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a b s t r a c t 

Polycrystalline 𝛼 iron has been used in various applications, yet its microstructure design via grain boundary 

engineering (GBE) is not well established. One limiting factor is that while there are many different grain bound- 

aries in the five-dimensional space of grain boundary types, relatively few of the energies have been determined. 

In this study, a piece-wise continuous grain boundary energy function for 𝛼 iron is constructed to fill the entire 

five-dimensional space of grain boundary types using scaffolding subsets with lower dimensionality. Because 

the energies interpolated from the grain boundary energy function are consistent with the 408 boundaries that 

have been calculated using atomistic simulations, the energy function is then employed to generate a larger set 

of grain boundary energies. Comparisons between the interpolated energies and the measured grain boundary 

population indicate that they are inversely correlated for the high-energy anisotropy misorientations (those for 

which the difference between the maximum and minimum grain boundary energies is greater than 0.4 J/m 

2 ). 

The results suggest that GBE in the 𝛼 iron should consider the high-energy anisotropy misorientations, rather 

than the twinning-related grain boundaries ( Σ3, Σ9, Σ27a, and Σ27b) as in the case of fcc metals. 
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. Introduction 

In a wide range of solid materials, microstructure engineering is used

o enhance the properties of polycrystals [1–3] . The grain boundary

haracter distribution (GBCD), which is the relative areas of different

rain boundary types, influences certain macroscopic properties includ-

ng, corrosion resistance, mechanical strength, and electrical conductiv-

ty [3–9] . Therefore, an important goal in microstructure engineering is

o have a sufficient understanding of the microstructural evolution to

ptimize the GBCD for particular properties [ 2 , 3 , 10 ]. Many efforts have

een made to tailor the properties of polycrystalline body-centered cubic

bcc, 𝛼) iron by grain boundary engineering (GBE) of the GBCDs through

hermo-mechanical processes [11–16] . However, our understanding of

he grain boundary energy distribution (GBED) in the 𝛼 iron, which plays

 significant role in the microstructural evolution, is incomplete. Consid-

ring the size of space defined by the five-macroscopic grain boundary

arameters (three for the grain boundary misorientation and two for
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he plane inclination) [ 4 , 5 ], it is challenging to specify all of the grain

oundary energies. 

The Bulatov-Reed-Kumar (BRK) grain boundary energy function for

ace-centered cubic (fcc) metals [17] is one method to specify the energy

f any grain boundary. The BRK function, which was recently devel-

ped based on a scaffolding of lower-dimensional subsets of low grain

oundary energy in Ni, Al, Au, and Cu [18] , has been successfully used

o interpolate large sets of grain boundary energies in the pure copper

19] and an austenitic steel alloy [20] . The grain boundary energies

nterpolated using the BRK energy function were not only strongly cor-

elated to simulated grain boundary energies, but also inversely corre-

ated to the measured grain boundary population at fixed misorienta-

ions [ 19 , 20 ]. Therefore, it is possible that the same technique can be

sed to create a grain boundary energy function for 𝛼 iron. 

The goal of this paper is to present a BRK-type energy function for

-iron. There are two possible sets of data to fit the function. The first

s a set of measured grain boundary energies (6 × 10 3 boundaries for

iscretization of 10°) for a ferritic steel [14] and the second is a set of

08 grain boundary energies computed by simulation [21] . Because the
d. 
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Fig. 1. Density of the first nearest-neighbor bonds (a) and the distribution of 

surface energy plotted as a function of surface orientation (b). Note that the 

surface energies are calculated from the nearest-neighbor broken bond model 

for bcc metals [24] and the units for energy in the figure are scaled with E 

(100) = 1.00 (energy maximum). 
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t  
easured grain boundary energies were determined from an iron al-

oy, and they inherit experimental error from the energy reconstruction

ethod [ 4 , 22 ], we choose the simulated energies as the basis for 𝛼 iron

rain boundary energy function [21] . Even though the calculated grain

oundary energy data is more sparse, knowledge of the geometry and

opology of the grain boundary energy reduces the number of bound-

ry energy data points that are needed to formulate the grain boundary

unction [ 17 , 23 ]. To test the validity of the grain boundary energy func-

ion, it is compared to measured grain boundary populations, which are

xpected to be inversely correlated to the grain boundary energy [14] .

he remainder of the paper is structured as follows. The concept of grain

oundary energy cusps and maxima are described in Section 2 . The po-

itions of energy cusps and maxima identified from the simulated data

23] are then used to construct the interpolated functions within scaf-

oldings sets. The results of grain boundary energy distribution are dis-

ussed and compared with the 408 energies determined by simulation

n Section 3 . In this section, the energies of grain boundaries obtained

rom the proposed energy function are also compared with the mea-

ured grain boundary population [14] . The conclusions are stated in

ection 4 . The appendix contains supplementary data of grain bound-

ry description and the grain boundary energy function implemented

n MATLAB® program AlphaFeGBE, that can be used to compute the

nergies of arbitrary grain boundaries in the 𝛼 iron. 
c  

2 
. Methodology 

To construct our grain boundary energy function for the 𝛼 iron, we

dopt the procedures and assumptions originally defined by BRK [17] .

pecifically, in the multidimensional space of grain boundary energies,

usps (singularities in the energy as a function of the grain boundary

arameters) become grooves. By selecting the deepest (lowest energy)

rooves from the 408 grain boundaries [21] , it is possible to define

he grain boundary energy function. Those grooves not included are as-

umed to be shallow and not significantly different from the interpolated

nergy. The energy of a grain boundary ( 𝜖) can be estimated by the total

nergy to create two surfaces minus the energy gained when the new

onds are formed; 𝜖 = 𝐸 

1 
( ℎ 1 𝑘 1 𝑙 1 ) 

+ 𝐸 

2 
( ℎ 2 𝑘 2 𝑙 2 ) 

− B 

( 𝐸 1 𝐸 2 ) 
. For an atomically

at crystal surface, the surface energies are associated with the density

f the first nearest-neighbor bonds [24] . While the surface energy can be

irectly determined from the density of the first nearest-neighbor bonds

iven by the ( hkl ) orientation of the surface [24] , the surface energy can

lso be approximated by interpolation between the proximal surfaces

ith known energies at four grooves crisscrossing as shown in Fig. 1 . We

ypothesize that the grain boundary energy function for the 𝛼 iron could

e constructed by the subsets of low grain boundary energy (grooves) in

he five-macroscopic degrees of freedom with a similar scheme to what

ave been implemented for the Bulatov-Reed-Kumar (BRK) grain bound-

ry energy function for fcc metals [17] . Particularly, selections of the im-

ortant energy grooves ( Σ3, Σ5, and Σ11) from the 408 grain boundaries

21] are used to define the closed-form grain boundary energy function

or the 𝛼 iron. By assuming that the local minimum energies at the other

rooves are rather too shallow or similar to the energies in the proximity

f the important grooves, the energy function will be mainly given by

he important grooves. To construct the energy function, three subsets

f high-symmetry grain boundaries with < 100 > , < 110 > , and < 111 > ro-

ation axes are selected as the scaffolding for the interpolation function

or the full five-parameter space. The rotation angle ( 𝜉), the asymmetry

ilt angle ( 𝜂), and the tilt angle ( 𝜙) are specifically used to classify three

ubsets; 1-D, 2-D, and 3-D [17] . As shown in Fig. 2 , the variation of grain

oundary energy in 1D subsets of pure twist ( 𝜉≠0, 𝜂= 0, 𝜙= 0) and sym-

etric tilt ( 𝜉≠0, 𝜂= 0, 𝜙= 1) boundaries with < 100 > , < 110 > , and < 111 >

caffoldings axes are fitted with the Read-Shockley-Wolf (RSW) function

 23 , 25 ]. 

 rsw 
(
, 𝑚𝑖𝑛 , 𝑚𝑎𝑥 , a 

)
= sin 

( 

π
2 

θ − θmin 
θmax − θmin 

) [ 
1 − a log sin ( π

2 
θ − θmin 

θmax − θmin 

] 
(1) 

(2) 

(3) 

(4) 

For each segment [ 𝑚𝑖𝑛 , 𝑚𝑎𝑥 ] , x varies from 0 and 1. While most of

he variations of the grain boundary energy in the 1-D subsets are well

haracterized by the dimensionless shape parameter ( a = 0 . 5 ) [17] [23] ,
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Fig. 2. The energies of 1D subsets of symmetric tilt ( 𝜉≠0, 𝜂= 0, 𝜙= 1) and pure twist ( 𝜉≠0, 𝜂= 0, 𝜙= 0) boundaries with < 100 > , < 110 > , and < 111 > scaffoldings axes, 

that are fitted with the RSW function [25] [23]. There are 32 parameters listed in the plots ( Appendix A ). 

Fig. 3. The energies of 2D subsets of all tilt (symmetric and asymmetric) boundaries, 𝜖tilt hkl ( ξ, η) , with < 100 > , < 110 > , and < 111 > scaffoldings axes. Energies of 

symmetric tilt ( 𝜉≠0, 𝜂= 0) boundaries shown in Fig. 2 . are colored as black circles. Note that the symmetric tilt boundaries, 𝜖
stgb , η= 𝜋∕3 
111 (ξ) , labeled as blue circles in 

Fig. 3 c , are classified as 1-D subset. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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his parameter does not work well for the (111) twist boundaries in

ig. 2 f . Therefore, a 𝑡𝑤𝑖𝑠𝑡 
111 = 0 . 89 is obtained from the curve fit as listed

n Appendix-A . For 2D subsets shown in Fig. 3 , the energies of all tilt

symmetric and asymmetric) boundaries for < 100 > , < 110 > , and < 111 >

re linearly interpolated from 1D subsets and the RSW function [ 23 , 25 ]

s given by Eq. (2) , Eq. (3) , and Eq. (4) , respectively. 

Note that the symmetric tilt boundary with η = 𝜋∕3 , 𝜖stgb , η= 𝜋∕3 111 (ξ) ,
hown in Fig. 3 c are also fitted with the RSW function [ 23 , 25 ] similar
3 
o what has been done for the < 111 > symmetric tilt boundaries (see

ig. 2 c ). Based on this approach, three additional fitting parameters,

 

tilt 
100 , a 

tilt 
110 , a 

tilt 
111 , are included (see Appendix-A ). For 3D subsets, the en-

rgies of mixed grain boundaries with < 100 > and < 110 > rotation axes

re interpolated from 1D, 2D, and the RSW function [ 23 , 25 ] as defined

n Eq. (5) and Eq. (6) respectively. 

(5) 

(6) 
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Fig. 4. The relationship between the simulated energies 

of grain boundaries in 𝛼 Fe and the energies of the same 

boundaries derived from our grain boundary energy func- 

tion (a). These 408 grain boundaries are assigned into four 

distinct groups: the 1D subset of pure twist and symmet- 

ric tilt boundaries (blue diamonds), the 2D subset of asym- 

metric tilt boundaries (red squares), the 3D subset of mixed 

grain boundaries (green triangles), and other types of grain 

boundaries (black circles). The orange, brown, and purple 

circles are symmetric boundaries made up from {5 4 3}{5 

4 3}, {9 2 1}{9 2 1} and {15 3 1}{15 3 1} planes, respec- 

tively. Comparisons of the interpolated and previously sim- 

ulated grain boundary energies (b). The dash line with a 

unit slope indicates that the energies interpolated from the 

grain boundary energy function are strongly correlated with 

the energies calculated by Tschopp et al. [27] . (For interpre- 

tation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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This approach is less effective for the energies of mixed grain bound-

ries with < 111 > , 𝜖mix 
111 ( ξ, η, 𝜙) . The values of 𝜖mix 

111 ( ξ, η, 𝜙) are better

pproximated by a parabolic function: 

𝑚𝑖𝑥 
111 ( 𝜉, η, 𝜙) = 𝜖twist 111 ( ξ) 

+ 

⎛ ⎜ ⎜ ⎝ α𝑚𝑖𝑥 111 
2 𝜙
π

− 

(
α𝑚𝑖𝑥 111 − 1 

)( 

2α𝑚𝑖𝑥 111 
π

) 2 ⎞ ⎟ ⎟ ⎠ 
[
𝜖tilt 111 ( ξ, η) − 𝜖twist 111 ( ξ) 

]
(7) 

The fitting parameters for the 3D subset are a mix 
100 , a 

mix 
110 , and α𝑚𝑖𝑥 111 ,

 

𝑚𝑖𝑥, Σ11 
110 and 𝜀 

𝑚𝑖𝑥,𝑝𝑒𝑎𝑘 

110 (see Appendix-A ). The energies of arbitrary grain

oundaries ( 𝜖) are approximated using a weighted average over the

hree scaffolding subsets (1D, 2D, and 3D): 

= 

[ 

1 + 

∑W hkl ( d ) 𝜖hkl ( ξ, η, 𝜙) 

1 + 

∑W hkl ( d ) 

] 

𝜖RGB (8)

here 𝜖RGB is a high energy of hypothetical random boundary and

 hkl (d) is the weighting function given by: 

 hkl ( d ) = 

( 

1 
f rsw 

(
d , 0 , 𝑑 𝑚𝑎𝑥 

ℎ𝑘𝑙 
, 0 . 5 

) − 1 

) 

W 

0 
hkl (9)

Where hkl is one the three primary rotation axes: < 100 > , < 110 > , and

 111 > . To select only the energy that is only proximal to the arbitrary
4 
oundary, the weighting function considers only the boundary with the

rystallographic distance 𝑑 < 𝑑 𝑚𝑎𝑥 
ℎ𝑘𝑙 

[17] . The fitting parameters for the

ull interpolation in the 5D are 𝑑 𝑚𝑎𝑥 100 , 𝑑 
𝑚𝑎𝑥 
110 , 𝑑 

𝑚𝑎𝑥 
111 , W 

0 
100 , W 

0 
110 , and W 

0 
111 

see Appendix-A ). 

. Results and discussion 

The closed-form grain boundary energy function for 𝛼 Fe contains

0 parameters listed in Table A1 . The simulated and interpolated grain

oundaries are compared in Fig. 4 a. While there are some differences

etween the energies from simulation and the fitted function for the

ighest energy boundaries, there is a clear and strong correlation with

 correlation coefficient of 0.93. Specifically, energies of the pure twist,

ymmetric tilt, and tilt boundaries with < 100 > , < 110 > , and < 111 > axes

re perfectly described by the RSW function [ 23 , 25 ] (also see Fig. 2 and

ig. 3 ). The interpolated energies of the {5 4 3}{5 4 3}, {9 2 1}{9 2 1}

nd {15 3 1}{15 3 1} boundaries differ from the simulated energies

y the most significant fraction ( ∼ 20 %), suggesting that the shape of

he scaffolding subsets or the weighting scheme used in Eq. 8 was not

ffective for predicting the energies of these boundaries. It should be

ointed out that although the root-mean-square error (RMSE) for arbi-

rary boundaries in the 5D space (0.115 J/m 

2 ) is much greater than for

he 1D (0.023 J/m 

2 ), 2D (0.068 J/m 

2 ), and 3D (0.065 J/m 

2 ) subsets, it is
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Table 1 

Average energies and root-mean-square error (RMSE) between the simulated ( 𝜖𝑠𝑖𝑚 ) and interpolated ( 𝜖𝑖𝑛𝑡𝑒𝑟 ) grain boundary 

energies at fixed Σ. 

Σ 𝜃⟨𝑢𝑣𝑤 ⟩ Number of GBs Ave. 𝜖𝑠𝑖𝑚 , J/m 

2 Std. Dev. 𝜖𝑠𝑖𝑚 Ave. 𝜖𝑖𝑛𝑡𝑒𝑟 , J/m 

2 Std. Dev. 𝜖𝑖𝑛𝑡𝑒𝑟 RMSE,J/m 

2 

3 60° < 111 > 40 0.74 0.316 0.75 0.312 0.020 

5 36.87° < 100 > 27 1.16 0.071 1.11 0.037 0.088 

7 38.21° < 111 > 21 1.20 0.060 1.17 0.049 0.040 

9 38.94° < 110 > 29 1.05 0.176 1.03 0.150 0.049 

11 50.48° < 110 > 9 0.99 0.269 0.93 0.215 0.104 

13a 22.62° < 100 > 6 1.15 0.110 1.17 0.146 0.052 

13b 27.8° < 111 > 9 1.17 0.044 1.14 0.017 0.045 

15 48.19° < 210 > 19 1.22 0.064 1.22 0.033 0.065 

17a 28.07° < 100 > 6 1.18 0.085 1.19 0.109 0.039 

17b 61.93° < 221 > 3 0.97 0.309 0.97 0.308 0.007 

19a 26.53° < 110 > 3 1.01 0.294 1.00 0.291 0.018 

19b 46.83° < 111 > 5 1.24 0.161 1.12 0.102 0.133 

21a 21.79° < 111 > 5 1.10 0.042 1.07 0.010 0.047 

21b 44.42° < 211 > 12 1.21 0.062 1.12 0.015 0.109 

23 40.46° < 311 > 3 1.26 0.123 1.12 0.009 0.179 

25a 16.26° < 100 > 4 1.04 0.146 1.09 0.171 0.106 

25b 51.68° < 331 > 8 1.17 0.076 1.05 0.015 0.133 

27a 31.59° < 110 > 7 1.04 0.191 1.02 0.194 0.024 

27b 35.43° < 210 > 8 1.21 0.081 1.15 0.065 0.081 

29a 43.6° < 100 > 3 1.21 0.073 1.20 0.064 0.008 

31b 52.2° < 211 > 3 1.09 0.056 1.17 0.052 0.094 

33a 20.05° < 110 > 5 0.96 0.226 0.95 0.208 0.028 

33b 33.56° < 311 > 3 1.22 0.090 1.19 0.074 0.110 

33c 58.99° < 110 > 5 0.98 0.261 0.97 0.237 0.039 

35a 34° < 211 > 3 1.25 0.041 1.18 0.058 0.100 

35b 43.2° < 331 > 5 1.24 0.093 1.18 0.019 0.102 

All 408 1.12 0.211 1.07 0.190 0.088 
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a  
omparable with an estimated 10 % error in the MD simulated energies

26] . Even if one considers the simulated and interpolated grain bound-

ry energies at the fixed Σ (see Table 1 ), the RMSE are also approxi-

ately 10% of average simulated energies. To validate and to quantify

he predictive capability of the grain boundary energy function, the in-

erpolated energies are compared with the energies previously simulated

y Tschopp et al. [27] . As shown in Fig. 4 b , the interpolated energies are

trongly correlated with the simulated energies with a correlation coeffi-

ient of 0.98. The positive deviation of the simulated energies [27] from

he interpolated energies determined by fitting to the values reported by

atanaphan et al. [21] suggests that this might result from a difference

n the number of initial configurations for each boundary. Particularly, a

arger number of initial configurations for each type of grain boundary,

hich was used in [21] (100 – 10,000 states) compared with the ones

n [27] (100 – 1,000 states), could improve the search for a global mini-

um boundary energy. While it is not guarantee that the smallest energy

mong the larger number of minimized configurations corresponds to

he global minimum energy, the energies reported by Ratanaphan et al.

21] are on average lower than the ones simulated by Tschopp et al.

27] . Regardless to these differences, it should be noted that the RMSE

or grain boundary energies reported by Tschopp et al. (0.049 J/m 

2 ) are

lso less than an estimated 10 % error in the MD simulated energies. 

The energies of 39,861 grain boundaries derived from the energy

unction are then compared with the measured grain boundary popula-

ion [14] . These data sets include tilt, twist, and mixed grain boundaries

or 1,058 different misorientations. As examples, comparisons between

he interpolated grain boundary energies and the measured grain bound-

ry population for Σ3, Σ5, and Σ7 misorientations [14] are shown in

ig. 5 . The schematic diagrams, which show the orientations of the tilt,

wist, and symmetric grain boundaries are produced by GBToolbox [28–

0] . The interpolated energies at the Σ3 misorientation are inversely cor-

elated with the measured grain boundary population [14] . Specifically,

he minimum energy located at the (112) symmetrical tilt boundary (the

oherent twin boundary, 0.273 J/m 

2 ) corresponds to the maxima in the

easured grain boundary population (13 MRD). The measured grain

oundary population at the Σ5 and Σ7 misorientations [14] are not in-

ersely correlated with the energies interpolated from our grain bound-
5 
ry energy function. The relative areas of the minima energy boundaries

ocated in proximity to the Σ5 (013) and Σ7 (123) symmetrical bound-

ries are relatively low compared with the boundaries with higher ener-

ies. Note that for grain boundaries with the Σ5 misorientation, they are

ess observed and the distribution of the relative areas of grain bound-

ry at this misorientation is poorly measured. Fig. 6 . shows the point-

y-point comparisons between the interpolated grain boundary energies

nd the measured grain boundary population [14] . Overall, the energies

nd population are inversely correlated as indicated by the correlation

oefficient, R = -0.68 (see Fig. 6 a and Table 2 . ). While the inverse rela-

ionships are observed for the Σ3 (R = -0.96), Σ9 (R = -0.53), and Σ27a

R = -0.57), it is not the case for the rarely observed Σ27b (R = 0.25) as

hown in Fig. 6 b . It should be noted that the energy anisotropies, 𝜖𝑎𝑛𝑖𝑠𝑜 ,

alculated from the maximum energy and minimum energy at Σ3 (1.01

/m 

2 ), Σ9 (0.53 J/m 

2 ), and Σ27a (0.52 J/m 

2 ) is larger than the Σ27b

0.22 J/m 

2 ). Furthermore, Σ17b ( 𝜖𝑎𝑛𝑖𝑠𝑜 = 0.66 J/m 

2 , R = -0.79), Σ33a

 𝜖𝑎𝑛𝑖𝑠𝑜 = 0.52 J/m 

2 , R = -0.70), Σ33b ( 𝜖𝑎𝑛𝑖𝑠𝑜 = 0.42 J/m 

2 , R = -0.79), and

33c ( 𝜖𝑎𝑛𝑖𝑠𝑜 = 0.60 J/m 

2 , R = -0.80) boundaries having relatively high

opulation and energy anisotropies comparable with the Σ9 and Σ27a

 ∼ 0.5 J/m 

2 ) also show inverse relationships in Fig. 6 c . For the Σ5,

7, and Σ15 grain boundaries with energy anisotropies less than 0.20

/m 

2 , it is clearly demonstrated that these energies and population are

ot inversely correlated as shown in Fig. 6 d . Fig. 7 . shows compar-

sons between the correlation coefficients and energy anisotropies for

ll misorientations listed in Table 2 . As shown in Fig. 7 , there are two

istinct clusters separated by a boundary where the energy anisotropy

s equal to 0.4 J/m 

2 , indicating that the energy anisotropies at specific

isorientations influence the relationship between the grain boundary

opulation and energies in polycrystalline 𝛼 iron. The misorientations

hat show poor correlations to the grain boundary population have two

haracteristics. First, they are relatively high in energy. For example,

he Σ5, Σ7, and Σ15 boundaries have almost of all their energies greater

han 1.1 J/m 

2 while the boundaries in Fig. 6 b and Fig. 6 c have most

f their energies less than this value. Because of their high energies, the

5, Σ7, and Σ15 boundaries also have low populations. Previous work

as shown that the inverse correlation between grain boundary energies

nd populations disappears for high energy boundaries because of the
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Fig. 5. Characteristic grain boundaries, shown on a stereographic projection, at Σ3, 60°/ [111] (a) Σ5, 36.86°/ [100] (d) Σ7, 38.21°/ [111] (g) generated in GBToolbox 

[28–30] . The distributions of grain boundary energies derived from our grain boundary energy function are compared with the measured grain boundary population 

for Σ3 (b, c) Σ5 (e, f) and Σ7 (h, i) misorientations [14] . The relative populations are plotted in units of multiples of a random distribution (MRD). 

d  

c  

a  

t  

fl  

t  

s  

l  

e  

d  

a  

a  
ifficulty of accurately measuring the populations of infrequently oc-

urring boundaries [ 31 , 32 ]. The second thing they have in common is

 small energy anisotropy. In other words, during microstructure evolu-

ion, the energy landscape for boundary plane orientations is relatively

at, so the energy penalty for deviating from the lowest energy orien-

ation is relatively small. Considering both of these factors, it is not too
6 
urprising that the populations of boundaries at misorientations with

ow anisotropy and high average energies do not correlate well with an

nergy function based on simulated energies. Although the energies pre-

icted by the function are less certain at high energies, these boundaries

re of little interest to grain boundary engineering. For grain bound-

ry engineering, we are more interested in low energy boundaries that
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Fig. 6. Relationships between the interpolated energies and the measured grain boundary population [14] for all boundaries with logarithms of the populations of 

grain boundaries, ln (MRD) > - 0.5 (a), twinning-related grain boundaries, Σ3, Σ9, Σ27a, and Σ27b (b), grain boundaries with high-energy anisotropies, Σ17b, Σ33a, 

Σ33b, and Σ33c (c), and grain boundaries with low-energy anisotropies, Σ5, Σ7, and Σ15 (d). For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article. 

Table 2 

Energy anisotropies ( 𝜖𝑎𝑛𝑖𝑠𝑜 ) are calculated from the maximum energy ( 𝜖𝑚𝑎𝑥 ) and min- 

imum energy ( 𝜖𝑚𝑖𝑛 ). The correlation coefficients between the interpolated ( 𝜖𝑖𝑛𝑡𝑒𝑟 ) grain 

boundary energies and the measured grain boundary population [14] are correlated with 

the energy anisotropies at fixed Σ. 

Σ Number of GBs 𝜖𝑚𝑎𝑥 , J/m 

2 𝜖𝑚𝑖𝑛 , J/m 

2 𝜖𝑎𝑛𝑖𝑠𝑜 , J/m 

2 Correlation coefficient 

3 1,436 1.285 0.273 1.012 -0.96 

5 940 1.147 0.991 0.156 -0.20 

7 616 1.249 1.097 0.152 0.82 

9 995 1.179 0.647 0.531 -0.53 

11 446 1.108 0.567 0.541 -0.58 

13a 186 1.326 1.023 0.303 -0.13 

13b 219 1.165 1.111 0.054 0.76 

15 878 1.263 1.146 0.117 -0.23 

17a 112 1.311 1.073 0.237 0.00 

17b 203 1.280 0.624 0.656 -0.79 

19a 171 1.179 0.660 0.520 -0.68 

19b 110 1.276 0.953 0.323 -0.16 

21a 169 1.074 1.050 0.024 0.68 

21b 486 1.165 1.064 0.101 -0.09 

23 223 1.138 0.991 0.147 0.05 

25a 125 1.244 0.904 0.340 0.27 

25b 417 1.073 0.997 0.076 -0.05 

27a 204 1.174 0.657 0.517 -0.57 

27b 362 1.216 0.994 0.222 0.25 

29a 31 1.277 1.161 0.116 0.64 

29b 129 1.274 1.044 0.230 0.18 

31a 33 0.997 0.979 0.019 0.25 

31b 104 1.210 1.108 0.102 0.11 

33a 131 1.170 0.651 0.519 -0.70 

33b 173 1.248 0.831 0.417 -0.79 

33c 128 1.229 0.631 0.598 -0.80 

35a 260 1.251 1.116 0.134 0.52 

35b 222 1.225 1.091 0.134 0.21 

All 39,861 1.328 0.273 1.055 -0.68 

7 
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Fig. 7. Relationships between correlation coefficient and energy anisotropy for two distinct clustered groups. For the misorientations having energy anisotropies 

lower than 0.4 J/m 

2 , the correlation coefficients are weakly associated or positively correlated with the energy anisotropies. For Σ3, Σ9, Σ11, Σ17b, Σ19a, Σ27a, 

Σ33a, Σ33b, and Σ33c misorientations with energy anisotropies larger than 0.4 J/m 

2 , their correlation coefficients are all negative. 
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ave significant grain boundary energy anisotropy and these are well

redicted by the function. While for fcc materials grain boundary en-

ineering focuses on the twinning-related grain boundaries ( Σ3 n ), for

cc materials the most promising route is to focus on those boundaries

hat have both low energies and high energy anisotropy that strongly

nfluences the GBCD. 

. Conclusion 

A grain boundary energy function for 𝛼 iron has been formulated

rom the hierarchical interpolation of scaffolding grain boundary sub-

ets with < 100 > , < 110 > , and < 111 > rotation axes using Read-Shockley-

olf (RSW) and parabolic functions. Comparisons between approx-

mately 40,000 grain boundary energies interpolated from the new

unction and measured grain boundary populations reveal that energy

nisotropy at a specific misorientation has the most significant influ-

nce to the grain boundary character distribution of 𝛼 iron. The energy

unction for 𝛼 iron provides a useful resource for the simulation of mi-

rostructure evolution or to foster the development of grain boundary

ngineering (GBE) in the 𝛼 iron. 
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