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Grain growth in polycrystals is traditionally considered a capillarity-driven process,
where grain boundaries (GBs) migrate toward their centers of curvature (i.e., mean
curvature flow) with a velocity proportional to the local curvature (including extensions
to account for anisotropic GB energy and mobility). Experimental and simulation
evidence shows that this simplistic view is untrue. We demonstrate that the failure of
the classical mean curvature flow description of grain growth mainly originates from
the shear deformation naturally coupled with GB motion (i.e., shear coupling). Our
findings are built on large-scale microstructure evolution simulations incorporating the
fundamental (crystallography-respecting) microscopic mechanism of GB migration.
The nature of the deviations from curvature flow revealed in our simulations is
consistent with observations in recent experimental studies on different materials. This
work also demonstrates how to incorporate the mechanical effects that are essential to
the accurate prediction of microstructure evolution.

shear coupling | grain growth | grain boundary | internal stress | PF simulations

Polycrystalline materials consist of numerous single crystals (grains) with different
crystallographic orientations separated by interfaces/grain boundaries (GBs). Polycrystals
are ubiquitous in both natural and man-made materials; most engineering materials are
polycrystalline. The microstructure, namely the geometry of the grain ensemble and GB
network, plays a major role in establishing the (physical, mechanical,...) properties of
polycrystalline materials. The classical theory of microstructure evolution focuses on the
relaxation of the excess energy of a GB network by GB migration, resulting in grain
annihilation. GBs tend to migrate in the direction that reduces their area, that is toward
their center of curvature. This gives rise to the well-known description of grain growth
as mean curvature () flow; the GB velocity may be expressed as v = M�, where M is
the GB mobility and � is the (isotropic) GB energy (1–4). Although this model describes
the evolution of similar-looking microstructures, such as relatively dry soap froths, it
neglects the fundamental nature of the material in the grains (crystals rather than gases).
The crystalline nature of the grains implies that GB properties are anisotropic. This is
often accounted for by extending the classical mean curvature flow description to the
case of anisotropic GB mobility and/or energy depending on GB macroscopic degrees of
freedom; i.e., weighted mean curvature flow (5, 6). Importantly, the material itself also
supports mechanical deformation, i.e., stress and strain.

Several recent investigations clearly show that a (weighted) mean curvature flow
description of grain growth fails to explain experimental and atomistic simulation
observations. Phenomena that point to this failure include the existence of stress-
driven grain growth (7–9), grain rotation (10–12), GB sliding (13, 14), grain growth
acceleration under oscillatory fields (15), and peculiar grain size distributions (16, 17).
Recent experimental measurements and molecular dynamics (MD) simulations found
that, in some systems, GB velocity is not correlated with GB mean curvature (18–20).
Moreover, many observations show that GB migration is accompanied by shear across
the GB, both in bicrystals and polycrystals; i.e., shear-coupled migration associated with
defect (disconnection) motion along GBs (15, 21–23).

Shear-coupled migration plays a key role in accounting for much of the
phenomenology associated with GB motion. The coupling factor, � = vk/v?, relates
the GB migration rate v? and the GB shear rate vk. When shear-coupled GB migration
is constrained (e.g., by triple junctions), an internal stress field is generated (23, 24).
The stress, in turn, affects GB migration and influences grain growth (24). We recently
unified these elastic and curvature effects in a bicrystallography-respecting continuum
GB migration model (25, 26) and demonstrated that GB shear coupling naturally leads
to internal stress generation (26, 27), GB faceting transition (28), and grain rotation
(29) during GB migration in bicrystal geometries. Nonetheless, two critical questions
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remain: 1) how does shear coupling influence large-scale
microstructure evolution? and 2) can shear coupling account
for the recent experimental observations that grain growth is not
curvature flow? Fortunately, both simulation and experimental
observations have reached a level where detailed comparisons
may now be made at the microscopic and statistical levels to
quantitatively answer these questions.

In this work, we demonstrate that the internal stresses
generated by shear-coupled GB motion is the main cause for
the poor correlations between the GB velocity and the curvature
during grain growth in polycrystals. This is achieved through a
series of large-scale grain growth simulations. They are performed
using the bicrystallography-respecting continuum model for GB
migration mentioned above, implemented in a diffuse-interface
approach (26, 27) extending the classical phase field (PF) model
of grain growth (30, 31). Simulated microstructure evolution,
accounting for bothGB curvature effect and internal stress, repro-
duces the scatter in the curvature–velocity relationship reported
in several recent experimental and atomistic simulation studies.
We also demonstrate that other proposed explanations for the
failure of the application of curvature flow to grain growth are
insufficient to account for the recent experimental observations.

1. Results

1.1. E�ect of Internal Stress on 2D Grain Growth.We first dis-
cuss a series of PF simulations on grain growth of 2D polycrystals
performed with and without GB shear coupling to identify

how shear coupling modifies essential features of microstructure
evolution; modeling details are in Methods. The initial poly-
crystalline microstructures for the grain growth simulations are
based on PF simulations that are nearly equivalent to Voronoi
tessellations of a Poisson point process with 1,000 grains (see ref.
27). We assume that the 2D polycrystals are composed of [110]-
textured face-centered cubic grains (there are two sets of closely
packed/low-energy GB planes, perpendicular to each other, in
the coincidence-site lattices). If we choose the reference system
such that [001] || ex , [11̄2] || ey, and [110] || ez , crystal symmetry
dictates that all grain orientation angles are ✓ 2[0,⇡); see the
orientation field of a typical initial microstructure in Fig. 1A. For
simplicity, all GB energies are assumed to be the same. Therefore,
evolution without shear coupling reduces to classical mean
curvature flow. Next, we consider the effect of GB shear coupling
by assigning shear coupling factors (�) to each GB according to
the GB misorientation angle (23, 32); see SI Appendix for further
details on how shear coupling factors are assigned.

Fig. 1B shows the evolution of the mean grain (area) size
(hR2i) with and without GB shear coupling. Each solid, thick
curve is the averaged result of 30 independent PF simulations
(i.e., the light, thin curves) with different initial microstructures
(i.e., different random initial microstructures and orientation
distributions). These results show that the parabolic grain growth
law is approximately valid with or without shear coupling. The
grain growth rate is, however, ⇠50% larger with shear coupling
than without, pointing to the importance of elastic effects. Fig. 1
C and D show the evolution of the microstructure starting

⟨
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Fig. 1. 2D grain growth simulations. (A) Initial microstructure and orientation ✓ field of a typical 1,000 grain polycrystal. (B) Mean grain size hR2i vs. time t during
grain growth. Each solid and thick curve is averaged over 30 independent PF simulations (i.e., the light and thin curves) with and without GB shear coupling.
Microstructure evolution (C) without GB shear coupling (mean curvature flow) and (D) with shear coupling (shear modulus is that of Al).
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Fig. 2. Internal stress fields generated by GB migration. (A) A schematic of a grain in a polycrystal with GB shear coupling caused by disconnection motion on
each GB; see the zoomed schematic in (B). The evolving internal stress field �12 during grain growth at a grain size of (C) 1⇥ 105, (D) 2⇥ 105–see Fig. 1D, and (E)
its distribution at di�erent times (shear modulus is roughly that of Al). (F–H) Same as (C–E) for the von Mises stress.

from the same initial configuration, Fig. 1A. Shear coupling
leads to significant differences in the temporal evolution of the
microstructures, i.e., both theGBnetwork and grain orientations.

Shear-coupled GB migration is mediated by the flow of
disconnections–i.e., line defects with both step and dislocation
character constrained to and lying onGBs (23, 33, 34). Thus, GB
shear coupling can lead to the generation of internal stress. Fig. 2A
shows a schematic of disconnection flow and the resultant shear
along the GBs delineating a single grain in a polycrystal. Focusing
on the GB segment inside the dashed rectangle in Fig. 2B, we
see that macroscopically curved GBs can be described in terms
of microscopic/atomistic disconnections. The step character is
represented by the horizontal and vertical black lines, and the
dislocation character of the disconnections is indicated in green.
Assuming that this GB segment is migrating downward (i.e.,
toward its mean curvature/capillarity), such GBmigration occurs
through the motion of the two vertical steps toward each other
(see the green arrows). At the same time, the two oppositely signed
dislocations (Burgers vectors) glide toward each other, leading

to a relative shear across the GB; this is the origin/mechanism of
shear coupling. As Burgers vector flow along each GB, a spatially
and temporally varying internal stress field is produced.

Fig. 2 C and D show the internal stress �12 distribution
for the microstructures in Fig. 1D. The generated internal
stress constantly evolves and is spatially inhomogeneous within
the whole microstructure and each grain. Fig. 2E shows the
evolution of the fractions of �12; the lightest and darkest lines
are for the initial and final microstructures, respectively. The
�12 stress distributions are nearly Gaussian, with widths that
decrease during grain growth. To eliminate the effect of the
coordinate system and investigate the elastic energy density
evolution, we also show the von Mises stresses in Fig. 2 F
and G for the same microstructures. This stress distribution is
also inhomogeneous and evolving. The von Mises stresses are
nearly Rayleigh distributed, with peaks moving to lower stress
during microstructure evolution (Fig. 2H ). Both Fig. 2 E andH
demonstrate that internal stresses are relieved by grain growth;
i.e., grain growth dissipates elastic energy.
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Note that stresses observed in the simulations shown in
Fig. 2 exhibit maximum stresses as large as ⇠�/10, which are
comparable to the theoretical strength of the material. Where
these large stresses are highly localized near the triple junctions
(TJs), the origin of these high stresses is related to the constrained
GB sliding at TJs. We also note that there can be very large
stresses within grain interiors as well. In most metals, such large
shear stress could be relieved by some plastic deformation within
the grains. While the possibility of bulk plastic deformation is
not included in these simulations, these results suggest that some
microplasticity (dislocation, twin) may result fromGBmigration
in real polycrystals (20, 35, 36).

The existence and evolution of internal stresses have also been
observed in grain growth experiments (37) and MD simulations
(24). Such stresses arise naturally from shear coupling; we return
to this point later. The central question that remains to be
answered is whether the mutually affected GB shear coupling
and generated internal stress are not only vaguely influencing the
outcome of grain growth but also allow for explaining two recent
findings in pivotal experiments for polycrystals (18–20): i) grain
size change is not correlated with the number of neighbors of
each grain, and ii) GB velocity is not correlated with GB mean
curvature.

1.2. Failure of the von Neumann–Mullins Relation. In the
1950s, von Neumann (2) and Mullins (3) rigorously demon-
strated that if isotropic grain growth is curvature flow, the size of
each grain evolves as

dR2

dt
= �M�

 

2⇡ �

NX

i=1
↵i

!

= �2⇡M�
✓
1 �

1
6
N
◆
, [1]

where R2 is the grain area,M and � are the isotropic GBmobility
and GB energy, N is the number of neighbors of the grain, and
↵i is the dihedral angle at a triple junction; in the isotropic
case ↵i = ⇡/3. This implies that grains with more/less than six
neighbors will grow/shrink.

Fig. 3A shows grain area change vs. the number of neighbors of
individual grains obtained in our 2DPF grain growth simulations
(shown in Fig. 1) in the absence of GB shear coupling. The thick
blue line is the ideal grain growth relation [1], and unsurprisingly,
all data points are clustered very close to this line. Almost all grains
with less than six neighbors shrink, while those with more than
six grow, consistent with the von Neumann–Mullins relation
(having six neighbors implies that the mean GB curvature is
zero). While the von Neumann–Mullins grain growth relation
is exact, the small discrepancy in Fig. 3A is associated with the
diffuse boundary nature of the simulations. However, when the
simulations includeGB shear coupling, very large deviations from
the ideal grain growth relation are observed; c.f ., Fig. 3 A and B.
In this case, we note that the grain growth rate data has a very
large SD. This implies that the number of neighbors is no longer
a good predictor of whether a grain will shrink or grow; in
other words, the von Neumann–Mullins relationship fails in the
presence of shear coupling. Nonetheless, on average, grains with
a large number of neighbors tend to grow, and those with few
neighbors tend to shrink.

In 3D, curvature flow simulations (no shear coupling) (38)
show that the grain volume growth rate vs. number of neighbors
is similar to the 2D curvature flow simulation results (i.e., the
SD of the data is small and there is a critical N above which
grains tend to grow and below which they shrink); c.f ., Fig. 3
A and C. However, grain growth experiments on 3D SrTiO3

−
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−

δ
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−
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B D

Fig. 3. Failure of the von Neumann–Mullins relation. Scatter plots of
individual grain area changes �R2/�t vs. the number of neighbors N during
grain growth (A) without shear coupling (i.e., mean curvature flow) and (B)
with shear coupling from 2D PF simulations. Reported grain volume change
�R3/�t vs. the number of neighbors in 3D from (C) curvature flow grain growth
simulations (38) and (D) a polycrystalline SrTiO3 grain growth experiment (38).
(C and D) are reproduced with permission from ref. 38 (Copyright 2023
Elsevier). The gray shaded regions in the plots indicate the 99% CIs from
the data shown.

show that the SD of the grain volume growth rate is very large;
see Fig. 3D. The 3D curvature flow simulation results and the
3D experiments differ because the experiments (unavoidably)
include shear coupling, while the 3D curvature flow simulations
do not. This is exactly analogous to the 2D results, where
simulations with and without shear coupling differ in the same
manner.*

Based on these comparisons, we can conclude that shear
coupling leads to a profound violation of the most fundamental
grain growth relation. This strongly suggests that, in polycrystals,
grain growth is not purely mean curvature flow.

1.3. Failure of Mean Curvature Flow. The von Neumann–
Mullins relation (Eq. 1) stems from the mean curvature flow
assumption, v = M�, i.e., GB velocity is proportional to the
mean GB curvature. However, statistical analysis of experimental
measurements on nickel (18) and iron (19) showed that GB
velocity is not (or only weakly) correlated with mean curvature
(data reproduced in Fig. 4 A and B). Similar conclusions were
drawn from MD simulations of polycrystalline aluminum (Al)
(20); see Fig. 4C. The small colored dots in these figures are
individual measurements of the velocity and (weighted) mean
curvature of different GBs; the color of each dot indicates the
density of dots (measurements) in the local vicinity of each dot.
Redder dots indicate there are many GBs with similar velocities
and curvatures. The open black circles refer to the average GB
velocity of all GBs with the same (weighted) mean curvature
(binned data).

*Note, the extension of the von Neumann–Mullins relation to 3D shows that the grain size
growth rate should be proportional to the mean width of the grain (4), not the number of
neighbors; unfortunately, such data are not available from the experiments (38).
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Fig. 4. Failure of mean curvature flow. Scatter plots (small points) of GB velocity vs. mean curvature for individual GBs in polycrystalline (A) Ni (experiment), (B)
↵-Fe (experiment), and (C) Al (MD simulation). The color of each of the small points indicates the density of points (measurements) in the local vicinity of each
point (redder points indicate there are many GBs with similar velocities and curvatures. The open circles represent GB velocities averaged over GB segments
with (approximately) the same mean curvature. (D) An example of GB migration opposite to its center of mean curvature in grain growth experiments in (B).
(E) Illustration of GB migration mediated by disconnection motion in opposite directions. (F ) Simulated grain growth microstructure evolution with GB shear
coupling (� = 25 GPa). Here, increasing time is indicated by changes in the GB colors from blue to red. Black arrows indicate locations where the GBs migrate
in the sense opposite to the curvature. (G–I) Same type of plots (A–C) for PF grain growth simulations with shear coupling for polycrystals with shear modulus
(E) � = 75 GPa, (F ) � = 25 GPa, and (G) with no shear coupling. � = 0. (J–L) Same as (I) but with (J) anisotropic GB energy, (K ) anisotropic GB mobility, and (L)
triple junction drag (see the text). (A–D) are reproduced with permission from refs. 18–20 (Copyright 2021 AAAS, 2023 Elsevier, and 2024 Elsevier).

Clearly, any relationship between the GB velocity and mean
curvature is very weak; certainly v = M� is inconsistent with
these individual GB data. This is shown by noting the very
small correlation between the average GB velocity and mean GB
curvature (see the open circles); the coefficient of determination
COD (i.e., the linear correlation, often called R squared) for the
experiments and simulations are all less than 0.35. Since the GB
velocity and GB mean curvature are only weakly correlated, the
fundamental assumption that led to the von Neumann–Mullins
relation (or its extensions to higher dimensions or inclusion of
anisotropicGB energy) is invalid.Note that while theGB velocity
is not proportional to GB curvature, capillarity (reduction in
GB energy) remains the driving force for normal grain growth;
curvature flow is necessarily modified by shear coupling.

Why is the GB velocity not (only weakly) correlated with GB
mean curvature? The simulation results above strongly suggest
that this is related to shear coupling. As noted (Fig. 2 A and B),
GB migration and shear coupling are mediated by the motion of
disconnections. A more appropriate equation of motion for GBs,

that accounts for shear coupling in addition to curvature effects,
can be expressed as (25, 26)

v = M (� + ⌧ · � +  ) n̂, [2]

where v is the velocity of a GB segment and M is the intrinsic
disconnection mobility tensor. This equation of motion features
three driving forces. � is the weighted mean curvature/classical
capillarity driving force, with interface stiffness � = � + �,�� (�
is the local inclination angle) and local mean curvature .  is
the chemical potential jump across the GB related to differences
in the bulk free energy densities of two grains meeting at the
interface ( = 0 in normal grain growth). Both M and � retain
anisotropies related to the crystal structure. ⌧ · � represents the
elastic driving force acting on the disconnection Burgers vectors
related to the GB shear coupling, where ⌧ and � are the resolved
internal shear stress and shear coupling factor vectors. If only
isotropic capillarity forces act on the GB, this equation of motion
reduces to GB curvature flow.
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Eq. 2 implies that GBs can migrate either toward or against
its curvature due to the existence of internal stresses. Consider
the situation in the schematic in Fig. 4E where the capillarity
force drives the GB segment downward (toward its center of
curvature) via the motion of the two vertical disconnections
toward each other. However, the internal stress induced by
one disconnection leads to elastic interactions in terms of a
Peach-Koehler force on the Burgers vector of the other disconnec-
tion. If the total Peach-Koehler force acting on the disconnections
drives them toward each other, the GB segment will migrate in
the same direction as when driven by curvature albeit faster.
On the other hand, if the Peach-Koehler force drives these two
disconnections apart, the resultant driving force is opposite to
that of mean curvature flow; for sufficiently large Peach-Koehler
forces the GB segment will migrate in the direction opposite to
that in curvature flow. In any case, this elastic effect weakens the
correlation between GB velocity and curvature. GB migration
in the direction opposite to the center of curvature has been
observed in grain growth experiments (19, 38); e.g., see Fig. 4D
from ref. 19. In our grain growth simulations with GB shear
coupling, we also observe GB motion in the direction opposite
to the center of the curvature; see the GB network trajectory
in Fig. 4F where indicated by the arrows. (Increasing time in
this microstructure is indicated by the transition of the GB color
from blue to red.) Note that, while anisotropic M or � in Eq. 2
(i.e., weighted mean curvature flow) are essential for accurately
describing the magnitude of the velocity, they cannot capture
these observations of GB migration in the direction opposite to
the sense of the curvature, as illustrated in Fig. 4D and E ; see also
SI Appendix, Fig. S4 C–F . Without shear coupling, such motion
might still occur due to the torque term in � for high-energy GBs
(39). This effect could then be observed in the early stages of the
evolution of microstructures featuring randomly oriented GBs.
As experiments typically show facetedGBswith orientations close
to minimum-energy ones rather than random, the significant
amount of GBs found to move opposite to curvature (19) cannot
be explained by this effect only.

We now demonstrate that the main cause for the weak
correlation between GB velocity and curvature is, indeed, the
generation of internal stresses associated with GB shear coupling.
We analyze the GB velocity vs. GB mean curvature distributions
obtained by our PF grain growth simulations with and without
GB shear coupling, c.f . Fig. 4 G–I, where we employed the
Bhattacharya et al. (18) approach to extract GB velocity and
mean curvature during grain growth. When grain growth is
mean curvature flow without GB shear coupling (Fig. 4I ), a
clear linear distribution and very strong correlation (COD ⇡ 1)
between GB velocity and mean curvature are found; this is
unsurprising (note that while this is mean curvature flow, each
data point corresponds to an average over an entire GB, rather
than points on a GB; this explains the sparse deviation from
the exact, isotropic, von Neumann–Mullins law). Fig. 4 G and
H show what happens when GB shear coupling is included; the
correlation between curvature and velocity is not only lost, but the
resultant distribution of curvature–velocity scatter appears very
similar to the experimental and MD results (c.f ., Fig. 4 A–C, G,
andH ). The strong similarity is observed both for individual GBs
and for the results averaged over GBs with the same curvature,
while the COD from the PF simulations are similar to those from
the experimental data. Shear coupling generates Peach-Koehler
forces which are mediated by elastic fields, hence small shear
modulus � would imply decreased shear coupling effects. We
performed PF simulations with small (� = 25 GPa) and large
(� = 75 GPa) shear moduli (c.f . , Fig. 4 G andH ) and, indeed,
found that reducing the shear modulus increases the correlation

between GB velocity and curvature. This is consistent with the
fact that Fe and Ni have a high modulus but low COD, and Al
has a low modulus and higher COD.

The results presented above provide strong, clear evidence
that the (experimental and MD simulations) observations of
weak correlation between GB velocity and curvature is a direct
consequence of GB shear coupling. Other possible reasons for
this lack of correlation have been proposed: i) GB replacement
as a result of anisotropic GB energy (40) or anisotropic GB
mobility (41) and ii) triple junction drag effect (19). To examine
the effect of anisotropic GB energy, we conducted a series
of PF simulations that include misorientation and inclination-
dependent anisotropic GB energies without GB shear coupling
(using the GB energy function of Al from ref. 42); the resultant
GB velocity vs. mean curvature distribution is shown in Fig. 4J.
The results are similar to the mean curvature flow simulation
results (Fig. 4I ), albeit with a slightly weaker curvature–velocity
correlation. Hence, GB energy anisotropy does lead to weaker
velocity-curvature correlation but still very much higher than
that found in either the experiments or MD simulation. Note
that GB energy anisotropy indeed leads to the replacement of
high-energy GBs with low-energy GBs in our PF simulations
(see an example in SI Appendix, Fig. S3), as in the experiments
(18). Fig. 4K shows the results of simulations performed with
isotropic GB energy but anisotropic GB mobility, where the
magnitude of the GB mobility anisotropy is consistent with the
experiments of Zhang et al. (41); see SI Appendix for details. The
results for the simulations with anisotropic GB mobility are very
similar to those for anisotropic GB energy.

We also investigated the effects of triple junction drag on the
GB velocity-curvature correlation by reducing the TJ mobility
[i.e., by lowering the PF kinetic coefficient in the triple junction
region by 10⇥ (43)]. As noted by Gottstein and Shvindlerman
(44), when grain growth is controlled by TJ drag, the grain
growth law is completely different from the von Neumann–
Mullins law. In our PF simulations, we find that when the
GB mean curvature is low, the curvature–velocity correlation
is high, but when the mean curvature is large, the correlation is
notably weaker (Fig. 4L). Nonetheless, including TJ drag does,
indeed, lower the curvature–velocity correlation, but the COD
remains much larger than that found in the experiments or MD
simulations. It is also interesting to note that the individual GB
velocity-curvaturemeasurements (small colored points in Fig. 4L)
are distributed much differently than those in the experiments or
MD simulations (Fig. 4 A–C ). Hence, we conclude that TJ drag
is not the dominant cause of the failure of curvature flow.

While anisotropic GB energy, mobility, and TJ drag reduce
the correlation between GB velocity and curvature, it is clear that
shear coupling is the main source of the failure of curvature flow
in grain growth.

2. Discussion

The effects of shear coupling on the large-scale microstructure
evolution outlined above follow from the microscopic mecha-
nism of disconnection flow. We validate this by showing that
grain growth simulations based on the considered continuum
(PF) model are fully consistent with the outcome of MD
simulations.

We consider the idealized (small) microstructure in Fig. 5A,
which consists of two sets of square columnar grains (A, B;
same initial grain size and orientation) and two sets of octagon
columnar grains (C, D; different grain orientations), and was
recently examined viaMD simulations (24). The vonNeumann–
Mullins relation (Eq. 1) suggests that the two sets of square
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Fig. 5. Model microstructures for benchmarking. (A) Schematic of the initial [111]-textured idealized microstructure for the reported MD and current PF
grain growth simulations in (B–E). Microstructure evolution in (B) reported MD simulations at time around 10 ns and (D) current PF simulations at time of
15,000. Internal stress field �12 at time (C) 5.5 ns in the MD simulations and (E) 7,500 in the PF simulations. (F ) Schematic of the initial [001]-textured idealized
microstructure for the MD and PF grain growth simulations in (G–J). Microstructure evolution in (G) MD simulations at time around 20 ns and (H) PF simulations
at time of 2,000. Internal stress field �12 at time (I) 20 ns in the MD simulations and (J) 2,000 in the PF simulations. (B and C) are reproduced with permission
from ref. 24 (Copyright 2017 Springer Nature).

grains will behave similarly since they share the same GB types
and number of sides. However, the MD simulations showed that
while grain B shrank, the size of grain A changed little; see Fig. 5B.
Fig. 5C shows the internal stress field from the MD simulations;
the stresses in grains A and B were different, implying different
GB shear coupling behaviors of the two grains. The stress fields
in these figures show that the sources of these stresses are localized
to points on the GBs (i.e., the disconnections) and the TJs (where
disconnections pile-up) (45).

We conduct PF simulations on the same idealized microstruc-
ture using material parameters determined from bicrystal MD
simulations (24, 32) (SI Appendix); i.e., there are no adjustable
physical parameters. Without GB shear coupling, the shrinkage
rates of grains A and B are, unsurprisingly, the same (SI
Appendix, Fig. S5 A and C ); i.e., this microstructure evolution
is not consistent with the MD simulations results. Next, we
performed PF simulations on the same microstructure, but we
assigned the measured shear coupling factors (from bicrystal
MD simulations) to the individual GBs. Detailed comparisons
of the PF (Fig. 5 D and E) and MD (Fig. 5 B and C )
microstructure simulations show that the PF simulations with
shear coupling accurately reproduce the MD microstructure

evolution, internal stress fields, and the difference in shrinkage
rates of grain A and B.

A second example of the evolution of this idealizedmicrostruc-
ture with different texture (tilt axis along thickness direction) and
initial grain orientations results in analogous conclusions; see the
schematic initial configuration in Fig. 5F ; here too, the square
columnar grains A and B share the same orientation. In MD
simulations, the shrinkage rates of grains A and B are almost
the same, while their shapes are elongated along one diagonal
and compressed along the other; see Fig. 5G. We also find
the different stresses in grains A and B (Fig. 5H ). By assigning
the shear coupling factors to individual GBs, the microstructure
evolution and internal stress field obtained by our PF simulation
match very well again with the MD simulation, c.f . Fig. 5 G–J.
These results i) demonstrate that the PF model with shear
coupling provides an accurate representation of polycrystalline
microstructure evolution and ii) further demonstrate that the
observation that GB velocity is not proportional to GB curvature
(in the presence of shear coupling) translates into the failure of the
von Neumann–Mullins law, Eq. 1, at the microstructural level.

Increasing temperature tends to decrease the magnitude of
the GB shear coupling as a result of activation of multiple
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disconnection modes (23, 29, 32, 46, 47). Such a weakened
shear coupling factor can improve the correlation between v
and , similar to the effect by decreasing the shear modulus as
shown in Fig. 4G andH (shear moduli also slowly decrease with
increasing temperature). In the limit that T ! 1 (ignoring
melting), grain growth can be considered as curvature flow.
The magnitude of this effect is material- (and GB-) dependent.
Atomistic simulations show that grain growths in Al polycrystal
at 0.75 Tm (20) and Ni polycrystal at 0.85 Tm (24) are still
significantly different from curvature flow. Hence, at most
temperatures where grain growth experiments and simulations
are conducted, GB shear coupling cannot be ignored to predict
and understand realistic grain growth.

In summary, we examined the effects of GB shear coupling
on the microstructure evolution through a series of large-
scale PF simulations of grain growth in two-dimensional (2D)
polycrystals. The PF simulations are based on a bicrystallography-
respecting continuum model for disconnection-mediated
GB migration (see SI Appendix for a discussion of the physical
parameters in the PF simulations). The inclusion of shear
coupling (disconnection) effects provides a clear explanation of
why grain growth is not weighted mean curvature flow (these are
captured in the simulations). More specifically, shear coupling
generates internal stresses that provide important additional (to
capillarity) driving forces for grain boundary migration. These
mechanical driving forces modify the classical GB equation of
motion (i.e., mean curvature flow and its anisotropic extensions),
thereby rendering the classical 2D vonNeumann–Mullins model
(and its extensions to higher dimensions and anisotropy) unable
to describe grain growth. While the effects of anisotropic GB
energy and mobility do, indeed, decrease the correlation between
GB velocity and weighted mean curvature, they are too weak
to account for the observed deviations (both in magnitude
and trends) of the experimental and simulation data from
weighted mean curvature flow. We emphasize that the ultimate
driving force for grain growth remains the reduction in GB
energy (capillarity), as in classical models, but the inclusion of
elasticity/shear coupling is essential in theGB equation ofmotion
in order to describe the kinetic process of grain growth.

3. Methods

A series of PF simulations are performed based on the diffuse interface
approximation of the (sharp-interface) Eq. 2 proposed in refs. 26 and 27. In
brief, the mean curvature term (�) is approximated via a classical multiphase
field (PF)model (30, 31) and is coupled to an advection term encoding the other
contributions. A minor difference to the approach introduced in ref. 27 is using
another established PF formulation for the mean curvature flow (48) that allows
for a more versatile parameterization.

Grains forming a microstructure are described via smooth, order parameters
{⌘i(r)} with r 2 ⌦ ⇢ R2, which are 1 in the region corresponding to the
i-th grain and 0 elsewhere with a smooth transition in between. Such smooth
interfaces between grains correspond to GBs, thus, in practice, corresponding
to the regions where pairs of order parameters are nonzero (⌘i⌘j > 0). Note
that physical parameters related to grains are labeled by one index (i or j), while
the ones of GBs are labeled by the two indexes ij. The approach incorporates
capillarity-drivendynamics and jumpsof theenergy acrossboundaries following
the definition of the energy functional (48)

F =

Z

⌦
d⌦
 NX

i

NX

j

4�ij
✏

✓
⌘i⌘j �

✏2

⇡2
r⌘i · r⌘j

◆

+
NX

i
⌘i i + �

✓ NX

i
⌘i � 1

◆�
,

[3]

with �ij the interface/grain-boundary energy density, ✏ a parameter controlling
the extension of the diffuse interface between grains,  i the bulk free energy,
and � a Lagrange multiplier. The first term approximates the interface energy,
and the last term is a constraint, imposing that in every point in⌦, the sumof all
the phase fields is 1 (i.e., enforcing complete filling of the domain with grains).
Leveraging the definition of the free energy Eq. 3, themotion of GBs dictated by
Eq. 2 can be approximated by the following evolution law of ⌘i:

⌘̇i =
NX

j
Mij

 
�F
�⌘j

�
�F
�⌘i

+ felastic

!

. [4]

with

�F
�⌘j

�
�F
�⌘i

= fcurvature + fchemical, [5]

fcurvature = �ij

 

⌘jr2⌘i � ⌘ir2⌘j �
⇡2

2✏2
(⌘j � ⌘i)

!

, [6]

fchemical =
⇡
✏
p⌘i⌘j( j �  i), [7]

felastic = ⌧ · � ij|r⌘j|(n̂(⌘i) · n̂(⌘j)) [8]

and n̂(⌘) = �r⌘/|r⌘|, accounting for the elastic interactions with external
stress or disconnection self-stress via ⌧ . This is obtained by computing the
corresponding sharp-interface quantity and extending it off the interface like in
Level-setapproaches (27). Thecontinuummodelof interfacemigrationmediated
bydisconnectionflow,Eq.2, and thus its PF formulation, follows self-consistently
from the microscopic picture of arbitrarily curved GBs with disconnections
(26, 27, 29). The density of disconnections is dictated by the geometry of
the interface on which they flow, as well as dynamical/energetic effects (in
a multiple-disconnection-mode formulation); see SI Appendix. In the original
formulation (26, 27, 29), parameters such as GB mobility, energy, and shear
coupling factors, are expressed as a function of those for reference orientations
(whichdefine theexpecteddisconnections). In thiswork,we setdirectly the shear
coupling factor of the reference of arbitrarily curved GBs as a function of their
misorientation (23); thecorrespondingfullexpression is reported inSIAppendix.
This description is shown to be fully in agreement with the microscopic picture
of GB migration in Discussion. Numerical simulations are performed exploiting
a simple finite-difference spatial discretization of Eq. 4 and semi-implicit time
integration. Further details concerning model parameterization and additional
numerical simulations are reported in SI Appendix.

Data, Materials, and Software Availability. Data and code have been
deposited in Zenodo (DOI: 10.5281/zenodo.15120372) (49).
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