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Impact of grain boundary energy anisotropy on grain growth
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A threshold dynamics model of grain growth that accounts for the anisotropy in the grain boundary energy has
been used to simulate experimentally observed grain growth of polycrystalline Ni. The simulation reproduces
several aspects of the observed microstructural evolution that are not found in the results of simulations assuming
isotropic properties. For example, the relative areas of the lowest-energy twin boundaries increase as the grains
grow and the average grain boundary energy decreases with grain growth. This decrease in energy occurs
because the population of higher-energy grain boundaries decreases while the population of lower-energy
boundaries increases as the total grain boundary area decreases. This phenomenon emerges from the assumption
of anisotropic grain boundary energies without modification of the energy minimizing algorithm. These findings
are consistent with the observation that, in addition to the decrease in grain boundary area, additional energy is
dissipated during grain growth by a decrease in the average grain boundary energy.
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I. INTRODUCTION

Grain boundaries are the interfaces between crystals with
different lattice orientations in polycrystalline metals, ce-
ramics, polymers, and rocks. At high temperatures, grain
boundaries migrate and this is one important mechanism
for the evolution of polycrystalline microstructures. Grain
growth, which is an increase in the average crystal size by
grain boundary migration, affects structure-sensitive material
properties. Hence, understanding the underlying mechanism
of grain boundary migration is necessary for controlling the
electrical, optical, and mechanical properties of materials.
Grain growth by grain boundary migration has been exten-
sively studied in the past using analytical theories [1–3],
molecular dynamics simulations [4–11], Monte Carlo sim-
ulations [12–14], phase field simulations [15–29], threshold
dynamics [30,31] and other approaches [32–41].

Recent experimental observations have provided two find-
ings not captured by most of the simulations. The first is that
grain boundaries are approximately equally likely to migrate
toward or away from their centers of curvature [42–44]. The
second is that while grain boundaries move to decrease the
total energy of the system by decreasing the grain boundary
area, they further decrease the energy by replacing high-
energy grain boundaries with low-energy ones, a process
referred to as grain boundary replacement [45]. This sug-
gests that grain boundary energy must be included in the
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simulations. The grain boundary energy (GBE) depends on
five macroscopic parameters, which can be expressed as the
lattice misorientation between the two adjacent grains (three
degrees of freedom) forming the boundary, and the orienta-
tion of the boundary plane (two degrees of freedom) [46,47].
However, most previous grain growth simulations considered
isotropic grain boundary energy, i.e., the energy is the same
for all boundaries, and this cannot capture the replacement of
high-energy grain boundaries with low-energy ones.

Most of the simulations that used anisotropic properties
only considered the dependency of GBE on the misorientation
[48–50] or simulated grain growth in two dimensions [36].
However, the GBE varies more strongly with variations in the
grain boundary plane orientation than with the lattice misori-
entation [47], so it seems unlikely that simulations ignoring
these parameters will correctly simulate the energy reduction
during grain growth.

Two prior examples of three-dimensional simulations con-
sidering the grain boundary plane dependence on the GBE
in three-dimensions considered a hypothetical GBE function
and did not include the dependence of the GBE on the lattice
misorientation [38,51]. A limited number of recent studies
have simulated grain growth in 3D using a GBE that varies
with all five parameters [30,52,53]. Kim et al. [53] used the
phase field method to simulate grain growth in BCC Fe and
found that the anisotropic GBE influenced the morphological
evolution of grains and that low-energy boundaries increased
in population during grain growth. Hallberg and Bulatov
[52] developed an anisotropic level set method to show the
importance of energy anisotropy in the morphology of evolved
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microstructures. The simulations used energies specified by
the Bulatov-Reed-Kumar (BRK) energy function [54] for fcc
structures and models no more than four grains. Nino and
Johnson [30] used a simplified extension of threshold dynam-
ics (TD) with different energy functions to study the effect
of energy anisotropy on the evolution of a microstructure in-
stantiated with a Voronoi tessellation. This simplified version
employed Gaussian kernels to describe the GBE of bound-
aries of different inclinations. A discussion on the difference
between the current method and an extension used by [30] is
provided in Sec. II A.

The purpose of this study was to compare the outcome of
the simulated 3D microstructure evolution with the experi-
mentally observed evolution of Ni during grain growth [55,56]
using both an isotropic and a five-parameter anisotropic GBE.
The simulations described here differ from the previous study
in two ways. The first is that an improved description of
the grain boundary energy anisotropy, described in Sec. II A,
is implemented. The second is that experimentally observed
microstructures are used as input, and the results are compared
to the observed microstructure in later states. The experimen-
tally determined starting microstructures contain 2400 to 3000
grains, and we quantify changes in the average grain boundary
energy and the grain boundary energy distribution, the grain
boundary area, the grain boundary curvature, the grain bound-
ary velocity, changes in the numbers of near neighbors, and
the relative areas of twin boundaries. The simulation captures
the replacement of higher energy GBs by lower energy bound-
aries in the same manner that was observed experimentally
[45], while the isotropic simulation cannot necessarily predict
this mechanism.

To simulate grain growth, we have used the TD method
originally introduced by Merriman, Bence, and Osher in
[57,58] which uses an implicit representation of boundaries.
There are three reasons for choosing the TD method. The
first is the high computational efficiency compared to other
methods using an implicit representation of the interface,
such as the phase field method and level set method. The
second reason is the straightforward extension of the model
to anisotropic simulations using experimentally derived in-
terface properties. The third is that the data structure of
the model is analogous to that of the experiment, allowing
data to be easily transferred and the analysis of microstruc-
tural characteristics to be computed using the same codes
for the experimental and simulated data. Furthermore, Nino
and Johnson [30] showed that anisotropic threshold dynam-
ics simulations produced triple junction geometries that were
consistent with the Herring [59] condition.

There are different methods to incorporate the experi-
mentally derived grain boundary energy into the evolution
algorithm [60–64]. To consider a fully anisotropic TD
method, we will follow [60], because it has no restriction
on the choice of the grain boundary energy function that
can be considered, and it is computationally less expensive
than other available models as it only requires the GBE it-
self and not its derivatives. To evaluate the grain boundary
energy, the five-parameter grain boundary function defined by
Bulatov et al. (Bulatov-Reed-Kumar (BRK) energy function)
is used [54]. Although this function is only an interpolation
between 388 calculated GBE values from molecular dynamics

simulation [65], it has been shown to be a good approximation
of experimentally determined GBEs [66].

II. MATERIALS AND METHODS

A. Threshold dynamics

The threshold dynamics (TD) algorithm is a method to
simulate free boundary motion by mean curvature and was
initially introduced by Merriman, Bence, and Osher [57,58].
In this approach, each grain i is identified by a characteristic
function 1!k

i
, which has the value one within grain i and zero

outside the grain. The set of position vectors within grain
i at time tk are denoted by !k

i . To evolve a microstructure
with N grains at time tk and evaluate the microstructure at
time tk+1 > tk , Algorithm 1 [49,61] is used. In the convolution
step, each grain’s characteristic function is convolved with a
kernel specific to each boundary, Ki, j

δt = K j,i
δt . Typically, the

kernels are defined such that they are maximum at the origin
and decay to zero at infinity; the overall rate of the decay to
zero depends on δt and the rate of the decay in each direction
depends on the anisotropy of the grain boundary energy as de-
scribed below [67]. At each point x, the convolution operator
computes the integral of the product between the character-
istic function and the kernel, with the kernel repositioned so
that its maximum is located at point x. Hence, the value of
the convolution ψk

i at point x deep inside grain i and far
from the boundary remains zero while its value increases as
x gets closer to the boundary and increases further outside of
the grain. Note that the convolution value ψk

i highly depends
on the curvature of the boundary as the convolution, which
results from the overlap between the nonzero part of the kernel
and the nonzero part of the characteristic function 1!k

j
, can

vary significantly depending on the shape of the grain. In the
thresholding step, the characteristic function for each grain is
redefined such that 1!k+1

i
at time tk+1 is equal to one at points

where ψi is minimum compared to ψ j for all other grains with
j = 1, ..., N , and zero otherwise. This way, the boundaries are
moved effectively by weighted mean curvature.

In the generalized form of the algorithm [49], Ki, j
δt can be

different for different grain boundaries. Under the assumption
that the GBE for all boundaries is equal (isotropic GBE), the
kernel Ki, j

δt : R3 → R is the same for all grain boundaries and
is equal to a Gaussian

Ki, j
δt (x) = 1

(4πδt )3/2
exp

(
− |x|2

4δt

)
, (2.3)

which is spherically symmetric and decays with the same rate
in all directions.

ALGORITHM 1. Anisotropic threshold dynamics.

Initialization: Given !k
1 , ...!

k
N and time step size δt

Convolution:

ψ k
i =

∑N

j=1
j #=i

Ki, j
δt ∗ 1!k

j

(2.1)

Thresholding:
!k+1

i =
{
x : ψ k

i (x) ! min
j #=i

ψ k
j (x)

}
(2.2)
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Extending this algorithm to cases where the GBE, σ , de-
pends only on misorientation, &g (three parameters model),
is straightforward. In this case, all directions for the grain
boundary normal are energetically equally favorable, hence
a spherically symmetric kernel for the evolution of each in-
terface can be used. To distinguish the difference between
the energy of different grain boundaries caused by the mis-
orientation, this spherically symmetric kernel can be scaled
according to its energy and defines Ki, j

δt for the boundary with
adjacent grains i, j as [49]

Ki, j
δt (x) = σ i, j (&gi, j )

(4πδt )3/2
exp

(
− |x|2

4δt

)
. (2.4)

The Read Shockley GBE [68] is an example of this case.
However, in the case that the GBE also depends on the

inclination of the grain boundary, specific grain boundary nor-
mals are more favorable than others. Hence, a kernel that can
capture this effect should not be spherically symmetric [67]
which brings in more challenges compared to the previous
case of the three-parameters model. Defining this kernel to
result in the grain boundary velocity proportional to GBE has
been the topic of several studies [60,61,63,64] and remains an
active area of research.

In this study, we will use the kernel constructed by Bon-
netier et al. [60] to simulate the anisotropic evolution of
microstructure. The Fourier transformation of this kernel
F

[
Ki, j

δt (x)
]

is

K̂ i, j
δt (ξ) = F

[
Ki, j

δt (x)
]

= 1
δt3/2

exp
(
− (σ̃ i, j (δtξ))2),

σ̃ (x)i, j = |x|σ i, j
(

x
|x|

)
(2.5)

where σ i, j : S2 → R+ is the GBE function for all boundary
inclinations for a given misorientation &gi, j between grain
i, j, and σ̃ i, j is an extension of σ i, j such that σ̃ i, j : R3 → R+.
Note that for evaluating the convolution step (2.1), in the
computational setting we use f ∗ g = F−1[F [ f ]F [g]], so
there is no need for computing this kernel in the physical
domain [69]. Furthermore, in the kernel used here, the mo-
bility of the interface is embedded such that it is equal to the
GBE. There are recent attempts to derive more general kernels
where mobility and GBE can be assigned independently, and
this is still an active area of the research [63].

According to Algorithm 1, using an anisotropic kernel will
only affect the convolved value ψk

i , which is the input to the
thresholding step. The convolved value ψk

i is the result of
the convolution between the anisotropic kernel and the char-
acteristic function 1!k

j
. Hence, a simplified extension of the

Algorithm 1 to the five-parameter anisotropic GBE can be also
achieved by changing the characteristic function 1!k

j
accord-

ing to the GBE and keeping the kernel spherically symmetric
Gaussian. Nino and Johnson [30] achieved this by replacing
1!k

j
with σ i, j (n)1!k

j
. Although methods based on defining an

anisotropic kernel following the grain boundary energy and
mobility anisotropy are derived from energy minimization
[63], more study is required to understand if the simplified
version of Nino and Johnson [30] is indeed equivalent to a
weighted mean curvature flow and minimizes the energy.

B. Grain boundary energy

Experiments show that the grain boundary energy is a
function of five macroscopic parameters, i.e., lattice misori-
entation between the two adjacent grains (three degrees of
freedom), and the inclination of the grain boundary plane (two
degrees of freedom) [47]. There are different methods for the
representation of these five parameters. The most common
way is to represent the misorientation between the adjacent
grains and plane boundary inclinations separately. For exam-
ple, from experimental measurements considered in this study,
for each grain, the rotation of the lattice of each grain relative
to a fixed sample frame coordinate system is measured and
is represented through a set of Euler angles (φ1,(,φ2) for
rotation around the (Z, X, Z ) axes. Once the Euler angles are
given, the rotation matrix gi for rotating the sample frame to
the frame of grain i can be computed, and &g = gig

T
j will give

the transformation of the lattice of grain j to the lattice of
grain i, which is a representation of misorientation between
grains i and j. Independent of misorientation measurements
and calculations, the inclination of each point in the grain
boundary plane n is computed after the reconstruction and tri-
angulation of grain boundaries in DREAM.3D software [70].
Hence, a full five-parameter representation of the grain bound-
ary is given through a normal vector n and a transformation
matrix &g.

In this study, we use the BRK energy function to evaluate
the GBE for any given five parameters for a grain boundary in
Ni. The BRK GBE function is a nonlinear interpolation based
on 388 different measured grain boundary energies, provided
through a MATLAB function as Supplementary Data in [54].
This function is a piecewise interpolation that extends from
each cusp in the energy landscape and is consistent with the
symmetry of the material.

Despite the mentioned representation from the experi-
mental data where grain boundary misorientation and plane
boundary inclination are represented separately, the input of
BRK GBE model is two three-by-three matrices labeled P
and Q in which both grain boundary misorientation and plane
boundary inclination are combined and represented through
these two rotation matrices. A detailed procedure for convert-
ing Euler angles and normal vector to the PQ representation
is presented in Appendix.

C. Model validation

In this section, we validate that the choice of the anisotropic
kernel can realistically capture the grain evolution. We grow
a spherical grain located in its melt using different interface
energy functions of the form (2.6) by using kernel (2.5). The
result of our simulation is compared with the result of the front
tracking simulations computed by Mohles [71]. Following
[71], we consider different energy functions of the following
form:

GBE = 1 + α(|nx|m + |ny|m + |nz|m) (2.6)

where nx, ny, nz are different components of boundary plane
normal. The equilibrium shape of the grain, which is expected
to be the Wulff shape of the energy function, is shown in Fig. 1
and matches the equilibrium shape simulated using the front
tracking method (Fig. 7 in [71]) for two sets of parameters
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FIG. 1. Simulated equilibrium shape (right) of an initially spherical grain in its melt in a box of size 643 (outlined by black lines) using
different surface energy (left) of the form (2.6).

m = 1,α = −0.5, and m = 4,α = −0.7. As expected, the in-
clination of the facets of the equilibrated grains aligns with the
direction of minimum energy ([1 1 1] for the GBE in Fig. 1(a),
and [1 0 0] for the GBE in Fig. 1(b)). Thus, the choice of the
anisotropic kernel can capture the expected behavior during
grain growth.

Furthermore, a sensitive test of the anisotropic simulation
is to observe the evolution of the GB plane distribution, as the
GB energy anisotropy influences this [72]. Given that the !3
GB of Ni has the minimum energy at the [111] twin position,
an increase in its relative area is both expected and observed
in the simulation. Figure 2 shows the continuous increase in
the relative area of twin boundaries for different timesteps
of a simulation, starting from An4 with a relative area of
twin boundaries of 547 multiples of a random distribution
(MRD) and the ending when the average grain size of An5 is
reached, using the BRK energy function (An4 and An5 refer
to experimental states defined in Sec. III).

FIG. 2. Relative area of twin boundary (MRD) for different
timesteps of a simulation started from An4 with the intensity of 547
and the end point of reaching the average grain size of An5.

D. Computational challenges of anisotropic simulation

One main difference between the isotropic and anisotropic
simulation is that in the isotropic simulation the kernel is the
same for all grain pairs, and hence it can be computed once
at the start of the simulation and used at any time later during
the simulation. However, in the full anisotropic simulation,
the convolution kernel is different for each grain pair and
there is no linear relation between kernels, as in the case of
GBE only being a function of misorientation. Hence, a key
challenge is that the experimental volume contains a large
number of different GB types with an approximate number
of distinct grain boundaries of 34000 in each microstruc-
ture. Additionally, to evaluate the nonspherically symmetric
anisotropic kernel (2.5) for each two-grain pair with a given
grain boundary misorientation, the GBE for all inclinations of
the boundary plane is required.

While the energies are potentially available from the
BRK function, evaluating them for all points in a kernel
is prohibitively expensive numerically. Therefore, we define
a coarser grid including 6192 different normal vectors uni-
formly distributed on a sphere. For each grain boundary
misorientation, we store the energy at these 6192 different
inclinations, at the start of the simulation. We then use the
nearest interpolation method to compute energy values on the
finer grid of the simulation.

E. Experimental data and simulations

This paper aims to compare the experimentally observed
microstructure evolution of a high-purity Ni sample during
annealing with simulated microstructures using both isotropic
and anisotropic grain boundary energy. The sample was
measured at six different times using nearfield high energy
x-ray diffraction microscopy [56,73]. The sample underwent
annealing for about 30 minutes at 800◦C between each mea-
surement. Previous studies have outlined the specifics of
data acquisition and interpretation [56,74,75]. Six repeated
measurements of the same sample volume were used to re-
construct the shapes and orientations of grains after successive
annealing treatments [74,75]. The data are represented as a set
of discrete voxels using DREAM.3D [55,70] and are referred
to as An0, An1, An2, An3, An4, and An5 throughout the
paper. The microstructures contained 2400 to 3000 grains
made up of voxels with dimensions of 2.3 × 2.3 × 4.0 µm3.
In the initial state, there was an average of 2347 voxels per
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FIG. 3. Experimentally measured and simulated microstructures. In each case, the diameter of the cylinder is about 1 mm.

grain. We note that the data used here is the same that was used
in our previous isotropic simulation [31], with one important
difference. In the previous study, all twinned grains were
merged to form single grains, in an effort to ameliorate the
known anisotropy of the energy. In contrast, all twins were
preserved in the present study.

The first five reconstructed microstructures (An0 to An4)
were considered as an initial state of different simulations
independently. Both isotropic and anisotropic simulation was
performed for each of the five initial states. The average grain
size increases throughout the simulation and experimental
annealing, and the simulations were terminated when the av-
erage grain size reaches the average grain size in the next
experimental anneal step [31]. All grain boundary proper-
ties (relative area, curvature, velocity) were calculated using
methods described in previous publications [42,44] and sum-
marized below.

F. Grain boundary properties

The analysis of the experimental data and simulations
involved calculation of the grain boundary relative areas,
curvatures, and velocities. The calculations begin by convert-
ing the voxelated grain boundaries to meshed interfaces in
DREAM.3D [70]. The relative areas of specific boundaries
were determined using the method of Glowinski and Moraw-
iec [76]. The grain boundary curvature was calculated as the
area weighted mean curvature of all of the mesh elements be-
longing to a certain boundary, using DREAM.3D [44,77]. The
migration velocity of each boundary was determined based on
the volume of voxels exchanged across the boundary; detailed
information can be found in previous publications [42,44].

III. RESULTS

The cylindrical Ni sample in the initial experimental state
(An0), and An1 are depicted in Figs. 3(a) and 3(b), where the
2972 and 2669 grains are colored by orientation. Figures 3(c)
and 3(d) show the evolved microstructure from An0 to An1
using isotropic and anisotropic simulations, respectively. A
cursory comparison shows only small differences between the
four microstructures. However, one exemplary feature is high-
lighted by the white oval. A twin (red) bisects a blue colored
grain. In the experiment and in the anisotropic simulation, the
twin is preserved. However, in the isotropic simulation, it is
eliminated. This is because when all grain boundary energies

are the same, spheroidal, energy minimizing grain shapes are
preferred over grains with high aspect ratios. In the remainder
of this section, we use distributions of properties to compare
the microstructure more systematically.

The behavior of the evolved microstructure during the
experiment, isotropic, and anisotropic simulations from dif-
ferent perspectives is compared. Since the simulations were
performed independently for different anneal stages as the
initial state of the simulation, the result of each simulation
is only compared with the next experimental anneal step. The
following notation is considered to present the results in this
section:

(1) An0–1: The experiment/simulation started with the
An0 microstructure and terminated when the average grain
size was equal to the average grain size of the An1 experiment.

(2) Initial state: Experimental data of An0.
(3) Experiment: Microstructure evolved experimentally

and stopped at An1.
(4) Anisotropic simulation: The output of the simulation

using an anisotropic kernel in Algorithm 1. The input is An0
experimental data and the simulation was stopped when the
average grain size reached the average grain size of An1.

(5) Isotropic simulation: The output of the simulation us-
ing an isotropic kernel in Algorithm 1. The input is An0
experimental data and the simulation was stopped when the
average grain size reached the average grain size of An1.

A similar notation is used for An1-2, An2-3, An3-4, and
An4-5.

Two main statistical features that are expected to be cap-
tured in the anisotropic simulation are the energy distribution
of grain boundaries and the relative area of !3 twin bound-
aries. Figures 4 and 5 show the relative area of the twin
boundaries for simulated and experimental anneal steps and
the microstructure energy per unit area of the grain bound-
aries. For each step, compared to the initial state, the relative
area of the twin boundaries increases in both the experiment
and anisotropic simulations, while it always decreases in the
isotropic simulation. Similarly, compared to the initial state,
the energy per unit area decreases (except for An3-4) and
the anisotropic simulation always decreases the energy. The
small increase in energy for An3-4 might be the result of
uncertainties in the experiment and reconstruction. Note that
since the uniform grain boundary energy of one is assigned to
all the boundaries in isotropic simulation, the energy per unit
area always remains one and is not relevant for the compar-
ison. The increase in the relative area of the twin boundary
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FIG. 4. The twin boundary relative area for experimental and
simulated data at different anneal states.

and the decrease in the average grain boundary energy in the
anisotropic simulation is always greater than in the experi-
ment; this will be discussed later in Sec. IV.

Figure 6 looks more closely at the energy distribution of
the simulated and experimental data for all anneal stages
combined together. The thick gray bars behind the thinner
bars show the energy distribution for the initial state of the
experiment and simulation, and the two thinner bars show the
GBE distribution for the anisotropic and next experimental
anneal state. For the lower-energy grain boundaries, there are
more boundaries in the final states of the experiment and sim-
ulation and for the higher-energy boundaries, there are fewer.
A comparison of these distributions shows that the experiment

FIG. 5. Energy per unit area for experimental and simulated data
at different anneal states.

FIG. 6. Distribution of simulated and experimental GBEs com-
bined for all anneal states.

and anisotropic simulation shift the distributions so that there
are more boundaries with lower energy.

Two sources of differences between the simulated and ob-
served microstructures are differences in the volume changes
of grains and differences in the neighborhoods. In [31], it was
shown that these effects are correlated. To examine whether
or not this occurs in the current simulation, we compare
the volume prediction error (V PE ) with the topological er-
ror (T E ) for individual grains. V PE and T E are defined as
follows:

&Ns = Nsim − Nexp(initial), (3.1)

&Ne = Nexp(final) − Nexp(initial), (3.2)

T E = &Ns − &Ne (3.3)

V PE = Vs − Ve

Ve
(3.4)

where Nexp(initial) is the number of neighbors of grain in the
initial experiment state, Nexp(final) is the number of neighbors
of the same grain in the final experiment state, and Nsim is the
number of neighbors of the same grain in the final simulation
state. V PE is the fractional difference in volume predicted by
the simulation of the final anneal state (Vs) and experimental
final state (Ve). T E is the difference in &N for each grain
between simulation and experiment. In other words, T E is
the error in predicting topological evolution by the simulation.
Figure 7 plots the volume prediction error as a function of
topological error for isotropic and anisotropic simulations.
A low V PE indicates a small difference between the final
volume predicted and the actual final volume of the grain.
A high-T E value means there is a large error in predicting
the topological evolution of the grains. Similar behavior of
isotropic and anisotropic simulation in V PE vs T E suggests
that considering energy anisotropy does not improve this
aspect of the simulation.
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FIG. 7. The volume prediction error (V PE ) as a function of topo-
logical error (T E ). V PE is the fractional difference in predicted and
observed grain volume. T E is the difference in grain face evolution
between simulation and experiment.

Measurements of the grain boundary velocity and cur-
vature from the experimental data showed no correlation
between these quantities [42]. This unexpected result was
also reported for α-Fe [44] and SrTiO3 [43]. As illustrated
in Fig. 8, the simulated data also lacks a correlation be-
tween curvature and velocity, consistent with the experiment.
When interpreting this result, it is important to note that the
curvature data is always from the initial (experimental) data,

FIG. 8. Mean velocity as a function of curvature in experiment
and simulations.

so is independent of the simulation. Similarly, the velocity cal-
culation also incorporates information from the initial state, so
this undoubtedly influences the result. It is somewhat surpris-
ing that the isotropic simulation does not show a correlation
between velocity and curvature. When the same method was
used to simulate the evolution of α-Fe with isotropic grain
boundary energies, a strong correlation between velocity and
curvature was found [44]. The one difference is that the grain
shapes in the α-Fe were equiaxed, while the Ni microstructure
contains many nonequiaxed shapes that result from twinning.
Instantiating the simulation with this structure “imprints” this
anisotropy in the microstructure and this is apparently enough
to disrupt any correlation between velocity and curvature that
the simulation might otherwise produce. Therefore, the ab-
sence of a correlation between curvature and velocity in the
anisotropic simulation cannot solely be attributed to the grain
boundary energy anisotropy.

IV. DISCUSSION

The results of the simulations reproduce the decrease in the
average energy of grain boundaries through grain boundary
replacement [45], a key phenomenon found in the experi-
ment. The simulations show that the decrease in the average
energy is associated with a decrease in the fraction of
high-energy grain boundaries and an increase in the frac-
tion of low-energy grain boundaries. A key finding of this
paper- is that this phenomenon emerged simply by intro-
ducing an anisotropic energy distribution. In other words,
there was no need to introduce a new physical mecha-
nism in the model. The simulation is constructed to reduce
the total area. The results suggest that when multiple
possible grain boundary migration paths are possible, on
average, the one that is selected is the one that reduces
the area in such a way that lower-energy grain bound-
aries are increased in area at the expense of higher-energy
boundaries. This process leads to the results in Figs. 5
and 6. The accumulation of low-energy grain boundaries dur-
ing grain growth has been observed in experiment [47] and
in simulations [30,38,53] before, but this work goes further
to provide a direct comparison between experiment and sim-
ulation showing that observed features of the microstructure
emerge by assuming realistic anisotropic energies.

One important difference between the experiment and the
simulation is that the grain boundary replacement process is
more significant in the simulation. For example, the decrease
in the average energy at each time step in the experiment
is < 1% while in the simulation it was of the order of 4%
(see Fig. 5). The most likely source of this difference is the
difference between the energy anisotropy in the simulation
and experiment. The simulation used the BRK energies at 0 K
[54], while the experiment [56] was carried out at 1073 K.
The differences in the energies among boundaries is certainly
smaller at 1073 K, and this is expected to decrease the driving
force for the grain boundary replacement process. Simulations
conducted with scaled energies showed that decreasing the
energy differences slowed the decrease in the average energy,
with the isotropic case presented here being the extreme
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example. However, scaling the energies in a realistic
way proved challenging. The assignment of temperature-
dependent grain boundary properties would make it possible
to simulate the effect of temperature on microstructure
evolution.

When comparing the results of the simulation and ex-
periment, one should keep in mind that the simulation is
instantiated with experimental data, seeding the process with
the ground truth at that time step. Such a simulation is obvi-
ously better situated to reproduce the experiment than starting
from a nonphysical state. While one might guess that this
guarantees the simulation produces a realistic microstructure,
the results show otherwise. As illustrated in Fig. 4, the sim-
ulation with isotropic grain boundary energies evolves the
microstructure in the wrong direction; the relative areas of
twin boundaries decreases with time while the experiment and
anisotropic simulation both increase the relative areas of the
twins. In other words, even though the simulation is provided
with the correct starting point, it evolves in the wrong direc-
tion. The option of instantiating the simulation with a starting
point different from the observed microstructure could also
be informative, but this seems less likely to lead to a better
understanding of the physical process that occurs in real grain
growth.

Grain-by-grain comparisons of microstructure evolution
have been unsuccessful in the past [27,55,78] and the im-
plementation of anisotropic energies has not improved the
situation, as illustrated in Fig. 7. The basic problem is that
as soon as a single critical event (the disappearance of a grain
face for example) is predicted incorrectly, the microstructure
evolves along a different path. The energy distribution used
in the simulation is thought to be a reasonable approximation
of the energies at 0 K, but this approximation deviates from
the true energy distribution at the experimental temperature,
and this might contribute to differences in the evolutions. Even
if the energy was completely accurate, there is evidence that
some aspects of grain boundary migration are not entirely
reproducible in atomistic simulations [79]. In other words,
when grain boundary migration is simulated many times by
molecular dynamics, the outcome is not fully reproducible. If
so, there is no possibility of reproducing the exact sequence of
critical events in microstructure evolution, even if the physical
process in the experiment is fully deterministic.

The observed reduction in grain boundary energy pro-
vides an additional energy dissipation mechanism during
grain growth, as described previously [45]. This is an addi-
tional driving force that influences grain boundary migration
and is absent in simulations with isotropic grain boundary
energies. Previous reports that the grain boundary character
distribution evolves in response to assumed anisotropic en-
ergies [30,38,51,53] and the results presented here that the
assumption of realistic energies leads to simulated results
that reproduce many features of the experiment indicate that
anisotropic grain boundary energies are required input for
realistic simulations. While this seems to add a complexity
to the simulations, realistic, five-parameter, grain boundary
energy functions for the fcc [54] and bcc [80] structures are
available and, at least for the TD simulation, it is not necessary
to alter the energy minimizing procedure.

V. CONCLUSIONS

We have compared the experimentally observed mi-
crostructure evolution of a Ni sample with isotropic and
anisotropic simulations. In the anisotropic simulation, the
grain boundary energies were defined by the BRK en-
ergy function. The assumption of anisotropic grain boundary
energies leads to an increase in the relative areas of
low-energy twin boundaries and a change in the grain
boundary energy distribution that reduces the average grain
boundary energy. These changes result from the anisotropic
grain boundary energy, without any changes in the energy
minimizing algorithm, and do not occur when isotropic
energies are assumed. The results indicate that realistic sim-
ulations of grain growth in polycrystals require anisotropic
grain boundary energies that approximate those in the real
material.

A version of the code developed for this study is available
at Github [81]. And, the data used for this paper are available
online [82].
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APPENDIX: EULER ANGLES AND NORMAL
VECTOR TO PQ REPRESENTATION

Matrices P and Q are rotation matrices from the frame
of grain i and j to a reference frame where the normal of
the boundary plane is aligned with the x axis, respectively.
Hence,

(1) the first rows of P and Q represent the normal bound-
ary plane in the frame aligned with the lattice of grain i, and
the lattice of grain j, respectively;

(2) the rotation matrix from the lattice of grain j to the
lattice of grain i, i.e., &g = gig

T
j , is equal to PT Q.

Given a boundary plane normal n represented in the sample
frame from triangulation, the first row of P is g1n. Since P
is a rotation matrix, all its rows should be perpendicular to
each other, hence the second row of P can be any normal-
ized vector perpendicular to the first row. The third row is
perpendicular to rows 1 and 2, i.e., the cross product of row
1 and row 2. Finally, Q can be computed using the equality
of &g = PT Q. Note that the second row of matrix P is not
unique, hence P and Q are not unique, but any P and Q that
satisfies conditions 1 and 2 will result in the same energy
value.
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