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A B S T R A C T   

We present an unsupervised heuristic-based batched dynamic algorithm for pixel-wise image sampling in a 
variety of scanned imaging modalities. Our algorithm offers improved performance over static Sobol sampling at 
a low computational cost. We evaluate the algorithm using three datasets to highlight potential savings in both 
two and three dimensional characterization contexts. Significantly, the implementation speed lends the approach 
runtime compatibility with electron microscopy. Reconstructed grain shape distributions for the sampled data 
sets are shown to be close to those of the original microstructures.   

1. Introduction 

Electron backscatter diffraction (EBSD) performed in a scanning 
electron microscope (SEM) offers a powerful and ubiquitous modality 
for the analysis of the microstructure of crystalline samples, generating 
rich and quantitative orientation data [1]. Chiefly, EBSD can probe a 
large mm-scale (≤ 106 μm2) field of view at a resolution of 40–100 nm, 
well below common grain size ranges, allowing for grain-resolved data 
acquisition [2]. The EBSD modality makes use of the standard line 
scanning approach made available by SEM manufacturers; the diffrac-
tion patterns are acquired one line at a time, with user-defined step size, 
resulting in discrete data sets on a 2-D square or hexagonal grid of 
sampling points. Most SEMs, however, offer external scan controls, 
which enable the user to control the beam directly to create alternative 
sampling schemes. In this paper, we explore an unsupervised dynamic 
sampling scheme that can generate the same orientation data as the 
standard EBSD technique, but with a significantly reduced number of 
sampling points; our approach is not limited to EBSD and can be applied 
to any characterization technique that allows for point-wise sampling of 
a region of interest. 

Previous research has leveraged the coarse structuring of EBSD data 
for data acquisition speed and accuracy; for instance, non-local pattern 
averaging and reindexing seeks to increase indexing noise-robustness by 
exploiting the spatial correlation of Kikuchi patterns through nonlocal 

averaging during postprocessing [3]. Rapid EBSD is another approach 
that relies on forescatter electron imaging to segment one serial section 
of the microstructure for static sparse EBSD sampling [4]. Other efforts, 
such as the “supervised learning approach for dynamic sampling” 
(SLADS), implement a supervised learning approach for the pixel-wise 
dynamic sampling of a region of interest (ROI); this is applicable to 
general image sampling problems, including EBSD applications [5]. 
SLADS trains a regression model to predict the utility of the next sample 
pixel based on a number of calculated features of the local neighborhood 
of already measured pixels; the pixels that are chosen for acquisition are 
determined by maximizing the reduction of an error metric, the “ex-
pected reduction in distortion” or ERD, i.e., one attempts to select as the 
next sample, the pixel that will provide the maximum amount of in-
formation. The core model trained to accomplish this task was originally 
ordinary least squares regression, but neural network models have been 
subsequently employed with improved accuracy and similar run-time 
per pixel choice [6]. To our knowledge, apart from the SLADS related 
algorithms, no other immediately relevant work exists for pixel-wise 
dynamic sampling. SLADS’ offline training approach requires data that 
is similar, including identical ROI dimensions, to the expected input for 
dynamic sampling. The work presented here is an unsupervised dynamic 
sampling (UDS) method, with no need for offline training. 
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2. Material and methods 

2.1. Motivation 

This section outlines a method by which 2D images may be 
dynamically sampled and then infilled. The main motivation in design 
and implementation choices was runtime, to permit usage in electron 
microscopy applications. The average time needed to choose measure-
ments should be faster than the typical electron beam dwell times; 
however, this is not strictly required to achieve an advantage over a full 
grid scan-line-based raster. To make a dynamic pixel-wise sampling al-
gorithm, measurements acquired as the sampling progresses should be 
used to inform subsequent measurement choices. We have pursued a 
different approach than the SLADS method which selects samples by 
maximal expected reduction in distortion (ERD). The present work relies 
on a paradigm of scoring potential measurements by a product of the 
distance to the nearest measurement and the variance of the nearest K 
measurements. This heuristic-based viewpoint removes the need to train 
a model, and accelerates sampling dramatically. 

2.2. Scoring and selection 

To filter candidate measurements, a function FILTER described in 
pseudo-code in algorithm 1 is defined. FILTER takes a set of pixels and 
returns a set of winning candidates for measurement. It uses a value 
function V(p) to determine this winning set. This value function V(p) of a 
pixel p is defined as the product of its minimum distance to a measured 
neighbor and the standard deviation of all K neighbor values. The value 
V(p) of a measured pixel p is arbitrarily low, as no pixel measurement 
will be made twice. The window function WINDOW(p) facilitates non- 
maximal suppression by returning a set of nearby pixels, within a 
square window of size W, excluding the pixel p itself. In this approach, 

pixels far from their closest measured neighbor, and possessing a local 
neighborhood of measured pixels with high variance are the most 
favorable measurements. 

In algorithm 2, SAMPLE takes in an underlying image, an initial 
sampling SOBOL, a stopping fraction STOP, and a filtering function 
FILTER. At the start of data acquisition, no pixels have been observed, so 
the set of measured pixels M is empty, and the set U holds all pixels in the 
image. Firstly, a Sobol sequence, one possible low discrepancy quasi- 
random sequence, is used to draw an initial exploratory sampling 
[7,8]. This choice is more favorable than fully random sampling due to 

Table 1 
Average runtime in μs (10 trials) across resolutions for random images.  

Implementation Image resolution 

128 × 128 256 × 256 512 × 512 1024 × 1024 2048 × 2048 

EDT GPU 8.58 ± 0.13 3.96 ± 0.06 2.42 ± 0.03 1.82 ± 0.02 1.72 ± 0.03 
EDT CPU 11.24 ± 0.26 6.62 ± 0.09 5.33 ± 0.18 5.83 ± 0.21 8.75 ± 0.38 
KeOps GPU 0.94 ± 0.02 0.60 ± 0.04 0.56 ± 0.01 1.90 ± 0.01 7.49 ± 0.09  

Fig. 1. For a candidate acceptance factors of (a) 0.01 and (b) 0.1 the resultant sampling masks for 10%, 20%, and 40% as is shown.  

Fig. 2. Direct comparison of the PSNR for reconstruction of the same example 
micrograph dubbed “microstructure” in [6]. 
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lower collision rates. These initial measurements are removed from the 
set of unmeasured pixels U and joined to the set of measured pixels M. 
Thereafter, the function FILTER continues to select pixels for measure-
ment until a cutoff fraction STOP of the image is reached. 

Algorithm 1. Scoring Function FILTER().   

Algorithm 2. Sampling routine SAMPLE().   

2.3. Implementation 

2.3.1. Euclidean distance transform implementation 
The sampling algorithm is built upon PyTorch, a versatile machine 

learning library known for its extensive tensor operations on both GPU 
and CPU, including just-in-time compilation, and for its user-friendly 

interface and ease of installation [9]. One of the primary motivations 
for opting for PyTorch is its straightforward installation process, which 
typically requires just a few commands. For candidate scoring, our 
implementations assume a single-channel image or an image that can be 
mapped to a single channel. In cases where multichannel pixel values 
are involved, such as orientations in EBSD, these are filled in using their 
nearest measured values. The source code is available under a 3-clause 

BSD license, consistent with that of PyTorch at https://github.com/Zach 
aryVarley/DynamicSampling. 

The first component of the score in the dynamic sampling strategy we 
propose is the Euclidean distance to the nearest measured point. While it 
is possible to employ data structures like k-dimensional trees (k-d trees) 

optimized for nearest neighbor searches in low dimensions, a more 
efficient alternative exists that exploits the discretized nature of the 
microscope grid. Crucially, our scoring mechanism doesn’t necessitate 
identifying which specific measurement is the closest; we merely need 
the distance to the nearest measurement. Leveraging this insight, we 
utilize the Euclidean distance transformation (EDT). This approach 
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allows us to calculate the distance to the nearest measured point for all 
unmeasured points in linear time, O(N) according to the number of 
image pixels, which significantly enhances the algorithm’s efficiency. 
The repository “FastGeodis: Fast Generalised Geodesic Distance Trans-
form” has convenience Python wrappers with implementations written 
in CUDA and OpenMP [10]. 

For the second part of the score, we use the windowed variance of the 
image, which can be effectively calculated using several Summed Area 
Tables (SATs). Specifically, SATs are computed for a mask of measure-
ment locations, the sampled locations (with zeros where no measure-
ments exist), and the square of the sampled locations (again with zeros 
where no measurements exist). These three SATs can then be used to 
calculate the variance within any window by the difference in the 
expectation and square expectation. Variance values for pixel windows 
that have fewer than three measurements within were set to unity so 
that only the Euclidean distance decides between them. SATs also have 
O(N) construction keeping the overall runtime linear in the number of 
pixels. 

The pixel averaged runtime in μs of this implementation on both the 
CPU and GPU is given in the first two rows of Table 1 below. It shows 
that the runtime per pixel when sampling a random image is approxi-
mately constant on both devices, even as the resolution increases 
dramatically. Further, the average time for most samplings is well below 
a modest 10 μs dwell time, crucial to the adoption in SEMs for electron 
backscatter microscopy. 

2.3.2. KeOps implementation 
While data structures and algorithm complexity analysis can indicate 

scaling, often it is important to benchmark against brute force ap-
proaches. Rapid brute-force k-nearest neighbor queries can be carried 
out with the library KeOps, which seamlessly integrates with PyTorch 
[11]. The KeOps Python bindings (PyKeOps) compile optimized CUDA 
kernels at runtime, and they are ideal for map-reduce type problems. 
Because the nearest k neighbors are returned, the window size for 
variance calculation is not needed, and it is replaced with the number of 
neighbors to consider. Table 1 below shows that the KeOps imple-
mentation permits dynamic sampling with dwell times below under 2 μs 
so long as the resolution does not exceed 1024 × 1024. 

Due to the improved performance, the KeOps implementation is the 
main implementation analyzed in the results. Parameter W is the win-
dow size of the filtering operation for picking local optima in the scores, 
F is the top fraction of local optima to accept, K is the number of 
neighbors used to calculate variance, and S is the Sobol coordinate seed 
size. If S is a fraction, it refers to the fraction of the total number of pixels 
in the image, while if it is an integer above 1 it refers to the exact number 
of pixels (useful notation for small ROIs). Default values around W = 3, 
F = 0.25, K = 3, and S = 0.05 are suitable for most applications. 

2.4. Image completion 

From the sampled pixels in the image, each unmeasured pixel is 
infilled as either the inverse distance weighted or unweighted mean of 
the values of its K-nearest neighbors. As averaging distinct crystalline 
orientations at grain boundaries falsely produces smoothed boundaries, 
a single nearest neighbor imputation was utilized for EBSD data. 

2.5. Test datasets 

We chose three test datasets from scanned image acquisition tech-
niques, which conventionally raster across the ROI without sampling. By 
sampling an entire dataset, we want to show how image complexity can 
inform the ideal sampling time-accuracy trade-off. 

The first test dataset is the MIDAS dataset provided by the Air Force 
Research Laboratories’ Materials Directorate [12]. It consists of 900 
consecutive slices of EBSD, optical micrographs, and backscatter elec-
tron (BSE) micrographs from an IN625 Ni-based superalloy sample. Data 

acquisition required 40 successive days and generated 3 terabytes, 
originally motivating the development of a novel dynamic sampling 
approach to EBSD. The EBSD data was indexed using dictionary index-
ing in post-processing [13]. 

The second dataset is a compilation of 961 secondary electron (SE) 
micrographs of ultra-high carbon steel (UHCS) [14]. The primary micro- 
constituents were spheroidite, carbide networks, and pearlite. All mi-
crographs were provided at 645 × 484 pixels, after removing 38-pixel 
tall SEM banners at the bottom of each micrograph. The third test 
dataset is 230 images of the nodal heart cells from a Sprague-Dawley rat 
acquired via confocal laser scanning microscopy (CLSM) [15]. All im-
ages were of size 2425 × 2280 pixels, and they were resized to 605 ×
564 pixels with bilinear interpolation before synthetic sampling 
experiments. 

3. Calculation 

3.1. Performance evaluation 

For orientation data, the disorientation angle between predicted and 
ground truth crystalline orientations was used to examine imputation 
fidelity. For grayscale micrographs, the reconstruction peak signal-to- 
noise ratio (PSNR) in dB between a ground truth image and its pre-
dicted reconstruction is used to evaluate the quality of the reconstructed 
images. This metric is defined in eq. (1) between images A and B in terms 
of their mean squared error (MSE) and the maximum possible pixel 
value (MAX): 

PSNR(A,B) = 10⋅log10

(
MAX2

MSE(A,B)

)

= 20⋅log10MAX − 10⋅log10MSE(A,B)
(1)  

3.2. Image complexity 

Several metrics have been developed to evaluate the complexity of 
images, which can inform the difficulty of their samplings and imputa-
tions. In this work, the complexity measure Q is compared with image 
histogram entropy [16]. Q is a function of the mean 2 × 2 windowed 
variance, V, and the image down-scaling factor S, as given in eq. (2). In 
eq. (3), s and v are the logarithm (Q is invariant of base choice) of S and V 
respectively. 

Q = 1
smax − smin

∫ smax

smin

[
1 − 1

4

(dv
ds

)2
]

+

ds (2)  

dv
ds = S

V
dV
dS

(3) 

For this implementation of Q, all images were rescaled with bilinear 
interpolation to have their shortest length set to 512 pixels, and the 
images were further incrementally down-scaled by factors of 1̅

2̅4√ down to 
8 pixels, so that every fourth rescaling corresponded to a halving: 512, 
431, 362, 304, 256…8. 

The image entropy based on the pixel intensity histogram is defined 
as follows: 

H(X) = −
∑

x∈X
p(x) logp(x) (4)  

where X contains the allowed intensity values in the image. All calcu-
lations used 256 grayscale levels. Both measures of image complexity 
are compared as metrics to gauge sampling and imputation difficulty. 

3.3. Microstructure comparison 

In order to test any sampling method a metric for comparing mi-
crostructures must be established, and we have selected H, the Hellinger 
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metric [17]. For two discrete probability distributions P and Q, the 
Hellinger distance can also be defined in terms of the Bhattacharyya 
similarity measure, β(P,Q) as is given by Eq. 5 and Eq. 6: 

β(P,Q) =
∑N

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
P(i)Q(i)

√
(5)  

H(P,Q) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − β(P,Q)

√
(6) 

This distance has been identified as suitable for comparing 
microstructure-derived probability distributions such as feature vol-
umes and the affine moment invariant Ω3, describing both grain size and 
shape respectively [18,19]. 

Fig. 3. (a) binary map indicating sampling locations (b) binary map indicating disorientation angle over 2◦ between (c) ground truth (d) nearest neighbor imputed 
orientation map (Oh IPF coloring). 

Fig. 4. (left) each row first contains the infilled IPF-Z coloring and sampling locations of the MIDAS dataset (right) the ground truth IPF-Z coloring’s and the legend.  
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4. Results and discussion 

4.1. Example samplings across datasets 

4.1.1. SLADS comparison 
While SLADS-Net is a supervised approach which can leverage pat-

terns learned prior to sampling, it is useful to see where UDS stands in 
comparison. Further, a pretrained SLADS-Net model was proposed and 
tested in the original publication. We took the example microstructure 
image of size 256 × 256 from their publication and ran UDS on the same 
image. User parameters were K = 4, W = 3, S = 0.05, and F = 0.1 or F =
0.01. At most the runtime with KeOps on the GPU was 0.2 s for 40% 
sampling, or around 7.6 μs compute time averaged per pixel. This is 
approximately 1000 times faster than pretrained SLADS-Net. This run-
time improvement could be the difference between method applicability 
and non-applicability in a variety of characterization contexts. Fig. 1 
shows the sampling locations selected using UDS for F = 0.1 and F =
0.01. Further the resulting PSNR values are plotted for UDS with F =
0.01 against the SLADS-Net approach in 2. The sampling locations of 
UDS appear visually comparable to those of SLADS-Net when F = 0.01, 
but they are more clumped at borders with F = 0.1. Both random and 
Sobol seeding were used with UDS so that we know the improvement is 
not due to comparing UDS with Sobol seeding to SLADS-Net with 
random or uniform seeding. Surprisingly, there appears to be an accu-
racy improvement of UDS over SLADS-Net despite the latter being a 
supervised approach pretrained on images with a similar appearance. 
(See Fig. 2.) 

4.1.2. MIDAS example slice 
The performance of dynamic sampling is examined for an example 

EBSD serial section of the MIDAS dataset. This task represents the best- 
case scenario, as compared to the subsequent non-EBSD examples. Due 
to additional pixel-wise indexing costs, EBSD permits greater latitude in 
what constitutes a viable sampling dwell time as compared to BSE or 
CLSM. Converting the 626 × 610 inverse pole figure (IPF) color map to 
grayscale permitted dynamic sampling. This is not an injective mapping 
from orientations, although collision (two adjacent grains sharing 
indistinguishably-close grayscale values) did not occur in the entire 
image. Orientation values were imputed using the nearest measure-
ments during post-processing. The sampling was simulated offline, with 
the ground truth orientation data as the source for pixel values. The user 
parameters set were W = 3, F = 0.5, K = 3, and S = 8192. Fig. 3 shows 
the result of the dynamic sampling after 33% of the pixels were sampled. 
For such coarse piece-wise constant images, dynamic sampling densely 
measures boundaries as shown in (a), and the errors in (b) are found 
mostly along grain boundaries. At 1 in 3 pixels sampled, the IPF maps of 
the ground truth and imputed orientation values in (c,d) are visually 

indistinguishable. For this task, UDS required an average of 2.1 μs wall- 
time per pixel to choose each measurement. These measurements were 
selected with an average batch size of 10,000 pixels, yielding a mean 
batch time of approximately 21 ms. 

4.1.3. MIDAS volume 
To further demonstrate the capabilities of UDS beyond application to 

2D EBSD maps, UDS was applied to the entire MIDAS dataset volume. 
The dataset was trimmed to exclude pixels which only had BSE data, and 
to exclude incomplete slices. While the principles behind UDS can be 
extended to use 3D coordinates, we decided to apply UDS slice-by-slice 
because there is not a clear way to known the transformation which 
brings the coordinates from the previous slice into the reference frame of 
the next slice. In other words, running the dynamic sampling algorithm 
on a volume successfully registered with the complete dataset would 
misrepresent the current capabilities of UDS. For this simulated sam-
pling, user parameters set were W = 3, F = 0.25, K = 4, and S = 0.05 
(image fraction). The initial sampling was done with a 2D Sobol 
sequence. The individual EBSD slices were then infilled using nearest 
neighbor imputation. For this example the real component of the 
fundamental zone quaternion was use as the non-unique mapping of 
orientations to grayscale values. This process was also repeated for static 
Random and Sobol sampling. 

Fig. 4 shows the result of sampling to 20%, 30%, 40%, and 50%. The 
chosen locations indicated in the sampling masks demonstrate that UDS 
was able to quickly locate grain boundaries, and focus on exploring 
them. Few measurements were spent in data-lacking periphery regions 
where Kikuchi patterns were still acquired. Using DREAM3D [20], 
grains were segmented based on a misorientation threshold of 10◦ and a 
minimum voxel count of 1000. These grains were then analyzed for their 
Ω3 values and the equivalent sphere diameters (ESD) were calculated. 
Fig. 5 and Fig. 6 show the Hellinger distance between discretized ver-
sions of the Ω3 distributions, and their corresponding empirical cumu-
lative distribution functions (ECDF). Fig. 6 also shows the grain size 
probability plots assuming a log-normal distribution of the ratio of ESD 
to mean ESD. The grain size distributions are essentially the same even 
with static random sampling at 20%. This implies that the grain size 
distributions might be easier to estimate from a sub-sampled volume 
than the Ω3 distributions, although that might not extrapolate to other 
microstructures. 

4.1.4. UHCS dataset 
Despite lacking having more complexity, the already single-channel 

UHCS dataset images were more easily sampled and imputed. Fig. 7 
shows that at a slightly lower final sampling fraction of 25%, the algo-
rithm is better able to reconstruct the example micrograph. Fig. 7 (b) 
shows a majority of the erroneous pixel values are found in missed 

Fig. 5. For uniform binning with 10, 100, and 1000 bins, the Hellinger distances are shown between the Omega3 distributions computed from sampling and the 
corresponding distribution from the original dataset. 
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Fig. 6. Each row contains the (left) observed vs. log-normal quantiles plot and the (right) Omega3 empirical cumulative distribution function (ECDF) for the 
equivalent sphere diameter distributions extracted from the imputed volume. Identical x and y axis plotting ranges are used within columns. 
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micrograph features, one of which is circled in red. Upon close visual 
inspection, the rest of the error can be observed in the slightly blurred 
appearance of the micrograph in Fig. 7 (d). The user parameters were set 
to be W = 3, F = 0.5, K = 3, and S = 8192. Averaged over 100 runs, the 

algorithm runtime was 1.74 μs averaged per pixel. The averaged 
computation time per pixel is comparable to the dwell time used for 
imaging in the SEM. 

Fig. 7. (a) binary map indicating sampling locations (b) raw map of the absolute difference between (c) ground truth and (d) imputed micrograph.  

Fig. 8. (a) binary map indicating sampling locations (b) raw map of the absolute difference between (c) ground truth and (d) imputed micrograph.  
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4.1.5. CLSM dataset 
For the CLSM dataset, the same user parameters were set to be W = 3, 

F = 0.5, K = 3, and S = 8192. Averaged over 100 runs, the algorithm 
runtime was similar at 1.64 μs averaged per pixel. As seen in Fig. 8 this 
micrograph sampling and imputation shows promising visual fidelity 
and a compatible runtime with the instrument at hand. For reference, 
according to its manual, the Zeiss laser scanning microscope (LSM) 5 
Duo used to acquire these micrographs has a dwell time of 1.76 μs on a 
fast scan speed setting of 9, which is used to quickly adjust parameters 
before further imaging. 

4.2. User parameter dependency 

In order to explore the impact of various algorithm settings, a 
parametric study was conducted on an example BSE micrograph from 
the IN625 MIDAS dataset. The following subsections report on the 
importance of each of the user-configurable parameters. 

All UDS sampling methods perform better than a Sobol sequence 
sampling when 3% or more of the images had been observed, as seen in 
Fig. 9(a). Fig. 9(b) shows that the inverse squared distance weighted 
mean infilling is consistently better than unweighted mean infilling 
across all values of K except for a few ranges of percent pixels sampled. 
For this reason, a weighted mean infilling is utilized henceforth. When 

Fig. 9. Percent of pixels sampled up to 50.0% vs. PSNR plotted across K number of nearest neighbors and weighting.  
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comparing Fig. 9 (c) and (d), the number of neighbors K is pivotal to 
sampling performance at both extremes of F and W. However, 
comparing Fig. 9(e) and (f), the initial Sobol seed size has little impact 
on the sampling performance, except at excessive sampling rates above 
40%. 

The impact of window size W appears to be contingent on the value 
of F, and vice-versa. Sufficient rejection of poorly scoring local optima, 
whether by accepting fewer optima or by broadening the optima win-
dow, leads to high PSNR. Comparing Fig. 10 column (a,c,e) with column 
(b,d,f), we see that both acceptance fractions F and W are similar in their 
impact on dynamic sampling performance. Whether the window size is 
3 × 3 or 7 × 7, if F is set sufficiently low as in image (b), the sampling 

performance is identical. 

4.3. Sampling performance vs. image complexity 

To extend these results, the algorithm’s performance was evaluated 
on the other two aforementioned datasets. These images are naturally 
heterogeneous in visual appearance, as they include varied steel mi-
crographs and images from a 3D mouse heart cell scan. After sampling 
all images in the dataset utilizing parameters W = 3, F = 0.3, S = 4096, 
and K = 3, the resulting mean image complexity is plotted in Fig. 11 
using image entropy and Q score previously defined. Each discrete 
heatmap box shows the mean image complexity that led to the 

Fig. 10. Percent of pixels sampled up to 50.0% vs PSNR plotted across several user parameters.  
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corresponding reconstruction PSNR at a given percent of pixels sampled. 
Both image histogram nats in (a) and Q score in (b) indicate that more 
complex images are more difficult to sample and impute. However, nats 
in (a) show a noisier relationship with image complexity, but the 
contrast is maintained across the range of image complexities. 
Complexity score Q is more binary over these two datasets but lacks 
clear outliers at 2–3% sampling and 8–10 PSNR. 

5. Conclusion and summary 

In summary, we have developed a UDS algorithm for 2D images 
which leverages the parallel processing power of the GPU. As this al-
gorithm requires no prior training, it can be utilized for an arbitrarily 
shaped ROI. The current state of the art, pretrained SLADS-Net, operates 
approximately 1000 times slower and produces imputed micrographs 
with slightly lower PSNR than UDS. The provided Python implementa-
tion is easily adoptable and requires minimal to no tuning of default user 

parameters. We have analyzed its performance as a function of two 
different image complexity measures across three different datasets. 
When executed on modest (laptop) hardware, the algorithm imple-
mentation runs faster than respective measurement acquisition times in 
a variety of imaging modalities. By using the closest measured neighbor 
alone, multi-channel data such as orientations can be imputed. For real 
experimental orientation data, measuring 1 in 3 voxels results in visually 
indistinguishable IPF maps. In terms of grain shapes as characterized by 
3-D moment invariants, the reconstructed grains in the sampled case are 
very close to the grain shapes obtained in normal data acquisition. In the 
future, we aim to decrease this required sampling fraction with the 
incorporation of information from previous serial sections and the uti-
lization of less costly modalities to further inform dynamic sampling in 
EBSD. 

For EBSD applications in particular, this work has assumed that 
indexing can be performed in real time as measurements are gathered. 
This may be true with Hough or Radon transformation based 

Fig. 11. Heatmap showing the average image complexity that led to a given PSNR at each percent sampled. Only mean values with more than three contributing 
data-points appear in the heatmap. UHCS and CLSM datasets are combined for both plots. 
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approaches; however, dictionary indexing might not be able to be per-
formed in real time. A large hurdle to turning this slice-by-slice sampling 
into a truly 3D sampling technique is establishing a practical method to 
realign the sample surface to the same grid locations of the previous 
slice. Besides this, there are several other improvements planned for 
UDS. The first planned change for this algorithm is an automatic stop-
ping condition. By periodically comparing the incremental changes in 
micrograph reconstruction as sampling proceeds, a threshold in PSNR or 
mean disorientation angle could be used to determine if sufficient 
sampling has been achieved. Further, electron microscope scan controls 
often allow arbitrary floating point precision in beam control across the 
image plane. By using non-discretized coordinates, reconstruction ac-
curacy may improve sufficiently to justify the associated sampling 
runtime of not caching possible grid queries. Thirdly, an adaptive dwell 
time, where possible, could allow increased sampling speed and recon-
struction accuracy. By briefly, but noisily, checking the center of un-
discovered regions, small image features might be more easily 
discovered. 
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