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1 |  INTRODUCTION

Grain growth occurs through the motion of individual grain 
boundaries and the rate of grain growth is determined by the 
grain boundary velocity (v) at a specific temperature and 
pressure. The general expression for the boundary velocity1,2 
at a point i is:

This expression applies to each point of interest where �i 
is the grain boundary energy at that point, Mi is the grain 

boundary mobility, and �
1
 and �

2
 are the principal curvatures. 

The derivatives with respect to �
1
 and �

2
 measure the changes 

in surface energy with respect to changes in the orientation 
of the surface normal in the two principal directions. The 
expression in Equation 1 is difficult to use in practice be-
cause grain boundary energies and mobilities vary with grain 
boundary crystallography. Grain boundary energies vary with 
lattice misorientation and grain boundary plane orientation3 
and mobilities vary with lattice misorientation.4‒6 As a result, 
Equation 1 is rarely used.7 More commonly, it is applied in 
the following simplified form:
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Abstract
By mapping grain orientations on parallel serial sections of a SrTiO3 ceramic, it 
was possible to reconstruct three‐dimensional orientation maps containing more than 
3000 grains. The grain boundaries were approximated by a continuous mesh of trian-
gles and mean curvatures were determined for each triangle. The integral mean cur-
vatures of grain faces were determined for all grains. Small grains with fewer than 16 
neighbors mostly have positive mean curvatures while larger grains with more than 
16 neighbors mostly have negative mean curvatures. It is also possible to correlate 
the mean curvature of individual triangles with the crystallographic characteristics 
of the grain boundary. The mean curvature is lowest for grain boundaries with (100) 
orientations and highest for grain boundaries with (111) orientations. This trend is 
inversely correlated to the relative areas of grain boundaries and directly correlated 
to the relative grain boundary energy. The direct correlation between the energy and 
curvature is consistent with the expected behavior of grain boundaries made up of 
singular orientations. Furthermore, because both the relative energy and curvature 
of grain boundaries with (100) orientations are minima in the distributions, these 
boundaries also have the lowest driving force for migration.

K E Y W O R D S
grain boundaries, microstructure, strontium titanate

www.wileyonlinelibrary.com/journal/jace
https://orcid.org/0000-0002-1636-4939
https://orcid.org/0000-0002-6192-4026
mailto:￼
https://orcid.org/0000-0002-9671-3034
mailto:gr20@andrew.cmu.edu


7004 |   ZHONG et al.

where H is the mean curvature (H = 1/2(�
1
 + �

2
)) and <M> 

and <�> are averages over the variations that occur for grain 
boundaries with different crystallographic parameters (note 
that throughout this document, we generally refer to mean 
curvature simply as curvature). While this might be a reason-
able approximation in some cases, it often fails to predict the 
motions of specific boundaries.8,9

Of these physical quantities, perhaps the least is known 
about the curvature. In most work, H is assumed to be the 
inverse of the mean spherical equivalent grain radius. With 
the emergence of three‐dimensional microscopic techniques 
and simulations, it has become possible to locally measure 
curvature within voxelized microstructures10‒15 and a tech-
nique that can be used to measure local grain boundary cur-
vature and correlate it to the crystallography of the grain 
boundary has recently been reported.16 The method has been 
applied to two ferrous alloys and it was found that the curva-
ture varies strongly as a function of the grain boundary plane 
orientation. Here, we apply the same technique to a ceramic 
(SrTiO3) and explore in more detail the correlations among 
the grain boundary relative area, energy, and curvature.

SrTiO3 was selected for this study for two reasons. First, 
we already have some knowledge of the types of grain 
boundaries that exist in SrTiO3 and their energetics.17‒19 
Second, there is considerable current interest in grain 
boundary motion in SrTiO3 because of the grain growth 
anomaly that occurs in the temperature range of 1350°C to 
1425°C.20‒24 In this temperature region, the grain growth 
rate constant decreases by two orders of magnitude, while 
in most cases the grain growth rate constant is expected 
to increase with temperature.22 The decrease in the rate 
constant is the result of an increasing concentration of rel-
atively slowly moving grain boundaries. There is also a 
change in the distribution of grain boundary planes, with 
the fraction grain boundaries with the (100) orientation 
increasing in the region where the grain growth rate con-
stant decreases.17 In the same temperature range, there is 
a decrease in the grain boundary energy.25 These observa-
tions have been interpreted as evidence for a grain bound-
ary structural transition. However, microscopic studies of 
the boundaries do not provide strong evidence for such a 
transition.26‒28 Shih et al26 reported a tendency for larger 
grains to have atomically flat (100) oriented grain bound-
aries. Sternlicht et al noted no difference in the structure of 
the fast moving and slower boundaries.28 The same group 
reported that the boundaries move by the motion of steps 
and that on the microscopic level, the boundaries were 
made up of a limited number of low index atomically flat 
orientations.27,28

The purpose of this paper is to describe the distribution of 
grain boundary characters, grain boundary energies, and grain 
boundary curvatures as function of the five crystallographic 
parameters in SrTiO3. We have used three‐dimensional 

electron backscattered diffraction (3D‐EBSD) to determine 
the orientations and shapes of more than 3000 grains. The 
relative areas and curvatures of different types of boundar-
ies have been measured. Assuming local equilibrium at tri-
ple lines, the geometries of tri‐grain junctions were used to 
approximate the relative grain boundary energy. It has been 
found that grain boundary curvatures not only depend on 
the crystallography of the grain boundary, they are also cor-
related to the relative areas and the relative grain boundary 
energies.

2 |  EXPERIMENTAL METHODS

A polycrystalline ceramic was prepared from commercially 
available SrTiO3 powder (Sigma‐Aldrich Corp., St. Louis, 
MO, 99% pure). The powder was dry‐ground for approxi-
mately 10 minutes in an alumina mortar and uniaxially com-
pacted at 1000 psi to form a 1⁄2" diameter pellet. The pellet 
was fired in air in a box furnace (Lindberg/Blue M 1700°C 
box furnace, Riverside, MI) according to the following heat-
ing schedule. The furnace was heated at 10°C/min to 900°C. 
After a 10 hours dwell, it was heated at 5°C/min to 1340°C. 
After another 10 hours dwell, it was heated at 20°C/min to 
1470°C, held at that temperature for 30  minutes, and then 
furnace cooled to room temperature.

3D‐EBSD data were collected using procedures that 
have already been described in detail.29 The sample was 
milled with a Ga+ion focused ion beam (Nova 600, FEI Co., 
Hillsboro, OR) and the backscattered diffraction patterns 
were collected using an EBSD detector (EDAX, Mahwah, 
NJ). The sample was ion milled at 30 kV and 3 nA and the 
EBSD data were acquired on a hexagonal grid using a 30 kV 
beam at a current of 9.5 nA.

The design of the heat treatment and the choice of EBSD 
parameters were determined from the requirement that the 
data should cover thousands of grains, which is necessary for 
analyzing the distribution of grain boundary properties as a 
function of the five independent crystallographic parameters. 
To obtain data from this many grains in a reasonable period 
of time, one must consider the spatial resolution of EBSD 
orientation maps, the amount of time it takes to record the 
orientation maps, and the amount of time it takes to remove 
a layer of material by serial sectioning. The latter two pa-
rameters are characteristics of the instrument; for the instru-
ment used for this study, we were limited to samples with 
average grain diameters between 1 and 5 μm (although for 
more modern instruments, the upper bound on the grain size 
has increased considerably). The limits arise because if the 
grains are too small, it is not possible to resolve the interface 
shapes and if the grains are too large, the rate of ion milling 
and data acquisition make the length of the experiment im-
practical. The in plane EBSD resolution was 300 nm and the 
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spacing between layers was also 300 nm. Two volumes were 
collected, one consisting of 36 layers and another consisting 
of 40 layers.

In the first step, the data were cropped and cleaned using 
the TSL OIM software. Each area in the two volumes was 
cropped to 69.3 μm × 38.4 μm or 63.6 μm × 76.8 μm. The 
EBSD data were cleaned using two iterations of grain dilation 
with a minimum grain size of 10 pixels. This procedure con-
siders any grouping with fewer than 10 pixels, or disorienta-
tions of <5°, to be insufficient to define a grain and assigns 
their orientation to match the orientation of an adjacent grain. 
A single average orientation was assigned to each grain, with 
an individual grain being defined as a set of pixels whose 
disorientations lie within 5° of one another. These maps were 
used as the input for the remainder of the analysis.

To measure the grain boundary character distribution 
(GBCD), which is the relative areas of grain boundaries as a 
function of the boundary misorientation and boundary plane 
orientation, and the grain boundary curvature distribution 
(GBHD), which is the unsigned mean curvature of grain 
boundaries as a function of the same five parameters, it is nec-
essary to reconstruct the 3D interface structure. These steps 
are all carried out using open source software DREAM.3D 
version 6.4.30 All of the procedures are similar to those used 
in Ref. [31] and are briefly outlined here. The first step of 
reconstruction is to stack the 2D serial sections together to 
create continuous 3D volumetric data. To do this, it is neces-
sary to correct unavoidable small misalignments between the 
sections and points in the maps where the orientations were 
not reliably determined (based on the confidence index (CI) 
assigned by the OIM software). Vertically adjacent sections 
were aligned to minimize the misorientations between the 
sections and voxels with low CI orientations were replaced 
by the orientations of its more reliable nearest neighbor vox-
els using the rule of majority vote. The microstructure was 
segmented into grains by grouping contiguous voxels with 
similar orientations (<5°) and assigning them a unique iden-
tification number (ID). After segmentation, DREAM.3D also 
makes it possible to compute microstructure statistics such as 
grain sizes, average grain orientations, and number of neigh-
bors, for example.

Within DREAM.3D, a grain boundary is the interface 
between the segmented grains. Because of the terrace‐step 
geometry of the interface created by the cube‐shaped voxels, 
these interfaces are poor imitations of real grain boundaries, 
which are presumed to be smooth on a micron length scale. 
To create smoother interfaces, we used the quick mesh fil-
ter, followed by the Laplacian smoothing filter. After these 
operations, the interfaces are represented by a collection 
of triangles forming a continuous mesh. The mesh cov-
ered approximately 19 000 grain faces and was made up of 
2 800 000 triangular grain boundary patches. For each tri-
angle, we know the orientation of the grain on either side of 

the triangle, the triangle's orientation, its area, and its mean 
curvature. The triangle mean curvature was calculated from 
a least‐squares fit method using the second and third neigh-
borhood of the central triangle. The details are described 
in Refs. [16,32]. It is then possible to examine the relative 
areas and absolute curvatures of the boundaries as a func-
tion of the five crystallographic parameters that describe the 
grain boundary. It is also possible to add the curvatures of 
the triangles bounding a single grain to determine the inte-
gral mean curvature of grain faces (Ms) for each grain. Note 
that extreme mean curvature values also exist because of im-
perfect mesh quality, especially at triple lines and quadruple 
points. Because these values are thought to be nonphysical, 
curvatures with a magnitude greater than ±100 μm−1 were 
excluded from the mean curvature calculation.

The relative grain boundary energies were estimated 
using the method developed by Morawiec.33 The method is 
based on the assumption that the triple junctions are in local 
thermodynamic equilibrium and that this equilibrium is de-
scribed by the Herring34 equation. In Morawiec's method, the 
Herring equilibrium is expressed as a vector equation using 
Hoffman and Cahn's capillarity vector:35,36

here, 𝜁 i are the capillarity vectors associated with the three 
grain boundaries and l⃗  is the direction of the triple line. As 
explained in detail in Ref. [33], the component of 𝜁  perpen-
dicular to the boundary is ���⃗𝜁⊥= 𝛾

(
n⃗
)

n⃗, where 𝛾
(
n⃗
)
 is the 

inclination dependent energy for that boundary and n⃗ is the 
surface normal. The component of 𝜁  parallel to the boundary 
is ��⃗𝜁∥ = (𝜕𝛾∕𝜕𝛽)

max
t⃗ . Here, t⃗  is a vector tangent to the sur-

face and � is a right‐handed angle of rotation about l⃗ . The 
experimental observables are l⃗ , n⃗, and t⃗ ; the unknowns are 
the scalar components of 𝜁 . The five‐dimensional space of 
grain boundary characters was discretized with 9 bins per 
90° using procedures described in detail elsewhere19,37 and 
each discrete bin is associated with a capillarity vector. An 
iterative procedure is then used to find the set of capillarity 
vectors that most nearly satisfies this system of linear equa-
tions (33). In the present case, we have 21,698 observed triple 
junctions and the distribution converged after 200 iterations 
using a relaxation factor of 0.1 (here, the condition for con-
vergence is that the change on the last iteration is less than 1% 
of the change in the first iteration). The energies are relative 
to one another and normalized so that the average is unity. We 
therefore named the units of the energy “relative units (r.u.).”

3 |  RESULTS

Two volumes of the SrTiO3 ceramic and an example of a re-
constructed grain, showing the triangular mesh representing 

(3)
(
𝜁1+𝜁2+𝜁3

)
× l⃗=0
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the boundaries, are illustrated in Figure 1. There are a total of 
3032 grains. If we define bulk grains as those whose centroids 
are separated from the nearest free surface by more than the 
average grain diameter, then there are 887 bulk grains. The 
average (spherical equivalent) grain diameter, D, is 3.33 μm, 
but it is clear from the images that the grain size distribution 
is not normal. The largest grain in the sample has a diameter 
of 14.5 μm, which is more than four times the average. The 
average number of neighbors per grain (taken to be equiva-
lent to the number of grain faces, F), is 11.9. The distribu-
tions of grain sizes and grain faces are shown in Figure 2A,B, 
respectively. In both cases, the main part of the distribution 
appears normal, but the tails extend to higher than expected 
values. To show the distributions more clearly, a few very 
large grains with many sides were excluded. When these 
distributions are compared, as in Figure 2C, it is apparent 

that the grain size and the number of grain faces are corre-
lated such that the larger (smaller) grains tend to have more 
(fewer) faces. This is consistent with observations reported 
for other materials.13,31

The integral mean curvature of grain faces was cal-
culated for each bulk grain by summing the products of 
the area and curvature for every triangle bounding a given 
grain. The integral mean curvature of grain faces will be 
referred as the integral curvature in the remaining text for 
readability purpose. However, we note here that the cur-
vature at triple lines and quadruple points were not con-
sidered in any calculations of this paper. In Figure 3, the 
values of Ms for every grain have been classified by grain 
size. Each point is the average of Ms in that size class 
and the bar shows the standard deviation of Ms within that 
size class (note that, for clarity, six grains with diameters 

F I G U R E  1  Two volumes of 
SrTiO3 and a reconstructed grain. (A) 
69.6 μm × 38.7 μm × 10.8 μm (B) 
63.9 μm × 89.1 μm × 12 μm. The grains 
in (A) and (B) are colored by orientation, 
according to the color key. (C) The mesh 
around a reconstructed grain, colored by the 
absolute value of the mean grain boundary 
curvature. (D) The same grain in (C) but 
colored by the grain boundary normal 
direction [Color figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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larger than 10 μm were excluded from this plot). A clear 
trend appears that smaller grains have positive curva-
tures (are convex) and larger grains have negative cur-
vatures (are concave). The cross over from positive to 
negative curvature occurs for grains with diameters of 
about 3.8  μm, which is greater than the mean diameter 
(3.3  μm). With reference to Figure 2A, this shows that 
the majority of grains have positive curvature. Because 
grain boundaries move toward their centers of curvature, 
the smaller convex grains should tend to shrink and the 
larger concave grains should tend to grow. However, note 
that within each size class, there is a range of curvatures 
and in many cases the distribution spans positive and neg-
ative curvatures. This might arise from uncertainties in 
the measurement, but it also might arise from local fluc-
tuations in curvature that depend on a grain's neighbors.38 
If so, then not all grains of the same equivalent diameter 
have the same sign of curvature. The largest grains have 

F I G U R E  2  The distributions of diameters and numbers of faces in SrTiO3. (A) Grain size distribution. (B) Distribution of the number of 
grain faces. (C) The relationship between the grain diameter and the number of grain faces. In each category, the color indicates number of grains in 
this category [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E  3  Integral mean curvature (Ms) of grains as a function 
of the spherical equivalent grain diameter. For each category, the circle 
is the mean value and the line shows one standard deviation

www.wileyonlinelibrary.com
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strongly negative curvatures and are expected to grow and 
consume the smaller grains.

Considering the relationship between the grain size and 
the number of grain faces illustrated in Figure 2C, a similar 
relation between curvature and number of grain faces should 
be observed. Figure 4A shows the average and standard de-
viation of integral mean curvatures for grains with different 
numbers of faces (note that, for clarity, nine grains with more 
than 40 faces were excluded from this plot). The mean val-
ues of Ms are positive for grains with fewer than 16 sides 
and the mean values of Ms are negative for grains with 16 or 
more sides. However, as before, there are a range of classes 
(between 11 and 21 faces) where both positive and negative 
values fall within one standard deviation of the mean. The 
results in Figure 4A affirm the well known connection be-
tween the number of grain faces and the curvature, that grains 
with few (many) faces have positive (negative) curvatures, 
are convex (concave), and are likely to shrink (grow).39‒41 
The distribution of integral mean curvatures in each topology 
class suggests that the number of grain faces alone does not 
uniquely determine the integral curvature for 3D grains. This 
is in contrast to a 2D isotropic model, where the number of 
neighbors determines the curvature.

It has been previously suggested that the grains with zero 
curvature are those whose numbers of faces (F) are the same 
as the average numbers of faces of their nearest neighbors, 
<FNN>.13 We therefore define the number of excess faces 
as F ‐ <FNN>. Using data for �‐Ti,13 an austenitic steel,16 
and phase field grown microstructures42 this proposition was 
shown to be true, at least on average. Figure 4B presents the 
current curvature measurements as a function of F ‐ <FNN>. 
Here, we use the normalized integral mean curvature (′), 

which is determined from the integral mean curvature and the 
spherical equivalent grain radius (R): � = M

s
∕R. As pointed 

out in Ref. [13], only grains whose nearest neighbors are all 
unbiased, namely centroids separated from the nearest free 
surface by more than the average grain diameter, can be con-
sidered in the analysis of <FNN>. However, when this condi-
tion was enforced, too few grains remained for the analysis. 
We conducted the F ‐ <FNN > analysis with the 887 grains 
used in Figures 3 and 4A, which are unbiased themselves but 
may have biased neighbors. It is interesting to note that the 
correlation between ′ and F ‐ <FNN > is actually robust even 
though biased neighboring grains were included. In Figure 
4B, the individual grain data points are shown as gray circles 
and the averaged values for each topology class (F ‐ <FNN>) 
are shown as red squares. It can be seen that for the class 
averaged values, ′ and F ‐ <FNN > are almost linearly cor-
related and a fitted line will pass through the origin almost 
exactly. We conclude that the close correlation between and 
F ‐ <FNN> previously observed in metals13,16 also occurs in 
this ceramic.

The distributions of the relative areas of grain bound-
aries, their relative energies, and their curvatures, when 
classified by crystallography, show correlations. In Figure 
5, the relative energies, areas, and absolute mean curva-
tures are plotted as function of the orientation of the grain 
boundary plane, ignoring the boundary misorientation. The 
distribution of grain boundary planes, illustrated in Figure 
5B, shows a preference for grain boundaries with (100) 
orientations and the minimum at (111). This is consistent 
with earlier measurements.17,19 The relative grain bound-
ary energy (Figure 5C) is lowest at (100) and highest at 
(111). This inverse relationship between the relative grain 

F I G U R E  4  (A) Integral mean curvature (Ms) of grain faces as a function of the number of grain faces, F, for each grain. For each category, 
the circle is the mean values and the line shows one standard deviation. (B) Normalized integral curvature of grain faces (′) as a function of 
F ‐ <FNN>. F ‐ <FNN > is the difference between the number of faces of one grain (F) and the average number of faces of its nearest neighbors 
(<FNN>) [Color figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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boundary area and energy is consistent with measurements 
of other polycrystals that evolved by grain growth.3,37,43 
The absolute value of the curvature also depends on the 
orientation of the grain boundary plane. In this case, the 
minimum curvature is at the (100) orientation and the 
maximum curvature is at the (111) orientation. These re-
sults show a direct correlation between the curvature and 
the energy and an inverse correlation between the curva-
ture and the relative grain boundary area. As an example, 
faces of a single grain with these characteristics are shown 
in Figure 1C,D. The black arrows indicate two grain faces 
with mostly (100) orientations and low curvature. Such flat 
(100) faces are common in the microstructure and have 
been observed in several experimental studies.26,44 The 
yellow arrow indicates a grain face with (110) orientations 
and relatively high curvature.

The correlations suggested by the results in Figure 5 can 
be tested. Specifically, we can determine the average value 
of one property for all of the boundaries that have a sec-
ond property within a certain range. For example, when we 

average the energies of all grain boundaries that have relative 
areas within a 0.05 MRD range, the correlation in Figure 6A 
is obtained. Note that although there is some scatter, there 
is an inverse correlation between the quantities. When the 
curvatures of all boundaries within a 0.05 MRD range are 
averaged, there is also an inverse correlation (see Figure 6B). 
When the curvatures of all boundaries within a 0.05 r.u. range 
of the relative energy are averaged (Figure 6C), there is a pos-
itive correlation over the majority of the domain (>0.8 r.u.). 
All three of these trends are consistent with the trends ob-
served in Figure 5.

It is also possible to examine these grain boundary proper-
ties as a function of grain boundary plane orientation at a fixed 
misorientation and one example is illustrated in Figure 7. The 
relative areas of different grain boundary planes are shown 
in Figure 7B. The maxima in the distribution are centered on 
the orientations of the symmetric tilt boundaries at (031) and 
(01̄3). The secondary maxima are at the (100) and (1̄00) orien-
tations. Being perpendicular to the misorientation axis, they 
are twist boundaries. An energy minimum (see Figure 7C) is 

F I G U R E  5  Variations of grain boundary properties, plotted as a function of grain boundary plane orientation (ignoring the grain boundary 
misorientation) [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E  6  Correlations between average values of grain boundary properties. (A) The average energies of all boundaries in a 0.05 MRD 
range of relative area. (B) The average curvatures of all boundaries in a 0.05 MRD range of relative area. (C) The average curvatures of all 
boundaries in a 0.05 r.u. range of relative energy. In each plot, only averages determined from at least three observations are included. The standard 
deviations of the average energies in (A) and curvatures in (B) and (C) are 0.2 r.u., 0.12 and 0.08 μm−1, respectively

www.wileyonlinelibrary.com
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also at the symmetric tilt grain boundary position and there 
are other local energy minima near the twist grain boundary 
positions, consistent with the inverse correlations evident in 
Figures 5 and 6. The low curvatures at the twist boundary 
positions and the symmetric tilt positions are consistent with 
the correlation to energy and inverse correlation to area in 
Figures 5 and 6. The examination of the distributions at other 
misorientations (not shown) exhibit similar trends.

4 |  DISCUSSION

The results for the integral mean curvature as a function of 
the grain size (Figure 3) and the number of faces (Figure 4A) 
vary in such a way that on average small grains, with 16 or 
fewer faces, have positive curvature and are therefore convex. 
Larger grains with more than 16 faces on average have nega-
tive curvatures and are therefore concave. It should be noted 
that the sign of the integral mean curvature does not imply 
that the curvature of every face has the same sign; it repre-
sents the net curvature. These results are similar to results 
previously published for �‐Ti13 and two ferrous alloys,16 sug-
gesting that there are no significant differences in the relation 
between the neighborhood topology and curvature for metal-
lic and ceramic polycrystals. If one compares the distribution 
of grains as a function of the number of sides (Figure 2B) and 
the integral mean curvature as a function of the number of 
sides (Figure 4A), it is clear that far more grains have posi-
tive curvature than have negative curvature. Therefore, more 
grains are convex and, presumably, shrinking than there are 
concave (negative curvature) growing grains. By conserva-
tion, all volume lost from shrinking grains must be gained by 
growing grains. Interestingly, when we plot the cumulative 

volume as a function of the number of sides (see Figure 8) 
using all 3032 grains within the two sample volumes, we 
see that 50% of the total volume is in grains with more than 
16 neighbors. So, while there are fewer concave grains with 
more than 16 neighbors, they are on average larger than the 
grains with fewer than 16 neighbors.

Given the relationships between grain size, number of 
neighbors, and integral mean curvature, one might assume 
that the correlation between curvature and grain boundary 
crystallography would be weak. However, Figures 5A and 
7A show that this is not the case. It is important to emphasize 
that the curvatures in these figures were classified only by 

F I G U R E  7  The (A) curvatures, (B) relative areas, and (C) relative energies as a function of grain boundary plane orientation for boundaries 
with a 40° misorientation around [100]. Each distribution is plotted in stereographic projection. The (031) and (01̄3) orientations are marked by 
black squares and the (100) and (1̄00) positions are marked with triangles. This is also the position of the misorientation axis [Color figure can be 
viewed at wileyonlinelibrary.com]

F I G U R E  8  Cumulative fraction of the total volume of grains 
when classified according to number of neighbors. The dashed lines 
mark the position of ½ of the cumulative volume fraction and 16 
neighbors

www.wileyonlinelibrary.com
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crystallography, meaning that the value at every orientation 
is the average of data from grains of all sizes. In other words, 
grain boundaries with (100) orientations have lower curva-
tures (are flatter) on average then boundaries of (111) ori-
entation, regardless of the size of the grain. Note that this is 
an unsigned curvature. Because of grain exchange symmetry, 
the sign of the boundary curvature is not unique. If a grain 
boundary is convex in the reference frame of one grain, it is 
concave in the indistinguishable reference frame of the other. 
The fact that the crystallographic correlation is independent 
of grain sizes arises because of the requirement that single 
boundaries join large and small grains.

A possible explanation for the relationship between a grain 
boundary's curvature and crystallography is the tendency of 
an interface to have a uniform chemical potential when local 
equilibrium occurs in the microstructure. Herring1 defined 
the chemical potential of a nonsingular interface (�

ns
) as:

If we ignore the second derivatives and define the mean 
curvature as H = 1/2(�

1
 + �

2
), then Equation 4 reduces to the 

simplified form:

Assuming that there is a mean field chemical potential, 
and individual interfaces have chemical potentials that ap-
proximate this value, then Equation 5 indicates that the cur-
vature and the energy should be inversely related. This is 
reasonable, because curvature increases the interface area 
and the energy penalty for this curvature increases with 
the energy of the boundary. However, this is not consistent 
with the data, which shows curvature and energy to be di-
rectly proportional.

The observations that H and � are not inversely related 
suggest that these boundaries may not be continuously 
curved surfaces. Evidence for the existence of facets can be 
found in Figure 7C, where there are abrupt minima in the 
grain boundary at the positions of the symmetric tilt and 
twist boundaries. If a grain boundary were made of singu-
lar interfaces, then there is a different prescription for de-
termining the chemical potential, which was described by 
Herring1 and Taylor.45 For the case of singular interfaces, 
� is undefined and � is not differentiable, so Equation 4 is 
inoperable. When a singular (flat) interface moves along 
its normal, the change in energy occurs at the periphery of 
the facet and to the boundaries connected at the periphery, 
as illustrated schematically in Figure 9. We illustrate this 
point in the next paragraph.

Imagine a ridge that is infinitely long in the y direction, 
as in Figure 9. We can describe its energy change per unit 
length in the y direction when the flat top surface moves in 

the z direction. As illustrated in Figure 9, this hypothetical 
ridge is bounded by three facets of two types. The top facet 
is of type 2. The left and right facets are of type 1. If the 
top facet in Figure 9A moves downward by Δz, its area in-
creases by A�− = 2��

2
. At the same time, some area of the 

lateral type 1 facets (2��
1
) is eliminated. The exact energy 

change 
(
2��

2
�

2
Δzcot (�)−2��

1
�

1
Δz∕sin (�)

)
depends on the 

energies of �
1
 and �

2
 (�

1
 and �

2
), the distance the facet moves 

(Δz), and the angle between the facets (�). This illustrates the 
key difference between the energy changes that occur during 
the motion of a singular and nonsingular boundary. For the 
nonsingular case, the energy change is determined com-
pletely by the radius of curvature and the energy of the grain 
boundary of interest. For the singular case, it is determined 
by the details of the specific geometry (� in the simplified 
case illustrated in Figure 9) through the weighted mean cur-
vature45 and the boundary energy of both the boundary of 
interest and peripheral boundaries. In polycrystalline micro-
structures, a grain boundary, singular or nonsingular, is usu-
ally connected to many different types of grain boundaries, 

(4)�
ns
=

(
�+

�2�

��2

1

)
�

1
+

(
�+

�2�

��2

2

)
�

2

(5)�
ns
=2H�

F I G U R E  9  Schematic of a ridge, assumed to extend infinitely 
in the + and −y directions, formed when two surfaces of type 1 meet a 
surface of type 2. (A) Initial position. (B) After surface 2 retracts by an 
amount Δz. (C) Illustration of the changes in the surface area
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although the types of these neighbors are not completely ran-
dom.46 Considering all of the possibilities for �, �

1
, and �

2
, it 

is difficult to draw a general conclusion about the relation 
between measured curvature and energy in the presence of 
singular interfaces. If such boundaries are present in larger 
numbers, it is not surprising that the inverse correlation be-
tween curvature and energy is not observed.

If the SrTiO3 grain boundary network were dominated by 
singular interfaces, we have a reasonable idea about what we 
would observe in our experiment. First, we will not measure 
zero curvature. The discretized nature of the data and the mesh-
ing of the boundary will lead to a minimum but finite curvature. 
Second, we would also measure energy minima at these orien-
tations. In other words, low energy would correlate with low 
curvature, as we observe. Another consideration is that if the 
interfaces were mostly singular, one might expect a finite num-
ber of interfaces, but instead we observe a continuous range of 
interface orientations. This difference can be reconciled if the 
boundaries are faceted on a length scale smaller than the reso-
lution of the EBSD maps. In this case, we would see a continu-
ous range of orientations even if the boundaries were composed 
of different combinations of more elementary orientations. In 
fact, there is TEM evidence that is consistent with that idea. 
Sternlicht et al27,28 reported that, regardless of the macroscopic 
boundary orientation, on the microscopic level grain boundar-
ies in SrTiO3 are made up of nanometer‐scale flat terraces that 
mostly have {100} and {110} orientations separated by steps 
that also create {100} and {110} orientations. The steps in the 
micrographs are larger than the minimal possible step heights, 
usually by a small integer multiple, but it is not obvious that 
they could be considered facets. However, migration of such 
boundaries would require changing the areas of both the larger 
atomically flat terraces and the smaller multi‐layer steps by a 
process analogous to that illustrated in Figure 9.

The observation that grain boundaries are microscopically 
made up of more elementary low‐index orientations is not 
inconsistent with surface observations. Relative surface en-
ergies are found to be reasonable predictors of relative grain 
boundary energies19,47,48 and it has been reported that in this 
temperature range, SrTiO3 surfaces are fully faceted and 
made up of low‐index orientations.17

Finally, it is worth noting that these measurements are 
consistent with changes that are observed for SrTiO3 grain 
boundaries in the so‐called "anti‐thermal" region where 
the boundaries migrate more slowly.22 Measurements have 
shown that there is an increase in boundaries with low en-
ergy and with the (100) orientation.17,25 Here, we find these 
(100)‐oriented, low energy boundaries also have a minimum 
curvature. Therefore, they have the lowest driving force for 
migration. While this does not explain why such low curva-
ture, low energy boundaries form in this temperature range, 
it is consistent with the phenomenological observation of 
slower grain boundary migration.

5 |  CONCLUSIONS

Using 3D EBSD, we have measured the distribution of relative 
areas, energies, and curvatures in SrTiO3 annealed at 1470°C. 
The integral mean curvatures of grains vary such that small 
grains with fewer than 16 sides have positive curvatures and 
larger grains with more than 16 sides have negative curvatures. 
The number of excess neighbors correlates strongly with the 
normalized integral mean curvature. The curvature is positive 
(negative) if a grain has fewer (more) neighbors than the aver-
age of its neighbors. The grain boundary curvature is inversely 
correlated to the grain boundary area, such that flat boundaries 
make up a relatively larger portion of the grain boundary area. 
Also, grain boundary curvature is correlated to grain bound-
ary energy, such that lower energy boundaries are flatter and 
relatively larger. This latter correlation suggests that the grain 
boundary network is dominated by singular boundaries.
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