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Comparison of simulated and measured grain volume changes during grain growth
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The three-dimensional microstructure of Ni, observed after five annealing intervals, was compared to sim-
ulations of grain growth using the threshold dynamics method with the assumption of capillarity as the
only driving force. A grain-by-grain comparison made it possible to identify the sources of differences be-
tween the simulation and experiment. The most significant difference was for grains of the smallest sizes,
which the simulation predicted would lose volume and disappear at a greater rate than observed in the
experiment. The loss of grains created errors in the numbers of neighbors of the remaining grains, and it was
found that errors in the simulated grain volume were correlated to errors in the number of near neighbors. While
anisotropic grain boundary properties likely play a role in the differences, the size dependence of the errors
suggest that it might be necessary to include a size dependence in the model for grain boundary migration
kinetics.
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I. INTRODUCTION

The microstructures of polycrystalline metals and ce-
ramics processed at high temperatures are influenced by
grain growth and this influences structure sensitive materi-
als properties. To better understand grain growth, analytic
theories [1,2], and, more recently, Monte Carlo simu-
lations [3–6], cellular automata models [7,8], molecular
dynamics [9–16], vertex simulations [17,18], phase field
models [19–31], and other approaches [32–35] have been
developed.

Recent studies of three-dimensional (3D) grain growth us-
ing simulations have attempted to quantify and understand
topological evolution [21,36–40], volumetric growth rate [41],
and grain boundary energy evolution in isotropic as well as
anisotropic grain growth [42,43]. There have been relatively
few attempts in the past to compare the results of grain growth
simulations with experiments on a grain-by-grain basis. For
example, in 2003 Demirel et al. [44] validated an anisotropic
grain growth simulation in 2D using GB curvature as a driv-
ing force and it explained 50% of the experimental grain
growth. They also showed that an isotropic simulation with
17% explaining power had very poor matching with experi-
mental evolution. McKenna et al. [45] compared the evolution
of individual grains in a 3D experiment with grains in a
3D isotropic phase field simulation of grain growth in poly-
crystalline β-Ti. Statistical analysis revealed good agreement
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between experiment and simulation for grain growth kinetics.
However, direct comparison of individual grains revealed a
poor match in grain shapes and grain boundary widths be-
cause the simulation was unable to capture local anisotropy in
grain boundary energy and mobility. Another study by Zhang
et al. [46] compared a phase field simulation of grain growth
with 3D experimental data and assigned reduced mobilities
to each grain boundary so the simulation reproduced the
experiments. However, the assigned grain boundary proper-
ties were independent of grain boundary crystallography in
the sense that crystallographically identical boundaries had
to be assigned reduced mobilities that varied by a factor of
nine.

The prior work clearly shows that, unless inconsistent grain
boundary properties are assigned, as in Ref. [46], simulations
of grain growth are poor predictors of real grain growth.
However, the mechanism of how the simulations fail has
not yet been identified and the current paper is aimed at
understanding this issue. We compare the outcomes of 3D
grain growth simulations with the microstructure evolution in
annealed Ni [47,48]. For microstructures containing 600 to
900 grains, we compare the volume changes, changes in the
numbers of near neighbors, and curvatures of grains in the
simulation and experiment. We concentrate on three places
where the simulated microstructures depart from the obser-
vations: the volume changes for the smallest grains, grains
for which the topology (number of neighbors) is simulated
incorrectly, and the grain face curvature. While the latter
two observations might be connected to anisotropic bound-
ary properties, the first is more likely to stem from other
factors.
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To simulate grain growth driven by mean curvature, we
have selected the threshold dynamics (TD) method originally
introduced by Merriman et al. [49,50]. The choice of using TD
to tackle the 3D grain growth problem comes naturally from
its beneficial characteristics. First, we can use experiment im-
ages and/or data directly without additional meshing. Second,
the representation of the interface is implicit, as in the phase
field or level-set methods, so topological changes are tracked
automatically. Third, TD has unconditional stability and high
computational efficiency. Finally, the isotropic formulation of
the model can be easily extended to an anisotropic formula-
tion by replacing the isotropic kernel with anisotropic ones,
assuming different anisotropic surface energy and/or mobility
forms, a feature we are leveraging in our ongoing work.

II. METHODS

A. Threshold dynamics

The TD model assumes that capillarity is the only driving
force for grain boundary motion. In TD, phases can be rep-
resented through the characteristic function (order parameter)
1�i of each phase �i:

1�i =
{

1, if x ∈ �i

0, otherwise. (2.1)

The evolution of the interface network is reflected by the
change of the phase boundary of 1�i . The original TD scheme
from Merriman et al. in the isotropic, two-phase setting is
given as in Algorithm 1 from Ref. [49].

Algorithm 1. MBO.

The convolution kernel K : Rd → R, can be any spher-
ically symmetric kernel and is usually chosen to be the
Gaussian:

Gδt (x) = 1

(4π (δt ))d/2
exp

(
− |x|2

4(δt )

)
. (2.2)

By this choice of kernel, the MBO scheme evolves the
boundary ∂� by mean curvature motion [49] and the phase

boundary velocity is

v(x) = μσκ (x)n̂(x), (2.3)

where κ is the mean curvature, μ is the boundary mobility, n̂
is the boundary unit normal, and σ is the boundary energy.

The time step size δt is a model variable that has no
effect on stability, but should be considered to reach desired
accuracy. In Ref. [51], Esedoḡ Lu and Otto introduced an ex-
tension of the two-phase MBO scheme to a general multiphase
setting, as shown in Algorithm 2.

Algorithm 2. EO.

The main difference between the MBO and the EO
schemes is that in the EO scheme, the new kernel Ki, j

δt is des-
ignated for the boundary between �i and � j . The new kernel
in the EO scheme is constructed to account for nonconstant σ

and μ between two phases. As mentioned in the Introduction,
σ and μ play far more complex roles in grain growth than
being constant. They are affected by both the grain boundary
normal and misorientation between neighboring grains. Incor-
porating the anisotropic surface energy and mobility into Ki, j

δt
yield an anisotropic grain growth formulation.

In this paper, we focus on multiphase isotropic simulations.
We use Algorithm 2 and take the same form as in Eq. (2.2)
for the kernel Ki, j

δt . In the grain growth simulations performed
in this paper, Algorithm 2 makes direct use of the observed

microstructures as the input by assigning one characteristic
function 1�i to each grain �i, and evolves the grain bound-
ary network by first a convolution/diffusion step and then a
threshold/sharpening step. The developed code for this study
is available online at Ref. [52].

B. Model validation

To validate the isotropic TD model, we compare the results
of the model to the expectations from isotropic grain growth
theory. For example, for normal isotropic grain growth, the
resulting distribution of grain sizes is expected to be self-
similar [53,54]. The grain size distributions of the simulated
microstructures at different anneal states are plotted in Fig. 1.
The number of grains in each simulated anneal state from
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FIG. 1. Grain-size distributions of simulations at different an-
nealing states.

anneal state 1 to anneal state 5 are 643, 666, 775, 715, and
606, respectively. The five curves from different time steps
overlap, with some small fluctuations that result from the
limited number of grains. Therefore, we conclude that the
simulation produces self-similar grain size distributions once
the timescale is considered.

Burke and Turnbull [53] found a linear relation between
time and average grain size to the power n, where 2 � n � 4,
using an isotropic curvature-driven model for both 2D and
3D systems. The most commonly reported exponent for grain
growth is n = 2. In Fig. 2, the difference between the second
power of average grain size 〈R〉2 and initial average grain size
〈R0〉2 of a simulation are plotted as a function of iteration
step. The iteration steps can be interpreted as normalized time

FIG. 2. 〈R〉2 − 〈R0〉2 as a function of iteration step. r2 is the R-
squared value from the linear fit of the data.

steps. The change in the square of the average grain size with
time is well fit to a line, with a correlation coefficient (R2)
equal to 0.99. Throughout this paper, grain size is calculated
as R = ( 3

4π
V )1/3, with V being the volume of the grain in

voxels.
Taken together, Figs. 1 and 2 indicate that the grain growth

model produces results consistent with the classical theory.

C. Experimental data

The 3D simulations described here are instantiated with
observed Ni microstructures and compared to a second ob-
servation of the same sample at a later time. Prior to the
grain growth experiment at 800 ◦C, the high-purity Ni was
annealed at 950 ◦C for 6 hours [47], which led to a completely
recrystallized microstructure. The x-ray data showed that the
orientation spread within the grains was less than 0.1◦. With
this spread, the geometrically necessary dislocation density
is less than 2.5 × 1011/m2. The estimated driving force for
boundary migration from dislocations (the product of the
dislocation energy per length and the dislocation density) is
therefore on the order of 1 kJ/m3. The capillary driving force
provided by 20 ×10−6 m grains is about 100 times larger. The
sample was measured at six instances in time using near-field
high energy x-ray diffraction microscopy [47,55] and was
used to reconstruct the shapes and orientations of the grains
within six 3D volumes [56,57]. Between each measurement,
the sample was annealed for ≈30 min at 800 ◦C. The details
of the data acquisition and interpretation have been described
in previous publications [47,56,57]. For this paper, we seg-
mented the grains and represented the microstructures as a
set of discrete voxels using DREAM.3D [58] as described in
Ref. [48]. The Ni microstructure has an abundance of twin
boundaries that have a significantly lower energy than other
Ni grain boundaries [59,60]. Obviously, such features cannot
be reproduced by a simulation with isotropic boundaries prop-
erties. To create a microstructure with a narrower range of
grain boundary energies that more closely approximates the
isotropic grain growth model, all neighboring grains with the
twin misorientation were merged to form a single grain using
the merge twins function in DREAM.3D [58]. After the twins
were merged, the microstructures contained 600 to 900 grains
made up of voxels with dimensions of 2.3 × 2.3 × 4.0 μm. In
the initial state, there was an average of 7582 voxels per grain.

D. Data processing for comparison

1. Establishing the common volume

The cylindrical Ni sample in the initial state is illustrated in
Fig. 3(a), where the 920 grains are colored by orientation. The
experimental volume was cylinder shaped with free surfaces
around the periphery and orientations were sampled on a fixed
grid. These geometric features determined the geometry of
the simulation. The simulations volume is as a rectangular
parallalepiped, as illustrated by the frame in Fig. 3(a), where
the transparent voxels do not belong to any grain. The simula-
tion directly uses the orientation map to create characteristic
functions 1�i as in Eq. (2.1), and the phases �0

i are the input
for iterations as in Algorithm 2. Thus, the computational grid
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FIG. 3. (a) Experimentally measured microstructure of the initial
anneal state of 920 grains, (b) experimental final state with 756
grains, and (c) simulated microstructure of the final anneal state with
642 grains.

of the simulation has the same size of the input microstructure,
for example, 369 × 372 × 62 for anneal state 0.

Because of the cylindrical shape of the sample, a special
procedure must be used to exclude the space that is inside of
the computational grid but outside of the actual sample [trans-
parent region in Fig. 3(a)]. The easiest way to accomplish this
is to manipulate the characteristic function of the transparent
region �0. By setting 1�0 = 0, if x ∈ �0 the contribution to
ψi (i = 1, 2, . . . 920) from �0 is always 0 in the convolution
step in Algorithm 2, and the boundary between �0 and �i will
not evolve during the iteration. Thus, the volume is preserved
throughout the simulation.

To compare the microstructure in two different time steps,
they must be in the same spatial reference frame and have
the same volume. Because nonidentical fields of view were
imaged at each time step and the sample position was not per-
fectly reproduced, it is necessary to both translate the volume
and crop it vertically to obtain a constant volume in a fixed
frame of reference. We first translated each volume until we
identified the translation with the minimum disorientation be-
tween the two time steps. The larger volume was then cropped
in the vertical direction so both volumes had the same number
of voxels at identical locations.

2. Establishing the timescale

As the simulation proceeds, the average grain size in-
creases with the square root of time, as illustrated in Fig. 2.
To compare with experiment, a criterion is needed to decide
when to stop the simulation at an equivalent time. One was
to use a voxel-by-voxel comparison of the grain identification
(ID) number, counting all voxels that matched and taking the
maximum of this as the point of best agreement. The second
criterion was to determine the average distance that the bound-
aries moved in the simulation and match this with experiment.
The third criterion was to stop the simulation at the time when
it had the closest average grain size as the experiments. To
decide which to use, we compared the number of grains in
the simulated and experimental microstructure. None of the
methods were perfect but the criterion based on the nearest
average grain size led to grain counts in the simulation that
were closest to the experiment.

III. RESULTS

Figure 3(a) shows the experimentally measured mi-
crostructure of the initial anneal state of 920 grains, Fig. 3(b)
the experimental final state microstructure with 756 grains,

FIG. 4. A grain in experimentally measured microstructure of the
(a) initial anneal state, (b) final anneal state, and (c) the correspond-
ing grain in the simulated microstructure of the final state. Grain
faces are colored to make them distinguishable.

and Fig. 3(c) the simulated microstructure of the final anneal
state with 642 grains. The average grain size in Fig. 3(a) is
26.0 μm, in Fig. 3(b) is 26.8 μm. and in Fig. 3(c) is 30.2 μm.
Between the grains that matched, the reconstructed initial
experimental state has an average of 11 faces per grain, and
the final state has 11 faces per grain while the simulation state
has 9.6 faces per grain. Comparing the top surface between
the two, the interfacial network of the simulated grains is
smoother than the experiment. This will be addressed in detail
later. Figure 4 takes a closer look at the faces of a grain for
the initial and final experimental state, Figs 4(a) and 4(b),
and the final simulation state Fig. 4(c). The number of grain
faces changes in the simulation and experiment, but not in
exactly the same way. While there are six anneal states, each
state was used as an initial state to simulate the next one. A
grain that does not contact any of the external surfaces has
been visualized at all states as it evolves from anneal state
0 to anneal State 5 in Fig. 5. This grain shrinks during each
annealing interval in the experiment as well as simulation.

The experimental and simulated changes in grain radius for
the grain visualized in Fig. 5 have been plotted in Fig. 6 as a
function of the anneal states. Starting at a radius of 42.2 μm
for both, the experimental plot shows the grain grew until an2
and then shrank to 40.6 μm. While the simulated grain also
shrank in the final state (40 μm), it did not follow the same
size trajectory. For example, while both started from the same
radius, the simulated grain shrank between an0-an1 but in the
experiment it grew. Ultimately though, the grain shrank and
the simulation could captured that.

Figure 7 depicts the grain size distribution of observed and
simulated microstructures for all the anneal states. While the
simulation is mostly coincident with the actual grain size dis-
tribution, there are significant differences for the smaller grain
sizes. The distribution shows that the simulated microstructure

FIG. 5. Visualization of a bulk grain across all anneal states in
experiment and comparison with simulation of the same grain. The
top row and bottom row show experimental and simulation grains
starting from An0 to An5, respectively.
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FIG. 6. The actual and simulated evolution of the grain size of
the bulk grain in Fig. 5 at every anneal state.

has a significantly higher fraction (0.11%) of smaller grains
(<5 μm) than in experiment (0.01%). In other words, simula-
tion is shrinking more grains than shrink in the experiment.

Figure 8 plots the histogram of fractional change in volume
for observed and simulated grains. The data includes all grains
that matched from the initial anneal state to the final anneal
state as well as the grains that were smaller than the average
grain size that did not find a match and were assumed to have
disappeared (fractional volume change of −1). It is seen that
approximately the same fraction of grains have shrunk to zero
in both experiment and simulation (10%). In both simulation
and experiment, the maximum of the distribution is for grains
that have small volume changes near zero. Also, there are
more grains in the experiment that increase in size as shown
by the right tail of the distribution.

To understand Fig. 8 in more detail, we consider Fig. 9,
which plots the fractional change in volume as a function of

FIG. 7. The grain size distribution of observed and simulated
microstructures for all anneal states.

FIG. 8. Histogram of fractional change in volume for final state
experimental and simulated grains. The markers show the bin centers
and the lines connect bin centers to guide the eye.

grain radius for both simulation and experiment. The sim-
ulation tends to shrink the small grains. Note that nearly
all of the simulated grains in the size range of 5 to 25 μm
have negative volume changes while grains in the same size
range in the experiment are equally probable to have positive
or negative volume changes. Counterintuitively, most of the
largest positive fractional volume changes occur for the small
grains in the experiment. When correlated with Fig. 8, it
means that the lower extreme of fractional change in volume
(<-0.6) corresponds to grain sizes less than 35 μm. It also
shows that in both experiment and simulation, as the grain size
gets lager, the magnitude of fractional change is smaller. This
suggested that the mismatch at the right tail of the distribution
in Fig. 8 is mainly caused by incorrect volume predictions

FIG. 9. The fractional change in volume versus grain size in
experimental and simulated grains.

033402-5



XIAOYAO PENG et al. PHYSICAL REVIEW MATERIALS 6, 033402 (2022)

FIG. 10. Simulated volume change as a function of observed
volume change in experiment for all matched grains.

for small grains. Notice that the grains that disappeared in
the simulation are clustered in the small grain size region,
whereas grains of the same sizes exhibit significant growth in
the experiment. Based on Fig. 9, we conclude that most of the
differences between the volume changes in Fig. 8 arise from
errors in the volume predictions for the small grains.

Figure 10 compares simulated and observed volume
changes in the same grains. The observed volume changes
have been classified into discrete bins and the markers in the
plot are the means of the values in each bin and the bars are the
standard deviation. The negative extreme of the plot is much
flatter; this is because grains that disappeared are not included.
Therefore, the sum of the increased and decreased volumes is
not zero. In other words, the volume is not conserved because
of the overprediction of grain shrinkage. The plot shows a pos-
itive direct relationship between the experimentally observed
and the simulated change in volume. When the experimental
volume change is greater than zero, the simulated volume
change also is positive, and we see a positive monotonic
trend between the two. The slope of the trend is lower than
the ideal 45◦ line, meaning the simulation underpredicts the
grain growth. It was found that for all matched grains between
each anneal state pair, considered together, the simulation has
correctly predicted the sign of volume change 62% of the
time.

Figure 11 shows a comparison between the unsigned trian-
gle curvatures from the grain boundary mesh for all matched
grain boundaries of the experiment and simulation. The y
axis displays the fraction of triangles in the simulation and
experiment. The lower curvatures have been overpredicted by
the simulation while it underpredicts higher values of curva-
ture. In other words, the simulation produces smaller grain
boundary curvatures. Experimental curvatures have a higher
fraction of triangles with curvatures greater than 0.008 μm−1

while simulation triangles have a higher fraction of lower

FIG. 11. Absolute triangle curvatures for all boundaries in the
simulation and final experiment state.

curvature values (14%) than experiment (12%). This quan-
tifies the visual impression one gets from comparing the
experimental and simulated microstructures, that the simu-
lated microstructures have smoother interfaces.

One source of the volume error might be errors in the
predicted topology of the grains and to test this hypothesis, we
compare the volume prediction error (VPE) with the topolog-
ical error (TE) for individual grains. VPE and TE are defined
as follows:


Ns = Nsim − Nexp(initial), (3.1)


Ne = Nexp(final) − Nexp(initial), (3.2)

TE = 
Ns − 
Ne, (3.3)

VPE = Vs − Ve

Ve
, (3.4)

where Nexp(initial) is the number of neighbors of a grain in the
initial experiment state, Nexp(final) is the number of neighbors
of the same grain in the final experiment state, and Nsim is the
number of neighbors of the same grain in the final simulation
state. VPE is the fractional difference in volume predicted by
simulation of final anneal state (Vs) and experimental final
state (Ve). TE is the difference in 
N for each grain between
simulation and experiment. In other words, TE is the error in
predicting topological evolution by the simulation. Figure 12
plots the VPE as a function of TE. A low VPE indicates a
small difference between the final volume predicted and the
actual final volume of the grain. A high TE value means there
is a large error in predicting the topological evolution of the
grains. This plot is approximately linear and monotonically
increasing. When TE is close to zero, VPE is also close to
zero. As TE increases, the error in the predicted volume also
increases, in both positive and negative directions.

IV. DISCUSSION

Based on Figs. 8 and 9, one of the key features of the
simulation that differ from the experiment is the behavior of
the smallest grains. As an example, during the simulation of

033402-6



COMPARISON OF SIMULATED AND MEASURED GRAIN … PHYSICAL REVIEW MATERIALS 6, 033402 (2022)

FIG. 12. The volume prediction error (VPE) as a function of
topological error (TE). VPE is the fractional difference in predicted
and observed grain volume. TE is the difference in grain face evolu-
tion between simulation and experiment.

growth during one annealing period, 101 grains disappeared.
These grains are illustrated in Fig. 13, illustrating that they
are relatively small and positioned randomly in the volume.
Of these grains, 57 (47%) also disappeared in the experiment.
Of the remaining grains, about 2/3 of them got smaller or
did not change volume. One supposes that eventually these
grains will also disappear. However, the remaining grains (1/5
of the total) increased in volume, directly contrary to the
simulations. Whether a grain grows or not has more to do with
its environment than its size [48,61] and it has been shown that
small grains can form and grow, provided they decrease the
total interfacial energy [62]. However, even the grains under-
going a negative volume change in the experiment appear to

FIG. 13. Visualization of the 101 grains in An4 that shrunk to
zero in An5 in simulation. These grains are colored by IPF coloring
and are opaque while the rest of the microstructure is transparent.

shrink more slowly than in the simulation. This suggests the
possibility of some physical process that retards the migration
of boundaries around the smallest grains. It does not seem
likely that the decreased rate of shrinkage could be a result of
the grain boundary energy anisotropy, which is not accounted
for here. While a spectrum of grain boundary energies would
alter the driving force and grain boundary migration rate, it
is just as likely to increase the rate as decrease the rate, and
the grain boundary energy is not expected to change with the
grain size. One possibility is that as the grain boundary area
decreases, the local concentration of segregated impurities
[63] or boundary defects increases [64] and this influences
migration kinetics. However, this possibility cannot be tested
with the available data. It was noted that the grain bound-
aries had, on average, lower curvatures than the experimental
data set. This observation cannot explain the difference in the
behavior of the shrinking grains, as reduced curvature should
reduce the rate of grain volume change. Because the energies
are anisotropic in the experiment, the curvature is not expected
to be uniform as it is in the simulations. The variations in local
curvature in the experiment may be a result of grain boundary
energy anisotropy or simply are an artifact of the experiment’s
finite spatial resolution. In any case, it is difficult to predict
how this would influence grain boundary migration; for the
case of anisotropic grain boundary energy, the migration rate
depends on the grain boundary stiffness and the anisotropy of
the stiffness is greater than that of the grain boundary energy
[65]. However, grain boundary properties are not expected to
change with size, so this does not explain the difference in the
behavior of the small grains.

It was also found that errors in the volume change of each
grain are tied to errors in topological changes. In other words,
if a grain’s change in its number of neighbors is the same in the
simulation and experiment, the volume change is more accu-
rately predicted. This is not too surprising. Once the simulated
and experimental grain have a different number of near neigh-
bors, the sizes of the grain faces and grain face curvatures will
be different, causing them to evolve differently. The greater
the difference in the number of neighbors, the larger the error
in the volume change. The source of these errors is difficult
to identify, but one is certainly disappearance of more grains
in the simulation. Assuming the grains that disappear have
a minimum of four neighbors, each grain that disappears in
the simulation but not the experiment changes the number of
neighbors of at least four grains. For the example discussed
above, where 64 more grains disappear in the simulation than
in the experiment, this changes the number of neighbors of as
many as 256 grains.

There have been a number of recent grain growth simula-
tions that assume anisotropic grain boundary energies [42,66–
68]. It is envisioned that if realistic models for the grain
boundary energy anisotropy are used, they will better pre-
dict the evolution of the microstructure. However, the current
results suggest that it might be necessary to include a size-
dependent migration model because grains that disappear too
quickly change the environments of other grains and this leads
to errors in the prediction of volume changes. In future work,
the isotropic TD scheme used here will be extended to include
anisotropic surface energy and mobility data from experi-
ments [69]. This platform will make it possible to explore
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different forms of the anisotropic kernel that will best model
the anisotropic grain growth in Ni.

V. CONCLUSIONS

Experimentally observed Ni microstructures, at six time
steps, were compared in a grain-by-grain fashion to the re-
sults of isotropic grain growth simulations. This comparison
led to the following conclusions. The simulation predicts
the correct sign of the volume change for only 62% of the
grains. The errors are the most pronounced for the smaller
grains, for which shrinkage is overpredicted and growth is
underpredicted. Improved grain growth models might need to
incorporate migration kinetics influenced by grain size. The
grain boundary curvatures in the simulation are systemati-
cally lower than in the experimental observations. Volume

prediction errors are correlated to errors in predicting topo-
logical changes. When the simulation captures the topological
changes correctly, it can predict the grain volume change
accurately as well.

A version of the code developed for this work is available
at Ref. [52].
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