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ABSTRACT

The characteristics of the intervariant boundary network that resulted from the

b ! a0 martensitic phase transformation in a Ti–6Al–4V alloy were studied

using the crystallographic theories of displacive transformations, five-parameter

grain boundary analysis and triple junction analysis. The microstructure of Ti–

6Al–4V martensite consisted of fine laths containing dislocations and fine twins.

The misorientation angle distribution revealed four distinct peaks consistent

with the intervariant boundaries expected from the Burgers orientation rela-

tionship. The phenomenological theory of martensite predicted four-variant

clustering to have the lowest transformation strain among different variant

clustering combinations. This configuration was consistent with the observed

Ti–6Al–4V martensitic microstructure, where four-variant clusters consisted of

two pairs of distinct V-shape variants. The 63:26�=½10 5 5 3�a0 and 60�=½1 1 2 0�a0
intervariant boundaries accounted for * 38% and 33% of the total population,

respectively. The five-parameter boundary analysis showed that the former had

a twist character, being terminated on the ð3 2 1 0Þa0 plane, and the latter revealed

a symmetric tilt ð1 0 1 1Þa0 boundary plane. The 63:26�=½10 5 5 3�a0 and

60�=½1 1 2 0�a0 had the highest connectivity at triple junctions among other

intervariant boundaries. Interestingly, the boundary network in Ti–6Al–4V

martensite was significantly different from the commercially pure Ti martensite,

where only 60�=½1 1 2 0�a0 intervariant boundaries largely were found at triple

junctions due to the formation of three-variant clustering to minimize the

transformation strain. This difference is thought to result from a change in the

martensitic transformation mechanism (slip vs twinning) caused by the alloy

composition.
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Introduction

The evolution of the grain boundary network in

titanium alloy during processing influences material

performance [1]. Grain boundary crystallography (i.e.

lattice misorientation and grain boundary plane ori-

entation) impacts a boundary resistance to disloca-

tion motion [2–5] and slip transfer character [6, 7].

Therefore, the optimization of the grain boundary

network with respect to the population and connec-

tivity of the boundary of interest can further enhance

the properties in the polycrystalline materials [8, 9].

In this regard, tailoring the grain boundary character

and network to improve material performance has

been a topic of considerable research. For example, it

has been found that the characteristics of the grain

boundary are influenced by different parameters

such as chemical composition [10–13], crystal struc-

ture [14–16], thermomechanical processing [17–23]

and phase transformation paths/mechanisms

[24, 25].

There have been many studies that show how

thermomechanical processing [17–22, 25, 26] and/or

specific phase transformation paths [27, 28] can be

used to engineer the grain boundary network. While

the thermomechanical processing changes the char-

acter of the grain boundary network through activa-

tion of particular restoration processes during the

deformation and subsequent annealing treatment, the

occurrence of phase transformation abolishes the

high-temperature microstructure and develops a

unique grain boundary network. Therefore, the latter

can be considered as an effective apparatus for

engineering of the grain boundary network of metals

undergoing phase transformation (e.g. steels and Ti

alloys). Significant studies have been conducted on

steels, demonstrating that the competition between

the phase transformation mechanisms (shear vs dif-

fusion) upon the austenite (FCC) to ferrite (BCC)

transformation can significantly alter the grain

boundary network (i.e. character, population and

connectivity) [15, 25, 27–32]. It was concluded that the

crystallographic orientation relationship between

austenite and ferrite, and the occurrence of variant

selection (i.e. frequent appearance of some variants

than the others) during phase transformation should

be considered as a major factor to engineer the grain

boundary network.

Unlike steels, there are fewer studies of grain

boundary network evolution in Ti alloys undergoing

b BCCð Þ ! a HCPð Þ phase transformation upon cool-

ing [24, 33, 34]. Here, the phase transformation is

closely governed by the well-known Burgers orien-

tation relationship (OR) [35], leading to the formation

of up to 12 crystallographically distinct a variants

from a given b parent grain. Interestingly, the

microstructure characteristics of the Ti alloys are

strongly dependent on the active transformation

mechanism (i.e. shear vs diffusion), which may lead

to a preferred a variant/s formation (i.e. variant

selection) [28–39]. Therefore, the control of dominant

variant arrangement/selection can significantly affect

the transformed texture and the a/a boundaries that

result from the b ! a transformation in Ti-alloys.

During the martensitic/shear transformation, the

nucleation of a martensitic variant requires the lattice

invariant shear to be fulfilled through either slip

and/or twinning mechanisms, depending on the

lattice parameters of parent (i.e. ab) and transformed

product (i.e. aa0 and ca0) [40]. Furthermore, the elastic

strain fields developed during the nucleation of a

martensitic a0 variant interact with other variants in a

way that a total reduction in the strain energy for the

cluster of variants is achieved [33, 34, 40–44]. This

results in distinct morphologies, namely the dia-

mond-shape [45–47] and/or triangular morphology

[33, 34, 44, 47]. The phenomenological theory of the

martensitic/displacive transformation was widely

used to identify the strain energy associated with the

variant formation during martensitic transformation.

It was demonstrated that the shape strain can be

accommodated by forming a three-variant arrange-

ment where dislocation slip is the dominant mecha-

nism during Ti martensite transformation (e.g.

commercially pure Ti). Such variant assembly has

resulted in an increase in the twin-related 60�/½1 1 2 0�
intervariant boundaries. In parallel, the local stress

induced by the formation of the primary a0 lath can

lead to the nucleation of closely orientated a0 variants

[48–51]. Although similar approaches were applied to

define the self-accommodating cluster characteristics,

however, the role of the martensite transformation

mechanism (i.e. slip vs twinning) on the dominant

self-accommodation morphology and the resultant

intervariant boundary network (i.e. a0/a0 boundaries

resulted from the b ! a0. transformation) in Ti alloys

is not fundamentally understood.
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The aim of the current study was to establish an

understanding of the variant arrangement develop-

ment and the resultant intervariant boundary net-

work characteristics (a0/a0 boundaries resulted from

the b ! a0 transformation) during the martensitic

transformation of Ti–6Al–4V that minimizes the

transformation strain, when twinning is the domi-

nant martensitic phase transformation mechanism.

To this end, the phenomenological theory of the

martensite transformation, as explained by Wechsler,

Liberman and Read (WLR) [52–54], was used to

predict the morphological arrangement of the possi-

ble a variants in the martensitic Ti–6Al–4V alloy.

Furthermore, the intervariant boundary characteris-

tics were studied using a stereological interpretation

of conventional EBSD maps along with five-param-

eter crystallographic analysis [21]. This approach

made it possible to measure the grain boundary

plane distribution for all of the intervariant bound-

aries. Finally, the connectivity of the intervariant

boundaries was analysed by classifying triple junc-

tions according to the number of intervariant

boundaries that meet at a junction. These findings

ultimately make it possible to propose a mechanism

for intervariant network formation in Ti alloys

formed through phase transformation and engineer

the microstructure with an optimum intervariant

boundary network for a specific application.

Experimental

Material and heat treatment procedure

A hot-rolled Ti–6Al–4V alloy with a composition of

Ti- 6.05 Al, 3.98 V (in wt%) was used for the current

study. A rectangular sample with dimensions of

60 mm 9 30 mm 9 10 mm was prepared from the

hot-rolled plate, where the longest length was

aligned with the rolling direction. The sample was

then coated by the delta glaze coating to prevent

high-temperature oxidation. The Ti–6Al–4V sample

was heated up to 1100 �C using a servo-testing

machine. The sample was held isothermally for 3 min

at the corresponding reheating temperature to obtain

a fully b microstructure with a grain size of * 250

lm. Then, the sample was immediately water-quen-

ched to room temperature, resulting in a fully

martensitic microstructure. The constituent phases of

the as-received and processed Ti–6Al–4V alloy were

measured using a PANalytical X-ray diffractometer.

The machine setting for the measurements was at the

voltage of 40 kV and current of 30 mA, respectively.

The constituent phases were analysed using the point

scan settings with 0.02� step size and time per step of

5.

Microstructural characterization

The microstructure of the samples was studied by

scanning electron microscopy (SEM), electron

backscatter diffraction (EBSD), transmission Kikuchi

diffraction (TKD) and transmission electron micro-

scopy (TEM). For the EBSD, the as-received sample

was ground and polished using a 0.04 lm OPS sus-

pension. The EBSD measurement for the as-received

sample was performed using a FEG Quanta 3-D FEI

SEM with the beam operated at 20 kV and 8 nA. The

martensitic microstructure formed in the Ti–6Al–4V

alloy was too fine to employ the conventional EBSD

technique. Hence, the TKD technique was utilized for

the Ti–6Al–4V martensitic microstructure analysis.

For the TKD analysis of the Ti–6Al–4V alloy, thin foil

samples with a thickness of 70 lm were prepared

similar to the transmission electron microscopy

(TEM) sample preparation routine. The thin foils

were twin-jet electropolished by A3 StruersTM elec-

trolyte solution containing 6% perchloric acid and

35% butoxymethanol and 64% methanol at - 40 �C
using a potential of 35 V. It should be noted that the

texture bias in the grain boundary characterization

was reduced through conducting TKD on two per-

pendicular cross sections (e.g. parallel and perpen-

dicular sections with respect to the rolling direction).

A similar procedure was employed to prepare TEM

samples.

The TKD measurements were conducted by a FEG

Quanta 3-D FEI SEM instrument under 30 kV and 8

nA conditions using the Oxford Instruments TKD

sample holder. TSL software was employed to

acquire the TKD data using a hexagonal grid with a

step size of 0.5 lm and 10 nm for the as-received and

martensitic sample, respectively. Multiple TKD scans

on a total area of 1296 lm2 (i.e. 36 lm 9 6 lm 9 6

lm) were executed on the martensitic microstructure.

To avoid collecting multiple boundary data from a

given prior b grain, only two TKD maps with a dis-

tance of at least 250 lm were acquired from each thin

foil. Moreover, the data were acquired equally from

both RD-TD and ND-TD cross sections of the sample
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to compensate the texture effect on the five-parame-

ter grain boundary characterization. Therefore, mul-

tiple thin foils were prepared to accommodate

several prior b grains from different sections of the

transformed sample for TKD data acquisition.

The TKD post-processing was conducted using the

TexSEM Laboratories Inc., software (TSL). In parallel,

the TEM examination of thin foils of the Ti–6Al–4V

alloy was conducted using a JEM 2100 microscope

operated at 200 kV.

Intervariant boundary analysis

A stereological analysis, which has been fully

described in previous studies [55, 56], was employed

to identify the intervariant boundary plane distribu-

tion in the martensitic microstructure. Before

extracting the boundary segments from the TKD

maps, a multiple-step cleaning procedure was con-

sidered. First, the ambiguous data were removed

through the grain dilation function. Then, a single

average orientation was assigned to the neighbouring

groups of pixels with a disorientation angle of less

than 5� (one single grain). Pseudo-symmetry of the

Kikuchi patterns misoriented by 30�/½1 1 2 0�a0 was

also cleaned from the obtained data. This was fol-

lowed by cleaning of data points having a confidence

index of less than 0.1. The effect of each cleaning step

on the TKD data is illustrated in the supplemental

Figure S1. To extract the boundary line traces/seg-

ments from the TKD data, the reconstructed grain

boundary function with a boundary deviation limit of

2 pixels (e.g. 20 nm for Ti–6Al–4V martensite) [57]

was used. Here, a total of * 107,000 boundary line

traces was extracted from the TKD maps for the

martensitic microstructure of Ti–6Al–4V. For materi-

als with a hexagonal crystal structure, at least 200,000

boundary line traces are required to reliably analyse

the boundary plane orientation. However, due to the

crystallographic constraints associated with the

martensitic transformation in Ti alloys, the bound-

aries revealed a few nearly discrete misorientations

(rather than being spread over all possibilities).

Therefore, it is possible to reliably measure the grain

boundary plane orientation distribution at these

specific misorientations with a smaller number of

boundary line segments (i.e. * 100,000 boundary

segments). After extracting the line segments, the

stereological procedure was applied to calculate the

five-parameter grain boundary character distribution

(GBCD). Through this approach, the grain boundary

plane character distribution was identified at differ-

ent grain boundary misorientations. The measure-

ment was conducted with 9 bins per 90�, providing

10� resolution.

Results

The evolution of microstructure
in martensite transformation

Microstructure

The as-received microstructure of the Ti–6Al–4V

alloy had a typical rolled microstructure consisting of

elongated a and b phases (Fig. 1a). The presence of

both a and b phases in the as-received microstructure

was also observed in the related XRD pattern of the

Ti–6Al–4V alloy (Fig. 1b). The heat treatment proce-

dure for the Ti–6Al–4V alloy resulted in a very fine

and fully martensitic microstructure (i.e. an average

lath thickness of * 0.43 ± 0.01 lm, Fig. 2a), having

no sign of remaining b phase, as observed through

the XRD measurement (Fig. 2b). The parallel lines

appeared in Fig. 2a are artefacts associated with the

instability of electron beam during the TKD experi-

ments. These lines were ignored as they had minimal

effect on the grain boundary network characteriza-

tion. The bright-field TEM examination also revealed

fine martensitic laths with a dislocation substructure

along with very thin transformation twins (high-

lighted by an arrow in Fig. 3). These twins were

mostly separated by 60�/½1 1 2 0�a0 (shown by yellow

box in Fig. 2a). It should be noted that the transfor-

mation twins observed in TEM images have been

partially indexed by the TKD, which appeared to be

parallel or perpendicular to the intervariant bound-

aries (Fig. 3). Using the trace analysis, both types of

twins showed a ð1 0 1 1Þa0 plane orientation (see

Fig. S2 in the supplementary information section).

The Ti–6Al–4V alloy also revealed distinct mor-

phological arrangements of a0 laths. Here, two dif-

ferent arrangements were observed, namely the

V-shape morphology due to the impingement of two

distinct variants, and the quadrilateral configuration

consisting of four distinct variants (highlighted by

red box in Fig. 2a). The remaining space within these

microstructure configurations was filled with smaller

V or quadrilateral morphological features (Fig. 2a).
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The martensite intervariant boundary plane
character distribution

The misorientation angle distribution of the marten-

sitic microstructure for the Ti–6Al–4V alloy showed

multiple peaks at the positions of * 10�, 55–65�
and * 90� (Fig. 4a), significantly different from what

is expected for a random distribution. The misorien-

tation axis distribution associated with each peak was

clustered at a specific axis. The misorientation axes

were close to what is expected from the Burgers OR

which were introduced in the work of Gey et. al [58].

(Table 1). The points with non-ideal axes can arise

from the intersection of alpha variants from different

(b)

90 μm
2θ(°)

RD
(a)

20 μm α
β

Figure 1 (a) The band contrast image and phase map of the as-rolled Ti–6Al–4V alloy, and (b) the corresponding XRD pattern revealing

both a and b phase peaks.

(b)(a)

Figure 2 (a) The Kikuchi pattern quality map of the martensitic microstructure in the Ti–6Al–4V alloy, (b) the corresponding XRD

pattern revealing only a phase in the microstructure. The red lines in (a) represent 60�/½1 1 2 0�a0 grain boundaries.
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prior b grains or from boundaries that fall within the

misorientation angle tolerance. As illustrated in

supplemental Figure S3, the number of non-ideal

points decreases with a smaller tolerance angle.

The * 63� misorientation angle had the highest

population, while the * 10� had the lowest intensity

in the misorientation angle distribution profile. The

boundaries responsible for the peak near 30� are

disoriented about the ½1 1 2 0�a0 axis, which is consis-

tent, within experimental resolution, with a sym-

metric tilt grain boundary at 31.4� that calculations

predict has a low grain boundary energy [59]. Here,

the grain boundaries associated with the Burgers OR

were only examined, and the 30�/½1 1 2 0�a0 was not

further considered.

Figure 4b compares the theoretical fraction of

intervariant boundaries formed through the ideal

Burgers OR with the experimental results obtained

from the martensitic microstructure in Ti–6Al–4V.

The spatial distribution of the boundaries with the

Burgers OR, in a single orientation map, is illustrated

in supplemental Figure S4. Here, the theoretical dis-

tribution of intervariant boundaries was calculated

considering that all variants occur in the product

phase with an equal probability. The most common

intervariant boundary for the Ti–6Al–4V alloy was

the 63.26�/½10 5 5 3�a0 boundaries having * 38% of

Transformation twins Transformation twins

(b)(a)

1 μm

Figure 3 The TEM bright-field micrograph of the martensitic a laths in Ti–6Al–4V alloy including (a) twins parallel and

(b) perpendicular to the martensite laths.

Figure 4 (a) The misorientation angle distribution of martensitic

microstructure in Ti–6Al–4V alloy, and (b) the length fraction of

intervariant boundaries associated with Burgers orientation

relationship. The theoretically calculated fractions are based on

the assumption that all variants have equal statistical probability

during the phase transformation.
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total boundary length, though the 60�/½1 1 2 0�a0
intervariant had the second highest population

with * 33% of total boundary length. On the other

hand, the 10.53�/½0 0 0 1�a0 intervariant was the least

common boundary, consuming about 1% of all

boundary length. The other intervariant boundary

length fractions in the martensitic Ti–6Al–4V

were * 16% and 11% for 60.83�/
½1:377 1 2:377 0:359�a0 , and 90�/½1 2:38 1:38 0�a0 inter-

variant boundaries, respectively (Fig. 4b).

The relative areas of all boundary planes as a

function of orientation in the crystal reference frame,

without considering the misorientation, are depicted

in the standard stereographic projection for hexago-

nal crystals (Fig. 5). Here, the ð0 0 0 1Þa0 basal plane is

placed in the centre of the stereogram and the pris-

matic planes (i.e. f1 1 2 0ga0 and f1 0 1 0ga0 planes) are

within the circumference of the stereogram. The plot

revealed an anisotropic distribution, having a maxi-

mum intensity of * 2.0 MRD. The relative areas of

all orientation perpendicular to ½0 0 0 1�a0 are high, and

the peak is at the f4 1 3 0ga0 orientation (Fig. 5). It

should be mentioned that the distribution minimum

was positioned at the ð0 0 0 1Þa0 orientation (Fig. 5).

The boundary plane distributions at the specific

misorientations associated with the intervariant

boundaries that arise from the Burgers OR are plotted

in a stereographic projection in Fig. 6. The orienta-

tions of certain high symmetry grain boundary

planes are also plotted for these misorientations,

using Glowinski’s grain boundary toolbox software

[60] (Fig. 6). Overall, the grain boundary plane dis-

tribution is anisotropic for all intervariant bound-

aries. The 10.53�/½0 0 0 1�a0 intervariant boundary

plane distribution had no maxima higher than 0.5

MRD. Relative areas of this magnitude are deemed to

be insignificant, so this distribution is not shown. The

intervariant boundary planes associated with the

60�/½1 1 2 0�a0 misorientation had a single maximum

near the pyramidal ð1 1 0 1Þa0 plane, indicating an

ideal symmetric boundary with a maximum intensity

of * 370 MRD (Fig. 6a). On the other hand, the

boundary plane distribution of the 60.83�/
½1:377 1 2:377 0:359�a0 intervariant boundary had a

maximum at the ð4 3 1 0Þa0 orientation with an inten-

sity of * 24 MRD, showing a near tilt character. (It

Table 1 Individual variants of

Burgers OR corresponding to

the b matrix and the a product

phase [58]

Variants Orientation relationship Intervariant boundary (from V1)

1 ð1 1 0Þb==ð0 0 0 1Þa; ½1 1 1�b==½1 1 2 0�a –

2 ð1 0 1Þb==ð0 0 0 1Þa; ½1 1 1�b==½1 1 2 0�a ½1 1 2 0�=60�

3 ð0 1 1Þb==ð0 0 0 1Þa; ½1 1 1�b==½1 1 2 0�a ½1 1 2 0�=60�

4 ð1 1 0Þb==ð0 0 0 1Þa; ½1 1 1�b==½1 1 2 0�a ½1 2:38 1:38 0�=90�

5 ð1 0 1 Þb==ð0 0 0 1Þa; ½1 1 1�b==½1 1 2 0�a ½10 5 5 3�=63:26�

6 ð0 1 1 Þb==ð0 0 0 1Þa; ½1 1 1�b==½1 1 2 0�a ½1:377 1 2:377 0:359�=60:83�

7 ð1 1 0Þb==ð0 0 0 1Þa; ½1 1 1�b==½1 1 2 0�a ½1 2:38 1:38 0�=90�

8 ð1 0 1Þb==ð0 0 0 1Þa; ½1 1 1�b==½1 1 2 0�a ½1:377 1 2:377 0:359�=60:83�

9 ð0 1 1Þb==ð0 0 0 1Þa; ½1 1 1�b==½1 1 2 0�a ½10 5 5 3�=63:26�

10 ð1 1 0Þb==ð0 0 0 1Þa; ½1 1 1�b==½1 1 2 0�a ½0 0 0 1�=10:53�

11 ð1 0 1Þb==ð0 0 0 1Þa; ½1 1 1�b==½1 1 2 0�a ½1:377 1 2:377 0:359�=60:83�

12 ð0 1 1Þb==ð0 0 0 1Þa; ½1 1 1�b==½1 1 2 0�a ½1:377 1 2:377 0:359�=60:83�

MRD

Figure 5 The distribution of grain boundary planes for all

misorientations in the martensitic microstructure of Ti–6Al–4V

alloy. MRD is the multiples of a random distribution.
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deviates by * 4� from the ideal ð5 3 2 0Þa0 orientation,

as shown in Fig. 6b.) The highly populated 63.26�/
½10 5 5 3�a0 intervariant boundary had a strong peak

(i.e. * 577 MRD) around the ð3 2 1 0Þa0 plane, dis-

playing a twist character (Fig. 6c). The intervariant

plane distribution for the 90�/½1 2:38 1:38 0�a0 had a

diffuse maximum at the ð1 1 0 1Þa0 plane with an

intensity of * 52 MRD. This boundary plane orien-

tation had a twist and 180�-tilt character, spreading

between the ð1 2 1 3Þa0 and ð4 3 1 0Þa0 planes (Fig. 6d).

It is worth mentioning that the measurements of

the five-parameter grain boundary plane distribution

provided results that are qualitatively similar to those

already reported in Reference [24]. The similarity of

the current results (obtained with a spatial resolution

of 10 nm) and the prior results (obtained with a

spatial resolution of 150 nm) indicates that the grain

boundary plane distribution is not sensitive to the

spatial resolution of the orientation measurement

within this range of resolutions.

Discussion

The grain boundary characteristic developed during

the b ? a0 transformation is largely related to

martensite transformation mechanism and self-ac-

commodation of the transformation strain. To explore

the possible variant selection arrangements that

alleviate accommodation of transformation strain, the

crystallography of martensitic transformation is

analysed for Ti–6Al–4V using the Burgers orientation

relationship through elaborating the phenomenolog-

ical theory of the martensitic transformation.

Variant selection and self-accommodation
during b?a0 transformation

The martensitic transformation usually results in a

relatively large shape change, which is accommo-

dated by specific variant arrangement/s to minimize

the associated strain energy. The grouping of

martensite variants to minimize the transformation

induced shear strain is known as the self-accommo-

dation phenomenon [61], which influences

microstructural characteristics including the texture

and the intervariant boundary distribution. It appears

Tilt GBs
Twist GBs

180-Tilt boundaries
180-Twist boundaries

(a)

MRD

(c)

)

(d)

(b)

Figure 6 Distribution of intervariant interface/boundary planes character for different intervariants and the corresponding calculated

geometrically characteristic boundaries in the martensitic microstructure.
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that the self-accommodation cluster in the Ti–6Al–4V

martensitic microstructure has a V-shape and/or

quadrilateral-variant assemblies (Fig. 2a).

Interestingly, the substructure of Ti–6Al–4V

martensite laths reveals that the transformation is

accommodated through twinning and/or dislocation

slip (Figs. 2a, 3), which compensates the macroscopic

shape change (lattice invariant deformation) that

occurs during the martensitic transformation [62].

These characteristic features of the martensitic

microstructure are significantly different from the

martensitic laths observed in the CP–Ti alloy, where

the martensitic transformation takes place only

through slip [34]. Therefore, the phenomenological

theory of the martensitic phase transformation is

employed to analyse the shape deformation during

the martensitic transformation in Ti–6Al–4V alloy.

In the phenomenological theory, the total defor-

mation is a result of two invariant plane strains, one

being the habit plane between two lattices and the

other being the complementary strain, which is

invisible on the macroscopic scale (Fig. 7). The com-

plementary shear is required, as it is necessary to

maintain the material integrity. In most martensitic

transformations, the complementary shear is consid-

ered to be accommodated by a simple shear system

(slipped martensite). Similar to slip, a twinning shear

on a twinning plane can also produce an invariant

plane. This results in two twin domains with specific

thickness ratios, producing the shear strain for

martensite transformation. In this regard, the Wech-

sler, Lieberman and Read’s (WLR) approach was

employed to characterize the slipped and internally

twinned cubic to orthorhombic martensitic transfor-

mation [53] and obtain a physically correct descrip-

tion of martensite transformation for the Ti–6Al–4V

alloy.

The crystallography of martensite transformation in Ti–

6Al–4V

The twins in Ti–6Al–4V martensite laths can produce

invariant lattice shear (ILS). Therefore, the matrix

after the lattice deformation should be transformed

into twin domains with exact crystallographically

equivalent correspondence having an appropriate

thickness ratio, (1 - x)/x. In fact, the twinned region

(i.e. denoted by domain 1 and 2 in Fig. 7c) formed

from the parent phase is distorted by two crystallo-

graphically equivalent Bain distortions. In the WLR

approach, the two twin domains, firstly, need to

maintain the exact crystallographically equivalent

correspondence. Second, the prevalence of a plane in

the parent b phase with a mirror symmetry is

required. In other words, the shear plane must be a

mirror plane of the parent crystal and the active

twinning type determines which of the mirror planes

[63, 64]. Considering the Bilby–Crocker criteria, the

f1 1 0gb mirror planes can transform into the

f1 0 1 1ga0 planes (i.e. ILS twinning planes) [40, 65].

Therefore, the ð1 1 0 1Þa0==ð1 0 1Þb twin systems for the

BCC to HCP transformation are considered for the

current calculation [66]. The Bain distortion matrices

for the major and minor twin components of ð1 1 0 1Þa0
and ð1 1 0 1Þa0 are described below as B1 and B2,

respectively.

B1 ¼
1:07213 0:0431 0

0:0431 1:07213 0

0 0 0:9102

2
64

3
75

B2 ¼
0:9102 0 0

0 1:07213 �0:0431

0 �0:0431 1:07213

2
64

3
75

ð1Þ

The Bain distortion for the Ti–6Al–4V alloy is cal-

culated by considering its lattice parameters

(ab ¼ 0:321 nm;aa0 ¼ 0:29216 nm andca0 ¼ 0:46698 nm)

[67, 68]. The crystallographic correspondence is

schematically presented in Fig. 7c. The total macro-

scopic shear (E) identifies a vector r in the parent BCC

crystal, which is transformed into r0. This is resolved

by considering two Bain distortions in the two twin-

related regions and their corresponding rotations,

which are given by the following equation.

r0 ¼ /1 1 � xð ÞB1 þ x/B2½ �r ¼ /1Fr ð2Þ

The rotation matrix, /, for twinning on ð1 0 1Þb
corresponding to the variant plane of ð1 1 0 1Þa0 is

described by the Euler’s formula, as follows.

ðp1 � p2Þ q1 � q2ð Þ
p1 � p2ð Þ q1 þ q2ð Þ ¼ U tan

h
2

ð3Þ

where p1, q1 and p2, q2 are the initial and final posi-

tions of the two vectors present in the undistorted

plane, the U axis is the rotation axis, and h is the angle

of the rotation. Here, the rotation angle is 7.369� and

/ is:
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/ ¼
0:9917 0:0668 �0:1092
�0:0673 0:9977 �0:0007
0:1089 0:0079 0:9939

2
4

3
5 ð4Þ

Substituting the values of B1, B2 and / into Eq. (2)

resolves F and the fraction of the symmetric and non-

symmetric twin components (i.e. x). Thus, the dis-

tortion matrix, E ¼ /1F, is calculated and summa-

rized in Table 2 for the Ti–6Al–4V alloy. The

predicted habit plane is ð0:4037 0:5855 0:7028Þb which

deviated only about 6.1� from the observed f3 4 4gb
solution. Therefore, the predictions can be considered

consistent for the further microstructure analysis

[65, 69]. A detailed analysis of the Wechsler, Liber-

man and Read approach is presented in ‘‘Appendix’’.

Considering the distortion matrix as the total strain

imposed in the material for the nucleation of a given

variant, the von Mises criterion for the martensite

transformation of each variant (i.e. based on the

dilatational (d) and shear components (s) of the

transformation) can be computed [34]. Accordingly,

the lowest strain imposed by different groups of

variant combinations (i.e. possible 132, 1320, and

11,880 for two-, three- and four-variant clustering,

respectively) is calculated and summarized in

Table 3.

Among different variant combinations, the four-

variant configuration reveals the lowest equivalent

strains of 0.002782 and 0.002808 (Table 3). The inter-

section of variants in the four-variant combination

gives rise to the intervariant boundaries with

63:26�=½10 5 5 3�a0 and 60�=½1 1 2 0�a0 and

90�=½1 2:38 1:38 0�a0 misorientations (Table 1). This

suggests that the four-variant (V1V2V4V5) morpho-

logical clustering might promote these intervariant

boundaries. The most probable configuration, there-

fore, consists of two pairs with a V-shape morphol-

ogy (i.e. four-variant clustering), each consisting of

two distinct variants, as shown schematically in

Fig. 8c. This morphological clustering can explain the

current observation of V-shape and quadrilateral

arrangements in the microstructure. The crystallo-

graphic four-variant arrangement leads to the pro-

motion of three distinct intervariant boundaries,

namely 63:26�=½10 5 5 3�a0 , 60�=½1 1 2 0�a0 and

90�=½1 2:38 1:38 0�a0 , where 63:26�=½10 5 5 3�a0 and

90�=½1 2:38 1:38 0�a0 have the highest and lowest frac-

tion, respectively (Fig. 8). This is consistent with the

observed intervariant boundary fractions for the

martensitic Ti–6Al–4V alloy, where the highest frac-

tion is related to 63:26�=½10 5 5 3�a0 followed by

60�=½1 1 2 0�a0 and a smaller population of

90�=½1 2:38 1:38 0�a0 boundaries (Fig. 4b). It is worth

mentioning that 60�=½1 1 2 0�a0 boundaries are also

promoted through the transformation twin within the

Figure 7 (a) Schematic

illustration of the

phenomenological theory of

martensite. The heavy

horizontal lines in (b) are

coherent twin boundaries and

(c) schematic diagram of an

internally twinned martensite,

the complementary twinning

shear transforming original

vector. (d) schematic of

internally slipped martensite

[40, 87].
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martensitic laths (Fig. 2a), which is the mechanism of

martensitic transformation in Ti–6Al–4V alloy.

Interestingly, the morphological arrangements and

the intervariant boundary population for the

martensitic Ti–6Al–4V alloy are significantly different

from the previous observation of martensitic CP–Ti

[34]. It was observed that the transformation strain is

accommodated by slipped martensitic laths in the

commercially pure titanium compared to the twin-

ning for the Ti–6Al–4V. This change in the martensite

transformation mechanism is a result of a signifi-

cantly different shape strain, leading to three-variant

clustering and an increase in the population of

60�=½1 1 2 0�a0 intervariant boundaries (i.e. 60% of total

boundary population) [34]. Therefore, the current

result shows that the change in the chemical com-

position of the Ti alloy results in different Bain

deformation (i.e. by changing the lattice parameters)

during the martensite transformation. This conse-

quently alters the martensite transformation mecha-

nism (i.e. slip vs twinning), promoting different

variant cluster arrangement/s, and ultimately speci-

fic intervariant boundaries. In addition, the presence

of other intervariant boundaries is, most likely, due to

the intersection of different four-variant clusters.

It is worth mentioning that the overall texture can

also influence the grain boundary populations. Here,

the overall texture of martensite is dictated by the

prior beta texture. However, all possible 12 variants

are formed during the martensitic transformation in a

given prior beta grain. Therefore, the grain boundary

network in the martensitic microstructure is largely

governed by the local variant selection mechanism. In

other words, the effect of prior beta texture is limited

to the boundaries formed due to the intersection of

variants on either side of prior beta boundaries,

which do not have any specific crystallographic

relationship. These boundaries form a small fraction

of the grain boundary population (Fig. 4a), resulting

in a negligible influence on the overall grain bound-

ary network.

Characteristics of martensitic intervariant
interfaces

The intervariant boundaries associated with the

martensitic Ti–6Al–4V alloy had a peak intensity at a

specific boundary plane orientation. The highly

populated 63.26�/½10 5 5 3�a0 intervariant boundary

was associated with the ð3 2 1 0Þa0 boundary plane

orientation, showing a twist and properly quasi-

symmetric character (Fig. 6c) [70]. This means that

the crystallographic planes on both sides of the

63.26�/½10 5 5 3�a0 intervariant boundary had equiva-

lent Miller indices. This tendency for specific inter-

variant boundary plane is significantly different from

the previous results on martensitic CP–Ti [34]. The

dominant intervariant boundary for the martensitic

CP–Ti has the 60�/½1 1 2 0�a0 misorientation with the

ð1 1 0 1Þa0 boundary plane with a symmetric tilt and

improper quasi-symmetric tilt character. In poly-

crystalline alloys subjected to a given processing

route, it is expected that the change in the chemical

composition provides similar grain boundary plane

Table 2 The typical calculated crystallographic sets considering the activation of f1 0 1gb\1 0 1[ b twin system

Twin system Habit plane (Pb) Rotation matrix E (distortion matrix)

f1 0 1gb\1 0 1[ b 0:4037
0:5855
0:7028

0
@

1
A

0:998 �0:0619 0:0126
0:0619 0:9979 �0:0072
�0:012 0:0072 0:9998

2
4

3
5

0:9619 �0:0801 0:1171
0:0967 1:06866 �0:0001
�0:1007 �0:0407 0:9976

2
4

3
5

Table 3 The von Mises equivalent strain calculated for different combinations of variant cluster arrangements in the martensitic

transformation

Twin system Two-variant Three-variant Four-variant

f1 0 1gb\1 0 1[ b Mineave 0.0067 V1V7

V2V11

V3V6

Mineave 0.0083 V1V7V10

V8V4V2

Mineave
0.002782 and

0.002808

V1V2V4V5V3V4V11V12

V5V6V8V9 V1V2V4V5 and

V1V4V5V8
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orientations for a specific boundary, though the

population may differ [71–73]. In particular, the grain

boundary population for the R3 annealing twin

boundaries increases with a decrease in the stacking

fault energy (SFE) of the materials having face-cen-

tred cubic structure [26]. For the current study, the

change in the chemical composition of Ti alloy affects

the martensitic phase transformation mechanism

from the dislocation slip in CP–Ti to the twin assisted

in Ti–6Al–4V alloy. This change in the martensite

transformation mechanism influences the self-ac-

commodation of martensite shape strain and ulti-

mately leads to a distinct variant arrangement from

three-variant cluster in the CP–Ti [34] to V-shape

and/or quadrilateral clusters in the Ti–6Al–4V alloy.

Therefore, the intervariant boundary population for

the examined martensitic Ti–6Al–4V alloy (Fig. 4b) is

significantly different from the one reported for the

martensitic CP–Ti microstructure [34]. Moreover, it

can be implied that the change in the chemical com-

position can affect the dominant intervariant

boundary plane in the martensitic Ti alloy

microstructure through altering the phase transfor-

mation mechanism.

Although past studies of grain boundary charac-

teristics in Ti alloys are limited, it is well established

that grain boundary populations have an inverse

relationship with the related boundary energy for

cases where the microstructures form by grain

growth [24, 56, 74–79]. Using the interplanar spacing

as the criteria to analyse the grain boundary energy

[80–82], it was observed that the low energy inter-

faces in martensitic CP–Ti alloys are associated with

the lowest population [34]. A similar observation can

be also observed in the martensitic Ti–6Al–4V alloy

where the low energy interfaces (i.e. the basal

ð0 0 0 1Þa0 plane with interplanar spacing of 2.0283 Å,

Table 4) constitute the lowest population. In parallel,

the interplanar spacings of the observed characteris-

tic planes have also been computed and summarized

in Table 4. Four-variant clustering largely leads to the

promotion 63.26�/½10 5 5 3�a0 and 60�=½1 1 2 0�a0 , having

a population of * 38% and * 33%, respectively

(Fig. 4b). The latter mostly terminated on the pyra-

midal ð1 1 0 1Þa0 plane and have a maximum intensity

of * 370 MRD (Fig. 6a). This boundary is also both

proper and improper quasi-symmetric (Fig. 6a), as

the ½1 1 2 0�a0 axis is a twofold symmetry axis [70]. The

ð1 1 0 1Þa0 plane has the second largest interplanar

spacing (i.e. 1.8019 Å, Table 4), suggesting a rela-

tively low energy configuration. This is consistent

with the molecular dynamics energy calculation [83],

showing that the pyramidal ð1 1 0 1Þa0 plane has the

minimum energy (168.7 mJ/m2) among the ½1 1 2 0�a0
tilt boundaries. It is worth mentioning that among

other sets of planes predicted to have low energies by

the molecular dynamic calculation, such as ð1 0 1 3Þa0 ,
ð1 0 1 2Þa0 and ð2 0 2 1Þa0 at rotation angles of 31.39�,
42.47� and 74.7�, respectively, only the 31.39� was

Table 4 The interplanar

spacing (dhkl) for different

measured intervariant planes

and their corresponding

population

Intervariant boundary Intensity (MRD) Interplanar spacing (Å)

Axis/angle Plane

Figure 5

All boundaries ð1 0 1 0Þa0 1.9 0.8519 or 1.7038*

ð1 1 2 0Þa0 1.65 1.4755

ð0 0 0 1Þa0 0 2.0283

ð1 0 1 1Þa0 1 0.3604 or 1.8019*

ð4 1 3 0Þa0 2.01 0.2363 or 0.4725*

Figure 6

10.53�/½0 0 0 1�a0 ð19 8 11 0Þa0 0.4 0.1547

60�/½1 1 2 0�a0 ð1 1 0 1Þa0 370.7 0.3604 or 1.8019*

60.83�/½1:377 1 2:377 0:359�a0 ð4 3 1 0Þa0 24.15 0.3219

ð5 3 2 0Þa0 21.00 0.1954 or 0.3908*

63:26�=½10 5 5 3�a0 ð3 2 1 0Þa0 490 0.3219 or 0.6439*

90�/½1 2:38 1:38 0�a0 ð1 1 0 1Þa0 51.58 0.0416 or 0.0833*

*Taking into account the structure factor as the plane passing through an additional atom [82]
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present in the misorientation angle distribution of the

martensite sample. This suggests that the martensitic

transformation in Ti–6Al–4V alloy and the associated

crystallographic constraints can simultaneously pro-

vide low energy configurations in the form of four-

variant clustering and terminate on pyramidal

planes. However, it is not always the case, as the

63.26�/½10 5 5 3�a0 intervariant boundaries having the

highest population terminate near to the ð3 2 1 0Þa0 tilt

boundary (Fig. 6c), with a relatively high energy

boundary plane configuration (Table 4).

Connectivity of the grain boundary network

The intervariant boundary network characteristics

(i.e. connectivity of the intervariants) were measured

through the analysis of triple junctions in the

martensitic microstructure of Ti–6Al–4V alloy. As

observed in Fig. 4b, the total length fraction of

intervariant boundaries contained above 99% of the

total boundary fraction. Therefore, the triple junction

analysis based on the intervariant boundaries can

represent a clear view of the boundary connectivity

and network throughout the microstructure. To this

end, the boundaries, which deviated from the ideal

intervariant lattice misorientations by 5� or more,

were initially eliminated from the microstructure.

Figure 8 (a) Inverse pole figure map of the martensitic microstructure in the Ti–6Al–4V alloy, (b) the corresponding variants’ ð0 0 0 1Þa0
poles and (c) schematic illustration of the martensitic lath clustering.
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Then, the triple junctions were identified in the

martensitic microstructure of Ti–6Al–4V alloy using

an in-house software. The triple junctions were clas-

sified based on the presence of specific intervariant

boundary type. In other words, the collected triple

junctions were categorized into three different clas-

ses, from 1 through 3, representing the number of a

specific intervariant boundary type at the triple

junction. For example, the class 2 triple junction

means that it consists of two similar intervariant

boundaries and one boundary related to other inter-

variant boundary types (Fig. 9). Similar analysis was

carried out on the martensitic CP–Ti microstructure

in reference [34] to investigate the effect of local

variant selection as a result of distinct martensitic

mechanism on the grain boundary network.

Figure 10 displays the number fraction of different

classes of triple junctions for all five types of inter-

variant boundaries in the CP–Ti and Ti–6Al–4V

martensitic microstructures. In total, 35,530 and

21,447 triple junctions were analysed in the CP–Ti

and Ti–6Al–4V martensitic microstructures, respec-

tively. The triple junction distribution for the

martensitic Ti–6Al–4V alloy is significantly different

from the martensitic CP–Ti (Fig. 10a, b). For the latter,

the number fraction of triple junctions consisting of

three 60�/½1 1 2 0�a0 intervariant boundaries (i.e. class

3) is significantly higher (53%) compared to the other

triple junction classes, and only * 1% of the triple

junctions belong to class 2. (Only two 60�/½1 1 2 0�a0
intervariants meet at the triple junction, as shown in

Fig. 10a.) For the Ti–6Al–4V martensitic

microstructure, the number fraction of the class 3

triple junction for the 60�/½1 1 2 0�a0 is significantly

lower (* 15%). By contrast, the class 3 triple junc-

tions for the 63.26�/½10 5 5 3�a0 are * 10% of the total

number of triple junctions, which is much higher

than for the CP–Ti martensitic microstructure (* 2%,

Fig. 10b). The other intervariant boundary types lar-

gely belong to the class 1 triple junction categories for

both martensitic microstructures (Fig. 10a, b).

The average boundary length for a given inter-

variant boundary between two triple junctions in the

martensitic CP–Ti and Ti–6Al–4V alloy was also

measured (Fig. 10c, d). In general, the average length

of intervariant boundaries in the martensitic CP–Ti is

much greater than the ones measured in the Ti–6Al–

4V martensite. This is not surprising as the latter

reveals a much finer microstructure than the CP–Ti

martensite (Fig. 10c, d). However, the average

boundary length for the Type 1, Type 3 and Type 5

intervariant boundaries is similar for both martensitic

microstructures (Fig. 10c, d). The highest average

boundary length is associated with the Type 2 and

Type 4 intervariant boundaries for the martensitic

CP–Ti, having the values of * 4.81 and * 4.31 lm,

respectively (Fig. 10c). However, these values are

much different for the martensitic Ti–6Al–4V alloy

where the highest average length belongs to the Type

4 intervariant boundary (* 0.18 lm), and the Type 2

intervariant has the second highest length

(* 0.15 lm). For the martensite CP–Ti, the promo-

tion of the 60�/½1 1 2 0�a0 intervariant boundary pop-

ulation through the formation of a triangular

I

OO I

I

I I

I

O

Class 1 Class 3Class 2

Figure 9 Classification of triple junctions based on the intervariant

boundary type associated with Burgers orientation relationship.

I andO represent the intervariant boundary of interest and the other

intervariant boundaries. For example, if the boundary of interest, I, is

60�=½1 1 2 0�a0 , other intervariant boundaries,O, would be one of the

remaining intervariant boundaries associated with Burgers OR (i.e.

10.53�/½0 0 0 1�a0 , 60.83�/½1:377 1 2:377 0:359�a0 , 63:26�=½10 5 5 3�a0
and 90�/½1 2:38 1:38 0�a0 ).

15312 J Mater Sci (2020) 55:15299–15321



morphology results in an increase in the length of

60�=½1 1 2 0�a0 compared to the other intervariant

boundaries. On the contrary, an increased population

of the 63.26�/½10 5 5 3�a0 boundary in the martensite

Ti–6Al–4V alloy through the formation of quadrilat-

eral-variant clustering slightly enhances the average

length of this intervariant boundary compared to the

60�/½1 1 2 0�a0 intervariant (Fig. 4). Therefore, the

changes in the variant arrangements of martensitic Ti

alloys can also result in different average lengths for

the intervariant boundaries.

The boundary triple junction analysis reveals a

significant change in the grain boundary network

due to the difference in the martensitic transforma-

tion mechanism in Ti alloys (Fig. 10). In the marten-

site CP–Ti, the shear martensitic transformation

appears to enhance the connectivity of the 60�/
½1 1 2 0�a0 intervariant boundaries at the triple junc-

tions (* 50% of class 3 triple junction) due to the

three-variant clustering, significantly promoting the

60�/½1 1 2 0�a0 boundary (refer to reference [34]).

However, the class 3 triple junction frequency is

significantly reduced for the 60�/½1 1 2 0�a0 boundary

in the martensitic Ti–6Al–4V microstructure (to *

15%), while the 63.26�/½10 5 5 3�a0 class 3 triple junc-

tion increases to * 10%. This is consistent with the

(c) (d)

2.51

4.81

2.66

4.32

2.54

0.07

0.15
0.18

0.09 0.10

(a) (b)

Figure 10 Fraction of specific types of intervariant boundaries

present in different types of triple junctions for (a) CP–Ti and

(b) Ti–6Al–4V, and the average length of the intervariant

boundaries between the triple junctions in the microstructure for

the martensitic (c) CP–Ti and (d) Ti–6Al–4V. Triple junction class

1 denotes the presence of at least on intervariant boundary of

interest and class 3 indicates that all the boundaries in the triple

junction are of the intervariant boundary of interest.
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morphological features observed in the martensitic

Ti–6Al–4V microstructure, where the quadrilateral-

variant clustering is dominant due to the twin-as-

sisted martensitic transformation mechanism, pro-

moting the formation of 63.26�/½10 5 5 3�a0 and 60�/
½1 1 2 0�a0 intervariant boundaries (Figs. 4 and 8). This

suggests that the change in the Ti alloy chemical

composition can significantly alter the network of the

boundaries within the microstructure through vary-

ing the martensitic phase transformation mechanism.

This finding can be employed as a novel approach to

engineer the grain boundary network in Ti alloys for

a property of interest through the phase

transformation.

Conclusion

In the current study, the intervariant boundary net-

work characteristics of a Ti–6Al–4V alloy subjected to

a martensitic phase transformation were investigated

through the crystallographic theories of displacive

transformations, five-parameter grain boundary

analysis and triple junction analysis. The followings

are the most important findings:

(1) Twinned martensitic laths were observed for

the b ! a0 transformation in Ti–6Al–4V alloy.

The crystallography associated with the trans-

formation was investigated by the WLR theory

and compared with the experimental measure-

ments. The important elements associated with

the theoretical calculation of the crystallo-

graphic features were the inhomogeneity and

distortion that led to the formation of twinned

a0 laths. The calculated habit plane was rela-

tively close to the experimentally measured

habit plane (i.e. 6.1� deviation).

(2) The phenomenological theory of martensite

revealed that the strain energy of the transfor-

mation is accommodated through the forma-

tion of four specifically oriented variants. This

prediction was consistent with the frequently

detected morphological features in the marten-

site microstructure, where a quadrilateral mor-

phology (four-variant clustering) consisted of

two V-shape intersecting laths with comple-

mentary orientations was observed. This

specific crystallographic arrangement pro-

moted 63:26�=½10 5 5 3�a0 and 60�=½1 1 2 0�a0 inter-

variant boundaries, accounting for * 38% and

33% of the total boundary population,

respectively.

(3) The five-parameter analysis of the intervariant

boundaries revealed the tilt/twist/mixed char-

acter of the intervariant boundaries. The inter-

variants associated with the four-variant

clusters naming the 63:26�=½10 5 5 3�a0 and

60�=½1 1 2 0�a0 intervariants had a twist ð3 2 1 0Þa0
plane and symmetric tilt ð1 0 1 1Þa0 character,

respectively. The comparison of the results with

previous studies showed that the change in the

chemical composition of Ti alloys may not lead

to a change in a0/a0 intervariant boundary

characteristics.

(4) The distribution of triple junctions in marten-

sitic Ti–6Al–4V alloy was characterized based

on the intersecting intervariant boundary and

then compared with CP–Ti martensite. The

distribution for Ti–6Al–4V was significantly

different from the distribution in CP–Ti. The

most connected intervariant boundary at the

triple junctions appeared to be 60�=½1 1 2 0�a0 in

the CP–Ti martensite microstructure, whereas

the connectivity of 63:26�=½10 5 5 3�a0 intervariant

boundary in the Ti–6Al–4V martensite was

greater than the 60�=½1 1 2 0�a0 intervariant

boundary. This difference showed that the

change in the martensitic transformation mech-

anism (slip vs twinning) associated with the

chemical composition may significantly affect

the grain boundary network in Ti alloys. This

may indicate that the theory of martensite can

be successfully used to predict the grain

boundary network of martensitic microstruc-

tures in Ti alloys.
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Appendix

Phenomenological theory of martensite
transformation

The phenomenological theory of martensite trans-

formation, which is based on the double shear

mechanism introduced by Greninger-Troiano [84],

has been developed by Bowles and Mackenzie (B–M

theory [85, 86]) and by Wechsler, Lieberman, and

Read (W–L–R theory [52, 53]). This implies that the

crystallographic changes during the martensite

transformation produce a linear strain resulting in

existence of an interface plane with no rotation and

distortion (invariant plane) at the vicinity of the

martensite lath and the matrix. Thus, the strain (i.e.

deformation) on this plane is called invariant plane

strain. However, for an employed homogeneous

deformation resulting from the crystallographic

changes of the parent and product lattices, known as

the Bain deformation, an invariant plane condition

cannot be met. This can be generally observed

through the imposing of the Bain distortion on sphere

parent crystal. The deformation resulting in an

ellipsoid shape shows that no lines or planes in the

parent sphere crystal (shown by letters in Fig. 11a)

can be unextended or undistorted, meaning that the

Bain distortion is not an invariant plane strain in

nature. In this regard, there should be an additional

shear, which does not impose a macroscopic shape,

although having a microscopically inhomogeneous

character. This lattice invariant shear (LIS), when

superimposed on the Bain strain, results in an

invariant plane within the shear transformation.

Since the LIS cannot produce any crystal changes, it

should have an inhomogeneous character such as

deformation by dislocation slip or twinning. This can

be illustrated in Fig. 7 where the lattice strain changes

the initial crystal into a deformed one (Fig. 7a), and

thus, the magnitude of A0B0 vector can be brought

back to AB through a lattice invariant shear either by

slip (Fig. 7d) or twinning (Fig. 7c) [40, 87]. Moreover,

there should be an additional rotation within the

matrix to coincide the A0B0 vector with the original

AB (Fig. 7b).

Therefore, the martensite transformation should

consist of a lattice deformation (Bain distortion), a

lattice invariant shear and a lattice rotation, which

can be represented in a matrix form of B, P and R,

respectively. The total shape deformation can be

represented, as P1 ¼ RBP. P1 can be described by

assuming the lattice invariant shear P. Based on the

prior descriptions and the fact that the LIS can be

ascertained by slip or twinning, the total shape

Figure 11 (a) The effect of

Bain strain (dashed ellipsoid)

on the parent phase (solid

circle), (b) after combination

with a rigid body rotation. The

invariant line ‘‘cd’’ can be

observed in (b) [40, 87].
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deformation in martensite transformation is descri-

bed through Wechsler, Lieberman and Read theories

in the following.

Wechsler–Lieberman–Read theory

Here, the shape deformation is presented as the P1,

which can be described through the production of

three matrices as follows:

P1 ¼ RBP ð5Þ

where the R, B and P are known as the rigid body

rotation, lattice deformation and a simple shear,

respectively. It is now necessary to determine the

plane and direction for the lattice invariant shear. The

rigid body rotation does not change the length of any

vectors; therefore, the vector v must remain unchan-

ged in magnitude as a result of the combination of P

and B. Meaning,

v0P0B0BPz ¼ v0v ð6Þ

Here, the prime mark denotes the transpose of the

matrix. Through this equation, the habit plane is

determined as an undistorted plane.

If the combination matrix of BP can be defined as F,

the relation changes into:

v0F0Fv ¼ v0v ð7Þ

Now, it is more convenient to express F as the

product of an orthogonal matrix R3 and a symmetric

matrix Fs. Therefore, the Fs can be diagonalized by

means of orthogonal transformation:

z0 ¼ R4z ð8Þ

In this regard, in the basis where the Fs is diagonal,

the P1 can be described as:

P1 ¼ RR3R4FdR
0
4 ð9Þ

where Fd is a diagonal matrix described as:

Fd ¼
k1 0 0
0 k2 0
0 0 k3

2
4

3
5 ð10Þ

Now, based on the this theorem, where the con-

dition for Eq. (6) is the presence of an undistorted

plane, one of the eigenvalues of Fd must remain unity

and the eigenvector must remain in the undistorted

plane, which gives,

F0F ¼ R4F
2
dR

0
4 ð11Þ

Therefore, a characteristic equation:

Det F0F� k2I
� �

¼ 0 ð12Þ

which can be solved. Here, I is the identity matrix.

Now, an orthonormal basis, which the lattice

invariant shear takes from, needs to be introduced.

This basis is defined by R5 as a 3 by 3 matrix, where

each column defines the unit shear direction (i.e. slip

direction, d2), the unit vector parallel to the shear

plane normal (i.e. slip plane normal, p2) and t through

the cross product of d2 and P2.

In this regard, the P in the orthonormal basis (P0)

can be defined as:

Φ1Φ2
Mirror plane

C2
C

C1

B1DD2A1
A2

D1
B

B2

A2
A1

B1

B2
C2

C1

1

2

Figure 12 Schematic

representation of the symmetry

correspondence between two

crystallographic variants [40].
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Po ¼
1 g 0
0 1 0
0 0 1

2
4

3
5 ð13Þ

Now, Bain strain can be transformed into the

orthonormal basis through,

Bo ¼ R0
5BR5 ð14Þ

Then, F can be defined easily in the orthonormal

basis,

Fo ¼ BoPo ð15Þ

In this regard, Eq. (12) takes a quadratic form and

can be solved. Concurrently, the corresponding

eigenvectors define the orthogonal matrix R4, which

as indicated diagonalizes the F0F (i.e. Eq. 11).

Now, the g value and the undistorted plane in

Eqs. 6 and 13 can be solved, respectively. The R can

be also obtained using the Euler theorem. Here, two

vectors in the habit plane can be considered in the

orthonormal basis, naming r and #. Then, the vectors

should be defined in the orthogonal matrix R4, as r

and #. The magnitude of u (i.e. vector parallel to the

desired axis of rotation) and the tangent half angle of

the rotation can be obtained:

#� # �� ½r� r
� �

r� r½ � � #þ #
� � ¼ u tan

h
2

� �
ð16Þ

Then, u and h can be utilized to calculate the rigid

body rotation (R). The R and P1 values can be

obtained using the following equation and Eq. 6,

respectively:

R ¼
a2

11bþ cos h a11a12b� a31 sin h a11a31bþ a21 sin h
a21a11bþ a31 sin h a2

21bþ cos h a21a31b� a11 sin h
a31a11bþ a21 sin h a31a21bþ a11 sin h a2

31bþ cos h

2
4

3
5

ð17Þ

where the aij are the indices for the orthonormal

matrix R5.

For the accommodation of lattice invariant strain

through twinning, the parent phase is evolved

through two twin-related orientations in the

martensitic phase. Therefore, two equivalent crystal-

lographic strains need to be operated to produce two

twin-related variants in the product phase. This is

expected to form the symmetry configuration point of

view, as the transformation process has a general

tendency to restore the reduction in symmetry ele-

ments through creating a number of crystallographic

variants. An illustration of such is depicted in Fig

12. It is observed that the parent lattice indicated by

the notation ABCD produces two twin-related

equivalent lattices. Therefore, the parent lattice loss of

mirror symmetry is compensated through forming

the twinned product crystals.

For such transformation, the lattice deformation

(Bain strain, B1) for the two twin-related orientations

can be represented in their principal axes systems, as

follows:

B0
1 ¼

g1 0 0

0 g2 0

0 0 g3

2
64

3
75

B0
2 ¼

g1 0 0

0 g3 0

0 0 g2

2
64

3
75

ð18Þ

However, it is more convenient to represent the

lattice strains in the parent crystal coordinate system,

meaning that the axis system of the martensite crys-

tals should be rotated into the parent phase. There-

fore, B1 and B2 can be obtained, as follows:

B1 ¼

g1 þ g2

2

g2 � g1

2
0

g2 � g1

2

g1 þ g2

2
0

0 0 g3

2
6664

3
7775

B2 ¼

g1 þ g2

2
0

g2 � g1

2
0 g3 0

g2 � g1

2
0

g1 þ g2

2

2
6664

3
7775

ð19Þ

Similar to the Bowles and Mackenzie theory, B1

and B2 can be brought into twin-related orientations

through a rigid body rotation of /1 and /2, respec-

tively. These rotations are indicated by the 1 and 2

numbers, respectively, as clearly observed in Fig. 12.

Therefore, /1 and /2 describe the rotations of the

principal axes of the pure distortions in regions 1 and

2 relative to an axis system fixed in the untrans-

formed parent phase.

It should be considered that the volume fraction of

each orientation can be expressed in terms of their

thickness ratio, which is determined based on the IPS

condition required for the lattice invariant deforma-

tion. Therefore, an arbitrary vector such as r in the

matrix (Fig. 7) becomes like a twinned martensite

crystal shown as a zigzag line where each orientation

consumes a thickness of (1 - x) and x, respectively.
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The transformation of vector r into the r0 can be

expressed as the sum of the vectors OV ¼ OAþ ABþ
BCþ � � � þUV or by the indicated lattice distortions

and rigid body rotation, as follows:

r0 ¼ 1 � xð Þ/1B1 þ x/2B2½ �r ð20Þ

r0 ¼ Er ð21Þ

E ¼ 1 � xð Þ/1B1 þ x/2B2½ � ð22Þ

In this regard, the total distortion matrix, E, can

transform any vector in the parent matrix into an

internally twinned martensite.

To define the rigid body rotations, /1 and /2 can-

not be determined from the available data set.

However, a rotation / (/2 ¼ /1/), which gives the

relative rotation between /1 and /2, can be defined

and the total macroscopic shear can be expressed, as

follows:

E ¼ /1 1 � xð ÞB1 þ x/B2½ � ¼ F/1 ð23Þ

where F ¼ 1 � xð ÞB1 þ xB2.

Therefore, the macroscopic shear tacking place

during the martensitic transformation contains three

components, naming /1(i.e. rigid body rotation), F

(i.e. the fraction of the shear by the twins) and B1 (i.e.

the Bain strain). For the certain values of x (magni-

tude of lattice invariant shear, LIS), the matrix pro-

duces an eigenvalue problem for the vectors in the

habit plane.
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53-020-05075-7) contains supplementary material,

which is available to authorized users.

References

[1] Lütjering G, Williams JC (2007) Titanium, 2nd edn.

Springer, Berlin

[2] Lütjering G (2002) Influence of processing on microstructure

and mechanical properties of (a?b) titanium alloys. Mater

Sci Eng A 243:32–45. https://doi.org/10.1016/s0921-5093(

97)00778-8

[3] Ghonem H (2010) Microstructure and fatigue crack growth

mechanisms in high temperature titanium alloys. Int J Fati-

gue 32:1448–1460. https://doi.org/10.1016/j.ijfatigue.2010.

02.001

[4] Serra A, Bacon DJ, Pond RC (2002) Twins as barriers to

basal slip in hexagonal-close-packed metals. Met Mater

Trans A 33:809–812. https://doi.org/10.1007/s11661-002-1

012-6
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