and simulation studies, that grain boundary
properties do have a relation to their populations. In magnesia, the boundary energy and
population are inversely correlated [57|, as seen in Fig.1.7. Grain boundary planes having
low energies ({100} in this case) are relatively more populated. In aluminium, planes with
low surface energies ({111} in this case) have higher populations [56]. Similarly in nickel
(another face-centred cubic metal), {111} planes being low in energy are more populated [32]
(see Fig.1.7), supporting the notion that an inverse relation exists between grain-boundary
energies and distributions.

Although energy ~ and mobility m are related to the boundary velocity v as in eq. 1.5,
recent work indicates these are independent of each other. Olmsted et al. performed a series
of molecular-static simulations on bicrystal geometries and extracted realistic values of grain

boundary energies and mobilities of a limited set of 388 boundary types [49]. Comparing
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Figure 1.7: (a) Populations plotted vs. grain-boundary energies in magnesia (see squares) -
note they are inversely related, as also in (b) nickel. Figures reproduced from [57, 32].

the energies of these boundaries with their mobilities no obvious correlation seems to exist.
In fig. the variation of boundary energy with boundary mobility is shown for boundary
types refered to as ¥3 and ¥5. Some low-energy boundaries have low mobilities (such as the
coherent Y3 boundaries), but this does not always hold true. Also there does not appear
to a correlation between boundary width (across which crystal orientation changes from one
grain to another) and boundary energy - coherent 3 boundaries have low width and low
energies, but this should not imply that there is a direct scaling between boundary width
and boundary energy.

This inverse relationship is predicted by simulations of grain growth in materials having
anisotropic boundary energies. Gruber et al. showed, by use of finite-element simulations,
that low-energy boundary planes are more populated, (see Fig.1.9) and that an anisotropy
in boundary energy has a greater effect on boundary distributions than boundary mobility
[17]. In a later paper, using the framework of a discrete model (Monte Carlo) they showed
that an anisotropy in boundary energy has a greater effect on misorientation distributions
than an anisotropy in mobility [19]. The energy function used has a form identical to one
proposed by Read-Shockley [54], where the boundary energy scales with the misorientation

angle for low misorientations, and is constant for high misorientations (typically greater than
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Figure 1.8: Variation of boundary energy with mobility for boundary types X3 and 5.
These values have been extracted from recent work by Olmsted et al [49]. There appears to
be no direct correlation between the two quantities.
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15°), as in Fig.1.10. As can be seen in Fig.1.11, misorientation distributions (in multiples of

random density MRD) scales inversely with the misorientation-based GB energy.

o) = (D) i ()] o<0 us

Yrs(0) = 1,0 >0 (1.9)

00+

population (MRD)
=

0.oo
.94 1.00 1.04

relative ensrgy

Figure 1.9: Interface populations plotted with relative GB energies - note inverse relation
inspite of significant scatter. This figure was reproduced from reference [17].

Kazaryan et al. simulated anisotropic grain growth, in two dimensions, using a diffused-
field approach (a phase-field model where boundaries have a finite width, and one does not
explicitly need to record their position) and arrived at similar conclusions [28|. Upmanyu et
al. showed that an anisotropy in boundary mobility only affected the overall rate of grain
growth, whereas an anisotropy in boundary energy resulted in non-uniform grain boundary
distributions (compared to distributions when the boundary properties were assumed to be
isotropic), as can be seen in Fig.1.12 [68].

As explained earlier, grain boundaries (in three dimensions) have five degrees of freedom.

Hence a complete anisotropic description of grain-boundary energy should depend both on
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Figure 1.10: Read-Shockley based variation of boundary energy with misorientation - a GB
misoriented by more than 15° is typically regarded to be a high-angle GB. The dotted line
represents the energy function derived for magnesia from simulations. (figure reproduced
from [20]).

lattice misorientation (across the boundary) and on the inclination of the boundary normal.
It has been experimentally observed in face-centred cubic metals, that there is an appreciable
variation of boundary energy with inclination, at a constant misorientation. A couple of
examples of GB energy variation in fcc metals are shown here (see Figs.1.13,1.14,1.15) for
reference - the first depicts the variation of energy with misorientation angle [56], and the
variation of boundary energy for the particular case of symmetric-asymmetric tilt [001] (and
[110] symmetric tilt) boundaries in aluminium [50]. In the second case, the variation of grain
boundary energy with misorientation angle for the case of symmetric [001] tilt boundaries,
and the overall variation of GB energy (over all misorientations) with inclination is shown
for nickel [32].

The simplest anisotropic models assume that the boundary energy does not depend on
inclination, and varies only with misorientation, having a form similar to the Read-Shockely
expression shown above (see fig.1.10). Holm et al. simulated grain growth using a Monte-
Carlo method, with a misorientation-based GB energy, and show that although texture

played a significant role in growth kinetics, in all cases low-energy misorientations (which in
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Figure 1.11: (a) Number-weighted and (b) area-weighted misorientation distributions as
derived from simulations by Gruber et al. This figure was reproduced from reference [19].
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Figure 1.12: MDF plotted (histograms) with a Read-Shockley based boundary energy (dot-
ted line) - mobility anisotropy gives a distribution (diamonds) similar to the isotropic case
(circles) (reproduced from [68]). Note that certain special or CSL boundaries have been

assigned relatively low energies.
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Figure 1.13: (a) Variation of boundary populations and energies with misorientation in alu-
minium for symmetric tilt [110] boundaries (reproduced from [56]), and (b) energy variation
of symmetric-asymmetric tilt [001] boundaries (reproduced from [50]).
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tilt boundaries in aluminium. This figure was reproduced from reference [14].
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have the lowest energy in nickel (reproduced from [32]).
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this case correspond to low-angle boundaries) lengthened at the expense of high-energy ones
[23]. Similar conclusions were reached at by Gruber et al. using Monte Carlo simulations
(in two and three dimensions), again with a purely misorientation-based boundary energy
(and random texture), where both number-weighted and area-weighted statistics showed a
high fraction of low-angle boundaries [19, 20].

On the other hand, models which incorporate an inclination-based energy have been
developed using a phase-field approach. It is to be noted that such models have been largely
applied to study solidification phenomena and closely mimic dendritic morphologies. For
the case of two dimensions, an inclination-based energy of the following form was used by

Karma et al. [27, 11]

Y(0) = Yo (1 + 6 (|]sind| + |cosb))) (1.10)

which, considering spherical symmetry, can be reduced to

v(0) = 1+ dcos(m'6) (1.11)

where, §, m’ denote the strength of anisotropy and the order of symmetry (m' = 4
for a four-fold symmetric function) respectively. 6 denotes the inclination angle that the
boundary normal makes with a reference axis (the sample x axis in this case). A similar
form of spherical anisotropy was observed in two-dimensional experimental observations of
solidified droplets in Al-Cu and Al-Si systems by Napolitano et al. [47] .

Changes in conserved and non-conserved variables with time are determined using rele-

vant governing equations [31].

9[- 2] (12
g—j = V2 (m [v%-%}) (1.13)
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where, ¢ = {¢;,1 < i < n} and ¢ = {¢;,1 < j < p} represent non-conserved and
conserved species respectively.

The variation of boundary energy ~ with inclination 6 results in the introduction of
higher derivatives in the evolution equations (as 7y) which might be discontinuous near
cusps (minima in the inclination-energy Wulff plots). Hence, often regularization methods
are used where sharp cusps are replaced by smooth differentiable functions [11|. Voorhees
et al. used an alternative convexification method, which ensured that interfacial stiffness
(v + 790) is positive for all inclinations [13]. These adjustments are necessary to ensure that
the method remains stable for boundaries at all inclinations, and is able to reproduce faceted
morphologies at the same time.

Recently Moelans et al. developed a phase-field approach for studying anisotropic grain
growth in two dimensions [40, 41], incorporating an anisotropy in boundary energy which
is dependent both on lattice misorientation and inclination. The interfacial width w was
maintained constant irrespective of boundary inclination, while the grain boundary energy
~ varied with the boundary normal n. But the method is limited to two dimensions and
not been used to model large-scale microstructure evolution. Also as mentioned above,
non-convex inclinations need to be regularized for maintaining stability in simulations.

Coming to the issue of model development for simulating grain growth in three dimen-
sions, it is to be noted that such models are either limited by overall domain size or by the
nature of the anisotropic function used. Grest et al. simulated normal grain growth in three
dimensions (using a Monte Carlo framework) using isotropic grain-boundary properties [2].
Wakai et al. studied steady-state grain growth kinetics using a finite-element solver (the
Surface Evolver), assuming all boundaries have equal energies and mobilities [70]. Ivasishin
et al. developed a three-dimensional Potts model using a misorientation-based anisotropic
mobility [25], and looked at the effect of initial texture and a misorientation-based boundary
mobility on the grain growth exponent.

Using a discrete framework, like the Potts model, it is tedious to directly extend an
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anisotropic model from two to three dimensions, due to inherent difficulties in deriving gra-
dients and boundary normals for curved interfaces in three dimensions (as in two dimensions)
for a voxelised representation of a polycrystalline grain structure. One has to smooth and
interpolate otherwise jagged boundaries to derive approximate inclinations in such a case
[26, 61]. On the other hand, it is quite straightforward to extend diffused models (such as
the phase-field approach) to higher dimensions, where one need not explicitly track bound-
aries, which are inherently defined as locations of high gradients in field variables.

Kim et al. simulated ideal grain growth in three dimensions using a diffused model of
interface fields developed by Steinbach and Pezzolla [63]. The computations were carried
on a relatively large domain (420 — cubed) and corresponding grain growth statistics were
extracted, but the boundary properties were assumed to be isotropic [29]. Krill and Chen
developed a novel grain-reassignment procedure to model large-scale grain growth in three
dimensions, but here also an uniform boundary mobility (and energy) was used [24]. Saito
et al. used an anisotropic mobility step-function (boundaries between grains belonging to
different texture components are assigned an uniform high mobility compared to others) and
used appreciably large domains (320 — cubed) [64]. On the other hand, an inclination-based
anisotropic energy was incorporated in three dimensions by Karma and Rappel to model
dendritic tip morphologies. The form of the energy function used was cubic-symmetric, and

can be expressed as

v =1 [1+6 (cos*d + sin*0 {1 — 2cos’psin®p})] (1.14)

where, 0, ¢ represent the angle between interface normal and the crystal [001] axis, and
the angle between the projection of the interface normal on the zy plane (in the frame of
reference of the crystal) and the crystal [100] axis respectively [27, 53]. The model succesfully
simulated the preferential selection of certain crystal inclinations over others (see Fig.1.16)
for a relatively low anisotropy strength (less than 5%).

Similarly, Granasy et al. modeled polycrystalline alloy solidification, with an anisotropic
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Figure 1.16: Dendritic morphologies for increasing strength of anisotropy. These are repro-
duced from [27] for (a) § =0 and (b) § = 0.047 in eq.1.14.

inclination-based mobility (see relation given below), where growing nuclei were preferentially
bounded by different crystal facets (depending on the relative strengths of £; and e, , see

Fig.1.17) [52].

m(n) = mq

3
3 17
1+51{;n;‘—5}+52{Zn§—66n§n§n§—7}] (1.15)
Napolitano and Liu used a similar expression as eq.1.15 to describe the shape anisotropy

of Sn-rich particles in the Al-Sn system [46].

Figure 1.17: Solidification nuclei bounded by varying crystal facets for (a) ey = —1.5, 69 = 0.3
(b) &1 =0, 62 =0.6 and (c) e, =0, e2 = —0.3 in eq.1.15 (reproduced from (author?) [52|).
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1.3 Hypothesis

The present work seeks to demonstrate that an inverse corelation exists between grain bound-
ary energies and populations, which holds both in two and three dimensions, for an initial
random texture. Also it is hypothesized that mechanical equilibirum conditions at triple
junctions have a significantly greater effect on the development of an anisotropic bound-
ary character than kinetic factors (as boundary mobility), when boundary properties are
non-uniform or anisotropic. Isolated grains should evolve differently from grains in a poly-
crystalline system due to the presence of boundary junctions. In polycrystalline systems,
low-energy boundaries grow at the expense of high-energy boundaries, both in number and

in area.

1.4 Objectives

The present work seeks to develop an interface-field method, both in two and three dimen-
sions, to model large-scale polycystalline grain growth, incorporating anisotropic boundary
properties. The use of an interface-field approach instead of the usual phase-field approach
help to decompose multiphase field interactions as a sum of interactions of associated inter-
face fields [63]. The microstructure is represented as a sparse array, where we store interface
field values only for voxels at grain boundaries (and junctions) - this results in a signifi-
cant reduction in requirements for computational time and memory [18|. Hence the present
method can be used to simulate large-scale anisotropic microstructure evolution in three
dimensions, in contrast to previous work [68, 41|, and can produce more reliable statistics
to better correlate the anisotropy in boundary distributions to the anisotropy in boundary
properties.

In Chapter. 2 (Part-I), the interphase-field approach is presented and validated for model
systems (for example the isotropic shrinkage of isolated grains). Effects of changing the

boundary width and timsestep on boundary motion are explored. An energy-extension
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procedure is presented to permeate anisotropic boundary energies along grain boundaries
to boundary junctions. Details of the extension procedure are discussed in Appendix D.
In Part-II, large-scale simulations are performed, in two and three dimensions. and the
misorientation-dependent distribution of boundaries is correlated to the anisotropy in bound-
ary energy, which scales with the sum of surface energies for grains on either side. These
surface energies are inclination-dependent in the crystal frame of reference. The evolu-
tion of isolated grains is contrasted to the evolution of grains in a ploycrystalline network.
Although it has been predicted that in polycrystalline systems equilibrium constraints at
boundary junctions affect the development of anisotropy in boundary populations in previ-
ous work [30, 23|, we seek to quantify this effect, by comparing the anisotropy in populations
with varying equilibrium constraints imposed at boundary junctions. To test whether low-
energy boundaries grow both in number and in area (as the critical-events model predicts
[20]) or only in area (through a boundary-lengthening mechanism [23]) the anisotropy in
number-weighted and area-weighted populations are compared.

In Chapter. 3, interpolation techniques are presented to estimate the distribution in
grain boundary energies for face-centered cubic metals (like nickel and aluminum). Such
techniques are necessary to determine the energy of arbitrary grain boundary types based
on known energies of a limited number of GB types, which have been calculated using
experimental methods [32] or simulations [49]. The variation of interpolated energies with
the grain boundry type depends on the choice of the distance metric used. These interpolated
energies are incorporated in the interface-field framework to predict grain boundary motion
and microstructure evolution in real materials, and to better correlate the anisotropy in
boundary character with observed boundary distributions in such materials. Details on
incorporating interpolated energies in the interface-field method are discussed in Appendix
C.

Finally in Chapter. 4, possible directions to extend the present capability of the interface-

field approach are discussed - methods to reformulate the governing equations to account
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for boundary torques are presented, such that a complete five-parameter description of
anisotropic boundary properties can be incorporated in the present framework (see Appendix
A). Details of numerical implementation are also presented (refer Appendix B).

Hence, the present method provides a robust approach to model anisotropic grain bound-
ary migration and microstructure evolution, both in two and three dimensions, and is
equipped to predict correlations between non-uniform boundary properties and populations.
A relatively fast and parallelized method is presented which can be used to perform large-
scale simulations in three dimensions and can be used to better correlate microstructure

evolution observed in real materials to simulations.
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Chapter 2

An interface-field method for anisotropic

motion of grain boundaries

2.1 Introduction

One approach to represent a polycrystalline system and model interface migration is to use
a phase-field approach, where each grain corresponds to a unique phase’, and boundaries
are diffuse having a finite width. This model was first used by Cahn and Allen to simulate
antiphase domain coarsening [1]. It is different from discrete models of microstructural
evolution, as one does not need to explicitly track the position of interfaces. Boundaries
are inherently represented as regions of high gradients in field variables. Here grains do not
abrubtly change orientation near boundaries, and grain boundaries have a finite width to
accomodate gradients in orientation.

Chen et al modeled grain growth in three dimensions [24] assuming uniform boundary
energies and mobilities using a phase-field approach. Sekerka et al. considered anisotropy
in the kinetic prefactor in the evolution equations [67], and observed that the morphology
of the steady-state kinetic shapes depended both on the width and depth of the cusp of the

particular anisotropy function used. Instead, when an inclination-based anisotropy in the
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gradient energy coefficient is considered, the variation of the free-energy functional yields
additional terms, such as higher derivatives of the gradient energy prefactor with inclination
[38]. The interface thickness in the aforementioned case scales with interfacial energy, hence
to maintain a constant interface width irrespective of the boundary inclination, both the
energy coefficient and the depth of the potential function should have a similar anisotropic
variation with inclination [34].

Since higher derivatives of the anisotropic function with inclination (such as ~y) can be
discontinuous in the vicinity of a cusp, the method can become ill-posed and unstable, and
additional treatment of the energy functional is essential for these inclinations. Karma et
al. used a modified version of the following inclination-based energy anisotropy (0) =
Yo(1 + d(|sind| 4 |cosf|)) where they approximated the sharp cusps with rounded ones to
simulate growth of dendritic tips [11]. Amberg used a similar regularization [33] to model
evolution of a Widmanstatten morphology. Wise et al. used a Willmore regularization
method, where the square of the mean curvature is added to the energy term to avoid
instability near cusps and to smooth corners [66]. Voorhees used a energy convexification
scheme [13] which ensured that the interfacial stiffness v + gy is positive for all inclinations,
to model the shape evolution of anisotropic crystals using a Cahn-Hilliard formulation (and
conserved phase fields). !

In a recent paper, Wollants et al. simulated polycrystalline grain growth with arbitrary
misorientation and inclination dependence in two dimensions, while maintaining a constant

interface width [40]. Regularization of the energy function was necessary for the nonconvex

f the inclination-based energy function ~(f) has sharp cusps at certain inclinations, the interfacial
stiffness S(0) = v + g9 can diverge at these cusps, leading to numerical instability at these inclinations
[11]. In the work refered to, the first derivative 7y is discontinuous at cusps. The anisotropic function
~v(0) is modified such that sharp cusps are replaced by smooth rounded corners, enforcing continuity of ~
and 9. The interfacial stiffness, on the other hand, is discontinuous at cusps, but no longer suffers from
divergence. In [13], Voorhees used a four-fold anisotropic function (similar to eq.2.10), which results in
missing inclinations for anisotropy strengths greater than 1/15. For missing inclinations, the 1/ (in two
dimensions) plot is concave and the interfacial stiffness v 4+ g9 < 0 , which leads to numerical instability at
these inclinations. This was avoided by convexifying the anisotropic function v(#) such that the equilibrium
shape remains identical (as the convex body of the 1/v plot by tangent construction) while the interfacial
stiffness v + v99 > 0 for all inclinations.
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regions of the interfacial stiffness (where v + 49 < 0) when the grain boundary energy
is strongly anisotropic with inclination. In another recent paper, Voorhees and McKenna
investigated the effect of misorientation and the presence of junctions on the evolution of
grain shapes using a set of two-grain simulations [39].

In the first half of the present chapter (Part-I), an interface field formulation is presented,
both in two and three dimensions. The potential and kinetic energy functionals used in the
present method are identical to ones used by Steinbach et al. [63]. We perform a set of
two-grain simulations to validate the interface-field approach, and to compare the results
with previous work by Voorhees et al. who used phase fields instead of interface fields to
represent a grain structure [39, 42|. Effects of changing the interface width and timestep
are explored. An energy extension procedure is introduced to permeate anisotropic energies
along boundaries to junctions - hence the effect of different boundary constraints imposed at
junctions on steady-state dihedral angles can be investigated. Based on these simulations,
appropriate values of the timestep dt, interface width A\ and grainsize R (or the grainsize to
interface width ratio R/\) are chosen.

In the second half of the present chapter (Part-II), a series of simulations for isolated
shrinking grains are performed and the grain boundary character is extracted. Also a set of
polycrystalline simulations are performed with different equilibrium conditions imposed at
junctions using the energy-extension procedure. The anisotropy in misorientation-dependent
grain boundary energies is correlated to the anisotropy in grain boundary character, where
the grain boundary energy scales with the sum of inclination-dependent surface energy terms
for the grains on either side. The purpose is to contrast the evolution of anisotropic boundary
character for isolated grains to that of polycrystalline systems due to the presence of grain
boundary junctions. Kinderlehrer et al. briefly commented that local equilibrium at triple
junctions dictate the development of steady state boundary character in polycrystalline sys-
tems [30]. We seek to quantify this effect and to predict correlations between energies and

populations in large-scale polycrystalline simulations starting from a random distribution of
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grain orientations (random texture). The hypothesis that the effect of equilibrium constraints
at boundary junctions on the development of anisotropic boundary character is significantly
greater than the effect of kinetic factors on the same, is tested in the following manner - a
set of polycrystalline simulations are performed, where the boundary mobility is strongly
anisotropic (with an isotropic boundary energy) and the corresponding boundary character
is compared to those extracted from simulations where the boundary energy is anisotropic
(with an isotropic boundary mobility). This seeks to demonstrate whether an anisotropy in
boundary energy or an anisotropy in boundary mobility has a strong influence on the grain
boundary character. Also the number-weighted and area-weighted grain boundary distribu-
tions are extracted to investigate whether low-energy boundaries increase in area and not in
number (as predicted by Holm [23]) or both (as Gruber et al. suggest [20]) resulting in the
anisotropy in grain boundary populations. The effect of intial texture on grain boundary
distributions is explored, and the anisotropy in boundary energy (and mobility) is correlated

to the anisotropy in boundary populations.
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Part 1

- Model formulation
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2.2 The interface field method

The phase field method represents a polycrystalline material as an ensemble of phase-field
variables {¢} (an informative description of the phase-field formulation for modeling grain
growth can be found in references [9, 8]). A phase-field variable ¢; is uniquely associated
with the ¢th grain and has a value of 1 in the interior of grain ¢ and 0 outside. Its value

changes from 1 to 0 across a boundary ij that grain ¢ shares with its neighbor j.

{6} = {1, B2, ovvrsiy ooy DN} (2.1)

The free energy of such a system depends on the phase field values and their gradients,

and can be defined as a summation of gradient and potential terms

F({6}) = / (o + frotyav (2.2)

Q

The gradient and potential terms depend on the gradient and phase-field values respec-
tively (as in eqs.2.3,2.4). The competing effects of these terms at boundaries tends to diffuse
them, hence interfaces in phase-field models have a finite width.

The expressions used in the present work are identical to ones used by Steinbach [63]

N N
=33 %ww.wé (2.3)

y=1 d=~+1

frt = Z Z was | @495 (2.4)

v=1 é=~+1
As can be seen from eqs.2.3,2.4, the gradient energy functional f9" is defined at bound-
aries where gradients are non-trivial, and tends to increase the interface width (to reduce
gradients), while the potential energy functional fP°* (which is nontrivial only at boundaries)
tends to decrease interface width to reduce its value.

The potential function decays rapidly as one moves from the interface to a grain interior
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(see fig.2.1). The functions used in the fig.2.1 are of the form ¢;(z) = (£) and ¢o(z) =
1 — ¢1(x) for the interface region 0 < z < a, hence in the present example where the phase
fields are approximated to be linear in the boundary region, they are equal to each other at

r =

e

1

0.91 b
0.81 4

0.7f b

0.6 phase field1 1
0.5F —phase field,

0.4l ____potential energy,, ||

0.3f b
0.2f 4

0.1F b

value of phase field, potential energy (in a.u.)

0 . . . . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
distance along normal to interface, normalised by interface thickness

Figure 2.1: Variation of phase field values and potential energy function within the interfacial
region.
An additional constraint is placed such that at any location, all the fields (also referred

to as order parameters) add up to unity

Z¢z‘ =1 (2.5)

The time-dependent evolution of these order parameters can be directly correlated to
boundary motion. Since these fields are non-conserved (the volume of each grain changes
with time), the time-dependent Ginzburg-Landau (TDGL) equation is used

96 __IF

ot o

2.2.1 Interface fields and governing equations of motion

Since at any given time the phase-field values change only in the vicinity of boundaries,

and those within a grain interior remain unaltered, one can, for purposes of computational
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efficiency, solely determine the changes in these values within interfacial regions. We use
an interface field method, developed by Steinbach et al. [63]. When two fields ¢, and ¢g
intersect, an interface field L[)aﬁ is defined as (see fig.2.2). Since for the boundary region
(0<z<a)0<gq(z),Ps(r) <1, the interface field 1,5 varies as in fig.2.2 (=1 < 1,5 < 1).

Here, the phase fields have been approximated to be linear in the boundary region.

¢aﬁ = (ba - ¢B (27>
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0.41 B
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
distance along normal to interface, normalised by interface thickness

Figure 2.2: Variation of interface field and phase fields within interfacial region.

In case of grain boundaries, only one interface field is defined and in case of triple junctions
(or higher junctions) three or more of these fields overlap (see fig. 2.3). In general for N
phase fields (') interface fields exist.

Using the energy functional in eqs.2.3,2.4 the change in 1,3 with time can be derived as

[63]

Ea €p
¢a6(t + At) — @Z)aﬁ(t) = Magp [Z <_77V2¢7 - wav¢v> - Z <_77V2¢7 - wﬂv¢7>] At
y7#Q Y78
(2.8)
here, (e,w) and m are the energy and mobility coefficients respectively. To incorporate

anisotropic boundaries, these have to be functions of boundary inclination and misorienta-
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Figure 2.3: Interface fields defined at grain boundaries and triple junctions, with all three
interface fields coexisting at junction cores.
tion, and eq.2.8 should then include higher derivatives. Details on how to include such terms
can be seen in Appendix A.

The corresponding change in a phase-field variable is the mean of the changes of its

associated interface fields

_ Zﬁ;&a W’cxﬂ(t + At) - ¢aﬁ(t))

¢a (t + At) - ¢a (t) N

(2.9)

Gradients (and laplacians) in phasefields are calculated as centered differences along the
reference x, y (and z) axes (using an explicit finite difference scheme). A Forward Euler
scheme is used to determine the phase field at time ¢ = t + At, ¢(t + At) if its value at
the previous step ¢ = ¢, ¢(t) is known. Details can be found in Appendix B. The requisite
conditions for stability will be discussed later. At the edges of the computational domain, a
periodic boundary condition (PBC) is used - the neighbors of a point at the end lies on the

opposite end (as in fig. 2.4).

2.2.2 Anisotropic boundaries and treatment of triple junctions

For anisotropic boundaries, the kinetic and potential energy coefficients in eqs.2.3,2.4 have

to be modified. Assuming that the boundary energy is dependent on boundary inclination
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Figure 2.4: The neighbor of a point at the end of the domain lies on the opposite end.

0 (considering here the case of two dimensions) it can be given by

Y(0) = y0(1 + dcos(m'6)) (2.10)

here 79, m’ and 0 represent the mean boundary energy, order of symmetry and degree
of anisotropy respectively [28]|. A similar form of spherical anisotropy was observed in two-
dimensional experimental observations (cross-sections) of solidified droplets in Al-Cu and
Al-Si systems by Napolitano et al. [47] .

The indices [n;,n,] for the boundary normal in the sample frame can be obtained by
averaging the gradients of the phase fields along standard directions (in this case along {100}
and {111} in the sample reference frame), using the weighted essentially non-oscillatory
(WENO) scheme [60, 59]. The motivation for choosing this particular scheme is its non-
oscillatory behavior near sharp corners on boundaries, where there is a sudden change or
jump of the boundary normal. In two dimensions, the inclination angle 6 can be expressed
in terms of gradients of the interface field 1,4 (for a boundary where phase fields ¢, and ¢g
intersect) along the reference axes (x and y) as in eq.2.14 [38|. Here, the boundary energy
is expressed as a function of the boundary normal, and varies with the inclination angle 0

that the boundary normal makes a reference axis.

0 = atan (%@,) (2.11)

Yagp,
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The normal vector (obtained in the sample frame of reference) is then rotated in the
crystal frame of reference of the grains on either side. In the present model the grain
boundary energy between grains ¢ and j is chosen as the mean of surface energy terms
with respect to each grain (which is a reasonable assumption for ceramic systems [57]) as in

eq.2.16, where each of the surface energy terms has a form identical to eq.2.10.

v(0:) + ~(0;)

i3(0) = 5 (212)

This is analogous to the notion that when two crystals meet to make a boundary, the
binding energy is fixed, and thus the grain boundary energy scales directly with the sum of
the energies of the surfaces that bound the crystals on either side.

In three dimensions, the boundary energy v can be expressed as a cubic-symmetric func-

tion dependent on the inclination angles (¢, ) of the boundary normal [n,,n,, n.].

Y(0,¢) =0 [1+ 6 (cos0 + sin'0 {1 — 2cos*psin*p})] (2.13)

here § represents the degree of anisotropy that controls the relative values of energies
along specific crystallographic directions (see fig.2.5). The inclination angles 6 (between the
projection of the normal to the plane of the paper and the reference x axis) and ¢ (between
the boundary normal and the reference z axis) can be expressed in terms of gradients of
the interface field 1,4 (for a boundary where phase fields ¢, and ¢ intersect) along the

reference axes (z, y and z) as in eqs.2.14,2.15

0 = atan (ij—gi) (2.14)

o = acos (o) (2.15)

and the grain boundary energy is expressed as the mean of the surface energy terms with

respect to the grains on either side
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'7(”1’ ny; nz)z + 7(7%; ny7 nz)j

2

Vi (Mg, My, M) = (2.16)

The interface width A and boundary energy v can be related to the gradient and potential
energy coefficients in eqs. 2.3,2.4 as A\ « \/g and v « y/w [34]. In order to maintain
constant interface width irrespective of the boundary inclination (and independent of the
boundary energy) one has to ensure that \/g essentially remains constant while \/zw varies
with inclination. Hence both w and e should have similar inclination dependence as the

interface energy ~y

w(0,¢) = w, [1 + 6 (cos*d + sin*0 {1 — 2cos*psin*p})] (2.17)

and

e(0, ) = ¢, [1 +9 (60549 + sintf {1 — 20052<p3m2g0})] (2.18)

In the present work, eq.2.8 is expressed as

Yap(t + At) — ap(t)
At

= 374 + Bo) (2.19)

A and B are similar to the gradient-energy coefficient € and the potential energy maxi-

mum w respectively. Here they take the following exact form

A, p) = %H, [1+ 6 (cos*@ + sin*0 {1 — 2cos”psin®p})] (2.20)
B8, ) = % [1+ 6 (cos*@ + sin*0 {1 — 2cos*psin®p})] (2.21)

where x scales with the boundary width A that is chosen to be 8.0 in the present work.

Since in egs. 2.20,2.21 \/% is constant, the interface width A is independent of the boundary
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energy. In the present model, due to the absence of higher derivatives in the evolution
equations, or sharp cusps in the boundary energy, a regularization scheme to prevent ill-
posedness is not essential.

The boundary energy + is rescaled (as in eq.2.22) so that the mean boundary energy is

unity.

’7(”337 Ty, n2> - mein> (2'22>

’Yrescaled(nxa ny7 nz) = Vrescaledmin + (ﬁ)/rescaledmam - f}/rescaledmin) (
Ymaz — Ymin

001 101

- I

0506070808101112131415186

a.u.

Figure 2.5: Variation of boundary energy with inclination, in three dimensions as in eq.2.13
with 0 = 0.3 and rescaled to 0.5 <~ < 1.5.

In the method explained above, junction core energies (higher order terms in the energy
functional when more than two fields overlap) can be neglected, given that interface width
and size of junction cores is small compared to the length of boundaries and the overall
domain size [21]. Recently the stability of solutions for dihedral angles at junctions was
investigated by Guo et al [21]. The solutions were independent of boundary mobilities
and depended only on the relative values of boundary energies. In other words, Young’s
law was satisfied at the boundary junctions. Also, junctions are assigned sufficiently high
mobilities, and do not drag moving boundaries [16, 15| - hence junction kinetics do not
control microstructure evolution.

At the boundary junction phase-field profiles deviate from the actual grain boundary
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(see fig. 2.6) - hence normals estimated at junctions using phase field values (and their
gradients) are inherently inaccurate. Methods to incorporate these approximate normals in
the evolution equations introduce oscillations in the phase-field values at the triple junctions,
which eventually spread throughout the entire domain. To prevent such instabilities, it is
essential to explicitly assign energies to interface fields at triple junctions based on the
procedure described below. It is to be noted that either equal energies can be associated
with these fields (case-I) or anisotropic energies can be extended along grain boundaries

(case-II).

TI* or$=0.5

Figure 2.6: At the triple junction, the contour lines (say for ¢ = 0.5 labeled green, and for
¢ = 0.3 labeled red) deviate from the sctual grain boundary (derived from a sharp interface
approximation, labeled black). Figure reproduced from [42].

In case-I, the energies of grain boundaries is anisotropic (the form of the energy function
is similar to to eq.2.13 in three dimensions), while the energies associated with the interface
fields at junctions is explicitly isotropic, which implies that boundaries are constrained to
meet at equal angles. In case-II, an energy extension method is used (see fig. 2.7) which
ensures that anisotropic energies are extended along grain boundaries and associated with
the interface fields g1, o2, 12 (with the phase fields ordered as ¢y > ¢ > ¢2). The
percolation of energies to the boundary junctions is implemented in the following manner
- for each point in a multiphase region (having N, the number of non-zero fields, greater

than two) a value equivalent to the average of non-zero neighboring energies is stored. This
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process is continued until all points in the junction region have non-zero energies.
In case of triple junctions, the corresponding equations of motion for the phase-fields

(¢1, 2, P3 ordered as ¢; > ¢po > ¢3) can be expressed as (refer [63, 21])

% = —Ti2 (512 [Clvz% + 02¢2] + e [01V2¢3 + 02¢3] — €12 [01V2¢1 + ngbl} — €93 [01V2¢3 + CQ¢3D
—713 (612 [1 V762 + cada] + €13 [e1 VP03 + cas] — 13 [0 VP01 + oty ] — 203 [1 V762 + 2]

% = Tia (€12 [c1 VP02 + Cogs] + €13 [c1 VP03 + cagps] — €12 [1 V21 + o] — €03 [c1 Vs + cagis] )
—Ta3 (512 [01V2¢1 + C2¢1] + €23 [01V2¢3 + 02¢3] — €13 [01V2¢1 + Czﬁbl} — €23 [01V2¢2 + Czﬁsz

% = T3 (612 [C1V2¢2 + 02¢2] + €13 [C1V2¢3 + cqug] — €13 [01V2¢1 + Cz¢1] — €93 [01V2¢2 + 02¢2D

+723 (512 [01V2¢1 + 02¢1] + €23 [01V2¢3 + 02¢3] — €13 [01V2¢1 + Cz¢1} — €23 [01V2¢2 + C2¢2D

4w
T2

¢; and ¢, denote the (2%) and () prefactors respectively. In case-I (isotropic junctions)
the energy coefficients ¢;; are fixed as unity whereas in case-II anisotropic energies are ex-
tended along boundaries to junctions such that ¢;; assume anisotropic values. Details for
the percolation of anisotropic energies (which are dependent on boundary inclination in the
crystal frame of reference at grain boundaries) to junctions is discussed in Appendix D. If
an energy value equivalent to zero is assigned (g;; = 0) then the junctions become static (or
fixed). Hence, either equal energies (g;; = 1.0 as in case-I) or anisotropic energies (g;; # 1.0
as in case-II) have to be associated with the interface fields in boundary junctions. This

does not neccesitate assigning an orientation or normal to points in boundary junctions as

energies are explicitly asssigned here.
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The assumption that should be noted is that boundary segments at junctions should be
sufficiently straight. The junctions in the aforementioned cases will be referred to as isotropic
junctions (case-I) and anisotropic junctions (case-II) respectively. Also it should be noted
that for simplicity, torque terms which occur due to inclination-dependence of energy are
not accounted for in the present model. Hence, Herring’s relations for mechanical balance
at boundary junctions for inclination-dependent boundary energies will reduce to Young’s
equations for balance of line energies. Any difference in inclination distributions in cases I

and II should be a natural consequence of satisfying Young’s law at boundary junctions.

Figure 2.7: (a) Without energy extension all energies in junction cores are identical to 1.0
(b) energy extension along grain boundaries such that anisotropic boundary energies are
extended to junctions.

2.3 Model validation and parameter estimation

2.3.1 Effect of changing timestep - stability criteria for forward dif-

ferencing scheme

Since an explicit forward difference scheme is used the phasefield values at timestep t = t+ At
using values at a previous timestep ¢ = ¢, the ratio of timestep At to (Az)” (where Az is

the discretization stepsize in space) should be less than some constant ¢ using the Courant-
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Friedrichs-Lewy condition. This condition states that |71, 10]

“ the time step must be kept small enough so that information has enough time to
propagate through the space discretization....”

which can be expressed as % < ¢, where v is a measure of propagation velocity of
information. For a Forward-Time Central-Space (FTCS) scheme (using Forward Euler in
time and centered differences in space) the exponent p takes the value of 2.

Using different values of timestep At and gridstep Ax we find that the dimensionless
constant ¢ takes the value of 0.02 (empirically determined). The C'F'L condition for stability

for the isotropic case (all boundaries having equal velocities) is reduced to

< 0.02 (2.23)

In the anisotropic case, since the interface velocity v scales with boundary mobility m

and energy v as in eq.1.1, this criteria can be modified as

A 002 (2.24)
mmax’)/max (A$)2 — N .

In the present set of simulatons we use Ax = 1, hence in the isotropic case, a maximum
value of 0.02 can be chosen for At. In the following figure (see fig.2.8) we show the evolution
of boundaries (in a 1282 grid having 16 grains) using different values of At. In phasefield
simulations, a single timestep is said to have occured when all grid points have been consid-
ered for update once. Here for each timestep At chosen (At = 0.01,0.02,...) we update the
entire grid NV times, where N is chosen such that the effective total time evolved in all cases

is T

NAt=T (2.25)

For values of At greater than 0.04, instabilities grow with time and spread through the

computational domain. Hence, we choose a value of At = 0.02 in the simulations presented
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(e) (f)

Figure 2.8: Evolution of GBs for timestep At chosen to be (a) 0.01 (b) 0.02 (¢) 0.04 (d) 0.06
(e) 0.08 and (f) 0.10. The boundaries remain stable for At smaller than 0.06.
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here. A lesser value satisfies numerical stability but we will need larger values of N (number

of evolution timesteps) to move the boundary an indentical distance.

2.3.2 Effect of changing boundary width - isotropic shrinkage of an

occluded grain

In the present section we explore the effect of changing the boundary width to grid stepsize
ratio (that is A/Ax) on the kinetics of a shrinking grain (in two dimensions). In other words
we vary the number of points we use to represent the boundary. The motivation is we have
an analytical solution that we can use, and we can compare our results to previous work by
Moelans et al. |39, 42]to validate the interface field approach.

In the following figure (fig. 2.9) we show the variation of rate of change in grain area
with the grain radius (normalised by the boundary thickness). To calulate the grain area
we include all voxels having ¢; = 1 (where the circular occluded grain is indexed 1 and the
surrounding grain indexed as 2). At the interface region (0 < ¢1,¢9 < 1for 0 <z <1) we
sum up the quantity ¢;(z) over all interface points and add this to get a better estimate of
grain area A;(t). Analytically, in the isotropic case the change in grain area with time is
linear (see eq. 2.26) and should be independent of the grain radius R;(t). The grain radius

Ry (t) is estimated as the radius of the equivalent circle having an area A;(t).

Aq(t) — A1(0) = 2mmt (2.26)

% remains independent of % till the grain shrinks to a radius R which is about the
same order as the boundary thickness . After this point a sharp-interface approximation no
longer holds true. Also for boundary thicknesses A lesser than 4 times the grid stepsize Ax
the deviation is evident. We also show (in fig.2.10) the variation of the velocity (normalised

by the mean curvature k) with the grain radius R (normalised by the boundary thickness

A). The mean curvature is computed as the divergence of the boundary normal (k = v7.7n)
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Figure 2.9: (a) Variation of rate of change of area with the grain radius. For a boundary width
(normalised by the grid stepsize Ax) smaller than 4 we see a deviation from the expected
variation (which is a straight line at unity for the isotropic case). (b) Figure reproduced
from McKenna et al. [39]
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and the boundary velocity is estimated as the change in grain radius with time (v(t) =

Rl(t)fﬁﬁ*]vm)) averaged over 100 timesteps. In the isotropic case (u = 1,7 = 1) the

expected variation is a straight line at unity. For R < 4\ a large deviation is seen which

suggests that in polycrystalline simulations we should use a grain radius R > 4.
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Figure 2.10: (a) Variation of boundary velocity (normalised by mean curvature) with the
grain radius (normalised by boundary thickness). Figue reproduced from McKenna et al.
[39]for an interface width of (b) 6 and (c) 11. Compare the profiles for the 2-grain systems

in (b,c) to (a).

In fig. 2.11 we show the grain shape when R;(t) = 8\ for different values of the boundary
thickness (A = 2,4,6, .... times Az). For A < 4 A z the grain does not maintain its circular
shape while shrinking and develops facets. Since the boundary is resolved by insufficient

points, lattice anisotropy effects result in preferential selection of certain crystal directions

62

10



(< 10 >and < 11 > directions for a square grid in two dimensions) and faceting. To minimize

such effects the boundary should be reolved by at least 4 points.

.;....... .........'.
1‘35 H;.

(c) (d)

Figure 2.11: Grain shapes when R = 8\, for 2= having a value of (a) 2 (b) 4 (c) 8 and (d)
12. See that the grain retains its circular shape while shrinking for A > 4 A z.

From these simulations we can choose the values of the model parameters as follows

1. The grid stepsize Az is taken to be 1, which would mean a timestep At = 0.02. A

smaller stepsize will demand a corresponding smaller timestep for numerical stability

(as in €q.2.23 At < 0.02 (Az)*).

2. The interface should contain at least four gridpoints, A > 4 A = to avoid effects of

lattice anisotropy. We choose a value of A = 8 A x. A larger value is not chosen to
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reduce computational time.

3. The initial grain radius R(0) in polycrystalline simulations should be at least 4 times
the interface thickness A, such that the model produces expected grain-growth kinetics.
For a chosen A = 8 A z, this suggests an initial grain radius R(0) = 32 A x. A finer
resolution of the interface (that is when A > 8 A x) would increase this value, resulting

in lesser number of grains which can be accomodated in the computational domain.

2.3.3 Effects of boundary width and boundary conditions (imposed

at junctions) on steady-state dihedral angles

In fig. 2.13 we investigate the effect of different boundary conditions imposed at junctions

;j'“ is varied and the
Y15

on steady-state dihedral angles. The ratio of boundary energies r =
dihedral angle @ is measured manually between line profiles of phase field ¢ (phase fields ¢y,
¢1 at boundaries are ordered as ¢y > ¢;) for the value ¢y = 0.5. Since at the triple-junction
the contour line for ¢y = 0.5 deviates from the actual GB (as in fig. 2.6) points within the
triple junction region are omitted, and boundaries are assumed to be sufficiently straight till
they meet at the junction. In case-I energies associated with the interface fields g1, Y2, V12
at junctions (with the phase fields ordered as ¢g > 1 > ¢9) are taken to be unity, whereas
in case-II anisotropic energies permeate along GBs using the energy-extension method (as in
fig. 2.7). The uncertainty in measrement is seen to be approximately 4° and increases as 6
decreases (or r increases). For case-I, dihedral angles are expected to be identical to 120°, in
contrast to case-II, where these should vary with relative boundary energies +;;, and can be
derived to be identical to 2cos™* (%) using eq.1.2. In fig. 2.12the intermediate grain
structure is shown for a model 4-grain structure for case-I (junctions refered as isotropic)
and case-1T (junctions refered as anisotropic).

The effect of boundary width A on the steady-state dihedral angle 6 is also explored (see

fig. 2.14). It is difficult to measure dihedral angles for widths A > 8 A z, more so for sharp
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(a) (b) ()
(d) (¢) (f)
Figure 2.12: Intermediate grain structure for a model 4-grain structure evolved with a
misorientation-based boundary energy, with the ratio of line energies defined as r =

<’;J:1J—k§> In figs. (a-c) junctions are treated as isotropic (case-I) with the ratio of line
ViV

energies varying as (a) 7 = 0.5, (b) r = 1.0 and (c) r = 2.0. In figs. (d-f) junstions are
treated as anisotropic (case-1I) with (d) r = 0.25 (fully wetting) , (e) r = 0.50 (isotropic) and
(f) r = 1.0 (non-wetting). Note that in case-I dihedral angles are close to 120° irrespective
of the ratio of line energies, whereas in case-II they vary with the ratio of boundary energies.
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Figure 2.13: Variation of dihedral angle 6 (as in fig. 2.12) with relative boundary energies

r= <2ﬂ’%> Note that for case-I a value of 120° is expected, compared to case-II where the
J

expected dihedral angle is given by § = 2cos™! (;;—fj) The dihedral angles are measured

manually between line profiles of phase field ¢q (phase fields ¢g, ¢; at boundaries are ordered
as ¢g > ¢1) for the value ¢g = 0.5 , and the measurement uncertainty is approximately 4°.
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cusps and small values of 6 (or large values of ). The deviation from the expected dihedral

angle also increases as the boundary width decreases below 4 A x as the boundary is resolved

by insufficient number of points.

Figure 2.14: Variation of dihedral angles with relative boundary energies r = (
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different boundary widths (A = 4,8,...). when junctions are treated as anisotropic (Case-

11).
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Part 11

- Results and discussion
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2.4 Simulation parameters

From the simulations presented in Part-I we showed that the criteria for numerical stability
and computational efficiency support the use of the following values for the model parameters

(taking a grid stepsize Az =1 )

1. timestep At = 0.02. This scales with (Ax)Q, so smaller gridsteps correspond to smaller

timesteps.

2. boundary width A = 8 A z. Smaller widths suffer from effects of lattice anisotropy
and larger widths need more computational resources with no additional benefits of

increased resolution.

3. Initial grainsize R = 4\. When the grain size shrinks to a size comparable to the
boundary thickness, kinetics deviate from those dictated by curvature-driven growth.
Hence a sharp-interface approximation of the diffused boundary holds true for R > 4\.
Larger grainsizes can be used but this will restrict the number of grains that can be
accomodated in the computational doamin. Since we need a large number of boundaries
for reliable statistics, we do not use an initial grainsize much larger than 4\ in the

polycrystalline simulations.

2.5 Results and discussion

2.5.1 Steady state shrinkage of isolated grains

A 128-squared domain (in two dimensions) was used to look at the evolution of isolated
grains shrinking with anisotropic boundary energy ~. The orientation of isolated grain is
denoted by < %1, 0,0 > with respect to the orientation of the surrounding grain, which can
be denoted as < —%1,0,0 >. In this case, the boundary normal in the crystal frame is

constrained to lie in the plane of the paper, and the boundary energy can be expressed as
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a function of the inclination 6 that the boundary normal makes with a reference axis, say
< 100 > (as in eq.1.11). Grains are misoriented with respect to each other if they are rotated
by varying amounts about the plane normal < 001 >. The value of § was varied from 0
(isotropic) to 0.4 (strongly anisotropic) in increments of 0.1, and the symmetry of the energy
function was assumed to be four-fold (m’ = 4). The boundary mobility m was assumed to
be isotropic. The deviation of steady-state grain shapes from the circular shape can be seen
in fig. 2.15. It can be seen that grains become more faceted (see deviation from the circular
shape denoted by the dotted line) as the strength of anisotropy increases.

Since the grain boundary energy is expressed as the sum of the surface energies of grains
on either side of the boundary, as in eq.2.16, the boundary normal in the sample frame
has to be rotated in the frame of reference of either grain. Hence, the inclination-based
energy is implicitly dependent on the misorientation across the boundary (see fig.2.17(b))
. To investigate the effect of misorientation on inclination distributions the value of 6 was
varied at fixed intervals of 9°, and the anisotropy strength ¢ in eq.2.10 was fixed at 0.4.
The effect of increasing misorientation across the boundary on grain shapes can be seen in
fig. 2.16. The corresponding inclination distributions are shown in fig. 2.17(a). As the
misorientation across the boundary increases, grains assume shapes which are increasingly
less faceted (see fig. 2.16). The deviation from the circular shape (represented by the dotted
line) decreases as the boundary misorientation increases. This is because the grain boundary
energy (expressed as the sum of surface energy terms for grains on either side. where these
surface energies depend on boundary inclination in the crystal frame of reference) becomes
less anisotropic as misorientation increases.

In three dimensions, a 64-cubed domain was used to look at the shrinkage of an isolated
grain with anisotropic boundary energy =~ expressed as in eq.2.13, varying the anisotropy
strength § from 0 (isotropic) to 0.3 (strongly anisotropic). The boundary mobility is as-
sumed to be isotropic (m = 1). The boundary velocity scales with the product of boundary

energy and mobility (as v = myk), hence it has an anisotropic form as in fig.2.5 (low-energy
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Figure 2.15: (a) Inclination-based boundary energy with a maximum value for inclinations
at 45°; steady state kinetic shapes of shrinking grains at intermediate ¢ = 2000 steps, with
increasing strength of anisotropy o (b) 0 (isotropic) (c¢) 0.1 (d) 0.2 (e) 0.3 (f) 0.4. Boundaries
are color coded black. Note that grain shapes become faceted as the strength of anisotropy
increases. A circular shape is also shown (dotted line) for comparison. Simulations are
performed in two dimensions on a 128-squared domain.
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Figure 2.16: Kinetic shapes of shrinking grains with increasing misorientation across the
boundary, the specific misorientations shown are (a) 0° (b) 9° (c) 18° (d) 27° (e) 36° and
(f) 45°. A circular shape is also shown (dotted line) for comparison. Note that as the
misorientation across the boundary increases, the steady-state grain shape becomes more
circular. Simulations are performed in two dimensions on a 128-squared domain, and evolved
for ¢ = 2000 steps.
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Figure 2.17: Inclination distributions (in a.u.) of isolated grains with varying misorientation,
the boundary energy used has a form identical to fig.2.15 (a) with anisotropy strength 6 = 0.4.
Simulations are performed in two dimensions. Note that the populations scale directly with
interfacial energy (compare a(top) to b(bottom)), by contrast to the polycrystalline results
shown later. Fig. b(bottom) shows the effect that boundary misorientation has on an
inclination-based boundary energy, as the boundary energy is expressed as the mean of
surface energy terms with respect to the grains on either side of the boundary (see eq.2.16).
As boundary misorientation increases, the variation of an inclination-based boundary energy
decreases (see fig.b (bottom), and inclination distributions become more uniform as in fig.a

(top).

o
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boundaries have low velocity and vice-versa). Shrinking from a spherical shape, the grain
shapes at t = 4000 are shown in fig. 2.18 and the corresponding boundary populations are
plotted in fig. 2.19 as inverse pole figures. As the strength of anisotropy increases, shrinking
grains develop facets and boundary populations and energies scale with each other. Note
that in this case, grains are shrinking and the grain volume is not conserved. If an additional
constraint of constant volume is enforced, isolated grains are bounded by low-velocity inter-
faces and an inverse relation between boundary population and velocity is to be expected
[13, 5.

Expected grain shapes can be derived in three dimensions using a procedure identical to
Sekerka et al. [58]. For the particular anisotropic functions used in the present formulation
(eq. 2.13 for three dimensions), the corresponding kinetic Wulff plots are shown below (see
fig. 2.20). Parametric expressions for expected kinetic shapes were derived from reference
[37]. As the strength of anisotropy increases, ears appear on the &-plot (in three dimensions),
which have to be discarded, and the remaining convex body gives the expected kinetic
shape [5, 6, 67]. These forms are bounded by low-velocity boundaries as they correspond to
crystals growing under a condition of anisotropic boundary kinetics [67], in contrast to the
present case, where grains are shrinking. Growth shapes are expected to be bounded by low-
velocity boundaries, as they remain while high velocity boundaries grow out and disappear.
Shrinking grains on the other hand, are bounded by fast moving boundaries which shrink in
and eliminate slower boundaries.

In fig. 2.21(a) the expected variation of boundary population (in multiples of random
distribution MRD) with boundary energy (in a.u.) is shown (the boundary energy « has a
form as in eq.2.13 with 6 = 0.3 and 7,4, rescaled to 1.0) - for growing grains an inverse
relation between boundary population and energy is seen in contrast to shrinking grains
where these scale with each other. In fig. 2.21(b) this variation (extracted from the two-
grain simulations) is plotted for the case of shrinking grains, for increasing values of the

anisotropy strength §. As the anisotropy strength increases, high velocity boundaries shrink
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Figure 2.18: Grain shapes at t = 4000 for boundary energy varying as in eq.2.13 with
increasing anisotropy strength ¢ varying as (a) 0 (b) 0.1 (c) 0.2 and (d) 0.3. As anisotropy
increases grain shapes deviate from the spherical shape and develop facets.
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Multiples of Random
Figure 2.19: Inclination distributions are extracted at an intermediate timestep ¢ = 4000 and
plotted for (a) 6 =0, (b) d = 0.1, (¢) d = 0.2 and (d) § = 0.3. Simulations are performed in

three dimensions on a 128-cubed domain. Comparing with fig. 2.5 we see that for shrinking
grains populations and energies scale with each other.
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Figure 2.20: For an anisotropic function as in eq.2.13 with § = 0.3, expected kinetic shapes
are shown when the isolated grain is (a) growing and (b) shrinking. Fig.(b) should be
compared to intermediate shapes for shrinking grains, as seen in fig.2.18 (d). Note that
ears or flaps appear, when the 1/7 plot (or the £ plot in three dimensions) is concave (for
inclinations at which the interfacial stiffness is negative, refer [58, 65]), which have to be
discarded, and the remaining convex body gives the expected kinetic shape.
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in and eliminate slow moving boundaries - hence a direct scaling is observed as expected.

2.5.2 Polycrystalline large-scale simulations in two and three di-

mensions

In the polycrystalline case, a 1500-squared grid in two dimensions was populated with voronoi
grains (the average grain size is 32 voxels). The following set of simulations were performed
to investigate the effect of varying boundary properties (energy and mobility), initial texture
(random or otherwise) and constraints imposed at junctions (case-I or case-II) on grain
boundary character. The initial microstructure is evolved for N = 30000 timesteps. Both

number-weighted and area-weighted boundary distributions are extracted for [1 — 2].

1. The boundary energy + is anisotropic (as in eq.2.13 with § = 0.3), and is rescaled so
that the minimum energy is 0.5 and the maximum energy is 1.5 (as in eq. 2.22,0.5 <
v < 1.5). The boundary mobililty is isotropic (m = 1). A random texture is assigned
to the grains - the initial distribution of boundaries is sufficiently random. Boundary
junctions are treated as isotropic (case-I), hence boundaries are constrained to meet

at 120° (see section 2.5.2.1).

2. The boundary energy ~ is anisotropic (as in eq.2.13 with § = 0.3) and rescaled (0.5 <
v < 1.5); the boundary mobililty is isotropic (m = 1). A random texture is assigned to
the grains. Boundary junctions are treated as anisotropic (case-II), hence boundaries

meet at angles dictated by the balance of anisotropic line energies (see section 2.5.2.1).

3. The boundary mobility m is anisotropic (as in eq.2.13 with § = 0.3) and is rescaled
so that the minimum mobility is 0.01 and the maximum vaule is 1.0 (0.01 < m < 1).
The boundary energy is isotropic (y = 1). A random texture is assigned to the initial
microstructure. Anisotropic boundary properties are allowed to percolate to junctions

(case-1I).
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Figure 2.21: Variation of boundary population (in MRD) with boundary energy (in a.u.) for
isolated grains. In (a) the expected variation is shown for growing and shrinking grains for
d = 0.3 and in (b) the extracted variation is shown for shrinking grains for ¢ increasing from
0.1 to 0.3. Noth that for shrinking grains (which are bounded by high-velocity boundaries)
populations and energies scale with each other.

78



4. Both boundary energy and mobility are anisotropic (0.5 < v < 1.5, 0.01 < m < 1).
The initial texture is random and boundary junctions are treated as anisotropic (case-

11).

5. A mild rolling texture is assigned to the initial microstructure. The boundary energy
7 is anisotropic as in eq.2.13 and the boundary mobility m is isotropic (0.5 < v < 1.5,

m=1).

6. A mild rolling texture is assigned to the initial microstructure. The boundary mobility

m is anisotropic whereas the boundary energy + is isotropic (0.01 <m <1,y =1).

2.5.2.1 Effect of equilibrium constraints at junctions on grain boundary char-

acter

In case-1 (isotropic junctions) equal energies are associated with interface fields in bound-
ary junctions, and boundaries meet at an isotropic angle of 120°. In case-II (anisotropic
junctions) anisotropic line energies permeate along GBs to junctions and hence boundaries
are no longer constrained to meet at equal angles, instead they meet at angles dictated by
the balance of these line energies. The boundary energy v has a form as in eq. 2.13 with
9 = 0.3 and rescaled so that 0.5 <~ < 1.5 (see fig. 2.5). Simulations are performed in two
dimensions on a 1500%-squared grid (populated with approximately 2200 randomly oriented
grains), and the corresponding boundary populations are extracted at timesteps ¢ = 10000,
20000 and 30000. In fig.2.22 we plot the extracted populations at ¢ = 30000 as inverse pole
figures (IPF) for cases-I and II. In case-I when boundaries are constrained to meet at equal
angles, no inverse corelation shows up between boundary energy and population, in constrast
to case-II, where anisotropic energies are extended to boundary junctions, and an inverse
relation is seen between energy and population. For illustration purposes, a smaller 5122-
squared domain is evolved with identical initial texture and boundary energy but different

equilibrium contraints imposed at the boundary junctions. The microstructure at ¢ = 30000
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steps is plotted in fig. 2.23a (case-I, isotropic junctions) and fig. 2.23b (case-II, anisotropic

junctions).

001 101
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05 0.6 0.7 0.8 09 10 11 1.2 13 14 15
Multiples of Random

(a)

001 101 001 101

03 06 09 12 15 18 21 24 27
Multiples of Random

(b) ()

Figure 2.22: (a) Variation of boundary energy with boundary inclination (in a.u.), and the
boundary population (in MRD) collected at ¢t = 30000 for (b) isotropic junctions and (c)
anisotropic junctions. Note that in case-II an inverse relation between boundary energy and
population is evident. Simulations are performed in two dimensions on a 1500-squared grid,
and the initial texture is random.

Holm et al. argued that during anisotropic grain growth boundaries rotate to achieve
mechanical equilibria at boundary junctions and as a result low-energy boundaries lenghten
at the expense of high-energy ones|23]. This leads to the observed anisotropy in boundary
populations and the inverse relation between boundary energy and population. In the simu-
lations presented here boundaries are constrained to meet at equal angles in case-1 (isotropic

junctions) in contrast to case-11 (anisotropic junctions) where they are free to positions dic-

80



Figure 2.23: Microstructure at ¢ = 30000 steps when junctions are treated as (a) isotropic
and (b) anisotropic. Note that in (a) dihedral angles are close to the isotropic value of 120°
in contrast to (b) where angles deviate from 120°.
tated by the balance of anisotropic line energies. This helps to explain the strong inverse
relation between boundary energy and distribution for anisotropic junctions (comparing fig.
2.22(a) to (c)) in contrast to isotropic junctions (compare fig.2.22(a) to (b)).

To illustrate this further, a model 5-grain structure (in two dimensions) is evolved with
a boundary energy v (as in fig.2.15) with a minimum value for inclinations at 0° and 90°.
The isotropic evolution of the grain structure is similar to its evolution when junctions are
treated as isotropic (compare fig. 2.24(b) to (c)) in contrast to its evolution when junctions
are treated as anisotropic (see fig. 2.24(d)), where low-energy boundaries (at 0° and 90°
inclinations) lengthen at the expense of high-energy boundaries. The observed asymmetry in
fig. 2.24(b,c) compared to fig. 2.24(d) depends on the initial radius of the central (circular)
grain with respect to the domain size. For example for a 1282 squared domain, if the
initial radius of the central grain changes from 44 voxels to 48 voxels, the intermediate grain
shapes (assuming isotropic boundary energies) is shown in fig.2.25 - the thing to note is

that boundaries meet at the isotropic value of 120°. For anisotropic junctions, irrespective
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of initial grain radius, dihedral angles deviate from 120° and low-energy boundaries (those
at 0° and 90° inclination for the present example) lengthen at the expense of high-energy

boundaries, as in fig. 2.26.

(c) (d)

Figure 2.24: 5—grain structure at (a) ¢ = 0, and at ¢ = 15000 evolved with (b) isotropic
boundary energy (c) anisotropic boundary energy v with a minimum for 0°and 90° inclina-
tions and junctions constrained to meet at equal angles (isotropic junctions) (d) anisotropic
energy v with a minimum for 0°and 90° inclinations and free (anisotropic) junctions. Note
that in (d) low-energy boundaries lengthen with time.

In fig. 2.27 the variation of boundary population with boundary energy is shown for
case-1 (isotropic junctions) and case-1l (anisotropic junctions) at t = 10000. The inverse
relation between energy and population is evident for case-II in contrast to case-I.

In the following figure fig. 2.28 we explore the sensitivity of boundary distributions
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(a) (b)

Figure 2.25: Intermediate grain shapes for five-grain structure as in fig.2.24(a) evolved with
isotropic boundary energies for an initial circular grain radius of (a) 44 voxels and (b) 48
voxels. The asymmetry shifts but boundaries still meet at the isotropic value of 120°.

(a) (b)

Figure 2.26: Intermediate grain shapes for five-grain structure as in fig. 2.24(a) evolved
with anisotropic energies (with a minimum for 0° and 90° inclinations) and these energies
extended to boundary junctions (case-1I), for an initial circular grain radius of (a) 44 voxels
and (b) 48 voxels. Trrespective of the initial grain radius low-energy boundaries increase
while high-energy boundaries decrease in length, and dihedral angles deviate from 120°.
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Figure 2.27: Boundary population (in MRD) plotted with boundary energy (in a.u.) for
isotropic junctions (case-l) and anisotropic junctions (case-1I). Simulations are performed
in two dimensions on 1500-squared domain and populations are collected at ¢t = 10000. Note
that these scale inversely with each other (in case-II) when boundaries are not constrained
to meet at equal angles (as in case-I).

to the number of timesteps ¢ chosen for data collection and the number of grains (or the
overall domain size) in the initial microstructure g(0). A sufficiently large number of grains
should be used so that the initial distribution of boundaries is nearly random, and the initial
microstructure (with random texture) has to be evolved for a sufficiently large number
of timesteps till steady-state has been achieved and thereafter no siginificant changes in
distributions occur. It can be infered that ¢ = 10000 is sufficiently long and g = 1000 is
sufficiently large.

To test the effect of simulation parameters such as the timestep At and the boundary
width A chosen on boundary distributions, we evolve an identical microstructure (10242
domain populated with approximately 1000 grains, grains are randomly oriented with each
other) for t = 10000 steps, with identical initial texture. The boundary width is varied as
A = 4,8,16 points (keeping the timestep constant at At = 0.02) and the timestep is varied

as At = 0.01,0.02,0.04 (at constant boundary width constant at A = 8 points). It can be
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Figure 2.28: (a) Boundary distributions are extracted at different timesteps. Note that
anisotropy in populations develops as arealy as t = 1000 timesteps but a steady-state in
boundary distribution is observed after ¢ = 10000 timsesteps (b) At ¢ = 10000 bound-
ary population are extracted for varying number of initial grains. Note that no signifi-

cant strengthening in anisotropy of boundary population is observed for number of grains
g > 1000.
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observed in figs. 2.29,2.30 that boundary distributions are more sensitive to the boundary
width chosen, compared to the value of timestep chosen if the total time evolved is kept fixed

(where total time evolved is calculated as the product of evolution steps and the timestep

At).
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Figure 2.29: Boundary distributions extracted from a 10242 domain populated with 1024
grains, with a boundary width of A = 8 points, evolved for (a) 10000 steps and At = 0.02 and
(b) 5000 steps and At = 0.04 with a boundary energy as in fig. 2.22(a). The distributions
are similar, demonstrating the relative insensitivity to the timestep chosen.

Gruber et al. have proposed that low-energy boundaries increase both in number and
in area [20] (in contrast to Holm’s arguments that low-energy boundaries only increase in
area) through a critical-event mechanism. To test this, we extract the number-weighted and
area-weighted boundary distributions and have plotted them in fig.2.31. It can be seen that
low-energy boundaries increase both in number and in area (the inverse relation is stronger
in terms of area-weighted statistics than in terms of number-weighted distributions), or in
other words, there are more and larger low-energy boundaries compared to high-energy ones.
A steady state in distributions is attained at ¢ = 10000.

In three dimensions a 160-cubed domain (with an initial grainsize of 16 voxels, which
gives an initial microstructure of 1000 grains) was used. A random texture was assigned to
the initial microstructre. The effect of different constraints imposed at boundary junctions on

the development of boundary character was explored by evolving the initial microstrucutre
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Figure 2.30: Boundary distributions extracted from a 10242 domain populated with 1024
grains, evolved for 10000 evolution steps with a boundary energy as in fig. 2.22(a), with a
timestep At = 0.02 and a boundary width of (a) A =4 (b) A = 8 and (c) A = 16 points.
The distributions are relatively sensitive to the value of the boundary width chosen.
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Figure 2.31: Number-weighted and area-weighted boundary distributions extracted from
two-dimensional simulations (junctions are treated as anisotropic, case-1I) at ¢ = 0 (initial
state) and at ¢ = 10000,30000 timesteps. Note that low-energy boundaries increase in
number and in area as suggested by Gruber et al. [20]
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for ¢ = 3000 evolution steps, as in [1 — 2| listed above. An evolution step is said to have
elapsed when each voxel in the computational domain has been considered for updation. The
timestep in the present simulation is chosen to be 0.02. In fig.2.32 the boundary populations
are plotted as inverse polefigures at t = 3000 and compared to the anisotropy in boundary
energy for cases-I and II. As in two dimensions we see a strong inverse corelation between
population and energy in case-II. In fig. 2.33 the grain strucutre at ¢ = 3000 for a smaller
64-cubed domain is shown for comparison - in case-I boundaries are constrained to meet
at equal angles in contrast to case-II where they are free to meet at angles dictated by the

balance of anisotropic line energies. In fig. 2.34 the variation of boundary population with

boundary energy is shown at ¢ = 3000.

11 1_ /"ﬁ"‘. 111
~ f IIII. - Il

001 101 001 101
- B | - . i |
050607 080910111213 1415 1.6

06 07 08 09 1.0 1.1 1.2 1.3 1.4 15
MRD MRD

(a) (b)

Figure 2.32: Boundary population collected at ¢ = 3000 for (a) isotropic junctions (case-
I[) and (b) anisotropic junctions (case-1I), for a boundary energy varying as in fig.2.22(a).
Note that in case-1I the inverse relation between boundary energy and population is evident.

Simulations are performed in three dimensions on a 160-cubed grid initially populated with
1000 grains with random texture.

2.5.2.2 Effect of anisotropic boundary mobility on grain boundary character

The boundary mobility m is varied as in eq. 2.13 and rescaled so that 0.01 < m < 1 (see
fig.2.35). Simulations are performed in two dimensions on a 1500-squared domain initially

populated with approximately 2000 grains with random texture. The boundary energy
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(a) (b)

Figure 2.33: Polycrystalline snapshots at intermediate timestep ¢ = 3000 for (a) isotropic
junctions (case-I), and for (b) anisotropic junctions (case-I1I). Simulations are performed in
three dimensions on a 64-cubed domain and evolved with a boundary energy as in fig.2.22(a).
Boundaries tend to be more faceted and dihedral angles deviate from 120° when anisotropic
energies are extended to boundary junctions (compare (b) to (a)).
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Figure 2.34: Boundary population (in MRD) plotted with boundary energy (in a.u.) for
isotropic junctions (case-1) and anisotropic junctions (case-11). Simulations are performed
in three dimensions on 160-cubed domain and populations are collected at ¢ = 3000. Note
that these scale inversely with each other (in case-1I) when boundaries are not constrained
to meet at equal angles (as in case-I).
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7 is isotropic (7 = 1). Both boundary energies and mobilities permeate along GBs to
junctions (anisotropic junctions). In fig. 2.36 (a) boundary populations are extracted at
t = 30000 and plotted. Comparing with populations extracted from microstructures evolved
with an anisotropic boundary energy (as in fig. 2.36 (b)) it is seen that boundary mobility
has significantly lesser effect on the development of anisotropy in grain boundary character
compared to boundary energy, when the initial texture is random [68]. For illustration
purposes, a smaller 5122- squared domain is evolved with identical initial (random) texture
but with different boundary properties for ¢t = 30000 timesteps. The microstructure is shown
in fig.2.37(a) (anisotropic boundary energy and isotropic mobility, 0.5 < v < 1.5;m = 1)

and fig. 2.37(b) (anisotropic boundary mobility and isotropic energy, 0.01 < m < 1,7y =1).
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BT - =
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Multiples of Random

Figure 2.35: Variation of boundary mobility with inclination (in a.u.), in three dimensions
as in eq.2.13 with 6 = 0.3 and rescaled to 0.01 < m < 1.

Kazaryan et al. predicted that boundary mobility has limited influence on boundary
distributions when the initial texture is random [68]|. In the present work it has been hy-
pothesized that equilibrium constriants at boundary junctions have a significantly greater
influence on boundary character than anisotropic boundary kinetics. Further it has been

shown above that an inverse relation between energy and population develops when bound-
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Figure 2.36: Boundary population extracted from simulations in two dimensions at ¢ =
30000 for boundary properties varying as (a) 0.01 < m < 1,7 =1 as in fig. 2.35 and (b)
0.5 <~y <15, m =1 as in fig, 2.5. Note that anisotropy in boundary mobility does not
result in an anisotropy in boundary population, in contrast to the strong inverse relation
between boundary energy and population.

Figure 2.37: Simulations are performed in two dimensions on a 512-squared domain and the
initial microstructure is evolved for ¢ = 30000 steps, with boundary properties varying as
(a) 0.01 <m < 1,7 =1 asin fig. 2.35 and (b) 0.5 <y < 1.5,m = 1 as in fig, 2.5. Note
that in (a) dihedral angles deviate from the isotropic value of 120°, in contrast to (b) where
boundaries meet at equal angles.
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aries are not constrained to meet at equal angles, but are free to rotate to positions dictated
by the balance of anisotropic boundary energies. When the boundary energy is isotropic,
boundaries meet at angles close to the isotropic value, irrespective of the anisotropy in
boundary mobility. In this case no such inverse relation between boundary mobility and
population is observed. Since the average mobility is less than unity, the kinetics of grain
growth decreases, with no change in grain boundary character.

To demonstrate this a 4-grain structure is evolved with varying boundary properties
- both boundary energy and mobility depend only on the pair of grains on either side.
Boundary properties permeate along GBs to boundary junctions (anisotropic junctions, case-

II). As seen in fig. 2.38 the steady-state dihedral angle 6 (defined as in fig. 2.12) depends only

on the ratio of boundary energies r., = ;j 1’“ and not on the ratio of boundary mobilities r,, =
J
;n_]f Hence an anisotropy in boundary mobilities does not result in a deviation of dihedral
J

angles from values dictated by the balance of line energies (which gives = 2cos™* (%) ).
The expected and measured dihedral angles for varying boundary properties (as in fig.
2.38(a)-(i)) are shown in the table.2.1 below. Note that these only depend on the relative

values of boundary energies r., and do not depend on boundary mobilities 7,.

Index in fig. 2.38 | Boundary energy v | Boundary mobility m | 0o = 2cos™! <%> Ormeas
a Yijg = 1.0 maiji#1 = 0.5 120° 118°
b Yij = 1.0 My, = 1.0 120° 124°
c v = 1.0 M1 = 2.0 120° 122°
d Y71 = 0.5 My, 1 = 0.5 0° 24°
€ 713'7#1 =05 mlm# =1.0 0° 22°
f /ylj,jil =05 m1j7j¢1 =20 0° 19°
g Vik.jk#£1 = 0.5 myji#£1 = 0.5 151° 153°
h Vik,jk#1 = 0.5 myji#£1 = 1.0 151° 146°
i Vikiksl = 0.5 My, = 2.0 151° 145°

Table 2.1: Comparison of measured and theoretical dihedral angles for the four-grain struc-
ture, evolving under varying boundary conditions.

In fig. 2.39 the variation of boundary population with reduced boundary mobility p = m~y

is plotted at ¢ = 30000. When only boundary mobility varies (with isotropic boundary
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Figure 2.38: Evolution of four-grain structures (in two dimensions) with (a)
1.0,myj 21 = 0.5 (b) 7 = 1.0,my 1 = 1.0 (¢) 5 = 1.0,my ;00 = 2.0 (d) 715541 =
0.5,myjz1 = 05 (e) My = 0.5,may5n = L0 (f) mjm = 0.5,myy5x = 2.0 (g)
VikgkA1 = 0.5,1m15521 = 0.5 (h) Y jerr = 0.5,m15501 = 1.0 (1) Yk jprr = 0.5,m151 = 2.0,
Note that steady-state dihedral angles are independent of boundary mobilities m;; and vary
only with boundary energies ;.
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energy) as 0.01 < m < 1,7 = 1, no significant anisotropy in boundary character is observed.
For an anisotropic boundary energy (with isotropic boundary mobility) as 0.5 < vy < 1.5;m =
1, an inverse relation between reduced mobility ;2 and population is observed. When both
boundary energy and mobility are anisotropic as 0.5 < v < 1.5,0.01 < m < 1, a similar
inverse relation is seen. Hence, anisotropy in grain boundary character develops primarily

due to an anisotropy in boundary energy.

-©-mobility anisotropy
- =I-energy anisotropy I
-\7-mobility and energy anisotropy

/ %‘Etjﬂ i i%f '{>~~{1\r} ,

—_
[oe]

—_
(o]

—_

Boundary population (in MRD)

0 0.2 0.4 0.6 0.8 1
Boundary reduced mobility (energy times mobility in a.u.)

Figure 2.39: Variation of boundary population with reduced mobility extracted from two-
dimensional simulations at ¢ = 30000. An inverse relation is seen when the boundary energy
is anisotropic, irrespective of the anisotropy in boundary mobility.

2.5.2.3 Effect of initial texture on development of anisotropic boundary char-

acter

Ma et al. have proposed that in the presence of an initial texture both boundary energy and
mobility have an influence on boundary distributions [35, 20]. For the case the microstructure
is strongly textured, it was shown that boundary energy strengthens texture in contrast to
boundary mobility which decreases texture. To test the effect of initial texture on boundary

character during anisotropic grain growth, the initial microstructure (1500-squared domain
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in two dimensions, populated with approximately 2000 grains) is assigned a mild rolling
texture so that the initial distribution of grain boundaries is not random. This is evolved with
anisotropic boundary energy and isotropic mobility (as in fig. 2.5, 0.5 < v < 1.5;m = 1),
and the initial distribution is compared to the boundary distribution at ¢ = 10000, 30000.
The initial anisotropy in distributions is strengthened so that low-energy boundary grow at
the expense of higher energy ones (see fig.2.40). The variation of boundary population with
energy is shown in fig.2.41 - it is to be noted that the initial texture in boundary plane
distribution is strengthened and no steady-state is seen (as observed for the case of initial

random texture at ¢t = 10000).
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Figure 2.40: Boundary population extracted at (a) ¢ = 0 (initial) (b) ¢ = 10000 and (c)
t = 30000. It can be noted that no steady-state exists, and the initial (boundary plane)
texture is strengthened with time for an anisotropic boundary energy.

The initial microstructure (asigned with an initial rolling texture) is evolved with anisotropic
boundary mobilities (and isotropic energy), as in fig. 2.35 (0.01 < m < 1,7 = 1) to
explore the effect of anisotropic mobility on populations in the presence of texture. In
fig.2.42 the boundary populations are plotted at ¢ = 0 (initial), and at subsequent timesteps
t = 10000, 30000. The variation of boundary population with mobility is shown in fig. 2.43-
it is to be noted that the initial texture in boundary plane distribution decreases with time

and no steady-state is observed.
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Figure 2.41: Boundary population plotted with boundary energy for timesteps t =
0, 10000, 30000. The initial anisotropy in boundary population (color coded red) grows with
time (compare red to green).
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Figure 2.42: Boundary population extracted at (a) ¢ = 0 (initial) (b) ¢ = 10000 and (c)
t = 30000. It can be noted that no steady-state exists, and the initial (boundary plane)
texture decreases with time when the boundary mobility is anisotropic.
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Figure 2.43: Boundary population plotted with boundary mobility for timesteps ¢
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0.6
in a.u.)

0,10000,30000. The initial anisotropy in boundary population (color coded red) weakens

with time (compare red to green).

2.6 Conclusion

The following conclusions can be derived from the present chapter

1. For an anisotropic boundary energy, the evolution of isolated grains is different from

the evolution of polycrystalline systems, due to the presence of boundary junctions.

For isolated shrinking grains, populations scale with boundary energy, in contrast to

microstructure evolution in polycrystalline systems, where different equilibrium con-

ditions at junctions result in significantly different boundary populations. An inverse

relation between boundary energies and populations is obtained in the polycrystalline

case, when boundaries are free to rotate, and dihedral angles deviate from the isotropic

value of 120° to values dictated by mechanical equilibrium conditions at these junc-

tions. A similar deviation in the distribution of dihedral angles from the isotropic value

of 120° have been observed experimentally in anisotropic systems by Dillon et al. [12].

2. When the initial texture in polycrystalline syatems is random, an anisotropy in bound-
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ary mobility does not result in a corresponding anisotropy in boundary populations,
in contrast to the inverse relation between boundary energy and population. Hence, a
higher incidence of low-energy grain boundary planes in polycrystals can be viewed as a
natural consequence of satisfying mechanical equilibrium conditions at triple junctions,
which have a significantly greater effect on the development of anisotropic boundary
character compared to the effect of kinetic factors (as boundary mobility). This is in
contrast to the evolution of isolated grains where grain shapes and boundary distribu-
tions depend on the anisotropy in kinetic factors (as boundary velocity, which scales

with boundary energy and mobility).

. Low-energy boundaries grow at the expense of high-energy ones, both in number and
in area. This is in contrast to Holm’s 23] arguments that low-energy boundaries in-
crease in area and not in number. The anisotropy in boundary character cannot be
explained solely through a boundary-lengthening mechanism. The number-weighted
and area-weighted anisotropy in boundary population support a critical-event mecha-
nism propsed by Gruber et al. [20] which predicts an increase of the number and the

area of low-energy boundaries in polycrystalline systems.

. The initial texture has a siginificant effect on the distribution of boundary popula-
tions during anisotropic grain growth. A non-random texture constrains the strength
in anisotropy (in boundary populations) that can be achieved due to an anisotropy
in boundary energy (and mobility). When the initial texture is random, a strong in-
verse relation is seen between boundary energy and population and a steady-state in
distributions exists. In the case of a non-random initial texture, neither a strong cor-
relation (between boundary energy and population) nor a steady-state in distributions

is observed.
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Chapter 3

Deriving anisotropic boundary energies
and populations for face-centred cubic

metals

3.1 Introduction

In the present chapter, we derive the variation of grain boundary energy for fcc metals (like
nickel and aluminum) in the five-parameter grain boundary space. Recently energies for such
systems were estimated through use of simulations [49] and experiments [32]. Since these
energies were estimated for only a limited number of GB types (certain CSL boundary types
in the method described by Olmsted et al.), an interpolative method is needed to estimate
energy of a grain boundary (GB) of arbitrary type. Such a method needs the selection of
a proper metric to estimate closeness between any two arbitrary GB types. An informative
review of metrics with associated advantages and disadvantages by Cahn et al. can be
refered to |7]. In the present chapter we describe the use of two such metrics [44, 48| and
compare the interpolated energies to those observed experimentally in nickel [32]. A series

of simulations are performed incorporating these interpolated energies in the interface-field
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framework discussed in the present work, and the anisotropy in boundary populations is

correlated to the anisotropy in interpolated energies.

3.2 Methodology and results

Li et al. derived grain boundary energies for nickel using orientation imaging of nickel and
serial sectioning techniques [32]. These energies were reconstructed using a capillarity vector
method described in reference [43]. To derive the aforementioned energies, a large number
of grain boundaries were collected using orientation-mapping on serial-sectioned nickel and
binned in the five-parameter grain boundary space [32]. The discretization interval is 8.2°
for all five dimensions (of the boundary space), and there are about 644,200 cells (or grain
boundary types, not all of them being distinct from each other) in the grain-boundary space.
Details for the data collection and energy reconstruction are not provided here. The variation
of boundary energies with the boundary plane normal for specific > boundaries is plotted in
fig. 3.1.

In a recent paper, Olmsted et al. calculated energies of a set of CSL grain boundary
types for face-centred metals (as nickel and aluminium) [49]. Since the number of GB types
with known energies is sparse, an interpolation procedure is necessary to derive energy of
a boundary having arbitrary misorientation and inclination. This requires the use of an
appropriate metric to estimate the distance between GB types, and to subsequently assign

the energy of its closest neighbor (whose energy is known) to an arbitrary boundary type.

3.2.1 Representation of grain boundaries (in (A,B) form)

Since grain boundaries in three dimensions have five degrees of freedom (the first three related
to misorientation across the boundary and the last two related to the boundary plane normal
in the crystal reference frame), a five dimensional energy matrix needs to be constructed,

where the value of cell [¢1, ¢a, 3, 4, ¢5] corresponds to the energy of a grain boundary having
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Figure 3.1: Reconstructed grain boundary energies for nickel for specific misorientations,
redrawn from [32] for (a) 60° < 111 > and (b) 38.9° < 110 >. Energies are plotted in
arbitrary units (a.u.).
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(b)

Figure 3.2: Reconstructed grain boundary energies for nickel for specific misorientations,
redrawn from [32] for (a) 38.2° < 111 > and (b) 36.9° < 100 >. Energies are plotted in
arbitrary units (a.u.).
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a misorientation specified by indices [¢1, ¢2, ¢3] and a plane normal specified by indices [c4, c5].
The boundary space is discretized to C'D bins for each dimension in misorientation space

and (C'Dy,4C D) bins in inclination space, so that

0 S C1,C9,C3 S CD (31)

0 S Cy S CDQ,O S Cs S 4CD2 (32)

Olmsted et al. calculated absolute energies (in J/m?) of 388 distinct grain boundary types
for face-centred cubic metals (as aluminum and nickel)[49]. In the aforementioned work, a
series of molecular-static simulations were performed on bicrystal geometries, where the
grain boundary misorientations are limited to CSL types (X boundaries) and the boundary
normals are rational. At least 72 different ¥ boundary types were considered. Embedded-
atom potentials were used for reasons of good agreement between experimental and simulated
energies of specific GBs. The variation of boundary energies with the boundary plane normal
for specific ¥ boundaries is plotted in figs. 3.3,3.4. There are 9 bins in each dimension
(CD = 9,CDy = 9). Comparing these with those extracted from orientation mapping
observations [32] (as in fig. 3.1), qualitative differences are evident. Only boundary types
equivalent to one of the 388 boundaries have been assigned an energy, and the energies of
other boundary types are unknown. Details for procedure to fill up the 5-parameter space
with energies for the 388 GB types are given in Appendix E - it should be noted that the
energy space is sparse as the 388 types (and their crystallographic equivalents) correspond
to only a few boundary types. Hence, a method to estimate the energy for an arbitrary
boundary type using appropriate metrics is discussed in the present chapter.

We use an alternate representation of grain orientations proposed by Olmsted [48, 49|.
The motivation is that the list of GB types with known energies are expressed in Olmsted’s

representation. A reference configuration is chosen (such as say the lattice vectors of a face-
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Figure 3.3: Grain boundary energies for nickel for specific misorientations (a) 60° < 111 >
and (b) 38.9° < 110 > extracted from molecular-static simulations, redrawn from [49].

Energies are expressed in -Z.
m
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Figure 3.4: Grain boundary energies for nickel for specific misorientations (a) 38.2° < 111 >
and (b) 36.9° < 100 > extracted from molecular-static simulations, redrawn from [49].

Energies are expressed in ;.
m

105



centred cube) - the metric is defined such that any parametrization of GBs is independent
of the particular reference configuration chosen. The plane z = 0 is chosen such that it lies
along the plane of the grain boundary itself - thus grain A can be defined as the crystal
in the region z < 0 and grain B as the crystal in z > 0. Thus rotation matrices could be
calculated which rotate the reference configuration to grain A (and grain B) - these would be
denoted (as in [48]) by A and B respectively, and the boundary is represented as (A, B). Note
that such a representation for a grain orientation is the inverse of the Bunge representation
usually used in texture studies. Such a boundary would have six degrees of freedom (three
from each rotation matrix), one of which is redundant. This is because any rotation Z of
the grains about z = 0, would change the rotation matrices A and B without altering the
boundary. This is expressed as (ZA,ZB) = (A, B). Also, application of crystal symmetries
on the grains (T and Tg) should not change the boundary, which can be expressed as
(ATA,BTg) = (A, B).

For each GB type [c1, ¢2, ¢3, ¢4, 5] the corresponding (A, B) representation can be found
in the following manner. The indices of the grain boundary normal [n,.n,.n,] is calculated

as

n, = sinfcosyp (3.3)
n, = sinfsing (3.4)
n, = cos (3.5)

where, the angles (0, ¢) depend on indices (c4, ¢5) as in

0 = cos* <C’Cl4?2) (3.6)
e
v = 3 052 (3.7)
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The corresponding limits for 6 (angle that the normal makes with the [001] axis) and ¢
(angle between the projection of the boundary normal on the zy plane and the [100] axis)

are
T
0<9<7.0<p<2r

The rotation matrix which transforms [n,, n,,n.] to [001] can be arbitrary fixed as matrix
A. Other solutions are possible, but any member can be used as these belong to an equiv-
alence class |48]. Note this is an active rotation hence it is the inverse of its corresponding
Bunge representation A’ = A”. The other rotation matrix B is calculated as gz = gaAgap.

The disorientation matrix can be determined as

COSp1C0SPy — Sing,siNGcosP SING1C0SPy + coSP1SinpacosP  singpysind
Agap = | —cospysindy — sind1cospacos®  —singy sinds 4+ cospicospacos®  cospysin®d

stng; sind —cosp1sind cosP

(3.8)

where, the angles (¢1, ®, ) are related to the misorientation indices [¢;, o, 3]

¢ =2%xCDx¢y/m (3.9)
¢ = CD % cos® (3.10)
c3=2%CDx¢o/m (3.11)

For each of the 388 boundary types (whose energies are known, refer [49]) the corre-
sponding (C, D) representation is used. Cubic symmetry operators (O;,1 < i < 24) are then

applied to each orientation matrix (as in g4O,4) as these are crystallographically equivalent
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orientations. One of the advantages of using this representation is the ease of determining
the boundary normal, which is simply the first row of the orientation matrix, for example

the ny is (herei=1,7=1)

nza = 9a04(3,7) (3.12)
nya = ga0a(i,j+1) (3.13)
n.a = ga0a(i,j+2) (3.14)

Now an appropriate metric needs to be chosen to calculate the distance between an arbi-
trary boundary type (A, B) and each of the 388 boundary types (and their crystallographic
equivalents) whose energies are known, represented as (C, D). The energy of its closest

boundary (C, D)4—a,,,, is then assigned to boundary(A, B).

3.2.2 Interpolated energies using Morawiec’s metric

A metric devised by Morawiec [43] is used to calculate distance between two grain boundary
types. The metric accounts for closeness both in misorientation and inclination space. Equal
weights are assigned to distances in misorientation and inclination space. It is to be noted
that this uniform weightage is arbitrary, and unequal weights might be assigned for distances
in misorientation and inclination space [7|, which will result in different interpolated energies.
This arbitrariness of combining distances to obtain a net distance (in boundary space) is a
serious disadvantage of using this metric.

Suppose one wishes to determine the closeness of two arbitrary boundary types (specified
by (g,n) and (¢’,n’), a representation used by Morawiec) - where g and n denote boundary
misorientation and plane normal in crystal reference frame respectively. The distance in

boundary space can be expressed as eq.3.15.
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X*=5—tr(¢g"g) —nn' —(¢"n).(¢"n') (3.15)

here tr(g) represents the trace of the 3X3 rotation matrix g, which is simply the sum of

the diagonal elements

tr(g) = >_glii (3.16)

n.n' = an; (3.17)

where n; denotes the ith component of boundary normal n .
In terms of the (A, B) representation the misorientation for boundaries (A, B) and (C, D)

is given by Agap and Agcop respectively

Agas = (9404)" 9505 (3.18)

Agep = (9cOc) gpOp (3.19)

here for each symmetry operator O,, 1 < i < 24 - all crystallographically equivalent

gty
boundaries have equal energies.
The corresponding distances in misorientation space XZAQ and inclination space Y2 and

the net distance x? in boundary space can be expressed as

Xag = 3—1tr ((AQAB)T A9(1D> (3.20)
Xa = 2—mnanc—npnp (3.21)
X* = Xagtxn (3.22)

109



For each boundary of arbitrary type (A, B) the distance to each of the 388 boundaries
(represented as (C, D)) is calculated. An energy value corresponding to its closest (C, D)

boundary is assigned to (A, B). Mathematically this can be expressed as eq. 3.23.

VAB) = UCD)j» Xoj = Min[X;y, 1 < k < NJ (3.23)

where N denotes the number of boundary types with known energies. This process is re-
peated for each arbitrary GB type in boundary space - since the boundary space is discretized
into (C'D,C'D,CD) bins in misorientation space and (C'Ds,4C D3) bins in inclination space,
this corresponds to 4.C'D3.C'D2 boundary types, not all of which are distinct GB types. In
figs. 3.5,3.6 the interpolated energies for specific values of misorientation are shown, for

CD =9,CDy =9.

3.2.3 Interpolated energies using Olmsted’s metric

Morawiec’s metric [43] suffers from an inherent arbitrariness - as separate distances are
calculated in misorientation space and inclination space, corresponding weights have to be
chosen to combine them to derive a distance x? in boundary space. This is expressed below

for convenience

2 =5—tr(¢g'g) —nn' — (g"n).(¢"n) (3.24)

where, tr(g) denotes the trace of rotation matrix g and n.n’ the dot product of boundary
normals n and n’. In eq. 3.24 equal weights have been assigned to distances in inclination
and misorientation space. One can choose unequal weights for these distances, and expect
different interpolated energies.

Recently Olmsted proposed an alternate metric based on his representation of grain
boundaries described in a companion paper [48, 49]. The distance between boundary types

(A, B) and (C, D) is simply expressed as in eq. 3.25
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(b)

Figure 3.5: Interpolated energies for specific misorientations in nickel, using Morawiec’s
distance metric for (a) 60° < 111 > and (b) 38.9 < 100 >. Energies are expressed in -Z5.
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1.0 1.0 1.038.2

0.180.240.300.360.420.480.540.600.660.720.78
(a)
1.0 0.0 0.036.9

0.27 0.30 0.33 0.36 0.39 0.42 0.45
(b)

Figure 3.6: Interpolated energies for specific misorientations in nickel, using Morawiec’s
distance metric for (a) 38.2° < 111 > and (b) 36.9 < 100 >. Energies are expressed in
-, Comparing these (and fig. 3.5) with figs.3.1,3.2 significant qualitative differences can be
observed, both in terms of the range and distribution of boundary energies.
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d= \/5\/3 — tr((gAOA)T chC) +3— tr((gBOB)T gDOD) (325)

here, each of the symmetry operators O, (9 = A, B, C or D) should vary independently
for 1 << 24.

Since in this representation of grain buondaries, a rotation about z = 0 does not change
the boundary, a minimization routine should be used (refer Appendix B in (author?) [48]).

The distance d can be modified to

a = 6—[F(AC)+ F(B,D) (3.26)
b = Fy(A,C)+ Fy(B,D) (3.27)
¢ = F3(AC)+ F(B,D) (3.28)

d = a— VP2 +c (3.29)

here F;(A, C) is given by

Fi(A,C) = (9404)i5(9cO0c)si (3.30)
F(A,C) = (9404)}1(9c0c)i + (9404)15(9c0¢)2i (3.31)
F3(A,C) = (9404)5(9c0c)1i — (9404)}1(9c0c )2 (3.32)

In his paper, Olmsted showed that this definition of distance was able to capture dif-
ferences in boundary plane inclination (at a constant misorientation). The particular case
of 33 misorientation was chosen for illustration where coherent < 111 > planes exhibited a
significantly lower energy with respect to other boundary inclinations [48].

The distance between boundary of arbitrary type(A, B) (for which we need to determine

a boundary energy) and boundary (C, D) (here (C,D) belongs to the set of boundaries for
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which energies were determined through molecular-static simulations [49], N = 388 in the
expression below) can be calculated using eqs.3.25,3.29. The energy of its closest boundary

is then assigned to boundary (A, B).

YAaB) = YCDy Xk =min{x;,1<j< N} (3.33)
X; = min(d(AB),(C,D)Ogi,l S 1 S 24) (334)
d(a)©po, = a—Vb+c (3.35)

as before, each of the symmetry operators Oy(g = A, B, C, D) should vary independently
for 1 < ¢ < 24. This process is repeated for each arbitrary GB type in boundary space -
since the boundary space is discretized into (C'D,C'D,CD) bins in misorientation space and
(C'Do,4C Ds) bins in inclination space, this corresponds to 4.C'D?.C' D3 boundary types, not
all of which are distinct GB types. In figs. 3.7,3.8 the interpolated energies for specific values

of misorientation are shown, for CD = 9,CDy =9 (9 bins in each dimension).

3.2.4 Correlating boundary populations with interpolated energies

A set of simulations are performed in three dimensions on a 160-cubed domain (initially pop-
ulated with 1000 grains and assigned a random texture), with interpolated energies derived
using Olmsted’s metric. Details for incorporating interpolated energies in the interface-field
framework can seen in Appendix C. Boundary populations are extracted at an intermediate
timestep ¢ = 3000 and are plotted in figs. 3.9-3.12. The anisotropy in these distributions
should be compared to the anisotropy in interpolated energies (interpolated energies for spe-
cific misorientations are redrawn for comparison). An inverse relation between boundary
energy and population seems to develop, see the peaks at < 111 > for 60° and 38.2° disorien-
tations for instance. These distributions (extracted from simulations) are compared to those

extracted using experimental techniques (orientation mapping of two-dimensional sections
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1.0 1.0 1.060.0

03 04 05 06 07 08 09 1.0
(a)
1.0 1.0 0.0 38.9

0.880.920.961.001.041.081.121.161.201.24

(b)

Figure 3.7: Interpolated energies for specific misorientations in nickel, using Olmsted’s dis-
tance metric for misorientations (a) 60° < 111 > and (b) 38.9° < 110 >. Energies are

expressed in #
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1.0 1.0 1.038.2

0.72 0.78 0.84 0.90 0.96 1.02 1.08 1.14 1.20 1.26
(a)
1.0 0.0 0.036.9

1.02 1.05 1.08 1.11 1.14 1.17 1.20 1.23
(b)

Figure 3.8: Interpolated energies for specific misorientations in nickel, using Olmsted’s dis-
tance metric for misorientations (a) 38.2° < 111 > and (b) 36.9° < 100 >. Energies are
expressed in -%. Comparing these (and fig. 3.7) with figs.3.1, 3.2 it can be observed that
they are qualitatively similar.
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of nickel [32]), see figs. 3.13,3.14 - these are qualitatively similar to each other. In fig. 3.15
the variation of boundary population (over all misorientations) is plotted with boundary
energy to demonstrate that the inverse relation holds true across all boundary types. There
is significant scatter due to insufficient statistics, which is expected to scale down as larger

number of grains are evolved for longer times.

3.3 Conclusion

Interpolated energies obtained through the use of Olmsted’s distance function better cor-
relate with the boundary energies extracted through orientation mapping of nickel. An
inverse relation between interpolated energies and populations is observed that supports
the notion that low-energy boundaries increase (in area and in number) at the expense of
high-energy ones. These distributions (extracted from three-dimensional simulations) show
a direct scaling with distributions collected using experimental methods (orientation map-
ping), demonstrating the capability of the present method to model the development of
anisotropic boundary character in real materials. The inverse relation between boundary
energy and population at a fixed misorientation is not strictly one-to-one. A similar observa-
tion was noted by Gruber (PhD thesis, 2007), and can be attributed to the effect of torque
terms present when the boundary energy is inclination-dependent, which are avoided in the
present formulation. Also certain GB types (such as the ¥3) show much lower intensities
than experimentally observed - this is because these boundaries correspond to annealing
twins, and are not a direct consequence of grain growth. Hence, in fcc metals as nickel, the
physical phenomena of grain growth cannot completely account for the significantly high
population of certain boundary types.

The present method also provides a formulation to model anisotropic boundary migration
in other fcc materials (as aluminium) as the grain boundary energies in different face-centred

cubic metals vary with boundary type in a relative fashion [49]. These interpolated energies
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1.0 1.0 1.060.0

03 04 05 06 07 08 09 1.0
(a)
1.0 1.0 1.060.0

Figure 3.9: Boundary energies (a) plotted with boundary population (b) for misorientation
60° < 111 >. Simulations are performed on a 160-cubed domain and evolved for ¢t = 3000
steps. Populations are expressed in Multiples of Random Distribution (M RD) and energies

< J
n 5.
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1.0 1.0 0.038.9

0.880.920.961.001.041.081.121.161.201.24

()
1.0 1.0 0.038.9

Figure 3.10: Boundary energies (a) plotted with boundary population (b) for misorientation
38.9° < 110 >. Simulations are performed on a 160-cubed domain and evolved for ¢ = 3000
steps. Populations are expressed in Multiples of Random Distribution (M RD) and energies

< J
n 5.
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1.0 1.0 1.038.2

0.72 0.78 0.84 0.90 0.96 1.02 1.08 1.14 1.20 1.26
(a)
1.0 1.0 1.038.2

Figure 3.11: Boundary energies (a) plotted with boundary population (b) for misorientation
38.2° < 111 >. Simulations are performed on a 160-cubed domain and evolved for ¢ = 3000
steps. Populations are expressed in Multiples of Random Distribution (M RD) and energies

< J
n 5.
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1.0 0.0 0.036.9

1.02 1.05 1.08 1.11 1.14 1.17 1.20 1.23
(a)
1.0 0.0 0.036.9

Figure 3.12: Boundary energies (a) plotted with boundary population (b) for misorientation
36.9° < 100 >. Simulations are performed on a 160-cubed domain and evolved for ¢ = 3000
steps. Populations are expressed in Multiples of Random Distribution (M RD) and energies
in # Note that low-energy boundaries are more populated than higher energy ones, such

that energy and population are inversely related.
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1.0 1.0 1.060.0

>[100)
L —

I I
40 45 50 55 60 65 7.0 75 80
(b)

Figure 3.13: (a) Boundary populations at misorientation 60° < 111 > from simulations
performed in three dimensions on a 160-cubed domain evolved for t = 3000 with interpolated
energies derived using Olmsted’s metric (as in fig. 3.7). These should be compared with
boundary populations at these misorientations (plotted in (b)) collected using orientation
mapping of plane sections of nickel (reproduced from [32]). Populations are plotted in M RD.
Note that (b) is expressed as the natural logarithm of the population, hence the peak at
< 111 > is much stronger in (b) compared to (a).
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Figure 3.14: (a) Boundary populations at misorientations 38.2° < 111 > from simulations
performed in three dimensions on a 160-cubed domain evolved for t = 3000 with interpolated
energies derived using Olmsted’s metric (as in figs. 3.8). These should be compared with
boundary populations at these misorientations (as in (b)) collected using orientation mapping
of plane sections of nickel (reproduced from [32]). Populations are plotted in M RD.
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Figure 3.15: Variation of boundary population (expressed in MRD) with boundary energy

(expressed in -%;). Note that on an average (across all boundary types) there are more (and

longer) low-energy boundaries than high-energy ones though there is significant scatter due
to insufficient statistics.

can be directly used in the interface-field framework to predict boundary motion and mi-
crostructure evolution in real materials. Initial texture and grain structure (flat boundaries
have low boundary velocities and persist during grain growth) have a significant influence
on the development of anisotropic boundary character. Assuming that one has informa-
tion about the initial texture and microstructure, the interpolated energies can be used in

simulations to better predict the development of anisotropic boundary character in such

materials.
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Chapter 4

Future work

As mentioned before, the present phase-field formulation does not account for the grain
boundary torques which are non-zero for an inclination-based anisotropy. Hence a possible
direction to venture is to reformulate the governing equations of motion, so as to incorpo-
rate a complete five-parameter description of anisotropic boundary properties in the present
framework. To this end, the governing equations are reformulated as described in the adjoin-
ing Appendix A. Note that inclination dependence in three dimensions is more complicated
than in two dimensions, and both cases have to be treated accordingly. Techniques for nu-
merical implementation are described briefly in Appendix B. In Appendix D, details for the
energy extension procedure, which extends anisotropic energies along grain boundaries to
boundary junctions, are given (thanks to a private commuciation with Seth Wilson).

The present formulation can be adapted to study microtructure evolution in real ma-
terial systems which exhibit significant anisotropy in boundary populations (as nickel [32]
or magnesia [57]). Experimental techniques as orientation mapping (combined with serial
sectioning) and tomography make it possible to extract orientation information from such
metallic and ceramic specimens. Instead of using a simplistic description of anisotropy (as the
four-fold anisotropy function in two dimensions (eq.2.10) or the cubic harmonics (eq.2.13)

in three dimensions), one can use an interpolation technique to determine the energy of
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an arbitrary grain-boundary type, given that energies of certain boundary types have been
derived experimentally (Li et al. [32]) or estimated through simulations (Olmsted et al.
[49]). This has been discussed in some detail in Chapter 3. Details for using interpolated
boundary energies in the present framework are described in Appendix C. Also suitable pa-
rameters to compare extracted distributions (from simulations) and distributions collected
from experimental observations have to be chosen to determine quantitatively how close
these distributions are over the entire range of grain boundary types.

Starting from an initial state (a microstructural repesentation of nickel, or of an inter-
metallic such as Cu-Nb, prior to annealing), one can use the aforementioned interpolated
boundary energies and compare the motion of boundaries as predicted by simulations to
those observed experimentally, after annealing and subsequent grain growth. So that time
scales (between experimental observations and model predictions) match, a series of sim-
ulations needs to be performed, with increasing magnitude of boundary anisotropy, and
the corresponding grain maps compared to experimental observations. Possible parameters
of comparison include but are not limited to misorientation between corresponding points
or cells and extracted grain boundary character distributions. Time scales and anisotropy
strengths match when the difference between experimental and simulated domains is a min-

imum, as in

tsim = treah Esim = 5real,A~g(tsim7 6sim) < A~g<t7 €)Vt7 € (41)

where, Ag is the misorientation difference between simulated and experimental domains,

collected for corresponding cells (or points), and averaged over the entire domain .

Ag:M,1§¢gN (4.2)

where the domain €2 can be divided into N discrete cells.

It is predicted that an optimal combination of the different boundary energy descriptors
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should result in better estimation of grain boundary populations in anisotropic systems.
Large-scale simulations made possible through parallelization of the code should result in
generation of statistically reliable data. The present model hence provides a framework to
predict evolution of grain boundary character distributions in real materials, both in two
and three dimensions, and hence makes it feasible to derive correlations between boundary

properties and populations for such systems.

Appendix A

Time-dependent Ginzburz Landau (TDGL) equations with an incli-

nation dependent anisotropy

As stated previously, the gradient and potential energy terms are expressed as (identical to

Steinbach et al. [63])

r Ejk
%= -2V, Ve (4.3)

= e losl ol (4.4)

Let us consider the case of two dimensions for simplicity, where the anisotropic func-
tions for the gradient and potential energy prefactors (¢ and ~y respectively) vary with the

inclination angle (0) with a reference axis (x axis).

g = €(0) (4.5)

Ve = 7(0) (4.6)
Both the prefactors should have a similar variation with inclination, to ensure that the
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interface width (w) stays constant irrespective of the variation of boundary energy with
inclination [34]. Hereafter ¢;;,(6) and ;;(6) are represented by ¢ and ~ for simplicity.

The TDGL governing equation for deriving changes in field variables can be expressed as

e = (v o7~ 50 ) V) =@+ 0 -0~ @ (47)

where, term V-2 gr is evaluated as below. Note that instead of providing a
Vo,

complete derivation, intermediate key terms are calculated and consequent expressions are

shown.

0 10

8

Here, the gradient operator V denotes differentiation over all reference axes (x and y in

\Y

two dimensions) as in V = (a%, a%) = 0Oy,
The inclination angle 6 depends on the gradients of the field variable in x and y directions
(¢j. and ¢;, respectively). Hereafter the subscripts x and y will denote differentiation with

respect to x and y respectively.
b

tanf = 22
¢jx

Intermediate terms which emerge during treatment of term (a) (eq.4.8) are shown below

(4.9)

a:mg = (ngbQ) (¢]x¢]yy ¢jy¢jmx>

Or; (V§;. V) = V20,V + V2V, = Ap;Vor + AV,
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0 iz —djy

the variation of the potential energy fp  with the field variable ¢; (term (d) in eq.4.7) is

evaluated as below

06
5% (4.10)

96, prt Y Dkl + |05 [on] vom -

b

gb ¢ T

where % = ( Jyy( ¢Q)+¢; <¢]z)>; similarly, term (b) (vav8¢ prt) can be expressed
J Jjx

as

0 0
Vav¢j (71851 |9xl) = |5 [¢x] V@ngﬂ (4.11)
since, V- |65 |6e] = 0 and (g2 = %55 )
0 Pot ¢J$ Diy
Vv = ool ¥ () w12)

The primary term of interest in the above expression V# can be derived to be

V0 = 0,0 = ¢jx¢jgy - ¢a2'y¢jm
jo T Py

Eventually, term (c) (a%- (gijk)), the variation of gradient energy f7; with field

variable ¢; is evaluated to be

i gr V(,ij(Zﬁkg 89
0¢; " — 2 a4,

(4.13)

since, ad) (V¢;Vy)is identical to zero.

The term of interest 87)_ is derived to be
J
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06 Oim (32) — 01 (82)
3(;5]- ¢§x + qb?y

Hence, terms (a) - (d) in eq.4.7 are derived in terms of derivatives of field variables ¢,

and ¢y, along reference x and y axes

8 gr  __
Vv,

oV
G5+ O3,

=iy >
(¢Jyy¢3x - ¢jxfc¢jy)
¢?x )’

( (Gjuz — Digy) (0% + 02,) — 2 (D — b3) (Pjaiue + ¢jy¢jyy>>

(8A¢k + 7 (¢jyy¢jx - ¢jxw¢jy))

wl»—* l\:>l>—*

SITAY A

£0V9,-V TR
Jx JY

ijx ¢Jy A¢kv¢3 + A¢jv¢k)>
0% + 3y

l\DIr— l\.’)l>—*

pot |¢]| |¢k|79
\V4 — TIIPRLTO
" Gy

+ 19| |x| Yoo

((Djea — Gjyy) (07, + 65,) — 2 (Bja — bjy) (Djebjna + DjyDjuy))

(ijfv — ¢jy) (ij:cﬁbjyy — ¢jy¢j:c:c)
(63 +3,)°

ZE 5+ 5,

0 pr_ 20V (% (%) — o (3::))

(%) o (%;z))

t Dja
nypo =7 |9| + 70 [5] | D4l ( Py

d¢

For three dimensions, the anisotropic function depends both on # and ¢, which denote
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the angle that the interface normal n makes with the reference z axis, and the angle that

the projection of the normal on the plane of the paper n’ makes with the reference = axis

respectively [27|. Henceforth, €;;(0, ®) and v,1(6, ¢) are represented by ¢ and ~y respectively.

ik = (0, ¢)

here, # and ¢ can be expressed as

cosp = @j,
tanf = %
gbjx

(4.14)

(4.15)

(4.16)

(4.17)

the terms ¢,,, ¢, and ¢;. are the gradients of field variable ¢; along the z, y and z

reference axes respectively. For each of the terms (a)-(d) in eq.4.7, certain intermediate

terms are evaluated here.

For term (a) (V%ﬁb_ i > , some of these terms are
J

¢jzz

2
1 ¢

8561‘90: -

arzg — JYyyY .; + ¢j2 JY
Jjx JY

EoPj €0
Op,6 = ——LZ— +

2 2
1—¢2 Pt Py
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0 & e,

Ve, Ny

¢Jx ¢J’ Y
et

0 _ _ EopPie €0y L

0. e Gty (Siybs — Biaatiy)

9 €o (bzz

a_zige - 1¢_J¢2 ¢j2z + ¢2 (¢J’£/y¢ﬂx ¢jxm¢jy)
jz

Treatment of term (b) ( 6V¢ ave; | p0t> yields the following derivative

9 %)
= Naws T e gws 418
v, Vave, T P ave,” (4.18)
where,
9 1
— p=—
oV, [ _ gb]z-z_
0 0 = Pje — Pjy
Hence,

0 1 ]
< aquj 7) 1_ gb?z (/79099 ¥ 794,0 ) © ( - gb?z)
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¢]w (bjy

¢jm ¢jy
T e, . T3, )

(79908901‘(10 + 7998%'9) + 798331‘ ( + (b

since,V 5o~ ¢ |, |¢x| is identical to zero, term (b) reduces to

0 ot — 0
Ve = o (Vo) (4.19)

term (c) <a¢ g > can be evaluated to be

0 0
aqu ]k: V@V(bk <£@a¢]g0 + 898925] > (420)

similarly, for the variation of the potential energy f7; " with ¢; (term (d))

0 0 0
— v =%=0+Y 4.21
96,7 = 55,0 T Vo557 (4.21)
where,
O, Y=
99, dian/1— @2,
Pjza Pjyy
9y _(%)%* (qﬁjy)%
0%; Ofa + 5y
Hence, term (d) reduces to
0 pat 0 0
— = —0 — 4.22
o = bl bl ] (350,50 ) (4.22)

It should be noted that an alternate (and more elegant) reformulation based on the

capillarity vector ¢ is possible |72, 73|.
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Appendix B

Numerical implementation

As explained in the previous appendix (Appendix A), the variation of the free-energy func-
tional can be described completely in terms of the phase-field variables and their derivatives.
At any given instant ¢, the derivatives at position x; can be determined using relevant phase-
field values within a stencil of appropiate length on uniform (cartesian) grids. The length of
the stencil needed increases with the order of the approximation. Note that in the present
work, we use centered derivatives, hence for locations near domain boundaries, use of a ghost
layer (of adequate thickness) with periodic boundary conditions is requisite.

Expressions for first (and higher) centered derivatives are given below. It is to be noted
that although these are defined for a particular reference axis (z in this case), corresponding
definitions along other reference axes (y and z) can be derived. The discretization interval

h chosen in this case is unity. The order of the error terms are also worthy of mention.

Qﬁ‘,(ti_l qb',.’ﬂi 1 1
Djuw; = (— 32 + 32+ R (h?) (4.23)
o ¢j7$i72 2¢j,w¢71 2¢j,$i+1 ¢j7$i+2 1 4
Djaa;i = ( 5 " 3 T3 1 );tO (h) (4.24)
1
gbjTIva?i = (¢jvzi—l - 2¢j,$i + ¢j7$i+l) ﬁ + O (h2) (425)

1
a0 (h°)

o ¢j,zi_3 3¢j,:ﬂi_2 3¢j,zi_1 49¢j,$1 3¢j,$i+1 3¢j,zi+2 ¢j,$i+3
%“’“_( 0 20 2 1 T2 T2 "TTw
(4.26)

In the present formulation, we use second-order approximations for the first derivative

(eq.4.23) and fifth-order approximations for the second derivative (eq.4.26). The gradient
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(V¢;) and laplacian (A¢;) can then be defined as follows

Voj = ¢+ Q50+ ¢5.2 (4.27)

A¢j - ija:m + ¢jyy =+ ¢jzz (428)

Near grid edges a perodic boundary condition (PBC) is used, and grid values (of an
appropiate width depending on the length of the stencil required) on the opposite end are
used (as in fig. 2.4).

To determine boundary inclination (# for two dimensions and (6, ¢) for three dimensions),
weighted essentially non-oscillatory (WENO) schemes are used to approximate gradients
along reference x, y (and z) axes. A brief formulation has been extracted from Shu’s paper
(refer [59]). Details for numerical implementation can be found in [60]. The motivation for
using this particular scheme is its non-oscillatory behavior near discontinuities (in the present
framework, this could be due to sharp corners along grain boundaries or due to faceted grain
shapes, where there is a sudden change or jump in the inclination of the boundary normal

[13]). First derivatives are expressed as

1
Pjoa; 7 (Gji41/2 = Djim1/2) (4.29)

where the fifth-order WENO approximation is represented as the summation of weighted

third-order derivatives on adjacent stencils as

1 2 3
Gjit1/2 = w1¢§',i)+1/2 + w2¢§',i)+1/2 + w3¢§',z’)+1/2 (4.30)

where,
m 1 7 11
¢j7i+1/2 = §¢j,i—2 - 6¢j,i—l + Equ’i
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2 1 5 1
jit1/2 = _g%z‘—l + g%,z‘ + §¢j,i+1

3) 1 5 1
Giv1y2 = §¢j,i + 6¢j,i+1 - 6¢j,¢+2

The non-linear weights w; are given by

w
Wi = =3 -
Zk:l W
~ Ak
k — 2
(e + Br)

13 1
B =35 (612 = 20551 + &) + 7 (G2 — 4651+ 365:)°
13 1
P = 15 (95i-1 = 20431 + i) + 7 (%1 = Bjit1)”

13 1
B3 = 1 (9ji — 2051 + ¢j,i+2)2 + 1 (3¢5 — 411 + ¢j,i+2)2

The terms (a-d) in eq.4.7 in Appendix A can then be calculated for a location (x,y, 2)
at time ¢. A forward difference technique is used to update phase-field values ¢z ..)(t + dt)
based on previous values @,y (t) using the TDGL equation.

2 OF
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where, N, M and F denote the number of non-zero fields at (x,y,z) (at time t), the

value of mobility and the free energy functional respectively.

Appendix C

Incorporating interpolated energies in the interface-field method

The energy of a grain boundary of arbitrary misorientation and plane normal is calculated
using the predetermined values in the five-dimensional energy matrix. The corresponding
misorientation indices [c1, ¢z, ¢3] are determined using eq.3.9. Since the grain boundary en-
ergy can be discontinuous in misorientation space, but should be continuous in inclination
space, the following methodology is adopted. This is to ensure that for a curved boundary,
which has constant misorientation throughout its length, the energy varies with inclination
in a continuous fashion, and does not suffer from discontinuities in energy as the boundary
inclination passes through a cell boundary in the inclination space.

As in fig.4.1, the variation of GB energy with inclination is linear and continuous in
both dimensions (of the inclination space), at a constant misorientation. The boundary
inclination is denoted by [l4, [5], where [l4, [5] are not restricted to integer values and assume

exact (fractional) values determined as
Iy = CDy 1, (4.32)
Is = 2% CDyxtan™* (@) Vs (4.33)
Ny

where, [n,,n,,n,| denote the normal indices in the crystal reference frame.

The weights (w,w’) are determined to be
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Figure 4.1: Bilinear interpolation for variation of boundary energy with inclination at con-

stant misorientation.

w = l4—(C4—1>

w’ = l5—(C5—1)

and the boundary energies at points P, (), R and S to be

Yp(er, ca, c3) = wye(er, ¢, c3) + (1 —w)yp(eq, ca, c3)

Yo(cr,ca,c3) = w'yp(cy, ea,c3) + (1 — w')ya(er, co, c3)

Yr(c1, c2,c3) = wyp(cr, ca,c3) + (1 — w)yalcr, c2, c3)

vs(er, e2,¢3) = wye(er, e, c3) + (1 — w')yp(cr, 2, c3)
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The grain boundary energy at intermediate inclination Olly, [5] is calculated to be

wys(cr, e2,c3) + (1 — w)yg(er, ea, c3) + w'yp(er, ca, c3) + (1 — w')yr(ca, ca, c3)
2

Yo(cr, 2, ¢3) =
(4.40)

In the figure below (fig. 4.2), the continuity of boundary energies in inclination space (at

a constant arbitrary misorientation) is shown. Arbitrary values of energy are chosen for the

corners in inclination space (points A — D in preceding fig. 4.1).

Figure 4.2: Boundary energies in inclination space at arbitrary misorientation. Note that
energy values (along the vertical axis) are in a.u.

Appendix D

Junction Extension

As stated before, it is difficult to compute boundary normals accurately in a junction region,
where there are three or more non-zero phase fields, even with the WENO formalism [59].

Values of the boundary energy computed using these normals are inaccurate, and methods
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that depend on these values are unstable.

Junction extension is a numerical procedure that permits us to sidestep this difficulty. It
does so by replacing inaccurate values by the value that is computed at the closest relevant
grain boundary point, i.e. a point at which there are only two non-zero phase fields. Values
computed along grain boundaries are extended into all relevant junction regions.

The extension procedure for any single boundary is simple to visualize, and is depicted
schematically in fig.2.7. During an initial grid traversal, the boundary inclination is computed
at any point where there are only two non-zero phase fields, and the corresponding boundary
energy is stored. These values are then permitted to percolate through any adjacent multi-
junction region, as follows. Iterate through all the junction points. If the boundary energy
at the current point is zero, and if any of the adjacent values are non-zero, compute and
store the average of all neighboring non-zero values. Repeat, until all junction values are
non-zero.

There are several challenges that must be overcome to implement a fast and memory-
efficient version of this algorithm. It is unreasonable, for instance, to search the entire grid for
junction points at each loop iteration, by determining how many non-zero phases are stored
at the current grid point. Instead, during the first grid traversal, when energies are computed
and stored along the boundaries, we choose to store a linked list of those grid coordinates
that correspond to all junction points. Iteration then requires simply traversing this list, and
the phase field update may be completed by traversing this list as well. The computational
time required for junction extension decreases as the average grain size increases.

A complication also arises from the need to identify relevant boundaries, given the set of

non-zero phase fields {¢;} at any point. If there are N nonzero phases, there are potentially

N(N—1)
2

relevant boundaries. In the initial microstructure, or during grain collapse, N can
become rather large; a considerable amount of memory can be required to store all of these
junction energies. In addition, it is not necessary that any given pair of phase fields (a,b)

corresponds to a boundary region in which we have computed the energy e,,. During topo-
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logical changes, boundaries are created and destroyed, but the corresponding phase fields are
present and non-zero at junctions both before and after the transformation takes place. For
these reasons, no matter how many non-zero phases are in fact present, we only extend values
associated with the three interface fields v, = ¢g — @1, Vo2 = Po — P2, and Y19 = ¢ — ¢,
where the phase fields have been ordered ¢g > ¢1 > ¢. During the subsequent phase field
update, any interface field for which extension has not produced a non-zero value is assumed
to have energy e,;, = 1.0.

And finally, extension is a process that depends on the derived interface fields, and not
the phase fields. To ensure that boundary extension is disjoint from one boundary to the
next, we use a sparse, doubly-indexed data structure to store the boundary energies at every
grid node [18]. In other words, the energy associated with the interface field 1, is stored and
accessed as the triplet (a,b, ¥). Any interface field v, for which a corresponding energy is
not stored is assigned an energy identical to e,, = 0.

The resulting junction extension method is relatively fast - on average, only 10-20 itera-

tions are needed.

Appendix E

Filling the 5-parameter space with SNL energies

The following procedure is used to fill up the energy space (the value in cell [¢q, ¢o, 3, 4, ¢5]
equals to the energy of the corresponding GB type) using the GB energies extracted for 388
GB types (Sandia).

1. For each of the 388 type (say kth), the orientations for grain A and B are expressed
as active rotation matrices g4 and gp respectively (as in dsc_ csl.txt). These are post-

multiplied by the ith (and jth) symmetry operator as in g4O4 and ggOp.

2. The misorientation between these grains (in the crystal frame) is expressed as (note
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that in the sample frame the misorientation for active rotations is Agapactive =

(9808)(9404)~" in contrast to the expression below)

AgAB,active = (QAOA)A(QBOB) (441>

3. The corresponding Euler angles for Agap getive are determined as (¢1, @, ¢o). If all
three are less than 90°, the corresponding indices in misorientation space [c1, ¢a, c3] are

calculated, then we proceed to step 4, else go to step 7.

g = 2xCDx¢p/m
cg = CD xcosd

c3 = 2xCDx¢y/m

4. The normal vector (in crystal frame) for grain A and B can be expessed as the 1st row

of the matrices g4O4 and ggOp

Nea = gAOA(l, 1) (4.42)
nya = ga04(1,2) (4.43)
Nya — gAOA(l, 3) (444)

5. For the normal n4 (and npg) the angular variables (6, ¢) are computed which give the

corresponding indices in inclination space [cy, 5]

0 = cos™! (Cc;%) (4.45)
e
o= 2015)2 (4.46)
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6. The cells [e1, ¢a, 3, Caa, 5] and [cy, ¢a, ¢3, C4p, c5p] are assigned the energy of the kth

(of the 388) GB type.

7. The misorientation is then expressed as the transpose ghp seive = (9808) ™' (9404)

and steps 3 — 6 are repeated.

8. The (active rotation) matrices g4 and gp are then are then exchanged and steps 1 — 7

are repeated.

9. We repeat steps 1 — 8 for the (i + 1)th (and (j 4+ 1)th) symmetry operator where i, j

vary independently as 1 <7 <24,1 < 5 < 24.
10. For cell [¢1, 9, 3, ¢4, c5] in the energy space we compute the energy as an average.

In the following figures we plot the energy variation at specific misorientations for C'D =
9,CDy = 9. Note that not all cells are filled, only those cells that correspond to one of the

388 GB types (or one of their crystallographic equivalents) are non — zero.
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