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Abstract

A multi-phase field method is presented both in two and three dimensions to model grain

boundary migration and to study the effect of anisotropy in boundary energy on populations

during grain growth. The misorientation-dependent distribution of boundaries is correlated

to the anisotropy in boundary energy, which scales with the sum of surface energies for

grains on either side. These surface energies are inclination-dependent in the crystal frame

of reference. The steady-state morphology of isolated grains, shrinking with time, is different

for varying anisotropic conditions. For a given anisotropy of boundary energy, it is shown that

the evolution of grain boundary character is different in the case of isolated shrinking grains

when compared to that of polycrystalline grain growth. The effect of different boundary

conditions imposed at junctions is found to be the key factor influencing the development

of anisotropic grain boundary character in polycrystalline systems. In the later half of the

present work grain boundary energies for arbitrary boundary types are estimated through

use of appropriate interpolation methods and distance metrics. The anisotropy in boundary

populations is correlated to the anisotropy in interpolated energies to demonstrate that for

an initial random texture, an inverse relation between boundary energy and population holds

true across the entire grain boundary space.
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Chapter 1

Introduction and background

1.1 Motivation

In the case of polycrystalline materials, it is often observed that the distribution of boundaries

is non-random [57, 32]. This non-random or anisotropic distribution of grain boundaries can

have a significant effect on macroscopic properties of these materials, which include but are

not limited to fracture toughness, corrosion resistance or mechanical strength.

This has of course motivated the development of grain-boundary engineered materials,

which have a high population of special boundaries (known as Σ or CSL boundaries), such

that these materials have better mechanical properties compared to conventional materials

having a random distribution of grain boundaries [51]. Some examples are worthy of men-

tion here - lead-acid battery materials having a high population of these special boundaries

(specifically Σ3 boundaries) show greater resistance to corrosion and failure, and nickel-based

alloys where the resistance to stress-corrosion cracking and the population of special GBs

scale with each other (see Fig,1.1). Hence the motivation to engineer materials which are

preferentially populated with certain boundaries types. And to produce such a non-uniform

distribution of boundaries, it is necessary to alter boundary properties accordingly (as an

inverse relation appears to exist between boundary energies and populations in metals and ce-
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ramics [57, 56, 32]). Hence the next obvious question - is there a natural correlation between

interface populations and interfacial properties, or in other words, given a set of interfacial

properties, can one predict interface distributions ? If we turn this question around, we can

also ask - if we want a certain distribution of grain boundaries, what sort of anisotropic

boundary properties should we have ?
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Figure 9. Cold-work embrittlement of a
rephosphorized interstitial-free steel. (a) A
cross-sectional optical micrograph showing
intergranular cracks resulting from applying a
draw ratio of 2.5 on a blanking diameter of
15.2 cm and (b) the corresponding grain
boundary character distribution along the
crack path.28

b

a

Figure 8. The condition of (a) conventional and (b) GBE-processed Pb-Ca-Sn-Ag lead-acid
positive battery grids following 40 charge-discharge cycles (1–1.781 V direct current) in H2SO4 at
70°C.

b 100 µm

upon which the functionality of these
alloys depend, were not found to be
adversely affected by the processing.

These observed improvements in hot
corrosion, creep, and fatigue resistances
are expected to enhance turbine compo-
nent reliability, while minimizing costs
associated with the use of alternative
corrosion-resistant coatings, direction-
ally solidified materials, or single-crys-
tal components currently used to mini-
mize intergranular degradation.21 Fur-
thermore, GBE processing may lead to
enhanced weldability for these materi-
als, thus resulting in reduced compo-
nent-assembly costs.

Lead-Acid Battery Electrodes
As temperatures under the hoods of

automobiles rise, the operating and cycle
life of lead-acid batteries is becoming
increasingly limited by the resistance of
the positive electrodes (grids) to inter-
granular corrosion and creep-cracking—
phenomena that contribute to weight
loss and grid growth, respectively.22,23

Figure 8 compares the condition of a
conventional Pb-Ca-Sn battery grid ver-
sus a GBE-processed grid following in-
dustry-standard electrochemical polar-
ization and cycling tests.24 GBE-pro-
cessed grids containing special grain
boundary fractions in excess of 63% re-

a 100 µm

main fully intact, while conventional
grids undergo a complete loss in struc-
tural integrity due to extensive through-
wall creep cracking and grain dropping
(via intergranular corrosion). Corre-
sponding cross-sectional micrographs of
the microstructurally optimized grids
reveal an increase by a factor of two in
the resistance to intergranular attack
compared with that observed in the con-
ventional grids (fsp = 13%) having a
similar initial thickness.25

Growth and weight-loss rates for the
GBE-processed Pb-Ca-Sn alloy can be
reduced to levels previously only attain-
able in Pb-Sb alloys that are used prima-
rily in high-cycle applications.23 Hence,
the possibility now exists for developing
Pb-Ca-Sn alloys for maintenance-free
uninterruptible power supplies, traction,
and industrial storage batteries that
eliminate water losses and plateback ef-
fects associated with Pb-Sb designs.23

Furthermore, such GBE-processing may
eliminate the need for expensive silver
alloying, which is now commonly used
to address corrosion concerns.

The improvement in electrode dura-
bility provided by GBE processing also
offers the potential for reducing grid
thicknesses by 50% without compromis-
ing current lead-acid battery operating
life. Via the associated weight reduction,

this corresponds to an increase of ap-
proximately 20% in energy density
(Wh/kg), allowing the lead-acid battery
technology to more effectively compete
with emerging battery designs for elec-
tric vehicle applications (e.g., NiMH,
Zinc-Ai, etc.).26,27

Interstitial-Free Steels
The deep drawability of interstitial-

free steels, used primarily in the fabrica-
tion of autobody panels, depends on
their ductility and resistance to cold-
work embrittlement.28 Cold-work em-
brittlement is manifested as intergranu-
lar cracking (Figure 9). Cross-sectional
analysis of the crack path by automated
electron diffraction shows that cracked
segments consistently terminate at low-
Σ CSL grain boundaries.29 Of the 88 grain
boundaries situated along or intersect-
ing the analyzed crack face, a total of 68
(or 60%) were identified as being non-
special (i.e., Σ  > 29). In contrast, only 15%
(three of 20) low-Σ CSL boundaries popu-
lating the crack length were similarly
affected. These results clearly demon-

80
70
60
50
40
30
20
10
0

Nu
mb

er
 of

 B
ou

nd
ar

ies

Random
CSL Boundary Character

80 Boundaries

Special

60% 
Cracked

15% 
Cracked

Total Boundaries
Number Cracked

40 JOM • February 1998

Overview
Grain Boundaries

Advances in automated electron diffrac-
tion techniques, microstructural modeling,
and the understanding of structure-prop-
erty relationships for grain boundaries have
resulted in the emergence of grain boundary
engineering as a formidable tool for cost-
effectively achieving enhanced performance
in commercial polycrystalline materials (i.e.,
metals, alloys, and ceramics). In this article,
some applications for grain boundary
engineering technology that have been de-
veloped during the past several years are
presented.

INTRODUCTION

It has long been recognized1 that grain
boundaries in materials can possess dis-
tinct structures. Kronberg and Wilson2

first proposed a general means of de-
scribing the specific structure of grain
boundaries based on the misorientation
of adjoining crystals, whereby, a three-
dimensional sublattice with points com-
mon to both adjoining crystals can be
achieved. The unit volume of this coinci-
dence-site lattice (CSL) relative to that
of the unit cell of the single-crystal lattice
is described by the parameter Σ; increas-
ing values of Σ correspond to a greater
degree of disorder present at the in-
terface.

Aust and Rutter3 were the first to ex-
perimentally observe special properties
in low-Σ CSL grain boundaries. Since
then, numerous studies4 have shown
that these low-Σ CSL grain boundaries
(usually Σ ≤ 29) can possess special chemi-
cal, mechanical, electronic, kinetic, and
energetic properties. Of particular rel-
evance to industrial materials, these spe-
cial grain boundaries display a high re-
sistance (and, in many cases, immunity)

Applications for Grain Boundary
Engineered Materials

G. Palumbo, E.M. Lehockey, and P. Lin
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Figure 1. Predicted and measured inter-
granular crack penetrations in Monel 400 (Ni-
30Cu) nuclear steam generator tubing.11

Figure 2. The probability of continued inter-
granular crack propagation as a function of
crack length and special boundary frequency
(fsp).12
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quency. Experimental data are from stressed
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nal strain) following 3,000 hours of exposure
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to sliding, cavitation, and fracture; cor-
rosion and stress-corrosion cracking; sen-
sitization; and solute segregation (equi-
librium and nonequilibrium).

Low-Σ CSL grain boundaries are found
to naturally occur in all polycrystalline
materials; their frequency of occurrence
is strongly dependent upon the process-
ing history of the material (e.g., casting,
deformation, recrystallization, heat treat-
ment, etc.). In the past, the failure to
consider resultant grain boundary char-
acter distributions during conventional
processing has led to component materi-
als having unpredictable, highly vari-
able, and usually low (≤25%) popula-
tions of these low-Σ interfaces.

In 1984, Watanabe5 introduced the
concept of grain boundary design and
control and subsequently defined the
potential opportunities for improving
the bulk properties of both structural
and functional materials by manipulat-
ing the frequency of low-Σ special grain
boundaries.6 Recent advances in auto-
mated electron diffraction techniques7

have made it possible to rapidly assess
grain boundary character distributions
in polycrystalline materials and render
the concept of grain boundary engineer-
ing (GBE) a reality.

COMPONENT RELIABILITY
ASSESSMENT

Intergranular degradation processes
(e.g., corrosion and stress-corrosion
cracking) are a frequent cause of prema-
ture and unpredictable service failure of
engineering components. Since these
processes cause component failure via
propagation through the intercrystalline
network, they are strongly dependent

upon the distribution of specific grain
boundary structures in the material. The
formulation and application of simple
stochastic models for the propagation of
intergranular cracking8 and corrosion9

processes, in conjunction with micro-
structural information regarding grain
boundary character distributions, can
provide the opportunity for improved
component lifetime prediction and a re-
duction in the occurrence of costly un-
scheduled plant outages.

An example of such an application is
summarized in Figure 1, which shows
the depth distribution of intergranular
crack penetrations in a sampled section
of Monel 400 (Ni-30Cu) nuclear steam
generator tubing after more than 20 years
of service.10,11 Through automated elec-
tron diffraction, the grain boundary char-
acter distribution was found to contain
approximately 35 percent special (i.e.,
Σ ≤ 29) grain boundaries (fsp). By apply-
ing a previously developed stochastic
model for the effect of special boundary
frequency on intergranular crack pen-
etration8 and normalizing the determined
probabilities to the actual number of
cracks extending less than two grain di-
ameters, a predicted limiting distribu-
tion was determined which, as shown in
Figure 1, was found to be fully consis-
tent with the actual measured distribu-
tion. On this basis, the probability of
continued crack propagation (ultimately
leading to through-wall penetration) was
shown to be less than 10–6, supporting
the continued fitness for service of the
steam generator.10,11

Figure 1.1: (a) Intergranular corrosion and cracking in conventional lead-acid batteries hav-
ing low (13%) population of special boundaries compared to (b) which shows relatively
negligible cracking and has a high population (about 63%) of CSL boundaries introduced
through GBE. (c) Maximum intergranular crack length and the fraction of special bound-
aries in a Ni-based alloy scale with each other. This figure was reproduced from reference
[51].

1.2 Background

Non-uniform grain boundary properties can play a significant role on their populations, and

result in grain-boundary texture in the material. Texture, in the present context, implies a

non-uniform distribution of crystallographic properties, indicating that either the grains (in

the polycrystalline framework) are preferentially oriented along certain directions, or certain

boundary types are more populated than others, or both. The material is then said to have an

orientation texture or a boundary texture respectively. It is to be noted that grain boundaries

in three dimensions have five degrees of freedom - three related to the misorientation between
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the crystals on either side (needed to rotate one crystal to another), and two related to the

inclination of the boundary plane in space (see Fig.1.2). So grain-boundary texture can

either be misorientation or inclination based.

Figure 1.2: Grain boundaries in three dimensions have five degrees of freedom - the first
three related to crystal misorientation, and the last two to the inclination of the boundary
normal in space. This figure was reproduced from reference [55].

Grain boundary properties, like energy or mobility can be related to macroscopic observ-

ables (like boundary velocity v) as

ν = mγk (1.1)

where, m, γ and k denote mobility, energy and boundary curvature respectively. In

curvature-driven models, grain boundaries move along the boundary normal towards their

centre of curvature. The mobility and energy terms are often combined as a reduced mobility

µ = mγ.

Grain boundaries (GB) meet at junctions, at angles determined by the relative energies

of the GB segments in these junctions. Knowing the values of these boundary energies,

one can use Neumann’s triangle for mechanical equilibrium, and show that these angles are

related by the following relation [4], if one assumes that the boundary energy is inclination

(or boundary-plane) independent .
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γ12

sinα3

=
γ23

sinα1

=
γ31

sinα2

(1.2)

where, γ and α denote the boundary energy and the included angle opposite to boundary.

In the isotropic case, where all boundaries have equal energies, boundaries meet at angles

equal to 120° at the triple junctions. When boundaries have different energies, they rotate

and lengthen till mechanical equilibrium is achieved at junctions (see Fig.1.3).

Figure 1.3: Grain boundaries rotate and lengthen at boundary junctions till mechanical
equilibrium is restored (figure reproduced from [23]).

In case, the boundary energies are inclination-dependent (that is varying with the bound-

ary normal), torque terms appear which tend to rotate boundaries to low-energy inclinations.

Herring’s equations for mechanical equilibrium at boundary junctions for such cases can be

expressed as (refer [4])

∑(
γt̂+

∂γ

∂ϕ
n̂

)
= 0 (1.3)

where, ϕ is the inclination angle of the boundary, and t̂ and n̂ represent the tangent and

the normal vectors to the grain boundary respectively (see Fig.1.4).

An alternate way of representing inclination-dependent energies was given by Cahn and
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from both crystals are parallel. For the cubic case, this oc-
curs only for <100>, <110>, and <111> misorientations
and when <100>||<110>.

3. Experimental methods for measuring the
distributions of internal interfaces in polycrystals

3.1. Direct observation of grain shape

The direct, optical observation of three-dimensional grain
shapes in polycrystals is usually not possible. If the material
is transparent, and a section smaller than the grain size is
viewed in transmission, then it is possible to visualize the
inclination of the grain boundaries. However, for thicker
and opaque samples, light absorption and scattering be-
come limiting factors. To get around the problem of direct
observation, foams (soap films) have long been studied as
analogs to polycrystals [13–16]. The property that a soap
film network has in common with the grain boundary net-
work is that the interfaces adopt configurations driven by
the balance of surface tensions. For the case of foams, the
film boundaries must all meet at triple lines with 120! dihe-
dral angles and the triple lines must all meet at quadrajunc-
tions with 109.5! dihedral angles; these configurations bal-
ance the surface tensions and are in local mechanical
equilibrium. Since there is no regular polyhedron with pla-
nar sides that simultaneously meets these criterion and fills
space, the bubbles must change shape and have curved
boundaries supported by pressure differences. One other in-
teresting polycrystal analog is lead shot, which has been
compressed to a minimum volume to form polyhedral
bodies that can then be separated and analyzed [17].

While bubbles in foams and grains in polycrystals are to-
pologically analogous, there are two critical differences.
The first is that the capillary pressure that drives grain
boundary motion is not analogous to the gas pressure within
a bubble [18]. Rapid motion of gas within a bubble makes it
impossible to sustain internal pressure differences and the
uniform pressure will lead to a constant mean curvature on
the boundaries of the bubble. Rapid transport of the crystal-
line solid is not possible and, as a result, the capillary pres-
sure is not expected to be uniform and can be determined
by local conditions. Therefore, the shapes of crystalline
grains are not expected to be bounded by surfaces with a
uniform curvature. The second important difference is that
while the interface energy per unit area of the soap film is
isotropic, this is not so in the crystal. In general, the energy
per unit grain boundary area (c) in the polycrystal is a func-
tion of the five macroscopic parameters: c(Dg, n). The con-
dition for local equilibrium at the interface are now given
by the Herring equation [19]:

X

i

cit̂ti þ
@ci
@bi

n̂ni ¼ 0 ð4Þ

where b is the right-handed angle of rotation about the triple
line direction, measured from a reference direction and the
other terms are defined in Fig. 8. This equilibrium condition
permits a wide range of dihedral angles that are expected to
deviate significantly from 120!. Furthermore, grain sur-
faces will adjust to increase the area of low energy bound-
ary orientations while decreasing the area of higher energy
boundary orientations. For these reasons, it is necessary to

study the interfaces of actual crystalline grains, rather than
soap bubbles.

In several systems, intact grains can be separated from
the polycrystal and examined individually. When a b-brass
casting is placed in a warm solution of dilute nitric acid,
and mercurous nitrate is added, a film of mercury forms on
the surfaces and this allows the grains to be separated
[20–22]. It is also possible to separate the grains in a fine
b-brass casting by crushing at about 400 !C, when it is brit-
tle [23]. The grains of a stainless steel have been separated
by selective grain boundary corrosion [24] and the grains
in aluminum can be separated from the polycrystal by infil-
tration of liquid gallium [25]. The most complete study of
separated b-brass grains was completed by Hull [22], who
examined 941 separated whole grains. So far, these direct
observations of separated grains have provided information
only on the shapes of grains, not the crystallographic orien-
tations of the internal surfaces.

3.2. Optical measurements using thin sections

As mentioned earlier, light microscopy can be used to meas-
ure grain shapes in thin samples that transmit light. By
viewing a crystal in transmitted light through crossed polar-
izers with a lambda plate inserted, regions of constant
orientation in the microstructure appear with constant inter-
ference colors so that individual grains in the microstruc-
ture can be distinguished on the basis of their color. The col-
or of a grain depends on the thickness of the sample, the
material's birefringence, and the orientation of the optical
axis. Unfortunately, there is no unique relationship between
color and orientation, so many observations must be made
with the sample in different orientations with respect to the
polarized light. This is accomplished on a universal stage,
which allows the specimen to be tilted and rotated. By ob-
serving the colors at many different orientations, it is possi-
ble to determine the orientation of the optical axis. This
technique was developed by geologists and is applied pri-
marily to minerals that have relatively large grain sizes and
are transparent in thin sections. Samples must be ground to
a thickness a few tens of microns and polished on both
sides. The image analysis that is needed to determine the
crystal orientations from these micrographs has been auto-
mated and the technique is referred to as computer inte-
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Fig. 8. Schematic illustration of a triple junction where three grain
boundaries meet.Figure 1.4: Torque terms tend to rotate bondaries to low-energy inclinations, when the

boundary energy is inclination-dependent. This figure was reproduced from reference [55].

Hoffman [5, 6], where they replaced energies γ(n) and torques ∂γ
∂n

by a single capillarity

vector ξ(n) (see fig.1.5). Cahn showed that the ξ-plot is similar to the γ(n) Wulff plot, and

it gives a more complete description of surface energy anisotropy and expected equilibrium

shapes.

Regarding grain growth kinetics, the von-Neumann-Mullins relation [refer [45, 69]] ex-

presses the rate of grain growth in two dimensions as

∂A

∂t
= −mγ(2π −

n∑
i=1

αi) = −2πmγ(1− n

6
) (1.4)

where, A, αi denote grain boundary area and turning angle at each grain corner (or triple

junction), as seen in Fig.1.6.

The simplest models of grain growth assume isotropic properties where all boundaries

have equal mobilities and energies irrespective of grain boundary type [3, 62]. As can be

derived from the previous relation, one expects that in two dimensions, grains having more

than six edges grow, while others shrink with time, during isotropic curvature-driven grain

growth. As stated earlier, boundary velocity v is proportional to curvature k = 1
r
. Hillert

proposed a simple power-law equation relating mean grain radius R to time t (in two dimen-

sions) [refer [22]]
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Figure 1.5: (a) Defining of ξ-vector (b) Similarity of the Wulff plot and the ξ-plot. These
were reproduced from Cahn’s paper [5].

system in three dimensions; p is a point on ,, and ‘\p is the plane
perpendicular to line , at point p. We define the Euler width of a
domainD in the direction , as E‘ Dð Þ~

Ð
px(‘\p \D)dp (see Fig. 2b),

where the integral is over all points p along line , and x(‘\p \D) is the
Euler characteristic of the intersections of the domain D with plane
‘\p . The Euler characteristic is the number of objects or pieces in the
plane ‘\p \Dminus the number of holes in those objects/pieces. (For
a convex object with no holes, x5 1.) The mean width ofD,L(D), is
twice the Euler width, averaged over all lines , through the origin. If
the object D is a line or a curve, the mean width is its length; for a
convex object, the mean width is twice the average length of the
projection onto a line ,, so for a sphere it is twice its diameter. The
mean width is additive in the sense that ifD1 andD2 are objects with
mean width L(D1) and L(D2), the union of these two objects has
mean width L D1|D2ð Þ~L D1ð ÞzL D2ð Þ{L D1\D2ð Þ. Note that
the same additivity rule applies to the volume or surface area of a pair
of objects. Hadwiger’s theorem states that any measure of the linear
dimension of a convex body that is additive and continuous is simply
proportional to themeanwidth14–18. Themeanwidth of an object can
be computed analytically for many shapes, including all flat-faced
polyhedra, and computed numerically for arbitrary shapes, as is
shown in detail in Supplementary Information.

A few comments on the main result, equation (2), are in order.
First, unlike the von Neumann–Mullins result in two dimensions,
this result is not purely topological. The rate of change of the domain
volume depends on the mean width of the domain and the total
length of the triple lines. It does not, however, depend explicitly on
grain shape. Note that the summation of the lengths of all triple lines
(in equation (2)) can be described as the mean width of the set of
triple lines, L(edge(D)), where edge(D) is the set of triple lines.

We can rewrite the right side of equation (2) as –2pMcL(D)
(12 f/6), where f~L(edge(D))=L(D). If we write the number
of faces on a domain (a face is a region of the surface of D bounded
by triple lines) as m, then it can be seen that f scales as m1/2.
Using this relation, we can rewrite equation (2) approximately as
dD2/dt5C1Mc(62C2m

1/2), where we have assumed that all lengths
are proportional to the same linear dimensionD of domainD, andC1

and C2 are constants. This result looks very similar to the classic two-
dimensional von Neumann–Mullins result (a similar result was
found by Hilgenfeldt et al.10), that is, the right side of the equation
is topological. Unlike the exact extension of the von Neumann rela-
tion to three dimensions (equation (2)), this result is approximate
and simply shows the correct scaling. As both of the terms on the
right side of equation (2) are proportional to the linear dimension of
the domain, it can be seen that dD3/dt is simply proportional toD or
that D / t1/2. Such parabolic growth is typical of capillarity-driven
domain coarsening19,20.

We can deduce the two-dimensional von Neumann–Mullins rela-
tion from equation (2) by considering a prism of cross-sectional
shape C with n sides and length l in three dimensions (see Fig. 1b).
For large l (holdingC constant), the prism appears as a line such that
L(D)< l and the sum of the edge lengths is simply nl. Inserting
these into equation (2) yields dV/dt< ldA/dt<22pMc (l2 ln/6).
Cancelling l from each side and taking the limit that lR‘ exactly
yields the two-dimensional von Neumann–Mullins relation.

The von Neumann–Mullins relation can be restated by noting
that dA/dt5 –(pMc/3)(62n)5 –2pMc[x(D2 x(vert(D))/6], where
x(vert(D)) is the Euler characteristic of the vertices of the domain D
(that is, the number of triple points). We note that this form of the von
Neumann–Mullins relation is very similar to our three-dimensional
result written in the form dV/dt5 –2pMc (L(D)2L(edge(D))/6)).
The similarity between the two suggests that there may be a more
general expression that works in all dimensions. This is, in fact, true
and can be expressed as:

dVd

dt
~{2pMc Hd{2 Ddð Þ{ 1

6
Hd{2 Dd{2ð Þ

" #
ð3Þ

where d is the dimension of space, Vd is the volume of domain Dd

in d dimensions, and Dd22 is the (d2 2)-dimensional feature of the
domain (for example, vertices in two dimensions, edges in three
dimensions, …). In this expression, Hd22 is known as the Hadwiger
(d2 2)-measure in geometric probability14,15. The definition of H is
akin to that of L above. Consider a (d2 2)-dimensional plane, ,,
through the origin in d dimensions; p is a point on ,, and ‘\p defines

the two-dimensional plane perpendicular to , at p. Hd22(Dd) is equal

to the average of E Ddð Þ~
Ð
p

x(‘\p \Dd)dp over all planes , through

the origin. In two dimensions, H0(D2)5x(D2) and H0(D0)5
x(vert(D)). In three dimensions, H1(D3)5L(D3) and H1(D1)5
L(edge(D3)). These agree with the two-dimensional von Neumann
relation and our exact three-dimensional result, respectively.

Asmostmodernmodels for the evolution of polycrystalline micro-
structures start with a postulated extension of the two-dimensional
von Neumann–Mullins result into three dimensions, the new, exact
theory for the evolution of each grain provides a firm foundation for
the development of rigorous statistical models for microstructure
evolution that respect the underlying geometric and topological con-
straints of a space-filling network21,22.
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Neumann–Mullins relation. a, A grainwith six faces and twelve edges from a
three-dimensional network. ei are the lengths of edge i. b, The intersection of
a domain (D) and plane ‘\p which has its normal parallel to , at point p.
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Figure 1 | A two-dimensional grain and its extension into three dimensions.
a, A schematic illustration of a grain in a two-dimensional network
structure. The dotted lines indicate domain boundaries of adjacent domains,
and ai is the turning angle at triple point i. b, The same grain extended into a
three-dimensional prism of length l and cross-sectional shape C.
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x(vert(D)) is the Euler characteristic of the vertices of the domain D
(that is, the number of triple points). We note that this form of the von
Neumann–Mullins relation is very similar to our three-dimensional
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where d is the dimension of space, Vd is the volume of domain Dd

in d dimensions, and Dd22 is the (d2 2)-dimensional feature of the
domain (for example, vertices in two dimensions, edges in three
dimensions, …). In this expression, Hd22 is known as the Hadwiger
(d2 2)-measure in geometric probability14,15. The definition of H is
akin to that of L above. Consider a (d2 2)-dimensional plane, ,,
through the origin in d dimensions; p is a point on ,, and ‘\p defines
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x(vert(D)). In three dimensions, H1(D3)5L(D3) and H1(D1)5
L(edge(D3)). These agree with the two-dimensional von Neumann
relation and our exact three-dimensional result, respectively.

Asmostmodernmodels for the evolution of polycrystalline micro-
structures start with a postulated extension of the two-dimensional
von Neumann–Mullins result into three dimensions, the new, exact
theory for the evolution of each grain provides a firm foundation for
the development of rigorous statistical models for microstructure
evolution that respect the underlying geometric and topological con-
straints of a space-filling network21,22.
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Figure 1 | A two-dimensional grain and its extension into three dimensions.
a, A schematic illustration of a grain in a two-dimensional network
structure. The dotted lines indicate domain boundaries of adjacent domains,
and ai is the turning angle at triple point i. b, The same grain extended into a
three-dimensional prism of length l and cross-sectional shape C.
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Figure 1.6: (a) Representation of grains in a two dimensional polycrystalline network -
whether a grain grows or shrinks with time depends on topological factors (as its number of
sides) (b) corresponding representation of idealized grain in three dimensions (reproduced
from reference [36]).
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v =
∂R

∂t
= −αmγk (1.5)

resulting in Rp −Rp
0 = Bt, p = 2, R and R0 being the average grain radius at time t = t

and t = 0 respectively. It has been shown by polycrystalline models of grain growth [3, 62]

that a power-law exists for domain growth, where the average grain area A linearly scales

with time t

A− A0 = Ktn, n = 1 (1.6)

In three dimensions, the von Neumann’s relation was generelized by Srolovitz et al. as

[36]

∂V

∂t
= −2πmγ

(
L(D)− 1

6

n∑
i=1

ei(D)

)
(1.7)

where, L(D) denotes a linear measure of domain D, and ei represents the length of ith

triple line of domain D, 1 ≤ i ≤ n (see Fig.1.6).

It has been shown, both in experimental and simulation studies, that grain boundary

properties do have a relation to their populations. In magnesia, the boundary energy and

population are inversely correlated [57], as seen in Fig.1.7. Grain boundary planes having

low energies ({100} in this case) are relatively more populated. In aluminium, planes with

low surface energies ({111} in this case) have higher populations [56]. Similarly in nickel

(another face-centred cubic metal), {111} planes being low in energy are more populated [32]

(see Fig.1.7), supporting the notion that an inverse relation exists between grain-boundary

energies and distributions.

Although energy γ and mobility m are related to the boundary velocity v as in eq. 1.5,

recent work indicates these are independent of each other. Olmsted et al. performed a series

of molecular-static simulations on bicrystal geometries and extracted realistic values of grain

boundary energies and mobilities of a limited set of 388 boundary types [49]. Comparing
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3680 D.M. Saylor et al. / Acta Materialia 51 (2003) 3675–3686

Fig. 4. The reconstructed energies for boundaries with misorientations of (a) 10°, (b) 20°, and (c) 30° around the [1 1 0] axis. The
energies, which are in arbitrary units (a.u.), are plotted in stereographic projection.

determined the mean and standard deviation of
ln(l + 1) and q100 for all boundaries in each par-
tition. This procedure allows us to examine the cor-
relation over the entire space. The results illus-
trated in Fig. 5a show that as g increases, q100
increases and l decreases. A second way to look
at these data is to average the energy over all mis-
orientations, and plot the dependence of this mis-
orientation averaged energy as a function of
boundary plane, as in Fig. 5b. While the averaging
compresses the dynamic range of the data, the
{1 0 0} orientations are clear minima.
To quantify the extent to which the recon-

structed energy function correlates to the distri-
bution, we use the Spearman rank-order correlation
coefficient, rs [25]. The values of rs range from !1
to 1, which indicate perfect negative and positive
correlation, respectively, and for rs = 0, no corre-
lation exists. The comparison is based on values of
the distribution (l("g, n)) that correspond to the
center of each cell in the parameter space. Compar-
ing the reconstructed energies to the frequency of
occurrence of each type, we find an rs equal to
–0.77; this indicates a high degree of (negative)
correlation and a marked relationship between the
two distributions [26]. It should be noted that this
strong negative correlation arises principally from
the three misorientation parameters. In other
words, if we average over the boundary planes and
compare the population and the misorientation
dependence of the reconstructed energies, the cor-
relation rises to a remarkably high value of rs =
!0.98. On the other hand, if we examine the corre-
lation over only the two inclination parameters by

Fig. 5. (a) The grain boundary population (squares) and the
minimum inclination of the boundary normal from a #1 0 0$
direction (circles) plotted as a function of the reconstructed
grain boundary energy. For each quantity, the average of all
values within a range of 0.022 a.u. is represented by the point;
the bars indicate one standard deviation above and the mean.
(b) The misorientation averaged reconstructed grain boundary
energies plotted in stereographic projection.

tion are /1 = 45!, U = 70.5!, /2 = 45. Because it is cos U
that is discretized, the limits of each bin occur at intervals
of 1/9. For the coherent twin, cos U = 3/9 and it therefore
falls exactly on the border between bins. Unless the bound-
aries between bins are shifted, the population of the twin is
split between multiple bins and always appears to have a
lower than expected population when using 10! resolution.

The current method of evaluating the GBCD has a
number of limitations. For example, the grain boundary
character distribution is determined only from triangular
segments near the triple junctions. The segments of grain
boundaries that are not directly connected to a triple
junction are not included in the distribution. However,
despite this limitation, the distributions reported here
are comparable to previously reported distributions for

Ni determined from the stereological analysis of two-
dimensional sections [37]. A second limitation is that the
networks of triple lines and triangular segments measured
here does not form a continuous interfacial mesh, as
would be needed for input into a finite element
simulation.

Consistent with many previous studies of grain bound-
aries in Ni, the population of R9 tilt boundaries is quite
high; R9 grain boundaries make up 8.84% of all the grain
boundary length and most of them are tilt grain boundary
boundaries. It is well known that if two R3 grain bound-
aries meet, and they do not share a common axis of rota-
tion, they must join a R9. In this sample, 38.6% of the
total grain boundary length is composed of R3 grain

Fig. 5. (a) Grain boundary plane distribution compared to (b) the grain boundary energy distribution for grain boundaries with the R9 misorientation.
The plots are stereographic projections, in the bicrystal reference frame, and the [0 0 1] axis is vertical and in the center of the plots.

Fig. 6. The relative energies of [0 0 1] symmetric tilt grain boundaries. Red
arrows on the horizontal axis denote the positions of the grain boundaries
with the R3 and R9 misorientations. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 7. The average populations of all grain boundaries with energies that
are within the range of ±0.05 a.u. of the energy on the horizontal axis.

J. Li et al. / Acta Materialia 57 (2009) 4304–4311 4309

Figure 1.7: (a) Populations plotted vs. grain-boundary energies in magnesia (see squares) -
note they are inversely related, as also in (b) nickel. Figures reproduced from [57, 32].

the energies of these boundaries with their mobilities no obvious correlation seems to exist.

In fig. the variation of boundary energy with boundary mobility is shown for boundary

types refered to as Σ3 and Σ5. Some low-energy boundaries have low mobilities (such as the

coherent Σ3 boundaries), but this does not always hold true. Also there does not appear

to a correlation between boundary width (across which crystal orientation changes from one

grain to another) and boundary energy - coherent Σ3 boundaries have low width and low

energies, but this should not imply that there is a direct scaling between boundary width

and boundary energy.

This inverse relationship is predicted by simulations of grain growth in materials having

anisotropic boundary energies. Gruber et al. showed, by use of finite-element simulations,

that low-energy boundary planes are more populated, (see Fig.1.9) and that an anisotropy

in boundary energy has a greater effect on boundary distributions than boundary mobility

[17]. In a later paper, using the framework of a discrete model (Monte Carlo) they showed

that an anisotropy in boundary energy has a greater effect on misorientation distributions

than an anisotropy in mobility [19]. The energy function used has a form identical to one

proposed by Read-Shockley [54], where the boundary energy scales with the misorientation

angle for low misorientations, and is constant for high misorientations (typically greater than
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Figure 1.8: Variation of boundary energy with mobility for boundary types Σ3 and Σ5.
These values have been extracted from recent work by Olmsted et al [49]. There appears to
be no direct correlation between the two quantities.
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15°), as in Fig.1.10. As can be seen in Fig.1.11, misorientation distributions (in multiples of

random density MRD) scales inversely with the misorientation-based GB energy.

γRS(θ) =

(
θ

θ′

)[
1− ln

(
θ

θ′

)]
, θ ≤ θ′ (1.8)

γRS(θ) = 1, θ > θ′ (1.9)

Figure 1.9: Interface populations plotted with relative GB energies - note inverse relation
inspite of significant scatter. This figure was reproduced from reference [17].

Kazaryan et al. simulated anisotropic grain growth, in two dimensions, using a diffused-

field approach (a phase-field model where boundaries have a finite width, and one does not

explicitly need to record their position) and arrived at similar conclusions [28]. Upmanyu et

al. showed that an anisotropy in boundary mobility only affected the overall rate of grain

growth, whereas an anisotropy in boundary energy resulted in non-uniform grain boundary

distributions (compared to distributions when the boundary properties were assumed to be

isotropic), as can be seen in Fig.1.12 [68].

As explained earlier, grain boundaries (in three dimensions) have five degrees of freedom.

Hence a complete anisotropic description of grain-boundary energy should depend both on
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Figure 8: Energy function derived from MDF measurements of polycrystalline magnesia.
Solid line is γRS, θ′ = 15◦.

example, we consider the area and number weighted MDFs from the poly-
crystalline magnesia sample from Part 1. Fig. 8 shows the results of a fit
to γ(θ) using equation 22 with the 3D fitting parameters. We see that the
majority of the points follow a Read-Shockley type function with θ′ = 15◦,
as expected. Deviations occur in the low angle region where the expected
scarcity of low angle boundaries leads to poor statistics. It must be noted
that such a derivation is only approximate. In particular, we showed in Part 1
that boundaries with the same energy may have different average areas, e.g.
when the energy is a “step” function. Despite lacking a strict one-to-one cor-
respondence, the method described here should provide a reasonable estimate
for the main features of the energy function.

3. Summary

To describe the result of Part 1, we have proposed a critical event model
for the evolution of number and area weighted misorientation distribution
functions during grain growth. This model demonstrates the explicit depen-
dence of misorientation texture on grain boundary energy anisotropy and
orientation texture through the texture weighted misorientation distribution
function. Predictions from the model are compared to area and number

14

Figure 1.10: Read-Shockley based variation of boundary energy with misorientation - a GB
misoriented by more than 15° is typically regarded to be a high-angle GB. The dotted line
represents the energy function derived for magnesia from simulations. (figure reproduced
from [20]).

lattice misorientation (across the boundary) and on the inclination of the boundary normal.

It has been experimentally observed in face-centred cubic metals, that there is an appreciable

variation of boundary energy with inclination, at a constant misorientation. A couple of

examples of GB energy variation in fcc metals are shown here (see Figs.1.13,1.14,1.15) for

reference - the first depicts the variation of energy with misorientation angle [56], and the

variation of boundary energy for the particular case of symmetric-asymmetric tilt [001] (and

[110] symmetric tilt) boundaries in aluminium [50]. In the second case, the variation of grain

boundary energy with misorientation angle for the case of symmetric [001] tilt boundaries,

and the overall variation of GB energy (over all misorientations) with inclination is shown

for nickel [32].

The simplest anisotropic models assume that the boundary energy does not depend on

inclination, and varies only with misorientation, having a form similar to the Read-Shockely

expression shown above (see fig.1.10). Holm et al. simulated grain growth using a Monte-

Carlo method, with a misorientation-based GB energy, and show that although texture

played a significant role in growth kinetics, in all cases low-energy misorientations (which in
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Figure 8: Area and number weighted MDFs in multiples random for various Read-Shockley
type energy functions and isotropic mobility. Data from 3D Monte Carlo simulations at
500 MCS.
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Figure 1.11: (a) Number-weighted and (b) area-weighted misorientation distributions as
derived from simulations by Gruber et al. This figure was reproduced from reference [19].
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Figure 5. The effect of anisotropy in grain boundary properties on
the misorientation distribution function φ(θ) (MDF) obtained under
various combinations of isotropic and anisotropic boundary energies
and mobilities (as indicated in the figure) at simulation time t = 104

MCS. Also shown is the variation of (γRS/MD)/2 (dashed line) in
arbitrary units.

extracted from this simulation was m = 0.69 (see
Table 1), indicating that the grain size evolution is
no longer parabolic and is significantly slower than
for normal grain growth. Identical results were ob-
served when the energy anisotropy was coupled with
mobility anisotropy: M(θ) = MSF/MD (see Fig. 3(d)).
Figure 6 shows the MDF plots for a simulation with
γ (θ) = γRS/MD and M(θ) = MSF/MD at four instants
of time (in MCS): t = 101, 102, 103 and 104. Mi-

Figure 6. MDFs corresponding to 4 different simulations times (in
MCS): t = 101 (filled circles and solid line), t = 102 (filled dia-
monds and dotted line), t = 103 (filled squares and dotted line) and
t = 104 (filled bar chart) for simulations with anisotropic boundary
energy and mobility, γ (θ) = γRS/MD and M(θ) = MSF/MD.

crostructural evolution proceeds so as to increase the
frequency of low energy boundary misorientations cor-
responding to cusps in γ (θ) = γRS/MD($ = 7 θ =
21.8◦, $ = 13 θ = 27.8◦ and $ = 19 θ = 13.2◦)
and the final MDF (see Fig. 5) shows distinct peaks at
misorientations that correspond to these cusps. Thus,
the microstructure in a system with anisotropic bound-
aries is not random, but rather evolves to contain pre-
dominantly low energy misorientation boundaries.

Simulations were also performed for simple Read-
Shockley variation in boundary energy and uniform
mobility, i.e. γ (θ) = γRS and M(θ) = 1. The area
kinetics again deviate from the parabolic growth law
(see Fig. 4), with a grain growth exponent m = 0.93
(Table 1). The final MDF (not shown) evolves to
show a non-random distribution of boundary types
with predominantly low misorientation (low energy)
boundaries. The grain growth exponent increased to
m = 0.86 when the energy anisotropy was coupled with
mobility anisotropy: M(θ) = MSF/MD (see Fig. 3(d)).
Comparing the area and MDF evolution kinetics for
isotropic and anisotropic boundary energy, it is ob-
vious that microstructural evolution is quite sensitive
to anisotropy in boundary energy. The microstructure
evolves to bias the system towards low energy bound-
aries. In contrast, evolution is relatively insensitive to
boundary mobility anisotropy. This in turn implies that
the growth selection of low energy grain boundary mis-
orientations during anisotropic grain growth is deter-
mined predominantly by the grain boundary energy
rather than the mobility.

4. Phase Field Results

Figure 7(a) shows the microstructure obtained dur-
ing normal, isotropic (γ (θ) = 1 and M(θ) = 1) grain
growth, determined using the phase field simulation
method. The microstructure is drawn such that the
darker lines correspond to larger boundary misorienta-
tions. Grain boundary triple junctions angles are close
to the expected (isotropic) value of 2π/3. Figure 7(b)
shows an evolved microstructure when boundary en-
ergy is uniform and mobility is anisotropic, i.e. γ (θ) =
1 and M(θ) = MSF/MD. The microstructure resembles
the one shown in Fig. 7(a) in that the triple junc-
tions maintain the equilibrium angles at or near the
expected value of 2π/3. When both boundary energy
and mobility are anisotropic, i.e. γ (θ) = γRS/MD and
M(θ) = MSF/MD, the microstructure is quite different
from those shown in Fig. 7(a) and (b), as shown in

Figure 1.12: MDF plotted (histograms) with a Read-Shockley based boundary energy (dot-
ted line) - mobility anisotropy gives a distribution (diamonds) similar to the isotropic case
(circles) (reproduced from [68]). Note that certain special or CSL boundaries have been
assigned relatively low energies.

To further examine the importance of low index sur-
faces, we can also plot the population of twist boundaries
for all axes found on the edges of the standard stereo-
graphic triangle, as illustrated in Fig. 5. Horizontal lines
on this plot give the population of twist boundaries as a
function of twist angle for a single misorientation axis.
The high population on the left hand side is the location of
low angle boundaries. Other positions of zero misorien-
tation are marked with a black circle. The peaks for 60!
and 180! twists about [1 1 1] are the coherent twin illus-
trated in Fig. 3(d). The peak at 180! around [!311] is
symmetrically indistinguishable from the boundary that
creates the symmetric tilt boundary shown in Fig. 4(c).
Other 180! twist boundaries between [!311] and [0 0 1] also
have high populations (henceforth they are referred to as
{1 1w} (twist boundaries). There is also a peak for the
135! twist about [2 0 1]. However, this misorientation is
symmetrically indistinguishable from a misorientation in
the fundamental zone that is very close to R3. Therefore,
the elevated population at this position occurs because the
discrete boundary categories overlap at these misorien-
tations. One overall trend in the plot is that twists about
[1 1 1] and [1 0 0] axes generally have higher populations
than those around other axes. For the h110 i type axis,
there is only a modest peak at the 90! twist configuration.

We also consider inequivalent low index twist con-
figurations, not technically twist boundaries, but still
bounded on both sides by a low index surface. For ex-
ample if the [1 0 0] axis of one crystal is parallel to the
[1 1 0] axis of its complement in the bicrystal, and the
grain boundary plane is simultaneously perpendicular to
both, then rotations about the common axes produce
bicrystals whose boundaries always have the same low
index surfaces (but not necessarily the same common
axis of rotation). For the ð100Þkð110Þ configurations,
the maximum is reached at about 1.7 MRD, for a ro-
tation of 45! with respect to the common [1 0 0] axis. For

boundaries with ð110Þkð111Þ, the populations are
consistently low, 0.4# 0.05 MRD. On the other hand,
boundaries with ð100Þkð111Þ all have populations of
3.0# 0.5 MRD. Note that with the exception of [1 1 1]
twists, the population of ð100Þkð111Þ boundaries is
higher than all other low index twists.

4. Discussion

Based on the results of earlier experimental studies
and predictions from simulations, we expect that the
grain boundaries with high populations are also those
that have low energies [4]. Energies of [1 1 0] symmetric
tilt boundaries, measured by Hasson and Goux [9], are
compared to the measured populations in Fig. 6. The
main features of the measured energy are reproduced in

Fig. 5. Twist boundaries for all misorientation axes on the edges of the standard stereographic triangle. The far left hand side of the field and the
black circles are positions of zero misorientation. Note that for x ¼ 180!, the line from [!110] to [0 0 1] gives the populations of the [1 1 0] symmetric
tilts.
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Fig. 6. Comparison of measured energies [9] (dashed line) to popula-
tions (solid line) for symmetric [1 1 0] tilt boundaries. Both lines are
simple interpolations between the data points. The misorientation
angle is the angle between the [1 1 0] directions in the two crystals.
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Figure 1.13: (a) Variation of boundary populations and energies with misorientation in alu-
minium for symmetric tilt [110] boundaries (reproduced from [56]), and (b) energy variation
of symmetric-asymmetric tilt [001] boundaries (reproduced from [50]).
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Figure 1.14: Calculated (a,c) and measured (b,d) energies for symmetrical [100] and [110]
tilt boundaries in aluminium. This figure was reproduced from reference [14].
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tion are /1 = 45!, U = 70.5!, /2 = 45. Because it is cos U
that is discretized, the limits of each bin occur at intervals
of 1/9. For the coherent twin, cos U = 3/9 and it therefore
falls exactly on the border between bins. Unless the bound-
aries between bins are shifted, the population of the twin is
split between multiple bins and always appears to have a
lower than expected population when using 10! resolution.

The current method of evaluating the GBCD has a
number of limitations. For example, the grain boundary
character distribution is determined only from triangular
segments near the triple junctions. The segments of grain
boundaries that are not directly connected to a triple
junction are not included in the distribution. However,
despite this limitation, the distributions reported here
are comparable to previously reported distributions for

Ni determined from the stereological analysis of two-
dimensional sections [37]. A second limitation is that the
networks of triple lines and triangular segments measured
here does not form a continuous interfacial mesh, as
would be needed for input into a finite element
simulation.

Consistent with many previous studies of grain bound-
aries in Ni, the population of R9 tilt boundaries is quite
high; R9 grain boundaries make up 8.84% of all the grain
boundary length and most of them are tilt grain boundary
boundaries. It is well known that if two R3 grain bound-
aries meet, and they do not share a common axis of rota-
tion, they must join a R9. In this sample, 38.6% of the
total grain boundary length is composed of R3 grain

Fig. 5. (a) Grain boundary plane distribution compared to (b) the grain boundary energy distribution for grain boundaries with the R9 misorientation.
The plots are stereographic projections, in the bicrystal reference frame, and the [0 0 1] axis is vertical and in the center of the plots.

Fig. 6. The relative energies of [0 0 1] symmetric tilt grain boundaries. Red
arrows on the horizontal axis denote the positions of the grain boundaries
with the R3 and R9 misorientations. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 7. The average populations of all grain boundaries with energies that
are within the range of ±0.05 a.u. of the energy on the horizontal axis.

J. Li et al. / Acta Materialia 57 (2009) 4304–4311 4309

of these grain boundaries occur less frequently than would
be expected in a random distribution. For the R5 bound-
ary, the pure twist positions (at [1 0 0] and ½!100") and the
pure tilt positions (along the [1 0 0] zone) are least fre-
quently populated. These are also the positions of maxi-
mum energy. For the R7 grain boundary, the peak
population and minimum energy coincide at the orienta-
tion of the (1 1 1) twist grain boundary and, as with R5,
there is an approximate inverse correlation between the
population and the energy.

The GBCD and GBED for the R9 grain boundary are
compared in Fig. 5. In agreement with prior stereological
results [37], the population of R9 grain boundaries peaks
along the zone of pure tilt grain boundaries and the max-
ima occur at the orientations of the planes associated with
ð!111Þ=ð1!15Þ asymmetric tilt boundaries. The energy distri-
bution displays an approximate inverse correlation with
the area distribution, with the minima occurring along
the [1 1 0] zone, which matches the orientations of the
asymmetric tilt boundary. However, there are other fea-
tures in Fig. 5 that are not so well correlated.

The relative energies of symmetric [1 1 0] tilt grain
boundaries have been measured for Al [4,5] and Cu [11].
The energies of these same boundaries have also been cal-
culated for Cu and Au [38,39] and Al [40]. For comparison,
the relative energies the symmetric [1 1 0] tilt grain bound-
aries were extracted from the current data on Ni. The
results are plotted as a function of tilt angle (see Fig. 6)
and they show a minimum at the orientation of the coher-
ent twin (70.5!). There are also clear cusps as the position
of the two R9 grain boundaries. The boundary at 39! is ter-
minated by ð!221Þ, while the boundary at 141! is terminated
by ð1!14Þ. The data in the range of 95–125! appear scat-
tered and the minima are not thought to represent cusps.

To illustrate the average relationship between the grain
boundary energy and population, the grain boundary ener-
gies were categorized into evenly spaced bins of width 0.1

Fig. 3. (a) Grain boundary plane distribution compared to (b) the grain boundary energy distribution for grain boundaries with the R3 misorientation.
The plots are stereographic projections, in the bicrystal reference frame, and the [0 0 1] axis is vertical and in the center of the plots. The logarithm of the
population is plotted in (a).

Fig. 2. (a) Distribution of grain boundary planes in the crystal reference
frame, plotted in stereographic projection. (b) Relative grain boundary
energies with respect to the crystal reference frame.

J. Li et al. / Acta Materialia 57 (2009) 4304–4311 4307

Figure 1.15: (a) GB energy for symmetric tilt [110] boundaries varying with misorientation
angle (b) averaging over all misorientations, {111} planes (in the crystal reference frame)
have the lowest energy in nickel (reproduced from [32]).
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this case correspond to low-angle boundaries) lengthened at the expense of high-energy ones

[23]. Similar conclusions were reached at by Gruber et al. using Monte Carlo simulations

(in two and three dimensions), again with a purely misorientation-based boundary energy

(and random texture), where both number-weighted and area-weighted statistics showed a

high fraction of low-angle boundaries [19, 20].

On the other hand, models which incorporate an inclination-based energy have been

developed using a phase-field approach. It is to be noted that such models have been largely

applied to study solidification phenomena and closely mimic dendritic morphologies. For

the case of two dimensions, an inclination-based energy of the following form was used by

Karma et al. [27, 11]

γ(θ) = γ0 (1 + δ (|sinθ|+ |cosθ|)) (1.10)

which, considering spherical symmetry, can be reduced to

γ(θ) = 1 + δcos(m′θ) (1.11)

where, δ, m′ denote the strength of anisotropy and the order of symmetry (m′ = 4

for a four-fold symmetric function) respectively. θ denotes the inclination angle that the

boundary normal makes with a reference axis (the sample x axis in this case). A similar

form of spherical anisotropy was observed in two-dimensional experimental observations of

solidified droplets in Al-Cu and Al-Si systems by Napolitano et al. [47] .

Changes in conserved and non-conserved variables with time are determined using rele-

vant governing equations [31].

∂φ

∂t
= −m

[
∇2φ− ∂f(φ, c)

∂φ

]
(1.12)

∂c

∂t
= ∇2

(
m

[
∇2c− ∂f(φ, c)

∂c

])
(1.13)
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where, φ = {φi, 1 ≤ i ≤ n} and c = {cj, 1 ≤ j ≤ p} represent non-conserved and

conserved species respectively.

The variation of boundary energy γ with inclination θ results in the introduction of

higher derivatives in the evolution equations (as γθ) which might be discontinuous near

cusps (minima in the inclination-energy Wulff plots). Hence, often regularization methods

are used where sharp cusps are replaced by smooth differentiable functions [11]. Voorhees

et al. used an alternative convexification method, which ensured that interfacial stiffness

(γ + γθθ) is positive for all inclinations [13]. These adjustments are necessary to ensure that

the method remains stable for boundaries at all inclinations, and is able to reproduce faceted

morphologies at the same time.

Recently Moelans et al. developed a phase-field approach for studying anisotropic grain

growth in two dimensions [40, 41], incorporating an anisotropy in boundary energy which

is dependent both on lattice misorientation and inclination. The interfacial width w was

maintained constant irrespective of boundary inclination, while the grain boundary energy

γ varied with the boundary normal n̂. But the method is limited to two dimensions and

not been used to model large-scale microstructure evolution. Also as mentioned above,

non-convex inclinations need to be regularized for maintaining stability in simulations.

Coming to the issue of model development for simulating grain growth in three dimen-

sions, it is to be noted that such models are either limited by overall domain size or by the

nature of the anisotropic function used. Grest et al. simulated normal grain growth in three

dimensions (using a Monte Carlo framework) using isotropic grain-boundary properties [2].

Wakai et al. studied steady-state grain growth kinetics using a finite-element solver (the

Surface Evolver), assuming all boundaries have equal energies and mobilities [70]. Ivasishin

et al. developed a three-dimensional Potts model using a misorientation-based anisotropic

mobility [25], and looked at the effect of initial texture and a misorientation-based boundary

mobility on the grain growth exponent.

Using a discrete framework, like the Potts model, it is tedious to directly extend an
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anisotropic model from two to three dimensions, due to inherent difficulties in deriving gra-

dients and boundary normals for curved interfaces in three dimensions (as in two dimensions)

for a voxelised representation of a polycrystalline grain structure. One has to smooth and

interpolate otherwise jagged boundaries to derive approximate inclinations in such a case

[26, 61]. On the other hand, it is quite straightforward to extend diffused models (such as

the phase-field approach) to higher dimensions, where one need not explicitly track bound-

aries, which are inherently defined as locations of high gradients in field variables.

Kim et al. simulated ideal grain growth in three dimensions using a diffused model of

interface fields developed by Steinbach and Pezzolla [63]. The computations were carried

on a relatively large domain (420 − cubed) and corresponding grain growth statistics were

extracted, but the boundary properties were assumed to be isotropic [29]. Krill and Chen

developed a novel grain-reassignment procedure to model large-scale grain growth in three

dimensions, but here also an uniform boundary mobility (and energy) was used [24]. Saito

et al. used an anisotropic mobility step-function (boundaries between grains belonging to

different texture components are assigned an uniform high mobility compared to others) and

used appreciably large domains (320− cubed) [64]. On the other hand, an inclination-based

anisotropic energy was incorporated in three dimensions by Karma and Rappel to model

dendritic tip morphologies. The form of the energy function used was cubic-symmetric, and

can be expressed as

γ = γ0

[
1 + δ

(
cos4θ + sin4θ

{
1− 2cos2ϕsin2ϕ

})]
(1.14)

where, θ, ϕ represent the angle between interface normal and the crystal [001] axis, and

the angle between the projection of the interface normal on the xy plane (in the frame of

reference of the crystal) and the crystal [100] axis respectively [27, 53]. The model succesfully

simulated the preferential selection of certain crystal inclinations over others (see Fig.1.16)

for a relatively low anisotropy strength (less than 5%).

Similarly, Granasy et al. modeled polycrystalline alloy solidification, with an anisotropic
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In the phase-field simulations, however, % tip and V tip are cal-
culated independently to determine P and &*. The velocity
was calculated, as in 2D "see Sec. V#, from the position of
the '!0 point along the growth direction. The details of the
calculation of the curvature are described in Appendix B.
A simulated 3D morphology for a high anisotropy ((e

!0.047) is shown in Fig. 16. There are six dendrite tips
growing along the six )100* directions. Furthermore, each
dendrite has four ‘‘fins’’ that reflect the underlying cubic
anisotropy. This picture should be contrasted with Fig. 17
which shows the result of a simulation with (e!0. Without
anisotropy the interface undergoes a series of tip-splitting
instabilities and no dendrites are formed. These simulation
results confirm the essential role of anisotropy in dendritic
growth. It is worth noting that it has recently been shown by
phase-field simulation that there exist steady-state growth so-
lutions in 3D for zero anisotropy in the form of triplons )23*.
These solutions are directly analogous to doublons )27,69* in
2D and may therefore exist for arbitrarily small ! , although
this has not yet been demonstrated analytically as in 2D )69*.
From this standpoint, one would be tempted to interpret the
simulation of Fig. 17 as showing the early stage of formation
of triplons, although a longer run would be necessary to con-

firm this supposition. We have not investigated this aspect
further here and Figs. 16 and 17 are only intended to show
that growth morphologies with and without anisotropy are
qualitatively different.
Unlike in 2D, the steady-state growth equations of den-

dritic growth in 3D are too difficult to solve numerically by
the boundary integral method for an arbitrary nonaxisymmet-
ric shape. These equations, however, can be solved using the
so-called axisymmetric approximation )49,50*. This approxi-
mation assumes that the anisotropy and the interface shape
z(r ,+) are independent of the polar angle + in the x-y plane
perpendicular to the growth axis. Averaging over this angle
yields an effective anisotropy function of the form

as"n#! ās"1#(!)cos4 ,̄# 3
4 sin4 ,̄* #, "119#

where ,̄ is again the angle between the normal direction to
the solid-liquid interface and the )100* direction "growth
axis#. This axisymmetric approximation reduces the 3D
steady-state growth problem to a tractable problem that is
two dimensional. The equations can once again be trans-
formed into a single integro-differential equation in which
the interface shape z(r) appears as an unknown and ap-
proaches the Ivantsov paraboloid of revolution far from the
tip region )49,70*. This equation is defined by

FIG. 15. Plots of the dimensionless interface velocity "a# and the
dimensionless tip radius "b# as a function of W0 /d0 for (e
!0.0369 and !!0.45. The time step ranges from !t/-0!0.07 for
the smallest value of W0 /d0 to !t/-0!0.01 for the largest value of
W0 /d0.

FIG. 16. Results of a typical 3D phase-field simulation on a
300$300$300 cubic lattice for (e!0.047 which shows dendrite
tips growing along the principal .100/ directions. The solid-liquid
boundary shown here corresponds to the '!0 surface recon-
structed by reflection about the x!y!z!0 planes. The structure is
seen from an angle where all six .100/ directions are visible.

FIG. 17. Same as Fig. 9 but with (e!0.0.
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In the phase-field simulations, however, % tip and V tip are cal-
culated independently to determine P and &*. The velocity
was calculated, as in 2D "see Sec. V#, from the position of
the '!0 point along the growth direction. The details of the
calculation of the curvature are described in Appendix B.
A simulated 3D morphology for a high anisotropy ((e

!0.047) is shown in Fig. 16. There are six dendrite tips
growing along the six )100* directions. Furthermore, each
dendrite has four ‘‘fins’’ that reflect the underlying cubic
anisotropy. This picture should be contrasted with Fig. 17
which shows the result of a simulation with (e!0. Without
anisotropy the interface undergoes a series of tip-splitting
instabilities and no dendrites are formed. These simulation
results confirm the essential role of anisotropy in dendritic
growth. It is worth noting that it has recently been shown by
phase-field simulation that there exist steady-state growth so-
lutions in 3D for zero anisotropy in the form of triplons )23*.
These solutions are directly analogous to doublons )27,69* in
2D and may therefore exist for arbitrarily small ! , although
this has not yet been demonstrated analytically as in 2D )69*.
From this standpoint, one would be tempted to interpret the
simulation of Fig. 17 as showing the early stage of formation
of triplons, although a longer run would be necessary to con-

firm this supposition. We have not investigated this aspect
further here and Figs. 16 and 17 are only intended to show
that growth morphologies with and without anisotropy are
qualitatively different.
Unlike in 2D, the steady-state growth equations of den-

dritic growth in 3D are too difficult to solve numerically by
the boundary integral method for an arbitrary nonaxisymmet-
ric shape. These equations, however, can be solved using the
so-called axisymmetric approximation )49,50*. This approxi-
mation assumes that the anisotropy and the interface shape
z(r ,+) are independent of the polar angle + in the x-y plane
perpendicular to the growth axis. Averaging over this angle
yields an effective anisotropy function of the form

as"n#! ās"1#(!)cos4 ,̄# 3
4 sin4 ,̄* #, "119#

where ,̄ is again the angle between the normal direction to
the solid-liquid interface and the )100* direction "growth
axis#. This axisymmetric approximation reduces the 3D
steady-state growth problem to a tractable problem that is
two dimensional. The equations can once again be trans-
formed into a single integro-differential equation in which
the interface shape z(r) appears as an unknown and ap-
proaches the Ivantsov paraboloid of revolution far from the
tip region )49,70*. This equation is defined by

FIG. 15. Plots of the dimensionless interface velocity "a# and the
dimensionless tip radius "b# as a function of W0 /d0 for (e
!0.0369 and !!0.45. The time step ranges from !t/-0!0.07 for
the smallest value of W0 /d0 to !t/-0!0.01 for the largest value of
W0 /d0.

FIG. 16. Results of a typical 3D phase-field simulation on a
300$300$300 cubic lattice for (e!0.047 which shows dendrite
tips growing along the principal .100/ directions. The solid-liquid
boundary shown here corresponds to the '!0 surface recon-
structed by reflection about the x!y!z!0 planes. The structure is
seen from an angle where all six .100/ directions are visible.

FIG. 17. Same as Fig. 9 but with (e!0.0.
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Figure 1.16: Dendritic morphologies for increasing strength of anisotropy. These are repro-
duced from [27] for (a) δ = 0 and (b) δ = 0.047 in eq.1.14.

inclination-based mobility (see relation given below), where growing nuclei were preferentially

bounded by different crystal facets (depending on the relative strengths of ε1 and ε2 , see

Fig.1.17) [52].

m(n) = m0

[
1 + ε1

{
3∑
i=1

n4
i −

3

5

}
+ ε2

{∑
n4
i − 66n2

1n
2
2n

2
3 −

17

7

}]
(1.15)

Napolitano and Liu used a similar expression as eq.1.15 to describe the shape anisotropy

of Sn-rich particles in the Al-Sn system [46].
J. Phys.: Condens. Matter 20 (2008) 404205 T Pusztai et al

(a) (b) (c)

Figure 2. Single-crystal growth forms at various choices of the anisotropy parameters of the kinetic coefficient: (a) cube
(ε1 = −1.5, ε2 = 0.3); (b) rhombo-dodecahedron (ε1 = 0.0, ε2 = 0.6); (c) truncated octahedron (ε1 = 0.0, ε2 = −0.3). Here ε1 and ε2 are
the coefficients of the first and second terms in the cubic harmonic expansion of the kinetic anisotropy.

consists of the factor [1 − p(φ)] to avoid double-counting
of the orientational contribution in the liquid, which is per
definitionem incorporated into the free energy of the bulk
liquid. With an appropriate choice of the model parameters, an
ordered liquid layer surrounds the crystal as seen in atomistic
simulations.

Time evolution of the field is assumed to follow relaxation
dynamics described by the equations of motion:

φ̇ = −Mφ

δF
δφ

+ ζφ = Mφ

{
∇

(
∂ I

∂∇φ

)
− ∂ I

∂φ

}
+ ζφ, (9a)

ċ = ∇Mc∇
(

δF
δc

− ζ j

)
= ∇

{
vm

RT
Dc(1 − c)∇

×
[(

∂ I
∂c

)
− ∇

(
∂ I

∂∇c

)
− ζ j

]}
, (9b)

∂qi

∂ t
= −Mq

δF
δqi

+ ζi = Mq

{
∇

(
∂ I

∂∇qi

)
− ∂ I

∂qi

}
+ ζi . (9c)

Here I is the integrand of the free energy functional (that
includes terms containing Lagrange multipliers, which enforce
constraits as discussed below), vm is the molar volume, D the
diffusion coefficient in the liquid and ζi are the appropriate
noise terms representing the thermal fluctuations (conserved
noise for the conserved fields and non-conserved noise for
the non-conserved fields (Karma and Rappel 1999)). The
timescales for the fields are determined by the mobility
coefficients appearing in the coarse-grained equations of
motion: Mφ , Mc and Mq . These coarse-grained mobilities
can be taken from experiments and/or evaluated from atomistic
simulations (see, e.g., Hoyt et al 2003). For example,
the mobility Mc , is directly proportional to the classic
inter-diffusion coefficient for a binary mixture, the phase-
field mobility Mφ dictates the rate of crystallization, while
the orientational mobility Mq controls the rate at which
regions reorient, a parameter that can be related to the
rotational diffusion coefficient and is assumed to be common
for all quaternion components. While the derivation of
a more detailed final form of equations (9a) and (9b) is
straightforward, in the derivation of the equations of motion
(equation (9c)) for the four orientational fields qi(r), we need
to take into account the quaternion properties (

∑
i q2

i =
1), which can be done by using the method of Lagrange

multipliers, yielding

∂qi

∂ t
= Mq

{
∇

(

H T [1 − p(φ)] ∇qi
[∑

l (∇ql)
2]1/2

)

− qi

∑

k

qk∇
(

H T [1 − p(φ)] ∇qk
[∑

l (∇ql)
2]1/2

)}
+ ζi .

(10)

Gaussian white noises of amplitude ζi = ζS,i + (ζL,i −
ζS,i)p(φ) are then added to the orientation fields so that the
quaternion properties of the qi fields are retained. (ζL,i and ζS,i

are the amplitudes in the liquid and solid, respectively.)
This formulation of the model is valid for triclinic lattice

without symmetries (space group P1). In the case of other
crystals, the crystal symmetries yield equivalent orientations
that do not form grain boundaries. In previous works, we
have proposed that the crystal symmetries can be taken into
account, when discretizing the differential operators used in the
equations of motions for the quaternion fields. Calculating the
angular difference between a central cell and its neighbors, all
equivalent orientations of the neighbor have to be considered,
the respective angular differences δ can be calculated (using
matrices of rotation R′ = R · S j · R−1, where S j is a
symmetry operator), of which the smallest δ value shall be used
in calculating the differential operator. (For cubic structure,
there are 24 different S j operators, if mirror symmetries whose
interpretation in continuum models is not straightforward are
omitted.)

Solving these equations numerically in three dimensions
with an anisotropic interfacial free energy:

γ (n)

γ0
= S(n) = 1 + ε1

(
3∑

i=1

n4
i − 3

5

)

+ ε2

(
3∑

i=1

n4
i + 66n2

1n2
2n2

3 − 17
7

)
, (11)

or with an anisotropic phase-field mobility of similar form
Mφ = Mφ,0 S(n), one may obtain various single-crystal growth
forms as exemplified in figure 2. Note that in equation (11)
n = (n1, n2, n3) in the normal vector of the solid–liquid
interface that can be expressed in terms of components of ∇φ.

7

Figure 1.17: Solidification nuclei bounded by varying crystal facets for (a) ε1 = −1.5, ε2 = 0.3
(b) ε1 = 0, ε2 = 0.6 and (c) ε1 = 0, ε2 = −0.3 in eq.1.15 (reproduced from (author?) [52]).
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1.3 Hypothesis

The present work seeks to demonstrate that an inverse corelation exists between grain bound-

ary energies and populations, which holds both in two and three dimensions, for an initial

random texture. Also it is hypothesized that mechanical equilibirum conditions at triple

junctions have a significantly greater effect on the development of an anisotropic bound-

ary character than kinetic factors (as boundary mobility), when boundary properties are

non-uniform or anisotropic. Isolated grains should evolve differently from grains in a poly-

crystalline system due to the presence of boundary junctions. In polycrystalline systems,

low-energy boundaries grow at the expense of high-energy boundaries, both in number and

in area.

1.4 Objectives

The present work seeks to develop an interface-field method, both in two and three dimen-

sions, to model large-scale polycystalline grain growth, incorporating anisotropic boundary

properties. The use of an interface-field approach instead of the usual phase-field approach

help to decompose multiphase field interactions as a sum of interactions of associated inter-

face fields [63]. The microstructure is represented as a sparse array, where we store interface

field values only for voxels at grain boundaries (and junctions) - this results in a signifi-

cant reduction in requirements for computational time and memory [18]. Hence the present

method can be used to simulate large-scale anisotropic microstructure evolution in three

dimensions, in contrast to previous work [68, 41], and can produce more reliable statistics

to better correlate the anisotropy in boundary distributions to the anisotropy in boundary

properties.

In Chapter. 2 (Part-I), the interphase-field approach is presented and validated for model

systems (for example the isotropic shrinkage of isolated grains). Effects of changing the

boundary width and timsestep on boundary motion are explored. An energy-extension
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procedure is presented to permeate anisotropic boundary energies along grain boundaries

to boundary junctions. Details of the extension procedure are discussed in Appendix D.

In Part-II, large-scale simulations are performed, in two and three dimensions. and the

misorientation-dependent distribution of boundaries is correlated to the anisotropy in bound-

ary energy, which scales with the sum of surface energies for grains on either side. These

surface energies are inclination-dependent in the crystal frame of reference. The evolu-

tion of isolated grains is contrasted to the evolution of grains in a ploycrystalline network.

Although it has been predicted that in polycrystalline systems equilibrium constraints at

boundary junctions affect the development of anisotropy in boundary populations in previ-

ous work [30, 23], we seek to quantify this effect, by comparing the anisotropy in populations

with varying equilibrium constraints imposed at boundary junctions. To test whether low-

energy boundaries grow both in number and in area (as the critical-events model predicts

[20]) or only in area (through a boundary-lengthening mechanism [23]) the anisotropy in

number-weighted and area-weighted populations are compared.

In Chapter. 3, interpolation techniques are presented to estimate the distribution in

grain boundary energies for face-centered cubic metals (like nickel and aluminum). Such

techniques are necessary to determine the energy of arbitrary grain boundary types based

on known energies of a limited number of GB types, which have been calculated using

experimental methods [32] or simulations [49]. The variation of interpolated energies with

the grain boundry type depends on the choice of the distance metric used. These interpolated

energies are incorporated in the interface-field framework to predict grain boundary motion

and microstructure evolution in real materials, and to better correlate the anisotropy in

boundary character with observed boundary distributions in such materials. Details on

incorporating interpolated energies in the interface-field method are discussed in Appendix

C.

Finally in Chapter. 4, possible directions to extend the present capability of the interface-

field approach are discussed - methods to reformulate the governing equations to account
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for boundary torques are presented, such that a complete five-parameter description of

anisotropic boundary properties can be incorporated in the present framework (see Appendix

A). Details of numerical implementation are also presented (refer Appendix B).

Hence, the present method provides a robust approach to model anisotropic grain bound-

ary migration and microstructure evolution, both in two and three dimensions, and is

equipped to predict correlations between non-uniform boundary properties and populations.

A relatively fast and parallelized method is presented which can be used to perform large-

scale simulations in three dimensions and can be used to better correlate microstructure

evolution observed in real materials to simulations.
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Chapter 2

An interface-field method for anisotropic

motion of grain boundaries

2.1 Introduction

One approach to represent a polycrystalline system and model interface migration is to use

a phase-field approach, where each grain corresponds to a unique ’phase’, and boundaries

are diffuse having a finite width. This model was first used by Cahn and Allen to simulate

antiphase domain coarsening [1]. It is different from discrete models of microstructural

evolution, as one does not need to explicitly track the position of interfaces. Boundaries

are inherently represented as regions of high gradients in field variables. Here grains do not

abrubtly change orientation near boundaries, and grain boundaries have a finite width to

accomodate gradients in orientation.

Chen et al modeled grain growth in three dimensions [24] assuming uniform boundary

energies and mobilities using a phase-field approach. Sekerka et al. considered anisotropy

in the kinetic prefactor in the evolution equations [67], and observed that the morphology

of the steady-state kinetic shapes depended both on the width and depth of the cusp of the

particular anisotropy function used. Instead, when an inclination-based anisotropy in the
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gradient energy coefficient is considered, the variation of the free-energy functional yields

additional terms, such as higher derivatives of the gradient energy prefactor with inclination

[38]. The interface thickness in the aforementioned case scales with interfacial energy, hence

to maintain a constant interface width irrespective of the boundary inclination, both the

energy coefficient and the depth of the potential function should have a similar anisotropic

variation with inclination [34].

Since higher derivatives of the anisotropic function with inclination (such as γθ) can be

discontinuous in the vicinity of a cusp, the method can become ill-posed and unstable, and

additional treatment of the energy functional is essential for these inclinations. Karma et

al. used a modified version of the following inclination-based energy anisotropy γ(θ) =

γ0(1 + δ(|sinθ| + |cosθ|)) where they approximated the sharp cusps with rounded ones to

simulate growth of dendritic tips [11]. Amberg used a similar regularization [33] to model

evolution of a Widmanstatten morphology. Wise et al. used a Willmore regularization

method, where the square of the mean curvature is added to the energy term to avoid

instability near cusps and to smooth corners [66]. Voorhees used a energy convexification

scheme [13] which ensured that the interfacial stiffness γ+ γθθ is positive for all inclinations,

to model the shape evolution of anisotropic crystals using a Cahn-Hilliard formulation (and

conserved phase fields). 1

In a recent paper, Wollants et al. simulated polycrystalline grain growth with arbitrary

misorientation and inclination dependence in two dimensions, while maintaining a constant

interface width [40]. Regularization of the energy function was necessary for the nonconvex
1If the inclination-based energy function γ(θ) has sharp cusps at certain inclinations, the interfacial

stiffness S(θ) = γ + γθθ can diverge at these cusps, leading to numerical instability at these inclinations
[11]. In the work refered to, the first derivative γθ is discontinuous at cusps. The anisotropic function
γ(θ) is modified such that sharp cusps are replaced by smooth rounded corners, enforcing continuity of γ
and γθ. The interfacial stiffness, on the other hand, is discontinuous at cusps, but no longer suffers from
divergence. In [13], Voorhees used a four-fold anisotropic function (similar to eq.2.10), which results in
missing inclinations for anisotropy strengths greater than 1/15. For missing inclinations, the 1/γ (in two
dimensions) plot is concave and the interfacial stiffness γ + γθθ < 0 , which leads to numerical instability at
these inclinations. This was avoided by convexifying the anisotropic function γ(θ) such that the equilibrium
shape remains identical (as the convex body of the 1/γ plot by tangent construction) while the interfacial
stiffness γ + γθθ > 0 for all inclinations.
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regions of the interfacial stiffness (where γ + γθθ < 0) when the grain boundary energy

is strongly anisotropic with inclination. In another recent paper, Voorhees and McKenna

investigated the effect of misorientation and the presence of junctions on the evolution of

grain shapes using a set of two-grain simulations [39].

In the first half of the present chapter (Part-I), an interface field formulation is presented,

both in two and three dimensions. The potential and kinetic energy functionals used in the

present method are identical to ones used by Steinbach et al. [63]. We perform a set of

two-grain simulations to validate the interface-field approach, and to compare the results

with previous work by Voorhees et al. who used phase fields instead of interface fields to

represent a grain structure [39, 42]. Effects of changing the interface width and timestep

are explored. An energy extension procedure is introduced to permeate anisotropic energies

along boundaries to junctions - hence the effect of different boundary constraints imposed at

junctions on steady-state dihedral angles can be investigated. Based on these simulations,

appropriate values of the timestep dt, interface width λ and grainsize R (or the grainsize to

interface width ratio R/λ) are chosen.

In the second half of the present chapter (Part-II), a series of simulations for isolated

shrinking grains are performed and the grain boundary character is extracted. Also a set of

polycrystalline simulations are performed with different equilibrium conditions imposed at

junctions using the energy-extension procedure. The anisotropy in misorientation-dependent

grain boundary energies is correlated to the anisotropy in grain boundary character, where

the grain boundary energy scales with the sum of inclination-dependent surface energy terms

for the grains on either side. The purpose is to contrast the evolution of anisotropic boundary

character for isolated grains to that of polycrystalline systems due to the presence of grain

boundary junctions. Kinderlehrer et al. briefly commented that local equilibrium at triple

junctions dictate the development of steady state boundary character in polycrystalline sys-

tems [30]. We seek to quantify this effect and to predict correlations between energies and

populations in large-scale polycrystalline simulations starting from a random distribution of
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grain orientations (random texture). The hypothesis that the effect of equilibrium constraints

at boundary junctions on the development of anisotropic boundary character is significantly

greater than the effect of kinetic factors on the same, is tested in the following manner - a

set of polycrystalline simulations are performed, where the boundary mobility is strongly

anisotropic (with an isotropic boundary energy) and the corresponding boundary character

is compared to those extracted from simulations where the boundary energy is anisotropic

(with an isotropic boundary mobility). This seeks to demonstrate whether an anisotropy in

boundary energy or an anisotropy in boundary mobility has a strong influence on the grain

boundary character. Also the number-weighted and area-weighted grain boundary distribu-

tions are extracted to investigate whether low-energy boundaries increase in area and not in

number (as predicted by Holm [23]) or both (as Gruber et al. suggest [20]) resulting in the

anisotropy in grain boundary populations. The effect of intial texture on grain boundary

distributions is explored, and the anisotropy in boundary energy (and mobility) is correlated

to the anisotropy in boundary populations.

45



Part I

- Model formulation
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2.2 The interface field method

The phase field method represents a polycrystalline material as an ensemble of phase-field

variables {φ} (an informative description of the phase-field formulation for modeling grain

growth can be found in references [9, 8]). A phase-field variable φi is uniquely associated

with the ith grain and has a value of 1 in the interior of grain i and 0 outside. Its value

changes from 1 to 0 across a boundary ij that grain i shares with its neighbor j.

{φ} = {φ1, φ2, ......,φi, ...., φN} (2.1)

The free energy of such a system depends on the phase field values and their gradients,

and can be defined as a summation of gradient and potential terms

F ({φ}) =

ˆ

Ω

(f gr + fpot)dV (2.2)

The gradient and potential terms depend on the gradient and phase-field values respec-

tively (as in eqs.2.3,2.4). The competing effects of these terms at boundaries tends to diffuse

them, hence interfaces in phase-field models have a finite width.

The expressions used in the present work are identical to ones used by Steinbach [63]

f gr =
N∑
γ=1

N∑
δ=γ+1

εγδ
2
∇φγ.∇φδ (2.3)

fpot =
N∑
γ=1

N∑
δ=γ+1

wγδ |φγ| |φδ| (2.4)

As can be seen from eqs.2.3,2.4, the gradient energy functional f gr is defined at bound-

aries where gradients are non-trivial, and tends to increase the interface width (to reduce

gradients), while the potential energy functional fpot (which is nontrivial only at boundaries)

tends to decrease interface width to reduce its value.

The potential function decays rapidly as one moves from the interface to a grain interior
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(see fig.2.1). The functions used in the fig.2.1 are of the form φ1(x) =
(
x
a

)
and φ2(x) =

1− φ1(x) for the interface region 0 < x < a, hence in the present example where the phase

fields are approximated to be linear in the boundary region, they are equal to each other at

x = a
2
.
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Figure 2.1: Variation of phase field values and potential energy function within the interfacial
region.

An additional constraint is placed such that at any location, all the fields (also referred

to as order parameters) add up to unity

N∑
α=1

φi = 1 (2.5)

The time-dependent evolution of these order parameters can be directly correlated to

boundary motion. Since these fields are non-conserved (the volume of each grain changes

with time), the time-dependent Ginzburg-Landau (TDGL) equation is used

∂φi
∂t

= −L∂F
∂φi

(2.6)

2.2.1 Interface fields and governing equations of motion

Since at any given time the phase-field values change only in the vicinity of boundaries,

and those within a grain interior remain unaltered, one can, for purposes of computational
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efficiency, solely determine the changes in these values within interfacial regions. We use

an interface field method, developed by Steinbach et al. [63]. When two fields φα and φβ

intersect, an interface field ψαβ is defined as (see fig.2.2). Since for the boundary region

(0 < x < a ) 0 ≤ φα(x), φβ(x) ≤ 1, the interface field ψαβ varies as in fig.2.2 (−1 ≤ ψαβ ≤ 1).

Here, the phase fields have been approximated to be linear in the boundary region.

ψαβ = φα − φβ (2.7)
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Figure 2.2: Variation of interface field and phase fields within interfacial region.

In case of grain boundaries, only one interface field is defined and in case of triple junctions

(or higher junctions) three or more of these fields overlap (see fig. 2.3). In general for N

phase fields (N2 ) interface fields exist.

Using the energy functional in eqs.2.3,2.4 the change in ψαβ with time can be derived as

[63]

ψαβ(t+4t)− ψαβ(t) = mαβ

[∑
γ 6=α

(
−εαγ

2
∇2φγ − wαγφγ

)
−
∑
γ 6=β

(
−εβγ

2
∇2φγ − wβγφγ

)]
4t

(2.8)

here, (ε, w) and m are the energy and mobility coefficients respectively. To incorporate

anisotropic boundaries, these have to be functions of boundary inclination and misorienta-
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Figure 2.3: Interface fields defined at grain boundaries and triple junctions, with all three
interface fields coexisting at junction cores.

tion, and eq.2.8 should then include higher derivatives. Details on how to include such terms

can be seen in Appendix A.

The corresponding change in a phase-field variable is the mean of the changes of its

associated interface fields

φα(t+4t)− φα(t) =

∑
β 6=α (ψαβ(t+4t)− ψαβ(t))

N
(2.9)

Gradients (and laplacians) in phasefields are calculated as centered differences along the

reference x, y (and z) axes (using an explicit finite difference scheme). A Forward Euler

scheme is used to determine the phase field at time t = t + ∆t, φ(t + ∆t) if its value at

the previous step t = t, φ(t) is known. Details can be found in Appendix B. The requisite

conditions for stability will be discussed later. At the edges of the computational domain, a

periodic boundary condition (PBC) is used - the neighbors of a point at the end lies on the

opposite end (as in fig. 2.4).

2.2.2 Anisotropic boundaries and treatment of triple junctions

For anisotropic boundaries, the kinetic and potential energy coefficients in eqs.2.3,2.4 have

to be modified. Assuming that the boundary energy is dependent on boundary inclination
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Periodic

No-flux

Figure 2.9. Schematic representation of two common boundary conditions
used in simulations. The superscripts refer to the spatial location on the
grid and the white circles represent positions outside the region where data
was collected. Yet these points are necessary to compute gradient terms
and are thus assigned the values of the grid positions specified.

the gradients are not defined unless a method is used to assume some type of informa-

tion exists beyond the domain. Simply changing the size of the domain that is simulated

such that there now exists data beyond the boundaries is not useful either because the

domain outside the boundaries is now time-independent which results in essentially a

pinned microstructure. Thus in order to deal with this issue two boundary conditions

used are periodic and no-flux which are illustrated in Fig. 2.9. The first method is peri-

odic boundary conditions which essentially tessellates the grid thereby approximating a

system of infinite size. However, periodic boundary conditions can usually only be applied

to synthetically generated microstructures as initial condition input.

There is much motivation to be able to simulate experimental datasets which both

avoids artifacts that are associated with unphysical initial microstructure input and allows

Figure 2.4: The neighbor of a point at the end of the domain lies on the opposite end.

θ (considering here the case of two dimensions) it can be given by

γ(θ) = γ0(1 + δcos(m′θ)) (2.10)

here γ0, m′ and δ represent the mean boundary energy, order of symmetry and degree

of anisotropy respectively [28]. A similar form of spherical anisotropy was observed in two-

dimensional experimental observations (cross-sections) of solidified droplets in Al-Cu and

Al-Si systems by Napolitano et al. [47] .

The indices [nx, ny] for the boundary normal in the sample frame can be obtained by

averaging the gradients of the phase fields along standard directions (in this case along {100}

and {111} in the sample reference frame), using the weighted essentially non-oscillatory

(WENO) scheme [60, 59]. The motivation for choosing this particular scheme is its non-

oscillatory behavior near sharp corners on boundaries, where there is a sudden change or

jump of the boundary normal. In two dimensions, the inclination angle θ can be expressed

in terms of gradients of the interface field ψαβ (for a boundary where phase fields φα and φβ

intersect) along the reference axes (x and y) as in eq.2.14 [38]. Here, the boundary energy

is expressed as a function of the boundary normal, and varies with the inclination angle θ

that the boundary normal makes a reference axis.

θ = atan

(
ψαβy
ψαβx

)
(2.11)
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The normal vector (obtained in the sample frame of reference) is then rotated in the

crystal frame of reference of the grains on either side. In the present model the grain

boundary energy between grains i and j is chosen as the mean of surface energy terms

with respect to each grain (which is a reasonable assumption for ceramic systems [57]) as in

eq.2.16, where each of the surface energy terms has a form identical to eq.2.10.

γij(θ) =
γ(θi) + γ(θj)

2
(2.12)

This is analogous to the notion that when two crystals meet to make a boundary, the

binding energy is fixed, and thus the grain boundary energy scales directly with the sum of

the energies of the surfaces that bound the crystals on either side.

In three dimensions, the boundary energy γ can be expressed as a cubic-symmetric func-

tion dependent on the inclination angles (θ, ϕ) of the boundary normal [nx, ny, nz].

γ(θ, ϕ) = γ0

[
1 + δ

(
cos4θ + sin4θ

{
1− 2cos2ϕsin2ϕ

})]
(2.13)

here δ represents the degree of anisotropy that controls the relative values of energies

along specific crystallographic directions (see fig.2.5). The inclination angles θ (between the

projection of the normal to the plane of the paper and the reference x axis) and ϕ (between

the boundary normal and the reference z axis) can be expressed in terms of gradients of

the interface field ψαβ (for a boundary where phase fields φα and φβ intersect) along the

reference axes (x, y and z) as in eqs.2.14,2.15

θ = atan

(
ψαβy
ψαβx

)
(2.14)

ϕ = acos (ψαβz) (2.15)

and the grain boundary energy is expressed as the mean of the surface energy terms with

respect to the grains on either side
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γij(nx, ny, nz) =
γ(nx, ny, nz)i + γ(nx, ny, nz)j

2
(2.16)

The interface width λ and boundary energy γ can be related to the gradient and potential

energy coefficients in eqs. 2.3,2.4 as λ ∝
√

ε
w

and γ ∝
√
εw [34]. In order to maintain

constant interface width irrespective of the boundary inclination (and independent of the

boundary energy) one has to ensure that
√

ε
w
essentially remains constant while

√
εw varies

with inclination. Hence both w and ε should have similar inclination dependence as the

interface energy γ

w(θ, ϕ) = wo
[
1 + δ

(
cos4θ + sin4θ

{
1− 2cos2ϕsin2ϕ

})]
(2.17)

and

ε(θ, ϕ) = εo
[
1 + δ

(
cos4θ + sin4θ

{
1− 2cos2ϕsin2ϕ

})]
(2.18)

In the present work, eq.2.8 is expressed as

ψαβ(t+4t)− ψαβ(t)

4t
=

1

τ

∑
(A∇2φ+Bφ) (2.19)

A and B are similar to the gradient-energy coefficient ε and the potential energy maxi-

mum w respectively. Here they take the following exact form

A(θ, ϕ) =
4

π2
κ
[
1 + δ

(
cos4θ + sin4θ

{
1− 2cos2ϕsin2ϕ

})]
(2.20)

B(θ, ϕ) =
4

κ

[
1 + δ

(
cos4θ + sin4θ

{
1− 2cos2ϕsin2ϕ

})]
(2.21)

where κ scales with the boundary width λ that is chosen to be 8.0 in the present work.

Since in eqs. 2.20,2.21
√

A
B
is constant, the interface width λ is independent of the boundary
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energy. In the present model, due to the absence of higher derivatives in the evolution

equations, or sharp cusps in the boundary energy, a regularization scheme to prevent ill-

posedness is not essential.

The boundary energy γ is rescaled (as in eq.2.22) so that the mean boundary energy is

unity.

γrescaled(nx, ny, nz) = γrescaledmin + (γrescaledmax−γrescaledmin)

(
γ(nx, ny, nz)− γmin

γmax − γmin

)
(2.22)

Figure 2.5: Variation of boundary energy with inclination, in three dimensions as in eq.2.13
with δ = 0.3 and rescaled to 0.5 ≤ γ ≤ 1.5.

In the method explained above, junction core energies (higher order terms in the energy

functional when more than two fields overlap) can be neglected, given that interface width

and size of junction cores is small compared to the length of boundaries and the overall

domain size [21]. Recently the stability of solutions for dihedral angles at junctions was

investigated by Guo et al [21]. The solutions were independent of boundary mobilities

and depended only on the relative values of boundary energies. In other words, Young’s

law was satisfied at the boundary junctions. Also, junctions are assigned sufficiently high

mobilities, and do not drag moving boundaries [16, 15] - hence junction kinetics do not

control microstructure evolution.

At the boundary junction phase-field profiles deviate from the actual grain boundary
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(see fig. 2.6) - hence normals estimated at junctions using phase field values (and their

gradients) are inherently inaccurate. Methods to incorporate these approximate normals in

the evolution equations introduce oscillations in the phase-field values at the triple junctions,

which eventually spread throughout the entire domain. To prevent such instabilities, it is

essential to explicitly assign energies to interface fields at triple junctions based on the

procedure described below. It is to be noted that either equal energies can be associated

with these fields (case-I) or anisotropic energies can be extended along grain boundaries

(case-II).

Figure 2.6: At the triple junction, the contour lines (say for φ = 0.5 labeled green, and for
φ = 0.3 labeled red) deviate from the sctual grain boundary (derived from a sharp interface
approximation, labeled black). Figure reproduced from [42].

In case-I, the energies of grain boundaries is anisotropic (the form of the energy function

is similar to to eq.2.13 in three dimensions), while the energies associated with the interface

fields at junctions is explicitly isotropic, which implies that boundaries are constrained to

meet at equal angles. In case-II, an energy extension method is used (see fig. 2.7) which

ensures that anisotropic energies are extended along grain boundaries and associated with

the interface fields ψ01, ψ02, ψ12 (with the phase fields ordered as φ0 > ϕ1 > ϕ2). The

percolation of energies to the boundary junctions is implemented in the following manner

- for each point in a multiphase region (having N , the number of non-zero fields, greater

than two) a value equivalent to the average of non-zero neighboring energies is stored. This
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process is continued until all points in the junction region have non-zero energies.

In case of triple junctions, the corresponding equations of motion for the phase-fields

(φ1, φ2, φ3 ordered as φ1 > φ2 > φ3) can be expressed as (refer [63, 21])

∂φ1

∂t
= −τ12

(
ε12

[
c1∇2φ2 + c2φ2

]
+ ε13

[
c1∇2φ3 + c2φ3

]
− ε12

[
c1∇2φ1 + c2φ1

]
− ε23

[
c1∇2φ3 + c2φ3

])
−τ13

(
ε12

[
c1∇2φ2 + c2φ2

]
+ ε13

[
c1∇2φ3 + c2φ3

]
− ε13

[
c1∇2φ1 + c2φ1

]
− ε23

[
c1∇2φ2 + c2φ2

])

∂φ2

∂t
= τ12

(
ε12

[
c1∇2φ2 + c2φ2

]
+ ε13

[
c1∇2φ3 + c2φ3

]
− ε12

[
c1∇2φ1 + c2φ1

]
− ε23

[
c1∇2φ3 + c2φ3

])
−τ23

(
ε12

[
c1∇2φ1 + c2φ1

]
+ ε23

[
c1∇2φ3 + c2φ3

]
− ε13

[
c1∇2φ1 + c2φ1

]
− ε23

[
c1∇2φ2 + c2φ2

])

∂φ3

∂t
= τ13

(
ε12

[
c1∇2φ2 + c2φ2

]
+ ε13

[
c1∇2φ3 + c2φ3

]
− ε13

[
c1∇2φ1 + c2φ1

]
− ε23

[
c1∇2φ2 + c2φ2

])
+τ23

(
ε12

[
c1∇2φ1 + c2φ1

]
+ ε23

[
c1∇2φ3 + c2φ3

]
− ε13

[
c1∇2φ1 + c2φ1

]
− ε23

[
c1∇2φ2 + c2φ2

])
c1 and c2 denote the (4w

π2 ) and ( 4
w

) prefactors respectively. In case-I (isotropic junctions)

the energy coefficients εij are fixed as unity whereas in case-II anisotropic energies are ex-

tended along boundaries to junctions such that εij assume anisotropic values. Details for

the percolation of anisotropic energies (which are dependent on boundary inclination in the

crystal frame of reference at grain boundaries) to junctions is discussed in Appendix D. If

an energy value equivalent to zero is assigned (εij = 0) then the junctions become static (or

fixed). Hence, either equal energies (εij = 1.0 as in case-I) or anisotropic energies (εij 6= 1.0

as in case-II) have to be associated with the interface fields in boundary junctions. This

does not neccesitate assigning an orientation or normal to points in boundary junctions as

energies are explicitly asssigned here.
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The assumption that should be noted is that boundary segments at junctions should be

sufficiently straight. The junctions in the aforementioned cases will be referred to as isotropic

junctions (case-I) and anisotropic junctions (case-II) respectively. Also it should be noted

that for simplicity, torque terms which occur due to inclination-dependence of energy are

not accounted for in the present model. Hence, Herring’s relations for mechanical balance

at boundary junctions for inclination-dependent boundary energies will reduce to Young’s

equations for balance of line energies. Any difference in inclination distributions in cases I

and II should be a natural consequence of satisfying Young’s law at boundary junctions.

Figure 2.7: (a) Without energy extension all energies in junction cores are identical to 1.0
(b) energy extension along grain boundaries such that anisotropic boundary energies are
extended to junctions.

2.3 Model validation and parameter estimation

2.3.1 Effect of changing timestep - stability criteria for forward dif-

ferencing scheme

Since an explicit forward difference scheme is used the phasefield values at timestep t = t+∆t

using values at a previous timestep t = t, the ratio of timestep 4t to (∆x)p (where 4x is

the discretization stepsize in space) should be less than some constant c using the Courant-
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Friedrichs-Lewy condition. This condition states that [71, 10]

“ the time step must be kept small enough so that information has enough time to

propagate through the space discretization....”

which can be expressed as v4t
(4x)p

≤ c, where v is a measure of propagation velocity of

information. For a Forward-Time Central-Space (FTCS) scheme (using Forward Euler in

time and centered differences in space) the exponent p takes the value of 2.

Using different values of timestep 4t and gridstep 4x we find that the dimensionless

constant c takes the value of 0.02 (empirically determined). The CFL condition for stability

for the isotropic case (all boundaries having equal velocities) is reduced to

4t
(4x)2

≤ 0.02 (2.23)

In the anisotropic case, since the interface velocity v scales with boundary mobility m

and energy γ as in eq.1.1, this criteria can be modified as

mmaxγmax
4t

(4x)2
≤ 0.02 (2.24)

In the present set of simulatons we use ∆x = 1, hence in the isotropic case, a maximum

value of 0.02 can be chosen for ∆t. In the following figure (see fig.2.8) we show the evolution

of boundaries (in a 1282 grid having 16 grains) using different values of ∆t. In phasefield

simulations, a single timestep is said to have occured when all grid points have been consid-

ered for update once. Here for each timestep ∆t chosen (∆t = 0.01, 0.02, ...) we update the

entire grid N times, where N is chosen such that the effective total time evolved in all cases

is T

N∆t = T (2.25)

For values of ∆t greater than 0.04, instabilities grow with time and spread through the

computational domain. Hence, we choose a value of 4t = 0.02 in the simulations presented

58



(a) (b)

(c) (d)

(e) (f)

Figure 2.8: Evolution of GBs for timestep ∆t chosen to be (a) 0.01 (b) 0.02 (c) 0.04 (d) 0.06
(e) 0.08 and (f) 0.10. The boundaries remain stable for ∆t smaller than 0.06.
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here. A lesser value satisfies numerical stability but we will need larger values of N (number

of evolution timesteps) to move the boundary an indentical distance.

2.3.2 Effect of changing boundary width - isotropic shrinkage of an

occluded grain

In the present section we explore the effect of changing the boundary width to grid stepsize

ratio (that is λ/∆x) on the kinetics of a shrinking grain (in two dimensions). In other words

we vary the number of points we use to represent the boundary. The motivation is we have

an analytical solution that we can use, and we can compare our results to previous work by

Moelans et al. [39, 42]to validate the interface field approach.

In the following figure (fig. 2.9) we show the variation of rate of change in grain area

with the grain radius (normalised by the boundary thickness). To calulate the grain area

we include all voxels having φ1 = 1 (where the circular occluded grain is indexed 1 and the

surrounding grain indexed as 2). At the interface region (0 ≤ φ1, φ2 ≤ 1 for 0 ≤ x ≤ 1) we

sum up the quantity φ1(x) over all interface points and add this to get a better estimate of

grain area A1(t). Analytically, in the isotropic case the change in grain area with time is

linear (see eq. 2.26) and should be independent of the grain radius R1(t). The grain radius

R1(t) is estimated as the radius of the equivalent circle having an area A1(t).

A1(t)− A1(0) = 2πmγt (2.26)

dA
dt

remains independent of R
λ

till the grain shrinks to a radius R which is about the

same order as the boundary thickness λ. After this point a sharp-interface approximation no

longer holds true. Also for boundary thicknesses λ lesser than 4 times the grid stepsize 4x

the deviation is evident. We also show (in fig.2.10) the variation of the velocity (normalised

by the mean curvature k) with the grain radius R (normalised by the boundary thickness

λ). The mean curvature is computed as the divergence of the boundary normal (k = 5.n̂)

60



0 1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1

1.2

Radius normalised with boundary thickness (R/w)

C
h
a
n
g
e
 i
n
 a

re
a
 w

it
h
 t
im

e
 (

d
A

/d
t)

 

 

  w=2

  w=4

  w−8

  w=12

  w=16

(a)

(denoted as V*/H) as a function of R/T. It is clear that for
large grain sizes the velocity divided by the mean curvature

is indeed a constant and is equal to -Lr = -L(2jp) = -2,

since jp = 1 in the calculations. When comparing this
result to the phase field simulations as shown in Fig. 4 we

see that the simulation and sharp interface results are in

good agreement for R/T[ 6 where Ipts = 11. When R ! T
there is 1 and 5% error for when Ipts = 11 and Ipts = 6,

respectively. One interesting result to note is that for small

grain sizes the five-grain system curve deviates downward
from the analytical result, whereas the two-grain system

curve deviates upward. In the two-grain case it appears that

the velocity of the interface increases faster than the ana-
lytical result since the geometry of the grain and thus

curvature of the interface is completely defined for a spe-

cific radius of the grain. In order to help explain what is
occurring in the five-grain case, when R/T\ 6, we exam-

ine the velocity and curvature of the interface. The velocity

is relatively constant until R/T\ 4 where the velocity
begins to increase steadily. This is also true of the curva-

ture, H, where the rate of curvature change begins to
sharply accelerate when R/T\ 4. As R=T!0 the curvature

increases faster than the velocity of the interface. This is a

result of the triple point junctions moving faster than the
sharp interface theory predicts.

In Fig. 5, the normalized rate of change of area, dA*/dt,
is plotted for the two- and five-grain systems for varying

values of Ipts. When Ipts C11 the curves overlap showing
that there is nearly no effect of increasing the number of

points through the interface beyond 11. A second point to

note is that as R/T increases the results converge to the
sharp interface limit. When R !T the error associated with

Ipts = 4, Ipts = 6, Ipts = 11 for the two-grain system is 3.5,

1.4, 0.4%, respectively. For the five-grain system using the
same number of interface points there is 5.0, 1.9, 1.0%

error. Thus the presence of triple point junctions appears to

increase the error slightly when comparing it to a system
with the same number of interface points and no triple

point junctions. These errors are similiar to those reported

in the previous papers [6, 17, 26]. The presence of these
errors results in shifting the V*/H and dA*/dt asymptotic

values toward lower values (corresponding to a more

positive un-normalized shrinkage rate) than what the the-
ory predicts and as a result has been shown to slow the

shrinkage rate of the grains in this study. Furthermore,

when R=T!0 the kinetics deviate from the von Neumann–
Mullins sharp interface limit. Thus, using Fig. 5 it is pos-

sible to choose the thickness of the interface needed to
yield an accurate value of the interface velocity as given in

the phase field model.

Consistent with the predictions of sharp interface theory
of the Allen–Cahn equations employed in these simulations

we find that the interface parameter, l, can be modified

without it affecting the kinetics of boundary motion.
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(b)

Figure 2.9: (a) Variation of rate of change of area with the grain radius. For a boundary width
(normalised by the grid stepsize 4x) smaller than 4 we see a deviation from the expected
variation (which is a straight line at unity for the isotropic case). (b) Figure reproduced
from McKenna et al. [39]
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and the boundary velocity is estimated as the change in grain radius with time (v(t) =

R1(t)−R1(t−N4t)
N4t ) averaged over 100 timesteps. In the isotropic case (µ = 1, γ = 1) the

expected variation is a straight line at unity. For R ≤ 4λ a large deviation is seen which

suggests that in polycrystalline simulations we should use a grain radius R > 4λ.
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(denoted as V*/H) as a function of R/T. It is clear that for
large grain sizes the velocity divided by the mean curvature

is indeed a constant and is equal to -Lr = -L(2jp) = -2,

since jp = 1 in the calculations. When comparing this
result to the phase field simulations as shown in Fig. 4 we

see that the simulation and sharp interface results are in

good agreement for R/T[ 6 where Ipts = 11. When R ! T
there is 1 and 5% error for when Ipts = 11 and Ipts = 6,

respectively. One interesting result to note is that for small

grain sizes the five-grain system curve deviates downward
from the analytical result, whereas the two-grain system

curve deviates upward. In the two-grain case it appears that

the velocity of the interface increases faster than the ana-
lytical result since the geometry of the grain and thus

curvature of the interface is completely defined for a spe-

cific radius of the grain. In order to help explain what is
occurring in the five-grain case, when R/T\ 6, we exam-

ine the velocity and curvature of the interface. The velocity

is relatively constant until R/T\ 4 where the velocity
begins to increase steadily. This is also true of the curva-

ture, H, where the rate of curvature change begins to
sharply accelerate when R/T\ 4. As R=T!0 the curvature

increases faster than the velocity of the interface. This is a

result of the triple point junctions moving faster than the
sharp interface theory predicts.

In Fig. 5, the normalized rate of change of area, dA*/dt,
is plotted for the two- and five-grain systems for varying

values of Ipts. When Ipts C11 the curves overlap showing
that there is nearly no effect of increasing the number of

points through the interface beyond 11. A second point to

note is that as R/T increases the results converge to the
sharp interface limit. When R !T the error associated with

Ipts = 4, Ipts = 6, Ipts = 11 for the two-grain system is 3.5,

1.4, 0.4%, respectively. For the five-grain system using the
same number of interface points there is 5.0, 1.9, 1.0%

error. Thus the presence of triple point junctions appears to

increase the error slightly when comparing it to a system
with the same number of interface points and no triple

point junctions. These errors are similiar to those reported

in the previous papers [6, 17, 26]. The presence of these
errors results in shifting the V*/H and dA*/dt asymptotic

values toward lower values (corresponding to a more

positive un-normalized shrinkage rate) than what the the-
ory predicts and as a result has been shown to slow the

shrinkage rate of the grains in this study. Furthermore,

when R=T!0 the kinetics deviate from the von Neumann–
Mullins sharp interface limit. Thus, using Fig. 5 it is pos-

sible to choose the thickness of the interface needed to
yield an accurate value of the interface velocity as given in

the phase field model.

Consistent with the predictions of sharp interface theory
of the Allen–Cahn equations employed in these simulations

we find that the interface parameter, l, can be modified

without it affecting the kinetics of boundary motion.
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Figure 2.10: (a) Variation of boundary velocity (normalised by mean curvature) with the
grain radius (normalised by boundary thickness). Figue reproduced from McKenna et al.
[39]for an interface width of (b) 6 and (c) 11. Compare the profiles for the 2-grain systems
in (b,c) to (a).

In fig. 2.11 we show the grain shape when R1(t) = 8λ for different values of the boundary

thickness (λ = 2, 4, 6, .... times 4x). For λ < 44 x the grain does not maintain its circular

shape while shrinking and develops facets. Since the boundary is resolved by insufficient

points, lattice anisotropy effects result in preferential selection of certain crystal directions
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(< 10 >and < 11 > directions for a square grid in two dimensions) and faceting. To minimize

such effects the boundary should be reolved by at least 4 points.

(a) (b)

(c) (d)

Figure 2.11: Grain shapes when R = 8λ, for λ
4x having a value of (a) 2 (b) 4 (c) 8 and (d)

12. See that the grain retains its circular shape while shrinking for λ ≥ 44 x.

From these simulations we can choose the values of the model parameters as follows

1. The grid stepsize 4x is taken to be 1, which would mean a timestep 4t = 0.02. A

smaller stepsize will demand a corresponding smaller timestep for numerical stability

(as in eq.2.23 4t ≤ 0.02 (4x)2 ).

2. The interface should contain at least four gridpoints, λ ≥ 4 4 x to avoid effects of

lattice anisotropy. We choose a value of λ = 84 x. A larger value is not chosen to
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reduce computational time.

3. The initial grain radius R(0) in polycrystalline simulations should be at least 4 times

the interface thickness λ, such that the model produces expected grain-growth kinetics.

For a chosen λ = 84 x, this suggests an initial grain radius R(0) = 324 x. A finer

resolution of the interface (that is when λ > 84x) would increase this value, resulting

in lesser number of grains which can be accomodated in the computational domain.

2.3.3 Effects of boundary width and boundary conditions (imposed

at junctions) on steady-state dihedral angles

In fig. 2.13 we investigate the effect of different boundary conditions imposed at junctions

on steady-state dihedral angles. The ratio of boundary energies r =
γjk
2γ1j

is varied and the

dihedral angle θ is measured manually between line profiles of phase field φ0 (phase fields φ0,

φ1 at boundaries are ordered as φ0 > φ1) for the value φ0 = 0.5. Since at the triple-junction

the contour line for φ0 = 0.5 deviates from the actual GB (as in fig. 2.6) points within the

triple junction region are omitted, and boundaries are assumed to be sufficiently straight till

they meet at the junction. In case-I energies associated with the interface fields ψ01, ψ02, ψ12

at junctions (with the phase fields ordered as φ0 > ϕ1 > ϕ2) are taken to be unity, whereas

in case-II anisotropic energies permeate along GBs using the energy-extension method (as in

fig. 2.7). The uncertainty in measrement is seen to be approximately 4° and increases as θ

decreases (or r increases). For case-I, dihedral angles are expected to be identical to 120°, in

contrast to case-II, where these should vary with relative boundary energies γij, and can be

derived to be identical to 2cos−1
(
γjk,j,k 6=1

2γ1j,j 6=1

)
using eq.1.2. In fig. 2.12the intermediate grain

structure is shown for a model 4-grain structure for case-I (junctions refered as isotropic)

and case-II (junctions refered as anisotropic).

The effect of boundary width λ on the steady-state dihedral angle θ is also explored (see

fig. 2.14). It is difficult to measure dihedral angles for widths λ > 84 x, more so for sharp
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(a) (b) (c)

(d) (e) (f)

Figure 2.12: Intermediate grain structure for a model 4-grain structure evolved with a
misorientation-based boundary energy, with the ratio of line energies defined as r =(
γjk,j,k 6=1

2γ1j,j 6=1

)
. In figs. (a-c) junctions are treated as isotropic (case-I) with the ratio of line

energies varying as (a) r = 0.5 , (b) r = 1.0 and (c) r = 2.0. In figs. (d-f) junstions are
treated as anisotropic (case-II) with (d) r = 0.25 (fully wetting) , (e) r = 0.50 (isotropic) and
(f) r = 1.0 (non-wetting). Note that in case-I dihedral angles are close to 120° irrespective
of the ratio of line energies, whereas in case-II they vary with the ratio of boundary energies.
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Figure 2.13: Variation of dihedral angle θ (as in fig. 2.12) with relative boundary energies
r =

(
γjk
2γ1j

)
. Note that for case-I a value of 120° is expected, compared to case-II where the

expected dihedral angle is given by θ = 2cos−1
(
γjk
2γ1j

)
. The dihedral angles are measured

manually between line profiles of phase field φ0 (phase fields φ0, φ1 at boundaries are ordered
as φ0 > φ1) for the value φ0 = 0.5 , and the measurement uncertainty is approximately 4°.
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cusps and small values of θ (or large values of r). The deviation from the expected dihedral

angle also increases as the boundary width decreases below 44x as the boundary is resolved

by insufficient number of points.
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Figure 2.14: Variation of dihedral angles with relative boundary energies r =
(
γjk
2γ1j

)
for

different boundary widths ( λ
4x = 4, 8, ...). when junctions are treated as anisotropic (Case-

II).
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Part II

- Results and discussion
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2.4 Simulation parameters

From the simulations presented in Part-I we showed that the criteria for numerical stability

and computational efficiency support the use of the following values for the model parameters

(taking a grid stepsize 4x = 1 )

1. timestep4t = 0.02. This scales with (4x)2, so smaller gridsteps correspond to smaller

timesteps.

2. boundary width λ = 8 4 x. Smaller widths suffer from effects of lattice anisotropy

and larger widths need more computational resources with no additional benefits of

increased resolution.

3. Initial grainsize R = 4λ. When the grain size shrinks to a size comparable to the

boundary thickness, kinetics deviate from those dictated by curvature-driven growth.

Hence a sharp-interface approximation of the diffused boundary holds true for R ≥ 4λ.

Larger grainsizes can be used but this will restrict the number of grains that can be

accomodated in the computational doamin. Since we need a large number of boundaries

for reliable statistics, we do not use an initial grainsize much larger than 4λ in the

polycrystalline simulations.

2.5 Results and discussion

2.5.1 Steady state shrinkage of isolated grains

A 128-squared domain (in two dimensions) was used to look at the evolution of isolated

grains shrinking with anisotropic boundary energy γ. The orientation of isolated grain is

denoted by < θ1
2
, 0, 0 > with respect to the orientation of the surrounding grain, which can

be denoted as < − θ1
2
, 0, 0 >. In this case, the boundary normal in the crystal frame is

constrained to lie in the plane of the paper, and the boundary energy can be expressed as
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a function of the inclination θ that the boundary normal makes with a reference axis, say

< 100 > (as in eq.1.11). Grains are misoriented with respect to each other if they are rotated

by varying amounts about the plane normal < 001 >. The value of δ was varied from 0

(isotropic) to 0.4 (strongly anisotropic) in increments of 0.1, and the symmetry of the energy

function was assumed to be four-fold (m′ = 4). The boundary mobility m was assumed to

be isotropic. The deviation of steady-state grain shapes from the circular shape can be seen

in fig. 2.15. It can be seen that grains become more faceted (see deviation from the circular

shape denoted by the dotted line) as the strength of anisotropy increases.

Since the grain boundary energy is expressed as the sum of the surface energies of grains

on either side of the boundary, as in eq.2.16, the boundary normal in the sample frame

has to be rotated in the frame of reference of either grain. Hence, the inclination-based

energy is implicitly dependent on the misorientation across the boundary (see fig.2.17(b))

. To investigate the effect of misorientation on inclination distributions the value of θ was

varied at fixed intervals of 9°, and the anisotropy strength δ in eq.2.10 was fixed at 0.4.

The effect of increasing misorientation across the boundary on grain shapes can be seen in

fig. 2.16. The corresponding inclination distributions are shown in fig. 2.17(a). As the

misorientation across the boundary increases, grains assume shapes which are increasingly

less faceted (see fig. 2.16). The deviation from the circular shape (represented by the dotted

line) decreases as the boundary misorientation increases. This is because the grain boundary

energy (expressed as the sum of surface energy terms for grains on either side. where these

surface energies depend on boundary inclination in the crystal frame of reference) becomes

less anisotropic as misorientation increases.

In three dimensions, a 64-cubed domain was used to look at the shrinkage of an isolated

grain with anisotropic boundary energy γ expressed as in eq.2.13, varying the anisotropy

strength δ from 0 (isotropic) to 0.3 (strongly anisotropic). The boundary mobility is as-

sumed to be isotropic (m = 1). The boundary velocity scales with the product of boundary

energy and mobility (as v = mγk), hence it has an anisotropic form as in fig.2.5 (low-energy
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Figure 2.15: (a) Inclination-based boundary energy with a maximum value for inclinations
at 45°; steady state kinetic shapes of shrinking grains at intermediate t = 2000 steps, with
increasing strength of anisotropy δ (b) 0 (isotropic) (c) 0.1 (d) 0.2 (e) 0.3 (f) 0.4. Boundaries
are color coded black. Note that grain shapes become faceted as the strength of anisotropy
increases. A circular shape is also shown (dotted line) for comparison. Simulations are
performed in two dimensions on a 128-squared domain.
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(a) (b) (c)

(d) (e) (f)

Figure 2.16: Kinetic shapes of shrinking grains with increasing misorientation across the
boundary, the specific misorientations shown are (a) 0° (b) 9° (c) 18° (d) 27° (e) 36° and
(f) 45°. A circular shape is also shown (dotted line) for comparison. Note that as the
misorientation across the boundary increases, the steady-state grain shape becomes more
circular. Simulations are performed in two dimensions on a 128-squared domain, and evolved
for t = 2000 steps.
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Figure 2.17: Inclination distributions (in a.u.) of isolated grains with varying misorientation,
the boundary energy used has a form identical to fig.2.15 (a) with anisotropy strength δ = 0.4.
Simulations are performed in two dimensions. Note that the populations scale directly with
interfacial energy (compare a(top) to b(bottom)), by contrast to the polycrystalline results
shown later. Fig. b(bottom) shows the effect that boundary misorientation has on an
inclination-based boundary energy, as the boundary energy is expressed as the mean of
surface energy terms with respect to the grains on either side of the boundary (see eq.2.16).
As boundary misorientation increases, the variation of an inclination-based boundary energy
decreases (see fig.b (bottom), and inclination distributions become more uniform as in fig.a
(top).
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boundaries have low velocity and vice-versa). Shrinking from a spherical shape, the grain

shapes at t = 4000 are shown in fig. 2.18 and the corresponding boundary populations are

plotted in fig. 2.19 as inverse pole figures. As the strength of anisotropy increases, shrinking

grains develop facets and boundary populations and energies scale with each other. Note

that in this case, grains are shrinking and the grain volume is not conserved. If an additional

constraint of constant volume is enforced, isolated grains are bounded by low-velocity inter-

faces and an inverse relation between boundary population and velocity is to be expected

[13, 5].

Expected grain shapes can be derived in three dimensions using a procedure identical to

Sekerka et al. [58]. For the particular anisotropic functions used in the present formulation

(eq. 2.13 for three dimensions), the corresponding kinetic Wulff plots are shown below (see

fig. 2.20). Parametric expressions for expected kinetic shapes were derived from reference

[37]. As the strength of anisotropy increases, ears appear on the ξ-plot (in three dimensions),

which have to be discarded, and the remaining convex body gives the expected kinetic

shape [5, 6, 67]. These forms are bounded by low-velocity boundaries as they correspond to

crystals growing under a condition of anisotropic boundary kinetics [67], in contrast to the

present case, where grains are shrinking. Growth shapes are expected to be bounded by low-

velocity boundaries, as they remain while high velocity boundaries grow out and disappear.

Shrinking grains on the other hand, are bounded by fast moving boundaries which shrink in

and eliminate slower boundaries.

In fig. 2.21(a) the expected variation of boundary population (in multiples of random

distribution MRD) with boundary energy (in a.u.) is shown (the boundary energy γ has a

form as in eq.2.13 with δ = 0.3 and γmax rescaled to 1.0) - for growing grains an inverse

relation between boundary population and energy is seen in contrast to shrinking grains

where these scale with each other. In fig. 2.21(b) this variation (extracted from the two-

grain simulations) is plotted for the case of shrinking grains, for increasing values of the

anisotropy strength δ. As the anisotropy strength increases, high velocity boundaries shrink
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(a) (b)

(c) (d)

Figure 2.18: Grain shapes at t = 4000 for boundary energy varying as in eq.2.13 with
increasing anisotropy strength δ varying as (a) 0 (b) 0.1 (c) 0.2 and (d) 0.3. As anisotropy
increases grain shapes deviate from the spherical shape and develop facets.
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Figure 2.19: Inclination distributions are extracted at an intermediate timestep t = 4000 and
plotted for (a) δ = 0, (b) δ = 0.1, (c) δ = 0.2 and (d) δ = 0.3. Simulations are performed in
three dimensions on a 128-cubed domain. Comparing with fig. 2.5 we see that for shrinking
grains populations and energies scale with each other.
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(a)

(b)

Figure 2.20: For an anisotropic function as in eq.2.13 with δ = 0.3, expected kinetic shapes
are shown when the isolated grain is (a) growing and (b) shrinking. Fig.(b) should be
compared to intermediate shapes for shrinking grains, as seen in fig.2.18 (d). Note that
ears or flaps appear, when the 1/γ plot (or the ξ plot in three dimensions) is concave (for
inclinations at which the interfacial stiffness is negative, refer [58, 65]), which have to be
discarded, and the remaining convex body gives the expected kinetic shape.
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in and eliminate slow moving boundaries - hence a direct scaling is observed as expected.

2.5.2 Polycrystalline large-scale simulations in two and three di-

mensions

In the polycrystalline case, a 1500-squared grid in two dimensions was populated with voronoi

grains (the average grain size is 32 voxels). The following set of simulations were performed

to investigate the effect of varying boundary properties (energy and mobility), initial texture

(random or otherwise) and constraints imposed at junctions (case-I or case-II) on grain

boundary character. The initial microstructure is evolved for N = 30000 timesteps. Both

number-weighted and area-weighted boundary distributions are extracted for [1− 2].

1. The boundary energy γ is anisotropic (as in eq.2.13 with δ = 0.3), and is rescaled so

that the minimum energy is 0.5 and the maximum energy is 1.5 (as in eq. 2.22,0.5 ≤

γ ≤ 1.5). The boundary mobililty is isotropic (m = 1). A random texture is assigned

to the grains - the initial distribution of boundaries is sufficiently random. Boundary

junctions are treated as isotropic (case-I), hence boundaries are constrained to meet

at 120° (see section 2.5.2.1).

2. The boundary energy γ is anisotropic (as in eq.2.13 with δ = 0.3) and rescaled (0.5 ≤

γ ≤ 1.5); the boundary mobililty is isotropic (m = 1). A random texture is assigned to

the grains. Boundary junctions are treated as anisotropic (case-II), hence boundaries

meet at angles dictated by the balance of anisotropic line energies (see section 2.5.2.1).

3. The boundary mobility m is anisotropic (as in eq.2.13 with δ = 0.3) and is rescaled

so that the minimum mobility is 0.01 and the maximum vaule is 1.0 (0.01 ≤ m ≤ 1).

The boundary energy is isotropic (γ = 1). A random texture is assigned to the initial

microstructure. Anisotropic boundary properties are allowed to percolate to junctions

(case-II).
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Figure 2.21: Variation of boundary population (in MRD) with boundary energy (in a.u.) for
isolated grains. In (a) the expected variation is shown for growing and shrinking grains for
δ = 0.3 and in (b) the extracted variation is shown for shrinking grains for δ increasing from
0.1 to 0.3. Noth that for shrinking grains (which are bounded by high-velocity boundaries)
populations and energies scale with each other.

78



4. Both boundary energy and mobility are anisotropic (0.5 ≤ γ ≤ 1.5, 0.01 ≤ m ≤ 1).

The initial texture is random and boundary junctions are treated as anisotropic (case-

II).

5. A mild rolling texture is assigned to the initial microstructure. The boundary energy

γ is anisotropic as in eq.2.13 and the boundary mobility m is isotropic (0.5 ≤ γ ≤ 1.5,

m = 1).

6. A mild rolling texture is assigned to the initial microstructure. The boundary mobility

m is anisotropic whereas the boundary energy γ is isotropic (0.01 ≤ m ≤ 1, γ = 1).

2.5.2.1 Effect of equilibrium constraints at junctions on grain boundary char-

acter

In case-I (isotropic junctions) equal energies are associated with interface fields in bound-

ary junctions, and boundaries meet at an isotropic angle of 120°. In case-II (anisotropic

junctions) anisotropic line energies permeate along GBs to junctions and hence boundaries

are no longer constrained to meet at equal angles, instead they meet at angles dictated by

the balance of these line energies. The boundary energy γ has a form as in eq. 2.13 with

δ = 0.3 and rescaled so that 0.5 ≤ γ ≤ 1.5 (see fig. 2.5). Simulations are performed in two

dimensions on a 15002-squared grid (populated with approximately 2200 randomly oriented

grains), and the corresponding boundary populations are extracted at timesteps t = 10000,

20000 and 30000. In fig.2.22 we plot the extracted populations at t = 30000 as inverse pole

figures (IPF) for cases-I and II. In case-I when boundaries are constrained to meet at equal

angles, no inverse corelation shows up between boundary energy and population, in constrast

to case-II, where anisotropic energies are extended to boundary junctions, and an inverse

relation is seen between energy and population. For illustration purposes, a smaller 5122-

squared domain is evolved with identical initial texture and boundary energy but different

equilibrium contraints imposed at the boundary junctions. The microstructure at t = 30000
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steps is plotted in fig. 2.23a (case-I, isotropic junctions) and fig. 2.23b (case-II, anisotropic

junctions).
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Figure 2.22: (a) Variation of boundary energy with boundary inclination (in a.u.), and the
boundary population (in MRD) collected at t = 30000 for (b) isotropic junctions and (c)
anisotropic junctions. Note that in case-II an inverse relation between boundary energy and
population is evident. Simulations are performed in two dimensions on a 1500-squared grid,
and the initial texture is random.

Holm et al. argued that during anisotropic grain growth boundaries rotate to achieve

mechanical equilibria at boundary junctions and as a result low-energy boundaries lenghten

at the expense of high-energy ones[23]. This leads to the observed anisotropy in boundary

populations and the inverse relation between boundary energy and population. In the simu-

lations presented here boundaries are constrained to meet at equal angles in case-I (isotropic

junctions) in contrast to case-II (anisotropic junctions) where they are free to positions dic-
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(a) (b)

Figure 2.23: Microstructure at t = 30000 steps when junctions are treated as (a) isotropic
and (b) anisotropic. Note that in (a) dihedral angles are close to the isotropic value of 120°
in contrast to (b) where angles deviate from 120°.

tated by the balance of anisotropic line energies. This helps to explain the strong inverse

relation between boundary energy and distribution for anisotropic junctions (comparing fig.

2.22(a) to (c)) in contrast to isotropic junctions (compare fig.2.22(a) to (b)).

To illustrate this further, a model 5-grain structure (in two dimensions) is evolved with

a boundary energy γ (as in fig.2.15) with a minimum value for inclinations at 0° and 90°.

The isotropic evolution of the grain structure is similar to its evolution when junctions are

treated as isotropic (compare fig. 2.24(b) to (c)) in contrast to its evolution when junctions

are treated as anisotropic (see fig. 2.24(d)), where low-energy boundaries (at 0° and 90°

inclinations) lengthen at the expense of high-energy boundaries. The observed asymmetry in

fig. 2.24(b,c) compared to fig. 2.24(d) depends on the initial radius of the central (circular)

grain with respect to the domain size. For example for a 1282 squared domain, if the

initial radius of the central grain changes from 44 voxels to 48 voxels, the intermediate grain

shapes (assuming isotropic boundary energies) is shown in fig.2.25 - the thing to note is

that boundaries meet at the isotropic value of 120°. For anisotropic junctions, irrespective
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of initial grain radius, dihedral angles deviate from 120° and low-energy boundaries (those

at 0° and 90° inclination for the present example) lengthen at the expense of high-energy

boundaries, as in fig. 2.26.

(a) (b)

(c) (d)

Figure 2.24: 5−grain structure at (a) t = 0, and at t = 15000 evolved with (b) isotropic
boundary energy (c) anisotropic boundary energy γ with a minimum for 0°and 90° inclina-
tions and junctions constrained to meet at equal angles (isotropic junctions) (d) anisotropic
energy γ with a minimum for 0°and 90° inclinations and free (anisotropic) junctions. Note
that in (d) low-energy boundaries lengthen with time.

In fig. 2.27 the variation of boundary population with boundary energy is shown for

case-I (isotropic junctions) and case-II (anisotropic junctions) at t = 10000. The inverse

relation between energy and population is evident for case-II in contrast to case-I.

In the following figure fig. 2.28 we explore the sensitivity of boundary distributions
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(a) (b)

Figure 2.25: Intermediate grain shapes for five-grain structure as in fig.2.24(a) evolved with
isotropic boundary energies for an initial circular grain radius of (a) 44 voxels and (b) 48
voxels. The asymmetry shifts but boundaries still meet at the isotropic value of 120°.

(a) (b)

Figure 2.26: Intermediate grain shapes for five-grain structure as in fig. 2.24(a) evolved
with anisotropic energies (with a minimum for 0° and 90° inclinations) and these energies
extended to boundary junctions (case-II), for an initial circular grain radius of (a) 44 voxels
and (b) 48 voxels. Irrespective of the initial grain radius low-energy boundaries increase
while high-energy boundaries decrease in length, and dihedral angles deviate from 120°.
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Figure 2.27: Boundary population (in MRD) plotted with boundary energy (in a.u.) for
isotropic junctions (case-I) and anisotropic junctions (case-II). Simulations are performed
in two dimensions on 1500-squared domain and populations are collected at t = 10000. Note
that these scale inversely with each other (in case-II) when boundaries are not constrained
to meet at equal angles (as in case-I).

to the number of timesteps t chosen for data collection and the number of grains (or the

overall domain size) in the initial microstructure g(0). A sufficiently large number of grains

should be used so that the initial distribution of boundaries is nearly random, and the initial

microstructure (with random texture) has to be evolved for a sufficiently large number

of timesteps till steady-state has been achieved and thereafter no siginificant changes in

distributions occur. It can be infered that t = 10000 is sufficiently long and g = 1000 is

sufficiently large.

To test the effect of simulation parameters such as the timestep 4t and the boundary

width λ chosen on boundary distributions, we evolve an identical microstructure (10242

domain populated with approximately 1000 grains, grains are randomly oriented with each

other) for t = 10000 steps, with identical initial texture. The boundary width is varied as

λ = 4, 8, 16 points (keeping the timestep constant at 4t = 0.02) and the timestep is varied

as 4t = 0.01, 0.02, 0.04 (at constant boundary width constant at λ = 8 points). It can be
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Figure 2.28: (a) Boundary distributions are extracted at different timesteps. Note that
anisotropy in populations develops as arealy as t = 1000 timesteps but a steady-state in
boundary distribution is observed after t = 10000 timsesteps (b) At t = 10000 bound-
ary population are extracted for varying number of initial grains. Note that no signifi-
cant strengthening in anisotropy of boundary population is observed for number of grains
g ≥ 1000.
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observed in figs. 2.29,2.30 that boundary distributions are more sensitive to the boundary

width chosen, compared to the value of timestep chosen if the total time evolved is kept fixed

(where total time evolved is calculated as the product of evolution steps and the timestep

4t). 0.0 0.4 0.8 1.2 1.6 2.0 2.4
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Figure 2.29: Boundary distributions extracted from a 10242 domain populated with 1024
grains, with a boundary width of λ = 8 points, evolved for (a) 10000 steps and4t = 0.02 and
(b) 5000 steps and 4t = 0.04 with a boundary energy as in fig. 2.22(a). The distributions
are similar, demonstrating the relative insensitivity to the timestep chosen.

Gruber et al. have proposed that low-energy boundaries increase both in number and

in area [20] (in contrast to Holm’s arguments that low-energy boundaries only increase in

area) through a critical-event mechanism. To test this, we extract the number-weighted and

area-weighted boundary distributions and have plotted them in fig.2.31. It can be seen that

low-energy boundaries increase both in number and in area (the inverse relation is stronger

in terms of area-weighted statistics than in terms of number-weighted distributions), or in

other words, there are more and larger low-energy boundaries compared to high-energy ones.

A steady state in distributions is attained at t = 10000.

In three dimensions a 160-cubed domain (with an initial grainsize of 16 voxels, which

gives an initial microstructure of 1000 grains) was used. A random texture was assigned to

the initial microstructre. The effect of different constraints imposed at boundary junctions on

the development of boundary character was explored by evolving the initial microstrucutre
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Figure 2.30: Boundary distributions extracted from a 10242 domain populated with 1024
grains, evolved for 10000 evolution steps with a boundary energy as in fig. 2.22(a), with a
timestep 4t = 0.02 and a boundary width of (a) λ = 4 (b) λ = 8 and (c) λ = 16 points.
The distributions are relatively sensitive to the value of the boundary width chosen.

0.5 0.7 0.9 1.1 1.3 1.5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Boundary energy (in a.u.)

B
o
u
n
d
a
ry

 p
o
p
u
la

ti
o
n
 (

in
 M

R
D

)

 

 

  numb fraction t=0

  area fraction t=0

  numb fraction t=10000

  area fraction t=10000

  numb fraction t=30000

  area fraction t=30000

Figure 2.31: Number-weighted and area-weighted boundary distributions extracted from
two-dimensional simulations (junctions are treated as anisotropic, case-II) at t = 0 (initial
state) and at t = 10000, 30000 timesteps. Note that low-energy boundaries increase in
number and in area as suggested by Gruber et al. [20]
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for t = 3000 evolution steps, as in [1 − 2] listed above. An evolution step is said to have

elapsed when each voxel in the computational domain has been considered for updation. The

timestep in the present simulation is chosen to be 0.02. In fig.2.32 the boundary populations

are plotted as inverse polefigures at t = 3000 and compared to the anisotropy in boundary

energy for cases-I and II. As in two dimensions we see a strong inverse corelation between

population and energy in case-II. In fig. 2.33 the grain strucutre at t = 3000 for a smaller

64-cubed domain is shown for comparison - in case-I boundaries are constrained to meet

at equal angles in contrast to case-II where they are free to meet at angles dictated by the

balance of anisotropic line energies. In fig. 2.34 the variation of boundary population with

boundary energy is shown at t = 3000.

(a) (b)

Figure 2.32: Boundary population collected at t = 3000 for (a) isotropic junctions (case-
I) and (b) anisotropic junctions (case-II), for a boundary energy varying as in fig.2.22(a).
Note that in case-II the inverse relation between boundary energy and population is evident.
Simulations are performed in three dimensions on a 160-cubed grid initially populated with
1000 grains with random texture.

2.5.2.2 Effect of anisotropic boundary mobility on grain boundary character

The boundary mobility m is varied as in eq. 2.13 and rescaled so that 0.01 ≤ m ≤ 1 (see

fig.2.35). Simulations are performed in two dimensions on a 1500-squared domain initially

populated with approximately 2000 grains with random texture. The boundary energy
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(a) (b)

Figure 2.33: Polycrystalline snapshots at intermediate timestep t = 3000 for (a) isotropic
junctions (case-I), and for (b) anisotropic junctions (case-II). Simulations are performed in
three dimensions on a 64-cubed domain and evolved with a boundary energy as in fig.2.22(a).
Boundaries tend to be more faceted and dihedral angles deviate from 120° when anisotropic
energies are extended to boundary junctions (compare (b) to (a)).
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Figure 2.34: Boundary population (in MRD) plotted with boundary energy (in a.u.) for
isotropic junctions (case-I) and anisotropic junctions (case-II). Simulations are performed
in three dimensions on 160-cubed domain and populations are collected at t = 3000. Note
that these scale inversely with each other (in case-II) when boundaries are not constrained
to meet at equal angles (as in case-I).
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γ is isotropic (γ = 1). Both boundary energies and mobilities permeate along GBs to

junctions (anisotropic junctions). In fig. 2.36 (a) boundary populations are extracted at

t = 30000 and plotted. Comparing with populations extracted from microstructures evolved

with an anisotropic boundary energy (as in fig. 2.36 (b)) it is seen that boundary mobility

has significantly lesser effect on the development of anisotropy in grain boundary character

compared to boundary energy, when the initial texture is random [68]. For illustration

purposes, a smaller 5122- squared domain is evolved with identical initial (random) texture

but with different boundary properties for t = 30000 timesteps. The microstructure is shown

in fig.2.37(a) (anisotropic boundary energy and isotropic mobility, 0.5 ≤ γ ≤ 1.5,m = 1)

and fig. 2.37(b) (anisotropic boundary mobility and isotropic energy, 0.01 ≤ m ≤ 1, γ = 1).
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Figure 2.35: Variation of boundary mobility with inclination (in a.u.), in three dimensions
as in eq.2.13 with δ = 0.3 and rescaled to 0.01 ≤ m ≤ 1.

Kazaryan et al. predicted that boundary mobility has limited influence on boundary

distributions when the initial texture is random [68]. In the present work it has been hy-

pothesized that equilibrium constriants at boundary junctions have a significantly greater

influence on boundary character than anisotropic boundary kinetics. Further it has been

shown above that an inverse relation between energy and population develops when bound-
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Figure 2.36: Boundary population extracted from simulations in two dimensions at t =
30000 for boundary properties varying as (a) 0.01 ≤ m ≤ 1, γ = 1 as in fig. 2.35 and (b)
0.5 ≤ γ ≤ 1.5,m = 1 as in fig, 2.5. Note that anisotropy in boundary mobility does not
result in an anisotropy in boundary population, in contrast to the strong inverse relation
between boundary energy and population.

(a) (b)

Figure 2.37: Simulations are performed in two dimensions on a 512-squared domain and the
initial microstructure is evolved for t = 30000 steps, with boundary properties varying as
(a) 0.01 ≤ m ≤ 1, γ = 1 as in fig. 2.35 and (b) 0.5 ≤ γ ≤ 1.5,m = 1 as in fig, 2.5. Note
that in (a) dihedral angles deviate from the isotropic value of 120°, in contrast to (b) where
boundaries meet at equal angles.
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aries are not constrained to meet at equal angles, but are free to rotate to positions dictated

by the balance of anisotropic boundary energies. When the boundary energy is isotropic,

boundaries meet at angles close to the isotropic value, irrespective of the anisotropy in

boundary mobility. In this case no such inverse relation between boundary mobility and

population is observed. Since the average mobility is less than unity, the kinetics of grain

growth decreases, with no change in grain boundary character.

To demonstrate this a 4-grain structure is evolved with varying boundary properties

- both boundary energy and mobility depend only on the pair of grains on either side.

Boundary properties permeate along GBs to boundary junctions (anisotropic junctions, case-

II). As seen in fig. 2.38 the steady-state dihedral angle θ (defined as in fig. 2.12) depends only

on the ratio of boundary energies rγ =
γjk
2γ1j

and not on the ratio of boundary mobilities rm =

mjk
2m1j

. Hence an anisotropy in boundary mobilities does not result in a deviation of dihedral

angles from values dictated by the balance of line energies (which gives θ = 2cos−1
(
γjk
2γ1j

)
).

The expected and measured dihedral angles for varying boundary properties (as in fig.

2.38(a)-(i)) are shown in the table.2.1 below. Note that these only depend on the relative

values of boundary energies rγ and do not depend on boundary mobilities rm.

Index in fig. 2.38 Boundary energy γ Boundary mobility m θtheo = 2cos−1
(
γjk,j,k 6=1

2γ1j,j 6=1

)
θmeas

a γij = 1.0 m1j,j 6=1 = 0.5 120° 118°
b γij = 1.0 m1j,j 6=1 = 1.0 120° 124°
c γij = 1.0 m1j,j 6=1 = 2.0 120° 122°
d γ1j,j 6=1 = 0.5 m1j,j 6=1 = 0.5 0° 24°
e γ1j,j 6=1 = 0.5 m1j,j 6=1 = 1.0 0° 22°
f γ1j,j 6=1 = 0.5 m1j,j 6=1 = 2.0 0° 19°
g γjk,j,k 6=1 = 0.5 m1j,j 6=1 = 0.5 151° 153°
h γjk,j,k 6=1 = 0.5 m1j,j 6=1 = 1.0 151° 146°
i γjk,j,k 6=1 = 0.5 m1j,j 6=1 = 2.0 151° 145°

Table 2.1: Comparison of measured and theoretical dihedral angles for the four-grain struc-
ture, evolving under varying boundary conditions.

In fig. 2.39 the variation of boundary population with reduced boundary mobility µ = mγ

is plotted at t = 30000. When only boundary mobility varies (with isotropic boundary
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.38: Evolution of four-grain structures (in two dimensions) with (a) γij =
1.0,m1j,j 6=1 = 0.5 (b) γij = 1.0,m1j,j 6=1 = 1.0 (c) γij = 1.0,m1j,j 6=1 = 2.0 (d) γ1j,j 6=1 =
0.5,m1j,j 6=1 = 0.5 (e) γ1j,j 6=1 = 0.5,m1j,j 6=1 = 1.0 (f) γ1j,j 6=1 = 0.5,m1j,j 6=1 = 2.0 (g)
γjk,j,k 6=1 = 0.5,m1j,j 6=1 = 0.5 (h) γjk,j,k 6=1 = 0.5,m1j,j 6=1 = 1.0 (i) γjk,j,k 6=1 = 0.5,m1j,j 6=1 = 2.0.
Note that steady-state dihedral angles are independent of boundary mobilities mij and vary
only with boundary energies γij.
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energy) as 0.01 ≤ m ≤ 1, γ = 1, no significant anisotropy in boundary character is observed.

For an anisotropic boundary energy (with isotropic boundary mobility) as 0.5 ≤ γ ≤ 1.5,m =

1, an inverse relation between reduced mobility µ and population is observed. When both

boundary energy and mobility are anisotropic as 0.5 ≤ γ ≤ 1.5, 0.01 ≤ m ≤ 1, a similar

inverse relation is seen. Hence, anisotropy in grain boundary character develops primarily

due to an anisotropy in boundary energy.
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Figure 2.39: Variation of boundary population with reduced mobility extracted from two-
dimensional simulations at t = 30000. An inverse relation is seen when the boundary energy
is anisotropic, irrespective of the anisotropy in boundary mobility.

2.5.2.3 Effect of initial texture on development of anisotropic boundary char-

acter

Ma et al. have proposed that in the presence of an initial texture both boundary energy and

mobility have an influence on boundary distributions [35, 20]. For the case the microstructure

is strongly textured, it was shown that boundary energy strengthens texture in contrast to

boundary mobility which decreases texture. To test the effect of initial texture on boundary

character during anisotropic grain growth, the initial microstructure (1500-squared domain
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in two dimensions, populated with approximately 2000 grains) is assigned a mild rolling

texture so that the initial distribution of grain boundaries is not random. This is evolved with

anisotropic boundary energy and isotropic mobility (as in fig. 2.5, 0.5 ≤ γ ≤ 1.5,m = 1),

and the initial distribution is compared to the boundary distribution at t = 10000, 30000.

The initial anisotropy in distributions is strengthened so that low-energy boundary grow at

the expense of higher energy ones (see fig.2.40). The variation of boundary population with

energy is shown in fig.2.41 - it is to be noted that the initial texture in boundary plane

distribution is strengthened and no steady-state is seen (as observed for the case of initial

random texture at t = 10000).
0.0 0.6 1.2 1.8 2.4 3.0 3.6

Multiples of Random

Filename root: poles X

Stereographic

MRD
001 101

111

0.0 0.6 1.2 1.8 2.4 3.0 3.6

Multiples of Random

Filename root: poles X

Stereographic

MRD
001 101

111

0.0 0.6 1.2 1.8 2.4 3.0 3.6

Multiples of Random

Filename root: poles X

Stereographic

MRD
001 101

111

0.0 0.6 1.2 1.8 2.4 3.0 3.6

Multiples of Random

Filename root: poles X

Stereographic

MRD
001 101

111(a) (b) (c)

Figure 2.40: Boundary population extracted at (a) t = 0 (initial) (b) t = 10000 and (c)
t = 30000. It can be noted that no steady-state exists, and the initial (boundary plane)
texture is strengthened with time for an anisotropic boundary energy.

The initial microstructure (asigned with an initial rolling texture) is evolved with anisotropic

boundary mobilities (and isotropic energy), as in fig. 2.35 (0.01 ≤ m ≤ 1, γ = 1) to

explore the effect of anisotropic mobility on populations in the presence of texture. In

fig.2.42 the boundary populations are plotted at t = 0 (initial), and at subsequent timesteps

t = 10000, 30000. The variation of boundary population with mobility is shown in fig. 2.43-

it is to be noted that the initial texture in boundary plane distribution decreases with time

and no steady-state is observed.
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Figure 2.41: Boundary population plotted with boundary energy for timesteps t =
0, 10000, 30000. The initial anisotropy in boundary population (color coded red) grows with
time (compare red to green).
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Figure 2.42: Boundary population extracted at (a) t = 0 (initial) (b) t = 10000 and (c)
t = 30000. It can be noted that no steady-state exists, and the initial (boundary plane)
texture decreases with time when the boundary mobility is anisotropic.
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Figure 2.43: Boundary population plotted with boundary mobility for timesteps t =
0, 10000, 30000. The initial anisotropy in boundary population (color coded red) weakens
with time (compare red to green).

2.6 Conclusion

The following conclusions can be derived from the present chapter

1. For an anisotropic boundary energy, the evolution of isolated grains is different from

the evolution of polycrystalline systems, due to the presence of boundary junctions.

For isolated shrinking grains, populations scale with boundary energy, in contrast to

microstructure evolution in polycrystalline systems, where different equilibrium con-

ditions at junctions result in significantly different boundary populations. An inverse

relation between boundary energies and populations is obtained in the polycrystalline

case, when boundaries are free to rotate, and dihedral angles deviate from the isotropic

value of 120° to values dictated by mechanical equilibrium conditions at these junc-

tions. A similar deviation in the distribution of dihedral angles from the isotropic value

of 120° have been observed experimentally in anisotropic systems by Dillon et al. [12].

2. When the initial texture in polycrystalline syatems is random, an anisotropy in bound-
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ary mobility does not result in a corresponding anisotropy in boundary populations,

in contrast to the inverse relation between boundary energy and population. Hence, a

higher incidence of low-energy grain boundary planes in polycrystals can be viewed as a

natural consequence of satisfying mechanical equilibrium conditions at triple junctions,

which have a significantly greater effect on the development of anisotropic boundary

character compared to the effect of kinetic factors (as boundary mobility). This is in

contrast to the evolution of isolated grains where grain shapes and boundary distribu-

tions depend on the anisotropy in kinetic factors (as boundary velocity, which scales

with boundary energy and mobility).

3. Low-energy boundaries grow at the expense of high-energy ones, both in number and

in area. This is in contrast to Holm’ s [23] arguments that low-energy boundaries in-

crease in area and not in number. The anisotropy in boundary character cannot be

explained solely through a boundary-lengthening mechanism. The number-weighted

and area-weighted anisotropy in boundary population support a critical-event mecha-

nism propsed by Gruber et al. [20] which predicts an increase of the number and the

area of low-energy boundaries in polycrystalline systems.

4. The initial texture has a siginificant effect on the distribution of boundary popula-

tions during anisotropic grain growth. A non-random texture constrains the strength

in anisotropy (in boundary populations) that can be achieved due to an anisotropy

in boundary energy (and mobility). When the initial texture is random, a strong in-

verse relation is seen between boundary energy and population and a steady-state in

distributions exists. In the case of a non-random initial texture, neither a strong cor-

relation (between boundary energy and population) nor a steady-state in distributions

is observed.
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Chapter 3

Deriving anisotropic boundary energies

and populations for face-centred cubic

metals

3.1 Introduction

In the present chapter, we derive the variation of grain boundary energy for fcc metals (like

nickel and aluminum) in the five-parameter grain boundary space. Recently energies for such

systems were estimated through use of simulations [49] and experiments [32]. Since these

energies were estimated for only a limited number of GB types (certain CSL boundary types

in the method described by Olmsted et al.), an interpolative method is needed to estimate

energy of a grain boundary (GB) of arbitrary type. Such a method needs the selection of

a proper metric to estimate closeness between any two arbitrary GB types. An informative

review of metrics with associated advantages and disadvantages by Cahn et al. can be

refered to [7]. In the present chapter we describe the use of two such metrics [44, 48] and

compare the interpolated energies to those observed experimentally in nickel [32]. A series

of simulations are performed incorporating these interpolated energies in the interface-field

99



framework discussed in the present work, and the anisotropy in boundary populations is

correlated to the anisotropy in interpolated energies.

3.2 Methodology and results

Li et al. derived grain boundary energies for nickel using orientation imaging of nickel and

serial sectioning techniques [32]. These energies were reconstructed using a capillarity vector

method described in reference [43]. To derive the aforementioned energies, a large number

of grain boundaries were collected using orientation-mapping on serial-sectioned nickel and

binned in the five-parameter grain boundary space [32]. The discretization interval is 8.2°

for all five dimensions (of the boundary space), and there are about 644, 200 cells (or grain

boundary types, not all of them being distinct from each other) in the grain-boundary space.

Details for the data collection and energy reconstruction are not provided here. The variation

of boundary energies with the boundary plane normal for specific Σ boundaries is plotted in

fig. 3.1.

In a recent paper, Olmsted et al. calculated energies of a set of CSL grain boundary

types for face-centred metals (as nickel and aluminium) [49]. Since the number of GB types

with known energies is sparse, an interpolation procedure is necessary to derive energy of

a boundary having arbitrary misorientation and inclination. This requires the use of an

appropriate metric to estimate the distance between GB types, and to subsequently assign

the energy of its closest neighbor (whose energy is known) to an arbitrary boundary type.

3.2.1 Representation of grain boundaries (in (A,B) form)

Since grain boundaries in three dimensions have five degrees of freedom (the first three related

to misorientation across the boundary and the last two related to the boundary plane normal

in the crystal reference frame), a five dimensional energy matrix needs to be constructed,

where the value of cell [c1, c2, c3, c4, c5] corresponds to the energy of a grain boundary having
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Figure 3.1: Reconstructed grain boundary energies for nickel for specific misorientations,
redrawn from [32] for (a) 60° < 111 > and (b) 38.9° < 110 >. Energies are plotted in
arbitrary units (a.u.).
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Figure 3.2: Reconstructed grain boundary energies for nickel for specific misorientations,
redrawn from [32] for (a) 38.2° < 111 > and (b) 36.9° < 100 >. Energies are plotted in
arbitrary units (a.u.).
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a misorientation specified by indices [c1, c2, c3] and a plane normal specified by indices [c4, c5].

The boundary space is discretized to CD bins for each dimension in misorientation space

and (CD2, 4CD2) bins in inclination space, so that

0 ≤ c1, c2, c3 ≤ CD (3.1)

0 ≤ c4 ≤ CD2, 0 ≤ c5 ≤ 4CD2 (3.2)

Olmsted et al. calculated absolute energies (in J/m2) of 388 distinct grain boundary types

for face-centred cubic metals (as aluminum and nickel)[49]. In the aforementioned work, a

series of molecular-static simulations were performed on bicrystal geometries, where the

grain boundary misorientations are limited to CSL types (Σ boundaries) and the boundary

normals are rational. At least 72 different Σ boundary types were considered. Embedded-

atom potentials were used for reasons of good agreement between experimental and simulated

energies of specific GBs. The variation of boundary energies with the boundary plane normal

for specific Σ boundaries is plotted in figs. 3.3,3.4. There are 9 bins in each dimension

(CD = 9, CD2 = 9). Comparing these with those extracted from orientation mapping

observations [32] (as in fig. 3.1), qualitative differences are evident. Only boundary types

equivalent to one of the 388 boundaries have been assigned an energy, and the energies of

other boundary types are unknown. Details for procedure to fill up the 5-parameter space

with energies for the 388 GB types are given in Appendix E - it should be noted that the

energy space is sparse as the 388 types (and their crystallographic equivalents) correspond

to only a few boundary types. Hence, a method to estimate the energy for an arbitrary

boundary type using appropriate metrics is discussed in the present chapter.

We use an alternate representation of grain orientations proposed by Olmsted [48, 49].

The motivation is that the list of GB types with known energies are expressed in Olmsted’s

representation. A reference configuration is chosen (such as say the lattice vectors of a face-
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Figure 3.3: Grain boundary energies for nickel for specific misorientations (a) 60° < 111 >
and (b) 38.9° < 110 > extracted from molecular-static simulations, redrawn from [49].
Energies are expressed in J

m2 .
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Figure 3.4: Grain boundary energies for nickel for specific misorientations (a) 38.2° < 111 >
and (b) 36.9° < 100 > extracted from molecular-static simulations, redrawn from [49].
Energies are expressed in J

m2 .
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centred cube) - the metric is defined such that any parametrization of GBs is independent

of the particular reference configuration chosen. The plane z = 0 is chosen such that it lies

along the plane of the grain boundary itself - thus grain A can be defined as the crystal

in the region z < 0 and grain B as the crystal in z > 0. Thus rotation matrices could be

calculated which rotate the reference configuration to grain A (and grain B) - these would be

denoted (as in [48]) by A and B respectively, and the boundary is represented as (A,B). Note

that such a representation for a grain orientation is the inverse of the Bunge representation

usually used in texture studies. Such a boundary would have six degrees of freedom (three

from each rotation matrix), one of which is redundant. This is because any rotation Z of

the grains about z = 0, would change the rotation matrices A and B without altering the

boundary. This is expressed as (ZA,ZB) = (A, B). Also, application of crystal symmetries

on the grains (TA and TB) should not change the boundary, which can be expressed as

(ATA,BTB) = (A,B).

For each GB type [c1, c2, c3, c4, c5] the corresponding (A,B) representation can be found

in the following manner. The indices of the grain boundary normal [nx.ny.nz] is calculated

as

nx = sinθcosϕ (3.3)

ny = sinθsinϕ (3.4)

nz = cosθ (3.5)

where, the angles (θ, ϕ) depend on indices (c4, c5) as in

θ = cos−1

(
c4

CD2

)
(3.6)

ϕ =
πc5

2CD2

(3.7)
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The corresponding limits for θ (angle that the normal makes with the [001] axis) and ϕ

(angle between the projection of the boundary normal on the xy plane and the [100] axis)

are

0 ≤ θ ≤ π

2
, 0 ≤ ϕ ≤ 2π

The rotation matrix which transforms [nx, ny, nz] to [001] can be arbitrary fixed as matrix

A. Other solutions are possible, but any member can be used as these belong to an equiv-

alence class [48]. Note this is an active rotation hence it is the inverse of its corresponding

Bunge representation A′ = AT . The other rotation matrix B is calculated as gB = gA4gAB.

The disorientation matrix can be determined as

4gAB =


cosφ1cosφ2 − sinφ1sinφ2cosΦ sinφ1cosφ2 + cosφ1sinφ2cosΦ sinφ2sinΦ

−cosφ1sinφ2 − sinφ1cosφ2cosΦ −sinφ1sinφ2 + cosφ1cosφ2cosΦ cosφ2sinΦ

sinφ1sinΦ −cosφ1sinΦ cosΦ


(3.8)

where, the angles (φ1,Φ, φ2) are related to the misorientation indices [c1, c2, c3]

c1 = 2 ∗ CD ∗ φ1/π (3.9)

c2 = CD ∗ cosΦ (3.10)

c3 = 2 ∗ CD ∗ φ2/π (3.11)

For each of the 388 boundary types (whose energies are known, refer [49]) the corre-

sponding (C,D) representation is used. Cubic symmetry operators (Oi, 1 ≤ i ≤ 24) are then

applied to each orientation matrix (as in gAOA) as these are crystallographically equivalent
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orientations. One of the advantages of using this representation is the ease of determining

the boundary normal, which is simply the first row of the orientation matrix, for example

the n̂A is (here i = 1, j = 1)

nxA = gAOA(i, j) (3.12)

nyA = gAOA(i, j + 1) (3.13)

nzA = gAOA(i, j + 2) (3.14)

Now an appropriate metric needs to be chosen to calculate the distance between an arbi-

trary boundary type (A,B) and each of the 388 boundary types (and their crystallographic

equivalents) whose energies are known, represented as (C,D). The energy of its closest

boundary (C,D)d=dmin is then assigned to boundary(A,B).

3.2.2 Interpolated energies using Morawiec’s metric

A metric devised by Morawiec [43] is used to calculate distance between two grain boundary

types. The metric accounts for closeness both in misorientation and inclination space. Equal

weights are assigned to distances in misorientation and inclination space. It is to be noted

that this uniform weightage is arbitrary, and unequal weights might be assigned for distances

in misorientation and inclination space [7], which will result in different interpolated energies.

This arbitrariness of combining distances to obtain a net distance (in boundary space) is a

serious disadvantage of using this metric.

Suppose one wishes to determine the closeness of two arbitrary boundary types (specified

by (g, n) and (g′, n′), a representation used by Morawiec) - where g and n denote boundary

misorientation and plane normal in crystal reference frame respectively. The distance in

boundary space can be expressed as eq.3.15.
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χ2 = 5− tr(gTg′)− n.n′ − (gTn).(g′Tn′) (3.15)

here tr(g) represents the trace of the 3X3 rotation matrix g, which is simply the sum of

the diagonal elements

tr(g) =
3∑
i=1

g[i, i] (3.16)

and n.n′ the dot product of the two boundary normals

n.n′ =
3∑
i=1

nin
′
i (3.17)

where ni denotes the ith component of boundary normal n .

In terms of the (A,B) representation the misorientation for boundaries (A,B) and (C,D)

is given by 4gAB and 4gCD respectively

4gAB = (gAOA)T gBOB (3.18)

4gCD = (gCOC)T gDOD (3.19)

here for each symmetry operator Ogi, 1 ≤ i ≤ 24 - all crystallographically equivalent

boundaries have equal energies.

The corresponding distances in misorientation space χ2
4g and inclination space χ2

n and

the net distance χ2 in boundary space can be expressed as

χ2
4g = 3− tr

(
(4gAB)T 4gCD

)
(3.20)

χ2
n = 2− nA.nC − nB.nD (3.21)

χ2 = χ2
4g + χ2

n (3.22)
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For each boundary of arbitrary type (A,B) the distance to each of the 388 boundaries

(represented as (C,D)) is calculated. An energy value corresponding to its closest (C,D)

boundary is assigned to (A,B). Mathematically this can be expressed as eq. 3.23.

γ(A,B),i = γ(C,D),j, χ
2
i,j = min[χ2

i,k, 1 ≤ k ≤ N ] (3.23)

where N denotes the number of boundary types with known energies. This process is re-

peated for each arbitrary GB type in boundary space - since the boundary space is discretized

into (CD,CD,CD) bins in misorientation space and (CD2, 4CD2) bins in inclination space,

this corresponds to 4.CD3.CD2
2 boundary types, not all of which are distinct GB types. In

figs. 3.5,3.6 the interpolated energies for specific values of misorientation are shown, for

CD = 9, CD2 = 9.

3.2.3 Interpolated energies using Olmsted’s metric

Morawiec’s metric [43] suffers from an inherent arbitrariness - as separate distances are

calculated in misorientation space and inclination space, corresponding weights have to be

chosen to combine them to derive a distance χ2 in boundary space. This is expressed below

for convenience

χ2 = 5− tr(gTg′)− n.n′ − (gTn).(g′Tn′) (3.24)

where, tr(g) denotes the trace of rotation matrix g and n.n′ the dot product of boundary

normals n and n′. In eq. 3.24 equal weights have been assigned to distances in inclination

and misorientation space. One can choose unequal weights for these distances, and expect

different interpolated energies.

Recently Olmsted proposed an alternate metric based on his representation of grain

boundaries described in a companion paper [48, 49]. The distance between boundary types

(A,B) and (C,D) is simply expressed as in eq. 3.25
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Figure 3.5: Interpolated energies for specific misorientations in nickel, using Morawiec’s
distance metric for (a) 60° < 111 > and (b) 38.9 < 100 >. Energies are expressed in J

m2 .
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Figure 3.6: Interpolated energies for specific misorientations in nickel, using Morawiec’s
distance metric for (a) 38.2° < 111 > and (b) 36.9 < 100 >. Energies are expressed in
J
m2 . Comparing these (and fig. 3.5) with figs.3.1,3.2 significant qualitative differences can be
observed, both in terms of the range and distribution of boundary energies.
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d =
√

2

√
3− tr((gAOA)T gCOC) + 3− tr((gBOB)T gDOD) (3.25)

here, each of the symmetry operators Ogi (g = A, B, C or D) should vary independently

for 1 ≤ i ≤ 24.

Since in this representation of grain buondaries, a rotation about z = 0 does not change

the boundary, a minimization routine should be used (refer Appendix B in (author?) [48]).

The distance d can be modified to

a = 6− [F1(A,C) + F1(B,D)] (3.26)

b = F2(A,C) + F2(B,D) (3.27)

c = F3(A,C) + F3(B,D) (3.28)

d = a−
√
b2 + c2 (3.29)

here Fi(A,C) is given by

F1(A,C) = (gAOA)Ti3(gCOC)3i (3.30)

F2(A,C) = (gAOA)Ti1(gCOC)1i + (gAOA)Ti2(gCOC)2i (3.31)

F3(A,C) = (gAOA)Ti2(gCOC)1i − (gAOA)Ti1(gCOC)2i (3.32)

In his paper, Olmsted showed that this definition of distance was able to capture dif-

ferences in boundary plane inclination (at a constant misorientation). The particular case

of Σ3 misorientation was chosen for illustration where coherent < 111 > planes exhibited a

significantly lower energy with respect to other boundary inclinations [48].

The distance between boundary of arbitrary type(A,B) (for which we need to determine

a boundary energy) and boundary (C,D) (here (C,D) belongs to the set of boundaries for
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which energies were determined through molecular-static simulations [49], N = 388 in the

expression below) can be calculated using eqs.3.25,3.29. The energy of its closest boundary

is then assigned to boundary (A,B).

γ(A,B) = γ(C,D)k , χk = min {χj, 1 ≤ j ≤ N} (3.33)

χj = min(d(A,B),(C,D)Ogi , 1 ≤ i ≤ 24) (3.34)

d(A,B),(C,D)Ogi = a−
√
b2 + c2 (3.35)

as before, each of the symmetry operators Ogi(g = A,B,C,D) should vary independently

for 1 ≤ i ≤ 24. This process is repeated for each arbitrary GB type in boundary space -

since the boundary space is discretized into (CD,CD,CD) bins in misorientation space and

(CD2, 4CD2) bins in inclination space, this corresponds to 4.CD3.CD2
2 boundary types, not

all of which are distinct GB types. In figs. 3.7,3.8 the interpolated energies for specific values

of misorientation are shown, for CD = 9, CD2 = 9 (9 bins in each dimension).

3.2.4 Correlating boundary populations with interpolated energies

A set of simulations are performed in three dimensions on a 160-cubed domain (initially pop-

ulated with 1000 grains and assigned a random texture), with interpolated energies derived

using Olmsted’s metric. Details for incorporating interpolated energies in the interface-field

framework can seen in Appendix C. Boundary populations are extracted at an intermediate

timestep t = 3000 and are plotted in figs. 3.9-3.12. The anisotropy in these distributions

should be compared to the anisotropy in interpolated energies (interpolated energies for spe-

cific misorientations are redrawn for comparison). An inverse relation between boundary

energy and population seems to develop, see the peaks at < 111 > for 60° and 38.2° disorien-

tations for instance. These distributions (extracted from simulations) are compared to those

extracted using experimental techniques (orientation mapping of two-dimensional sections
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Figure 3.7: Interpolated energies for specific misorientations in nickel, using Olmsted’s dis-
tance metric for misorientations (a) 60° < 111 > and (b) 38.9° < 110 >. Energies are
expressed in J

m2 .
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Figure 3.8: Interpolated energies for specific misorientations in nickel, using Olmsted’s dis-
tance metric for misorientations (a) 38.2° < 111 > and (b) 36.9° < 100 >. Energies are
expressed in J

m2 . Comparing these (and fig. 3.7) with figs.3.1, 3.2 it can be observed that
they are qualitatively similar.
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of nickel [32]), see figs. 3.13,3.14 - these are qualitatively similar to each other. In fig. 3.15

the variation of boundary population (over all misorientations) is plotted with boundary

energy to demonstrate that the inverse relation holds true across all boundary types. There

is significant scatter due to insufficient statistics, which is expected to scale down as larger

number of grains are evolved for longer times.

3.3 Conclusion

Interpolated energies obtained through the use of Olmsted’s distance function better cor-

relate with the boundary energies extracted through orientation mapping of nickel. An

inverse relation between interpolated energies and populations is observed that supports

the notion that low-energy boundaries increase (in area and in number) at the expense of

high-energy ones. These distributions (extracted from three-dimensional simulations) show

a direct scaling with distributions collected using experimental methods (orientation map-

ping), demonstrating the capability of the present method to model the development of

anisotropic boundary character in real materials. The inverse relation between boundary

energy and population at a fixed misorientation is not strictly one-to-one. A similar observa-

tion was noted by Gruber (PhD thesis, 2007 ), and can be attributed to the effect of torque

terms present when the boundary energy is inclination-dependent, which are avoided in the

present formulation. Also certain GB types (such as the Σ3) show much lower intensities

than experimentally observed - this is because these boundaries correspond to annealing

twins, and are not a direct consequence of grain growth. Hence, in fcc metals as nickel, the

physical phenomena of grain growth cannot completely account for the significantly high

population of certain boundary types.

The present method also provides a formulation to model anisotropic boundary migration

in other fcc materials (as aluminium) as the grain boundary energies in different face-centred

cubic metals vary with boundary type in a relative fashion [49]. These interpolated energies
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Figure 3.9: Boundary energies (a) plotted with boundary population (b) for misorientation
60° < 111 >. Simulations are performed on a 160-cubed domain and evolved for t = 3000
steps. Populations are expressed in Multiples of Random Distribution (MRD) and energies
in J

m2 .
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Figure 3.10: Boundary energies (a) plotted with boundary population (b) for misorientation
38.9° < 110 >. Simulations are performed on a 160-cubed domain and evolved for t = 3000
steps. Populations are expressed in Multiples of Random Distribution (MRD) and energies
in J

m2 .

119



0.72 0.78 0.84 0.90 0.96 1.02 1.08 1.14 1.20 1.26

Multiples of Random

Filename root: energy_ni_olm_empty_cd9_sigmax27_gmt_X

Stereographic

1.0  1.0  1.0 38.2

0.72 0.78 0.84 0.90 0.96 1.02 1.08 1.14 1.20 1.26

Multiples of Random

Filename root: energy_ni_olm_empty_cd9_sigmax27_gmt_X

Stereographic

1.0  1.0  1.0 38.2
(a)

0 1 2 3 4 5 6 7

Multiples of Random

Filename root: gbcd_energy_gmt_ X

Stereographic

1.0  1.0  1.0 38.2

0 1 2 3 4 5 6 7

Multiples of Random

Filename root: gbcd_energy_gmt_ X

Stereographic

1.0  1.0  1.0 38.2
(b)

Figure 3.11: Boundary energies (a) plotted with boundary population (b) for misorientation
38.2° < 111 >. Simulations are performed on a 160-cubed domain and evolved for t = 3000
steps. Populations are expressed in Multiples of Random Distribution (MRD) and energies
in J

m2 .
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Figure 3.12: Boundary energies (a) plotted with boundary population (b) for misorientation
36.9° < 100 >. Simulations are performed on a 160-cubed domain and evolved for t = 3000
steps. Populations are expressed in Multiples of Random Distribution (MRD) and energies
in J

m2 . Note that low-energy boundaries are more populated than higher energy ones, such
that energy and population are inversely related.
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of these grain boundaries occur less frequently than would
be expected in a random distribution. For the R5 bound-
ary, the pure twist positions (at [1 0 0] and ½!100") and the
pure tilt positions (along the [1 0 0] zone) are least fre-
quently populated. These are also the positions of maxi-
mum energy. For the R7 grain boundary, the peak
population and minimum energy coincide at the orienta-
tion of the (1 1 1) twist grain boundary and, as with R5,
there is an approximate inverse correlation between the
population and the energy.

The GBCD and GBED for the R9 grain boundary are
compared in Fig. 5. In agreement with prior stereological
results [37], the population of R9 grain boundaries peaks
along the zone of pure tilt grain boundaries and the max-
ima occur at the orientations of the planes associated with
ð!111Þ=ð1!15Þ asymmetric tilt boundaries. The energy distri-
bution displays an approximate inverse correlation with
the area distribution, with the minima occurring along
the [1 1 0] zone, which matches the orientations of the
asymmetric tilt boundary. However, there are other fea-
tures in Fig. 5 that are not so well correlated.

The relative energies of symmetric [1 1 0] tilt grain
boundaries have been measured for Al [4,5] and Cu [11].
The energies of these same boundaries have also been cal-
culated for Cu and Au [38,39] and Al [40]. For comparison,
the relative energies the symmetric [1 1 0] tilt grain bound-
aries were extracted from the current data on Ni. The
results are plotted as a function of tilt angle (see Fig. 6)
and they show a minimum at the orientation of the coher-
ent twin (70.5!). There are also clear cusps as the position
of the two R9 grain boundaries. The boundary at 39! is ter-
minated by ð!221Þ, while the boundary at 141! is terminated
by ð1!14Þ. The data in the range of 95–125! appear scat-
tered and the minima are not thought to represent cusps.

To illustrate the average relationship between the grain
boundary energy and population, the grain boundary ener-
gies were categorized into evenly spaced bins of width 0.1

Fig. 3. (a) Grain boundary plane distribution compared to (b) the grain boundary energy distribution for grain boundaries with the R3 misorientation.
The plots are stereographic projections, in the bicrystal reference frame, and the [0 0 1] axis is vertical and in the center of the plots. The logarithm of the
population is plotted in (a).

Fig. 2. (a) Distribution of grain boundary planes in the crystal reference
frame, plotted in stereographic projection. (b) Relative grain boundary
energies with respect to the crystal reference frame.
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pure tilt positions (along the [1 0 0] zone) are least fre-
quently populated. These are also the positions of maxi-
mum energy. For the R7 grain boundary, the peak
population and minimum energy coincide at the orienta-
tion of the (1 1 1) twist grain boundary and, as with R5,
there is an approximate inverse correlation between the
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The GBCD and GBED for the R9 grain boundary are
compared in Fig. 5. In agreement with prior stereological
results [37], the population of R9 grain boundaries peaks
along the zone of pure tilt grain boundaries and the max-
ima occur at the orientations of the planes associated with
ð!111Þ=ð1!15Þ asymmetric tilt boundaries. The energy distri-
bution displays an approximate inverse correlation with
the area distribution, with the minima occurring along
the [1 1 0] zone, which matches the orientations of the
asymmetric tilt boundary. However, there are other fea-
tures in Fig. 5 that are not so well correlated.

The relative energies of symmetric [1 1 0] tilt grain
boundaries have been measured for Al [4,5] and Cu [11].
The energies of these same boundaries have also been cal-
culated for Cu and Au [38,39] and Al [40]. For comparison,
the relative energies the symmetric [1 1 0] tilt grain bound-
aries were extracted from the current data on Ni. The
results are plotted as a function of tilt angle (see Fig. 6)
and they show a minimum at the orientation of the coher-
ent twin (70.5!). There are also clear cusps as the position
of the two R9 grain boundaries. The boundary at 39! is ter-
minated by ð!221Þ, while the boundary at 141! is terminated
by ð1!14Þ. The data in the range of 95–125! appear scat-
tered and the minima are not thought to represent cusps.

To illustrate the average relationship between the grain
boundary energy and population, the grain boundary ener-
gies were categorized into evenly spaced bins of width 0.1

Fig. 3. (a) Grain boundary plane distribution compared to (b) the grain boundary energy distribution for grain boundaries with the R3 misorientation.
The plots are stereographic projections, in the bicrystal reference frame, and the [0 0 1] axis is vertical and in the center of the plots. The logarithm of the
population is plotted in (a).

Fig. 2. (a) Distribution of grain boundary planes in the crystal reference
frame, plotted in stereographic projection. (b) Relative grain boundary
energies with respect to the crystal reference frame.
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(b)

Figure 3.13: (a) Boundary populations at misorientation 60° < 111 > from simulations
performed in three dimensions on a 160-cubed domain evolved for t = 3000 with interpolated
energies derived using Olmsted’s metric (as in fig. 3.7). These should be compared with
boundary populations at these misorientations (plotted in (b)) collected using orientation
mapping of plane sections of nickel (reproduced from [32]). Populations are plotted inMRD.
Note that (b) is expressed as the natural logarithm of the population, hence the peak at
< 111 > is much stronger in (b) compared to (a).
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a.u. and the average population of all of the boundaries in
each bin was then determined. The logarithms of these
average values are shown in the plot in Fig. 7. These data
show that, on average, the grain boundary population of a
material is inversely correlated to the relative grain bound-
ary energy.

4. Discussion

Using the data from planar sections, it is possible to get
a reliable of estimate of the total fractional area of coherent
twins within the microstructure [41]. For all boundary seg-
ments with the R3 misorientation (within Brandon’s [42]
criterion), the orientation of the segment can be compared
to the orientation of the ideal twin plane. If the segment is
within ±10! of the ideal orientation, it is assumed to be a
coherent twin. Analyzing our data in this way, we find that
twin boundaries make up 28.6% of all of the grain bound-

ary length observed on the plane sections. With the 8.2!
discretization, there are approximately 17,894 discrete
grain boundary types. So, assuming all of the twins are
classified as a single type, the distribution at this point
should have a value of 5100 MRD. The computed value
is 4500 MRD and differs by only 12% from the ideal value,
so we assume that the calculations used to analyze the data
and create the distribution are sufficiently accurate.

Because the twins serve as an ‘‘internal standard” for
this measurement, we were able to test the efficacy of sev-
eral of our procedures. For example, both decreasing the
in-plane to between-plane pixel spacing ratio and the sub-
pixel alignment procedure improved the accuracy of the
data, as judged by the value of the distribution at the posi-
tion of the coherent twin. It should also be mentioned that
using the twins as an internal standard is problematic with
our discretization scheme when there are nine bins for
every 90!. The ideal Euler angles for the twin misorienta-

Fig. 4. (a and c) Grain boundary plane distributions compared to (b and d) the grain boundary energy distributions for grain boundaries with the R5 (a
and b) and R7 (c and d) misorientations. The plots are stereographic projections, in the bicrystal reference frame, and the [0 0 1] axis is vertical and in the
center of the plots.
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a.u. and the average population of all of the boundaries in
each bin was then determined. The logarithms of these
average values are shown in the plot in Fig. 7. These data
show that, on average, the grain boundary population of a
material is inversely correlated to the relative grain bound-
ary energy.

4. Discussion

Using the data from planar sections, it is possible to get
a reliable of estimate of the total fractional area of coherent
twins within the microstructure [41]. For all boundary seg-
ments with the R3 misorientation (within Brandon’s [42]
criterion), the orientation of the segment can be compared
to the orientation of the ideal twin plane. If the segment is
within ±10! of the ideal orientation, it is assumed to be a
coherent twin. Analyzing our data in this way, we find that
twin boundaries make up 28.6% of all of the grain bound-

ary length observed on the plane sections. With the 8.2!
discretization, there are approximately 17,894 discrete
grain boundary types. So, assuming all of the twins are
classified as a single type, the distribution at this point
should have a value of 5100 MRD. The computed value
is 4500 MRD and differs by only 12% from the ideal value,
so we assume that the calculations used to analyze the data
and create the distribution are sufficiently accurate.

Because the twins serve as an ‘‘internal standard” for
this measurement, we were able to test the efficacy of sev-
eral of our procedures. For example, both decreasing the
in-plane to between-plane pixel spacing ratio and the sub-
pixel alignment procedure improved the accuracy of the
data, as judged by the value of the distribution at the posi-
tion of the coherent twin. It should also be mentioned that
using the twins as an internal standard is problematic with
our discretization scheme when there are nine bins for
every 90!. The ideal Euler angles for the twin misorienta-

Fig. 4. (a and c) Grain boundary plane distributions compared to (b and d) the grain boundary energy distributions for grain boundaries with the R5 (a
and b) and R7 (c and d) misorientations. The plots are stereographic projections, in the bicrystal reference frame, and the [0 0 1] axis is vertical and in the
center of the plots.
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(b)

Figure 3.14: (a) Boundary populations at misorientations 38.2° < 111 > from simulations
performed in three dimensions on a 160-cubed domain evolved for t = 3000 with interpolated
energies derived using Olmsted’s metric (as in figs. 3.8). These should be compared with
boundary populations at these misorientations (as in (b)) collected using orientation mapping
of plane sections of nickel (reproduced from [32]). Populations are plotted in MRD.
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Figure 3.15: Variation of boundary population (expressed in MRD) with boundary energy
(expressed in J

m2 ). Note that on an average (across all boundary types) there are more (and
longer) low-energy boundaries than high-energy ones though there is significant scatter due
to insufficient statistics.

can be directly used in the interface-field framework to predict boundary motion and mi-

crostructure evolution in real materials. Initial texture and grain structure (flat boundaries

have low boundary velocities and persist during grain growth) have a significant influence

on the development of anisotropic boundary character. Assuming that one has informa-

tion about the initial texture and microstructure, the interpolated energies can be used in

simulations to better predict the development of anisotropic boundary character in such

materials.
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Chapter 4

Future work

As mentioned before, the present phase-field formulation does not account for the grain

boundary torques which are non-zero for an inclination-based anisotropy. Hence a possible

direction to venture is to reformulate the governing equations of motion, so as to incorpo-

rate a complete five-parameter description of anisotropic boundary properties in the present

framework. To this end, the governing equations are reformulated as described in the adjoin-

ing Appendix A. Note that inclination dependence in three dimensions is more complicated

than in two dimensions, and both cases have to be treated accordingly. Techniques for nu-

merical implementation are described briefly in Appendix B. In Appendix D, details for the

energy extension procedure, which extends anisotropic energies along grain boundaries to

boundary junctions, are given (thanks to a private commuciation with Seth Wilson).

The present formulation can be adapted to study microtructure evolution in real ma-

terial systems which exhibit significant anisotropy in boundary populations (as nickel [32]

or magnesia [57]). Experimental techniques as orientation mapping (combined with serial

sectioning) and tomography make it possible to extract orientation information from such

metallic and ceramic specimens. Instead of using a simplistic description of anisotropy (as the

four-fold anisotropy function in two dimensions (eq.2.10) or the cubic harmonics (eq.2.13)

in three dimensions), one can use an interpolation technique to determine the energy of
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an arbitrary grain-boundary type, given that energies of certain boundary types have been

derived experimentally (Li et al. [32]) or estimated through simulations (Olmsted et al.

[49]). This has been discussed in some detail in Chapter 3. Details for using interpolated

boundary energies in the present framework are described in Appendix C. Also suitable pa-

rameters to compare extracted distributions (from simulations) and distributions collected

from experimental observations have to be chosen to determine quantitatively how close

these distributions are over the entire range of grain boundary types.

Starting from an initial state (a microstructural repesentation of nickel, or of an inter-

metallic such as Cu-Nb, prior to annealing), one can use the aforementioned interpolated

boundary energies and compare the motion of boundaries as predicted by simulations to

those observed experimentally, after annealing and subsequent grain growth. So that time

scales (between experimental observations and model predictions) match, a series of sim-

ulations needs to be performed, with increasing magnitude of boundary anisotropy, and

the corresponding grain maps compared to experimental observations. Possible parameters

of comparison include but are not limited to misorientation between corresponding points

or cells and extracted grain boundary character distributions. Time scales and anisotropy

strengths match when the difference between experimental and simulated domains is a min-

imum, as in

tsim = treal, εsim = εreal,∆̃g(tsim, εsim) ≤ ∆̃g(t, ε)∀t, ε (4.1)

where, ∆g is the misorientation difference between simulated and experimental domains,

collected for corresponding cells (or points), and averaged over the entire domain Ω.

∆̃g =

∑
∆g(xi)

N
, 1 ≤ i ≤ N (4.2)

where the domain Ω can be divided into N discrete cells.

It is predicted that an optimal combination of the different boundary energy descriptors
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should result in better estimation of grain boundary populations in anisotropic systems.

Large-scale simulations made possible through parallelization of the code should result in

generation of statistically reliable data. The present model hence provides a framework to

predict evolution of grain boundary character distributions in real materials, both in two

and three dimensions, and hence makes it feasible to derive correlations between boundary

properties and populations for such systems.

Appendix A

Time-dependent Ginzburz Landau (TDGL) equations with an incli-

nation dependent anisotropy

As stated previously, the gradient and potential energy terms are expressed as (identical to

Steinbach et al. [63])

f grjk = −εjk
2
∇φj.∇φk (4.3)

fpotjk = γjk |φj| |φk| (4.4)

Let us consider the case of two dimensions for simplicity, where the anisotropic func-

tions for the gradient and potential energy prefactors (ε and γ respectively) vary with the

inclination angle (θ) with a reference axis (x axis).

εjk = ε(θ) (4.5)

γjk = γ(θ) (4.6)

Both the prefactors should have a similar variation with inclination, to ensure that the
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interface width (w) stays constant irrespective of the variation of boundary energy with

inclination [34]. Hereafter εjk(θ) and γjk(θ) are represented by ε and γ for simplicity.

The TDGL governing equation for deriving changes in field variables can be expressed as

τjkq̇jk =

(
∇ ∂

∂∇φj
− ∂

∂φj

)(
f grjk + fpotjk

)
= (a) + (b)− (c)− (d) (4.7)

where, term (a)
(
∇ ∂

∂∇φj f
gr
jk

)
is evaluated as below. Note that instead of providing a

complete derivation, intermediate key terms are calculated and consequent expressions are

shown.

∇ ∂

∂∇φj
f grjk = −1

2

∂

∂xi

(
ε∇φk +∇φj.∇φk

∂ε

∂(∂xiφj)

)
(4.8)

Here, the gradient operator ∇ denotes differentiation over all reference axes (x and y in

two dimensions) as in ∇ =
(
∂
∂x
, ∂
∂y

)
= ∂xi .

The inclination angle θ depends on the gradients of the field variable in x and y directions

(φjx and φjy respectively). Hereafter the subscripts x and y will denote differentiation with

respect to x and y respectively.

tanθ =
φjy
φjx

(4.9)

Intermediate terms which emerge during treatment of term (a) (eq.4.8) are shown below

∂xiε =

(
εθ

φ2
jx + φ2

jy

)
(φjxφjyy − φjyφjxx)

∂xi∇φk = ∇2φk = 4φk

∂xi (∇φj.∇φk) = ∇2φj∇φk +∇2φk∇φj = 4φj∇φk +4φk∇φj
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∂θ

∂(∂xiφj)
=
φjx − φjy
φ2
jx + φ2

jy

the variation of the potential energy fpotjk with the field variable φj (term (d) in eq.4.7) is

evaluated as below

∂

∂φj
fpotjk = γ |φk|+ |φj| |φk| γθ

∂θ

∂φj
(4.10)

where ∂θ
∂φj

=

(
φjyy

„
φjx
φjy

«
−φjxx

„
φjy
φjx

«
φ2
jx+φ2

jy

)
; similarly, term (b)

(
∇ ∂

∂∇φj f
pot
jk

)
can be expressed

as

∇ ∂

∂∇φj
(γ |φj| |φk|) = |φj| |φk| ∇

∂

∂∇φj
γ (4.11)

since, ∇ ∂
∂∇φj |φj| |φk| = 0 and

(
∂θ

∂(∂xiφj)
=

φjx−φjy
φ2
jx+φ2

jy

)

∇ ∂

∂∇φj
fpotjk = |φj| |φk| ∇

(
γθ
φjx − φjy
φ2
jx + φ2

jy

)
(4.12)

The primary term of interest in the above expression ∇θ can be derived to be

∇θ = ∂xiθ =
φjxφjyy − φjyφjxx

φ2
jx + φ2

jy

Eventually, term (c)
(

∂
∂φj

(
ε
2
∇φj∇φk

))
, the variation of gradient energy f grjk with field

variable φj is evaluated to be

∂

∂φj
f grjk =

∇φj∇φk
2

εθ
∂θ

∂φj
(4.13)

since, ∂
∂φj

(∇φj∇φk)is identical to zero.

The term of interest ∂θ
∂φj

is derived to be
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∂θ

∂φj
=
φjyy

(
φjx
φjy

)
− φjxx

(
φjy
φjx

)
φ2
jx + φ2

jy

Hence, terms (a) - (d) in eq.4.7 are derived in terms of derivatives of field variables φj

and φk along reference x and y axes

∇ ∂

∂∇φj
f grjk = −1

2

(
ε4φk +

εθ∇φk
φ2
jx + φ2

jy

(φjyyφjx − φjxxφjy)
)

−1

2

(
εθθ∇φj.∇φk

φjx − φjy(
φ2
jx + φ2

jy

)2 (φjyyφjx − φjxxφjy)

)

−1

2

(
εθ∇φj.∇φk

(φjxx − φjyy)
(
φ2
jx + φ2

jy

)
− 2 (φjx − φjy) (φjxφjxx + φjyφjyy)(
φ2
jx + φ2

jy

)2

)

−1

2

(
εθ

(φjx − φjy) (4φk∇φj +4φj∇φk)
φ2
jx + φ2

jy

)

∇ ∂

∂∇φj
fpotjk =

|φj| |φk| γθ(
φ2
jx + φ2

jy

)2

(
(φjxx − φjyy)

(
φ2
jx + φ2

jy

)
− 2 (φjx − φjy) (φjxφjxx + φjyφjyy)

)
+ |φj| |φk| γθθ

(φjx − φjy) (φjxφjyy − φjyφjxx)(
φ2
jx + φ2

jy

)2

∂

∂φj
f grjk = −εθ∇φj.∇φk

2

φjx
(
φjyy
φjy

)
− φjy

(
φjxx
φjx

)
φ2
jx + φ2

jy



∂

∂φj
fpotjk = γ |φk|+ γθ |φj| |φk|

φjx
(
φjyy
φjy

)
− φjy

(
φjxx
φjx

)
φ2
jx + φ2

jy


For three dimensions, the anisotropic function depends both on θ and ϕ, which denote
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the angle that the interface normal n makes with the reference z axis, and the angle that

the projection of the normal on the plane of the paper n′ makes with the reference x axis

respectively [27]. Henceforth, εjk(θ,Φ) and γjk(θ, ϕ) are represented by ε and γ respectively.

εjk = ε(θ, ϕ) (4.14)

γjk = γ(θ, ϕ) (4.15)

here, θ and ϕ can be expressed as

cosϕ = φjz (4.16)

tanθ =
φjy
φjx

(4.17)

the terms φjx, φjy and φjz are the gradients of field variable φj along the x, y and z

reference axes respectively. For each of the terms (a)-(d) in eq.4.7, certain intermediate

terms are evaluated here.

For term (a)
(
∇ ∂

∂∇φj f
gr
jk

)
, some of these terms are

∂xiϕ = − φjzz√
1− φ2

jz

∂xiθ =
φjyyφjx − φjxxφjy

φ2
jx + φ2

jy

∂xiε = − εϕφjzz√
1− φ2

jz

+
εθ

φ2
jx + φ2

jy

(φjyyφjx − φjxxφjy)
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∂

∂∇φj
ε = − εϕ√

1− φ2
jz

+ εθ
φjx − φjy
φ2
jx + φ2

jy

∂

∂xi
εϕ = − εϕϕφjzz√

1− φ2
jz

+
εθϕ

φ2
jx + φ2

jy

(φjyyφjx − φjxxφjy)

∂

∂xi
εθ = − εθϕφjzz√

1− φ2
jz

+
εθθ

φ2
jx + φ2

jy

(φjyyφjx − φjxxφjy)

Treatment of term (b)
(
∇ ∂

∂∇φj f
pot
jk

)
yields the following derivative

∂

∂∇φj
γ = γθ

∂

∂∇φj
θ + γϕ

∂

∂∇φj
ϕ (4.18)

where,

∂

∂∇φj
ϕ = − 1√

1− φ2
jz

∂

∂∇φj
θ =

φjx − φjy
φ2
jx + φ2

jy

Hence,

(
∇ ∂

∂∇φj
γ

)
= − 1√

1− φ2
jz

(γϕϕ∂xiϕ+ γθϕ∂xiθ)− γϕ∂xi

 1√
1− φ2

jz
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+
φjx − φjy
φ2
jx + φ2

jy

(γθϕ∂xiϕ+ γθθ∂xiθ) + γθ∂xi

(
φjx − φjy
φ2
jx + φ2

jy

)

since,∇ ∂
∂∇φj |φj| |φk| is identical to zero, term (b) reduces to

∇ ∂

∂∇φj
fpotjk = |φj| |φk|

(
∇ ∂

∂∇φj
γ

)
(4.19)

term (c)
(

∂
∂φj
f grjk

)
can be evaluated to be

∂

∂φj
f grjk = ∇φj∇φk

(
εϕ

∂

∂φj
ϕ+ εθ

∂

∂φj
θ

)
(4.20)

similarly, for the variation of the potential energy fpotjk with φj (term (d))

∂

∂φj
γ = γθ

∂

∂φj
θ + γϕ

∂

∂φj
ϕ (4.21)

where,

∂

∂φj
ϕ = − φjzz

φjz
√

1− φ2
jz

∂

∂φj
θ =
−
(
φjxx
φjx

)
φjy +

(
φjyy
φjy

)
φjx

φ2
jx + φ2

jy

Hence, term (d) reduces to

∂

∂φj
fpotjk = γ |φk|+ |φj| |φk|

(
γθ

∂

∂φj
θ + γϕ

∂

∂φj
ϕ

)
(4.22)

It should be noted that an alternate (and more elegant) reformulation based on the

capillarity vector ξ is possible [72, 73].
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Appendix B

Numerical implementation

As explained in the previous appendix (Appendix A), the variation of the free-energy func-

tional can be described completely in terms of the phase-field variables and their derivatives.

At any given instant t, the derivatives at position xi can be determined using relevant phase-

field values within a stencil of appropiate length on uniform (cartesian) grids. The length of

the stencil needed increases with the order of the approximation. Note that in the present

work, we use centered derivatives, hence for locations near domain boundaries, use of a ghost

layer (of adequate thickness) with periodic boundary conditions is requisite.

Expressions for first (and higher) centered derivatives are given below. It is to be noted

that although these are defined for a particular reference axis (x in this case), corresponding

definitions along other reference axes (y and z) can be derived. The discretization interval

h chosen in this case is unity. The order of the error terms are also worthy of mention.

φjx,xi =

(
−
φj,xi−1

2
+
φj,xi+1

2

)
1

h
+O

(
h2
)

(4.23)

φjx,xi =

(
φj,xi−2

12
−

2φj,xi−1

3
+

2φj,xi+1

3
−
φj,xi+2

12

)
1

h
+O

(
h4
)

(4.24)

φjxx,xi =
(
φj,xi−1

− 2φj,xi + φj,xi+1

) 1

h2
+O

(
h2
)

(4.25)

φjxx,xi =

(
φj,xi−3

90
−

3φj,xi−2

20
+

3φj,xi−1

2
− 49φj,xi

18
+

3φj,xi+1

2
−

3φj,xi+2

20
+
φj,xi+3

90

)
1

h2
+O

(
h5
)

(4.26)

In the present formulation, we use second-order approximations for the first derivative

(eq.4.23) and fifth-order approximations for the second derivative (eq.4.26). The gradient
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(∇φj) and laplacian (4φj) can then be defined as follows

∇φj = φjxx̂+ φjyŷ + φjz ẑ (4.27)

4φj = φjxx + φjyy + φjzz (4.28)

Near grid edges a perodic boundary condition (PBC) is used, and grid values (of an

appropiate width depending on the length of the stencil required) on the opposite end are

used (as in fig. 2.4).

To determine boundary inclination (θ for two dimensions and (θ, ϕ) for three dimensions),

weighted essentially non-oscillatory (WENO) schemes are used to approximate gradients

along reference x, y (and z) axes. A brief formulation has been extracted from Shu’s paper

(refer [59]). Details for numerical implementation can be found in [60]. The motivation for

using this particular scheme is its non-oscillatory behavior near discontinuities (in the present

framework, this could be due to sharp corners along grain boundaries or due to faceted grain

shapes, where there is a sudden change or jump in the inclination of the boundary normal

[13]). First derivatives are expressed as

φjx,xi ≈
1

h

(
φj,i+1/2 − φj,i−1/2

)
(4.29)

where the fifth-order WENO approximation is represented as the summation of weighted

third-order derivatives on adjacent stencils as

φj,i+1/2 = w1φ
(1)
j,i+1/2 + w2φ

(2)
j,i+1/2 + w3φ

(3)
j,i+1/2 (4.30)

where,

φ
(1)
j,i+1/2 =

1

3
φj,i−2 −

7

6
φj,i−1 +

11

6
φj,i
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φ
(2)
j,i+1/2 = −1

6
φj,i−1 +

5

6
φj,i +

1

3
φj,i+1

φ
(3)
j,i+1/2 =

1

3
φj,i +

5

6
φj,i+1 −

1

6
φj,i+2

The non-linear weights wi are given by

wi =
w̃i∑3
k=1 w̃k

w̃k =
λk

(ε+ βk)
2

with λ1 = 1
10
, λ2 = 3

5
, λ3 = 3

10
, ε = 10−6 and

β1 =
13

12
(φj,i−2 − 2φj,i−1 + φj,i)

2 +
1

4
(φj,i−2 − 4φj,i−1 + 3φj,i)

2

β2 =
13

12
(φj,i−1 − 2φj,i−1 + φj,i+1)2 +

1

4
(φj,i−1 − φj,i+1)2

β3 =
13

12
(φj,i − 2φj,i+1 + φj,i+2)2 +

1

4
(3φj,i − 4φj,i+1 + φj,i+2)2

The terms (a-d) in eq.4.7 in Appendix A can then be calculated for a location (x, y, z)

at time t. A forward difference technique is used to update phase-field values φj(x,y,z)(t+ dt)

based on previous values φj(x,y,z)(t) using the TDGL equation.

φj(t+ dt) = φj(t) +
2

N
∗M ∗ δF

δφj
dt (4.31)
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where, N , M and F denote the number of non-zero fields at (x, y, z) (at time t), the

value of mobility and the free energy functional respectively.

Appendix C

Incorporating interpolated energies in the interface-field method

The energy of a grain boundary of arbitrary misorientation and plane normal is calculated

using the predetermined values in the five-dimensional energy matrix. The corresponding

misorientation indices [c1, c2, c3] are determined using eq.3.9. Since the grain boundary en-

ergy can be discontinuous in misorientation space, but should be continuous in inclination

space, the following methodology is adopted. This is to ensure that for a curved boundary,

which has constant misorientation throughout its length, the energy varies with inclination

in a continuous fashion, and does not suffer from discontinuities in energy as the boundary

inclination passes through a cell boundary in the inclination space.

As in fig.4.1, the variation of GB energy with inclination is linear and continuous in

both dimensions (of the inclination space), at a constant misorientation. The boundary

inclination is denoted by [l4, l5], where [l4, l5] are not restricted to integer values and assume

exact (fractional) values determined as

l4 = CD2 ∗ n̂z (4.32)

l5 = 2 ∗ CD2 ∗ tan−1

(
n̂y
n̂x

)
/π (4.33)

where, [nx, ny, nz] denote the normal indices in the crystal reference frame.

The weights (w,w′) are determined to be
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Figure 4.1: Bilinear interpolation for variation of boundary energy with inclination at con-
stant misorientation.

w = l4 − (c4 − 1) (4.34)

w′ = l5 − (c5 − 1) (4.35)

and the boundary energies at points P, Q, R and S to be

γp(c1, c2, c3) = wγC(c1, c2, c3) + (1− w)γD(c1, c2, c3) (4.36)

γQ(c1, c2, c3) = w′γD(c1, c2, c3) + (1− w′)γA(c1, c2, c3) (4.37)

γR(c1, c2, c3) = wγB(c1, c2, c3) + (1− w)γA(c1, c2, c3) (4.38)

γS(c1, c2, c3) = w′γC(c1, c2, c3) + (1− w′)γB(c1, c2, c3) (4.39)
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The grain boundary energy at intermediate inclination O[l4, l5] is calculated to be

γO(c1, c2, c3) =
wγS(c1, c2, c3) + (1− w)γQ(c1, c2, c3) + w′γP (c1, c2, c3) + (1− w′)γR(c1, c2, c3)

2

(4.40)

In the figure below (fig. 4.2), the continuity of boundary energies in inclination space (at

a constant arbitrary misorientation) is shown. Arbitrary values of energy are chosen for the

corners in inclination space (points A−D in preceding fig. 4.1).
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Figure 4.2: Boundary energies in inclination space at arbitrary misorientation. Note that
energy values (along the vertical axis) are in a.u.

Appendix D

Junction Extension

As stated before, it is difficult to compute boundary normals accurately in a junction region,

where there are three or more non-zero phase fields, even with the WENO formalism [59].

Values of the boundary energy computed using these normals are inaccurate, and methods
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that depend on these values are unstable.

Junction extension is a numerical procedure that permits us to sidestep this difficulty. It

does so by replacing inaccurate values by the value that is computed at the closest relevant

grain boundary point, i.e. a point at which there are only two non-zero phase fields. Values

computed along grain boundaries are extended into all relevant junction regions.

The extension procedure for any single boundary is simple to visualize, and is depicted

schematically in fig.2.7. During an initial grid traversal, the boundary inclination is computed

at any point where there are only two non-zero phase fields, and the corresponding boundary

energy is stored. These values are then permitted to percolate through any adjacent multi-

junction region, as follows. Iterate through all the junction points. If the boundary energy

at the current point is zero, and if any of the adjacent values are non-zero, compute and

store the average of all neighboring non-zero values. Repeat, until all junction values are

non-zero.

There are several challenges that must be overcome to implement a fast and memory-

efficient version of this algorithm. It is unreasonable, for instance, to search the entire grid for

junction points at each loop iteration, by determining how many non-zero phases are stored

at the current grid point. Instead, during the first grid traversal, when energies are computed

and stored along the boundaries, we choose to store a linked list of those grid coordinates

that correspond to all junction points. Iteration then requires simply traversing this list, and

the phase field update may be completed by traversing this list as well. The computational

time required for junction extension decreases as the average grain size increases.

A complication also arises from the need to identify relevant boundaries, given the set of

non-zero phase fields {φi} at any point. If there are N nonzero phases, there are potentially
N(N−1)

2
relevant boundaries. In the initial microstructure, or during grain collapse, N can

become rather large; a considerable amount of memory can be required to store all of these

junction energies. In addition, it is not necessary that any given pair of phase fields (a, b)

corresponds to a boundary region in which we have computed the energy eab. During topo-
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logical changes, boundaries are created and destroyed, but the corresponding phase fields are

present and non-zero at junctions both before and after the transformation takes place. For

these reasons, no matter how many non-zero phases are in fact present, we only extend values

associated with the three interface fields ψ01 = φ0 − φ1, ψ02 = φ0 − φ2, and ψ12 = φ1 − φ2,

where the phase fields have been ordered φ0 > φ1 > φ2. During the subsequent phase field

update, any interface field for which extension has not produced a non-zero value is assumed

to have energy eab = 1.0.

And finally, extension is a process that depends on the derived interface fields, and not

the phase fields. To ensure that boundary extension is disjoint from one boundary to the

next, we use a sparse, doubly-indexed data structure to store the boundary energies at every

grid node [18]. In other words, the energy associated with the interface field ψab is stored and

accessed as the triplet (a, b, ψab). Any interface field ψab for which a corresponding energy is

not stored is assigned an energy identical to eab = 0.

The resulting junction extension method is relatively fast - on average, only 10-20 itera-

tions are needed.

Appendix E

Filling the 5-parameter space with SNL energies

The following procedure is used to fill up the energy space (the value in cell [c1, c2, c3, c4, c5]

equals to the energy of the corresponding GB type) using the GB energies extracted for 388

GB types (Sandia).

1. For each of the 388 type (say kth), the orientations for grain A and B are expressed

as active rotation matrices gA and gB respectively (as in dsc_csl.txt). These are post-

multiplied by the ith (and jth) symmetry operator as in gAOA and gBOB.

2. The misorientation between these grains (in the crystal frame) is expressed as (note
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that in the sample frame the misorientation for active rotations is 4gAB,active =

(gBOB)(gAOA)−1 in contrast to the expression below)

4gAB,active = (gAOA)−1(gBOB) (4.41)

3. The corresponding Euler angles for 4gAB,active are determined as (φ1,Φ, φ2). If all

three are less than 90°, the corresponding indices in misorientation space [c1, c2, c3] are

calculated, then we proceed to step 4, else go to step 7.

c1 = 2 ∗ CD ∗ φ1/π

c2 = CD ∗ cosΦ

c3 = 2 ∗ CD ∗ φ2/π

4. The normal vector (in crystal frame) for grain A and B can be expessed as the 1st row

of the matrices gAOA and gBOB

nxA = gAOA(1, 1) (4.42)

nyA = gAOA(1, 2) (4.43)

nzA = gAOA(1, 3) (4.44)

5. For the normal nA (and nB) the angular variables (θ, ϕ) are computed which give the

corresponding indices in inclination space [c4, c5]

θ = cos−1

(
c4

CD2

)
(4.45)

ϕ =
πc5

2CD2

(4.46)
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6. The cells [c1, c2, c3, c4A, c5A] and [c1, c2, c3, c4B, c5B] are assigned the energy of the kth

(of the 388) GB type.

7. The misorientation is then expressed as the transpose gTAB,active = (gBOB)−1(gAOA)

and steps 3− 6 are repeated.

8. The (active rotation) matrices gA and gB are then are then exchanged and steps 1− 7

are repeated.

9. We repeat steps 1 − 8 for the (i + 1)th (and (j + 1)th) symmetry operator where i, j

vary independently as 1 ≤ i ≤ 24, 1 ≤ j ≤ 24.

10. For cell [c1, c2, c3, c4, c5] in the energy space we compute the energy as an average.

In the following figures we plot the energy variation at specific misorientations for CD =

9, CD2 = 9. Note that not all cells are filled, only those cells that correspond to one of the

388 GB types (or one of their crystallographic equivalents) are non− zero.
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