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Importance of outliers: A three-dimensional study of coarsening in α-phase iron
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Grain coarsening behavior in an α-phase iron sample is studied in three dimensions using high energy x-ray
diffraction microscopy. 4971 grains that are entirely inside the sample are segmented in the initial state and 3905
remain after annealing. A matching procedure was used to track 3299 grains between the two states while the
remainder were either consumed by neighbors or the tracking algorithm failed to correlate them. During the
single annealing treatment, the average grain volume increased by 13%. Statistical analysis in each state yields
subtle changes in the grain size and nearest neighbor number distributions. Correlating topological features
with volume changes between states, the average behavior is seen to be consistent with an isotropic model of
curvature driven coarsening, but the dispersion of volume changes in each topological class is comparable to
the overall trend in the average behaviors. Thus, the topological characterizations used here are not predictive
of the behavior of individual grains under the isotropic assumption. Examination of anecdotal cases allows
understanding of some outliers but others appear counter to an isotropic theory.
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I. INTRODUCTION

Many condensed matter systems undergo coarsening pro-
cesses in which the average cell size in a large ensemble
increases over time as large cells intrude on and consume
smaller cells. This process is typically driven by reduction
in the total interfacial energy, and thus the total interfacial
area. Examples are as diverse as foams [1–3], phase separat-
ing liquids and solids, and polycrystalline aggregates [4–6].
For fluid systems, all interfaces have the same structure and
properties, so the driving forces for motion can be modeled
with a single homogeneous interfacial tension and mobility.
Curved boundaries are expected to move toward their centers
of curvature since this results in reduced local boundary areas.
This flattening of boundaries tends to lead to polyhedral
domain shapes.

For the case of coarsening in polycrystalline microstruc-
tures, the homogeneity condition is broken due to anisotropic
crystal properties which result in the energies and mobili-
ties of crystal-crystal interfaces being dependent on both the
relative crystal orientations and the local orientation of the
interface normal. Thus, boundaries between crystals or grain
boundaries are characterized on the mesoscale by five parame-
ters: for example, three disorientation parameters defining the
symmetry reduced relative orientations of crystal unit cells
and two parameters that define the local interface normal
relative to unit cells of the two crystals. These (or alternative)
sets of five degrees of freedom define the “grain boundary
character” (GBC) [7] and coarsening is expected to depend
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on the distribution (GBCD) and connectivity of the boundary
types. Finally, it should be noted that the interface motions
described here are expected to dominate microstructure and
boundary evolution only after bulk (grain interior) defect
densities and their associated bulk excess energies have been
reduced to negligible values. However, local irreducible strain
fields associated with grain boundaries may well influence
boundary energies and mobilities.

Because microstructure plays a key role in determining the
properties [8–10] of polycrystalline materials that are used
throughout modern societies, coarsening or “grain growth”
has been studied experimentally and theoretically for many
decades [11–14]. For two-dimensional systems, the basis for
most theoretical and experimental investigations [15,16] is the
von Neumann-Mullins “n − 6 rule” [5,6],

dA
dt

= π

3
Mγ (n − 6), (1)

where dA
dt is the rate of area change of the “two-dimensional

grain,” n is the number of grain sides, M is the mobility,
and γ is the excess energy per unit length of boundary. This
predicts that cells with more than six sides (or neighbors)
will grow while those with fewer than six sides will shrink
and eventually disappear. The simple form of (1) results from
the assumption of homogeneity of boundary properties (hence
the single values of M and γ ) and it assumes mechanical
equilibrium at vertices which implies triple point vertex angles
of 120◦.

Palmer et al. [17] compared (1) with experimental ob-
servations of thin organic polycrystalline films and found
significant deviations from the expected vertex angles but
nevertheless found that the trend in average growth rates in
each topological class agreed well; however, large deviations,
of the same order as the overall trend, were observed within
each class. One suggested cause of deviations from n − 6 was
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the heterogeneity in boundary properties. Since the optical
measurement did not determine crystal orientations, it was not
possible to classify the boundaries.

More than 50 years after von Neuman’s and Mullins’ work,
a rigorous three-dimensional (3D) generalization of (1) has
been obtained by McPherson and Srolovitz, [4] the “M-S
relation,”

dV
dt

= π

3
Mγ (M − 6Lgrain), (2)

where dV
dt is the rate of grain volume change, M is the mobility,

γ is the excess energy per unit area of boundary, M is the
total triple line length around the grain, and Lgrain is the mean
width of the grain [4]. Again, this result is based on homo-
geneous, isotropic grain boundary properties and therefore on
the expectation of uniform 120◦ dihedral angles at triple lines
where three grains meet.

It is only within the past decade that experiments have be-
gun to be able to watch internal three-dimensional microstruc-
tures evolve over time. The key development has been the
application of diffraction methods using high flux, tunable
synchrotron x rays. Spatially resolved diffraction techniques
have been developed that are able to image microstructures in
three dimensions including crystalline grain unit cell orienta-
tions, grain shapes, and positions; the nondestructive measure-
ments allow a collection of images of volumes of interest in
successive states of evolution [18–22]. These measurements
yield novel data sets spanning large ensembles of grains and
grain boundaries. Extraction of either statistical characteris-
tics of grains or local characteristics such as individual bound-
ary motions requires development of trusted computational
tools and careful consideration of measurement resolution in
both position and orientation degrees of freedom.

Two distinct data collection methods have been used in
the above studies. Zhang et al. [23] and McKenna et al.
[24] apply diffraction contrast tomography (DCT) [21] us-
ing data collected at the European Synchrotron Radiation
Facility. Sun et al. [25] use a commercial, laboratory based
DCT system [26]. Work at the Advanced Photon Source has
applied near-field high energy diffraction microscopy (nf-
HEDM) [19,27,28] which is an implementation of 3DXRD
[20]. While nf-HEDM uses a line focused beam to illuminate a
series of quasi-two-dimensional cross sections which are then
stacked to yield three-dimensional grain geometries, DCT
uses a “box” beam to illuminate a volume of microstructure.
Reconstruction approaches are quite different [21,29] but, for
the well ordered grain structures of interest to coarsening,
results have comparable resolutions of grain orientations and
grain boundary positions.

Recent observations of coarsening using the above diffrac-
tion based methods include studies of iron [23,25,30], nickel
[31,32], and strontium titanate [33]. Similar work was carried
out using absorption tomography combined with grain bound-
ary segregation in a titanium alloy [24]. Real time growth
of individual selected grains based on evolution of a single
spatially resolved Bragg peak have also been recorded [34].
Direct comparisons to computational phase field or finite
element models have been carried out in a small number of
cases [24,33].

Here we present statistical analysis of data, also studying
alpha iron, presented in the thesis of Maddali [30]. This data
set comprises a larger statistical sampling of grains than in
previous work, by roughly a factor of 10, and therefore yields
improved statistical distributions, but only two time steps are
measured compared to 15 in Zhang et al. [23]. Further work
addressing boundary motions and making comparisons to
computational models of evolution can be expected to follow
in all of these cases.

II. METHODOLOGY

A. Sample preparation and data collection

The sample material was electrolytically grown high-purity
iron (obtained from the Center for Iron and Steelmaking Re-
search at Carnegie Mellon University) and with an elongated
grain structure. At temperatures below 912 ◦C, iron exists
in its [-allotropic] α-phase form, which has a body-centered
cubic (bcc) crystal structure. The requirement of (statistically)
isotropic grain boundary inclinations required the destruction
of the elongated grain structure followed by regrowth through
annealing and quenching. Accordingly, the sample was rolled
in a mill from an original thickness of about 5 mm to about
1 mm and annealed in a tube furnace for 2 h at 600 ◦C in a
forming gas atmosphere (N2 + 3%H2) and then quenched. A
sample of approximate dimensions 1 × 1 × 30 mm3 was cut
from this material.

Measurements were performed using the nf-HEDM ap-
paratus in the E-hutch of beamline 1-ID at the Advanced
Photon Source at Argonne National Laboratory [19,28]. A
65.351 keV x-ray beam was focused vertically to a ≈1.5 µm
full width at half maximum line beam. The beam size was
limited in the horizontal direction to 1.5 mm using slits. As
the sample was continuously rotated about a vertical axis
perpendicular to the beam plane, images of diffraction spots
were collected over successive angular intervals of width
δω = 0.25◦. The total rotation range was 180◦ over which
typical orientations generate roughly ≈180 observed Bragg
peaks. The high resolution imaging detector used a scintillator
(LuAG) whose scintillation light was optically coupled to a
2k × 2k CCD camera; using a 5× objective lens, the effective
pixel size was 1.54 µm. This rotation procedure was repeated
at two different sample-to-detector distances and the data
collection was repeated for multiple equally spaced sample
layers by translating the sample perpendicular to the beam;
in this manner diffraction data from an entire volume was
collected. Here 65 layers with 3 µm spacing were measured,
so a total volume of about 1 × 1 × 0.195 mm3 was measured.
After the first volume measurement, the sample was removed
from its mount and annealed in a tube furnace at 600 ◦C for
0.5 h again using a forming gas atmosphere. The sample was
replaced in the HEDM apparatus and the same volume of the
sample was measured again. For further details of the sample
and procedure, the reader is referred to the Ph.D. thesis of
Maddali [30].

B. nf-HEDM reconstruction, volume registration,
and grain segmentation

The reconstruction of sample microstructure is performed
with the forward modeling software IceNine [19,29] after
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image analysis that separates diffraction signals from back-
ground [35]. A critical feature of the image analysis is the
use of a Lapacian-of-Gaussian edge detection algorithm that
has been shown to yield diffraction spot shapes reflective of
projected images of each diffracting grain cross section [36].
For each measured layer, the reconstruction was performed
on a simulation space which is larger than the illuminated
sample cross section. A mesh of s = 1.56 µm side-length
equilateral triangles spanned the simulation space; each trian-
gle encloses an area corresponding to a square with side length
0.581 µm. In each layer, there are about 106 triangular voxels.
For each triangular element, the assigned orientation is that
which generates the maximum overlap between simulated and
experimental diffraction spots. For mesh elements near grain
boundaries, even at the optimal orientation, the simulation will
miss some diffraction spot edges due to detector discretization
and image analysis noise; this leads to a decreased confidence
or overlap metric [19]. Similarly, diffraction signals from two
(or more) neighboring grains’ orientations can each generate
a finite overlap of simulated diffraction. The optimization
algorithm simply picks the orientation with maximal overlap
for each mesh element. The large number of Bragg peak
observations has the effect of signal averaging over the various
noise sources and leads to ∼1 µm accuracy in relative grain
boundary positions within the reconstruction planes [36].

The open source software package DREAM.3D [37] was
used to segment the reconstructed data into individual grains.
Before using DREAM.3D, the data were down-sampled from
the set of reconstructed layer-by-layer .mic files to a single
.h5ebsd file, with 3 × 3 × 3 µm3 cubic voxels; orientations
were assigned as that of the nearest voxel in the .mic files.
The orientation of each voxel is compared to its neighbors
(in 3D) and contiguous sets of voxels with orientations that
differ by !2◦ were grouped together as grains; the minimum
size of accepted grains was set to eight voxels. Those groups
with fewer than eight voxels (i.e., <216 µm3 or <7.4 µm
spherical equivalent diameter) were treated as gaps in the
microstructure. Less than 0.1% of voxels were in such gaps;
gaps were then eliminated by dilating neighboring grains
uniformly using a procedure in DREAM.3D. The aggressive
down-sampling described here yields a hard lower cutoff
in the grain size distribution at a level above the expected
minimum size to which the measurement is sensitive.

The analysis below is restricted to grains that are entirely
inside the measured volume in both states. First, any grain
whose centroid lies outside the black boundary in Fig. 1
is removed to avoid surface effects. Furthermore, any grain
that intersects the top or bottom edge of the reconstructed
volume is also excluded from analysis. This method is similar
to that used in Rowenhorst et al. [38] to avoid statistical
bias from cut-off grains; however, as discussed below, the
procedure also preferentially eliminates large grains. Global
statistics are shown in Table I. VT is the total volume occupied
by internal grains, ⟨V ⟩ is the average grain volume, and
Deff = 2( 3

4π
⟨V ⟩)

1/3
is the average spherical equivalent diame-

ter (SED). Note that Deff is the SED of a grain with the average
volume, not the average of SED values. The nominal trimmed
measured sample volume is ≈1.3 × 108 µm3 in both states.

Because it is not possible to remount the sample in exactly
the same position and orientation after annealing, volume

FIG. 1. The measured sample volume: (a) before and (b) after
annealing. Black lines indicate schematically a trimming of the
sample edges used to avoid the damaged surface region that has
anomalously small grains. Colors are according to the inverse pole
figure key shown and is referenced to the normal direction to the
square cross section.

registration was required in order to correlate local properties
before and after annealing. Registration was done in two steps
[30]:

(1) Determine the single rigid-body translation and rota-
tion that aligns a single layer in the post-anneal volume with
its corresponding layer in the pre-anneal volume, and apply
this transformation to all layers in the post-anneal volume.
This transformation was determined “by eye.”

(2) Pick one grain that is present in both volumes and
rotationally align the entire post-anneal volume such that the
two orientations of this grain coincide.

After this process, the angular alignment of the two vol-
umes is within ≈0.1◦ which is the expected experimental res-
olution. Figure 1 shows the final 3D registered reconstructions
of the α-iron sample before and after annealing.

C. Grain matching

To study coarsening dynamics, it is necessary to identify
the same grain in different time step snapshots. For each
grain in one state, we search every grain within a surrounding
volume of the other state and, if both the misorientation
angle and volume ratio are within specified thresholds, we
call the pair a match. A detailed description is provided in
Algorithm 1.

To ensure robustness, grain matching is performed in both
directions; that is, for each grain in the initial state, we search
for the same grain in the final state and for each grain in
the final state, we search for the same grain in the the initial
state. Only matched pairs that are the same in both directions
are kept for further analysis. The values 0.5◦, 10, 2 were
chosen as MisorienLim,VolRatioLim, DistToDiaLim, respec-
tively. These relatively strict limits result in 3299 pairs of
matched grains. 30.2% of grains in the initial state are not
matched in the annealed state, whereas only 12.4% of final

TABLE I. Numbers and dimensions of grains in two sample states.

Internal grains

State Total Internal VT (107 µm3) ⟨V ⟩ (104 µm3) Deff (µm)

0 10 927 4971 5.96 1.20 28.4
1 9 224 3905 5.28 1.35 29.6
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Algorithm 1 Grain matching.

Parameters: MisorLim, VolRatLim, DistDiaLim
1: procedure GRAIN MATCHING

2: for grain Ai in State 0 do
3: DA ← Diameter of Ai

4: SA ← Centroid of Ai

5: VA ← Volume of Ai

6: for grain Bj in State 1 do
7: SB ← Centroid of Bj

8: if |SA − SB| ! DistDiaLim × DA then
9: VB ← Volume of Bj

10: if 1
VolRatLim ! VA/VB

! VolRatLim then
11: If Misorientation of Ai and Bj !

MisorLim then
12: Match Bj to Ai

state grains are not located in the initial state. This disparity
is largely attributed to small grains being consumed by larger
ones and thus not existing in the annealed state. Assuming
that new grains are not nucleated, the 12.4% missing in the
reverse matching must be characteristic of the difficulty in
matching small grains (many of which exist in both states
since some grains are always shrinking and disappearing).
Further characterization of matched and unmatched grains is
given in Appendix B.

Figure 2 shows some examples of matched grain pairs. It is
seen qualitatively that, in most cases, grain boundaries move
toward their centers of curvature as expected for capillarity
driven growth.

III. RESULTS

A variety of data sets characterizing three-dimensional
statistics of grains in specific states or “snapshots” are in the
literature, for example, see [23,38]. Nondestructive measure-
ments allow comparisons of such statistics in multiple snap-
shots of the same material volume. The next section presents
analyses that do not require tracking of individual grains but
which do require the restriction to grains that are entirely
enclosed within the sample and the measured volumes. The

FIG. 2. Examples of matched grains, top row before annealing
and bottom row after annealing. The roughness of the surfaces is
due to the discrete voxel size; no smoothing has been performed.
The side length of each cubic voxel is 3 µm. Colors correspond to
the crystal unit cell orientations according to the inverse pole figure
scheme illustrated at bottom right.

(a)

(b)

FIG. 3. Estimated grain volume probability densities P(V ) with
units of µm−3, in each of the two measured states. Closed symbols
are directly computed from the data while open symbols are cor-
rected by (3). (b) The reduced radius distributions corresponding to
(a) without the finite volume correction. See the text for discussion.

following section presents statistical analyses of the evolution
of individual grains.

A. Statistical distributions of grain characteristics

a. Grain size distributions. The number of internal grains
decreased from 4971 to 3905 with annealing; as listed in
Table I this corresponds to an average grain volume increase
from ≈11 993 to ≈13 533 µm3 or a ≈13% volume increase
or a 4% increase in linear dimension.

Individual grain volumes are extracted from the data sets
as Vg = VvoxNg = (27 µm3) Ng, the volume per voxel (see
Sec. II B) times the number of voxels assigned to the grain. As
shown in Fig. 3(a), the measured grain volumes in each state
span more than three decades even with the lower end cutoff
at Ng = 23 = 8 contiguous voxels. Similarly, the large number
of grains in the data set allows the probability density to be
resolved over at least four decades. The observed distribution
of volumes is monotonically decreasing. A more conventional
“size distribution” in terms of spherical equivalent radii is
shown in Fig. 3(b); not surprisingly, this distribution extends
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over about one order of magnitude as seen in numerous other
data sets [23,24,38]. The conservative small size cutoff used
in this analysis results in the plot terminating just below
the peak value. Error bars in both plots are derived from
Poisson counting statistics related to the number of entries in
each displayed bin. We next discuss the interpretation of the
distributions and the relation between them.

Since the grain volume is a continuous variable, an appro-
priate way to characterize the distribution is with a probability
density function P(V ), where P(V )dV is the probability of a
grain having size V within the interval dV . In a large ensemble
of N grains, the number within dV is dN = NP(V )dV . The
goal is to approximate the distribution P∞(V ) that would be
observed in a very large (or infinite) ensemble. Figure 3(a)
plots empirical approximations to this distribution function for
each of the measured states: PN (V ) ≈ &N

N
1

&V , with &N being
the number of grains within &V of the nominal volume and N
the total number of grains in each state. In Fig. 3(a) bin widths
are chosen such that &V

V ≈ 0.26 (more precisely, V +&V
V =

100.1) which assures that the apparent PN (V ) is roughly linear
over each bin interval and the differential approximation is
reasonable. PN (V ) is seen to be monotonically decreasing and
changes only slightly during the observed coarsening. From
this logarithmic plot, it is clear that the measured PN (V ) does
not follow a simple power-law form. The observation that
there are many grains with small volumes is reasonable since,
during coarsening, there are always grains that are tending to
zero volume as they are being consumed by larger grains.

Figure 3(b) is a simple histogram of reduced spherical
equivalent radii. Note, however, that volume is the measured
physical quantity and the grains are far from being spherical;
the radius, while being easily computed from the volume
measurement and convenient for some purposes (see below),
is not a physical characteristic of the grains. Nevertheless,
Fig. 3(b) shows an apparent peak around R/⟨R⟩ ∼ 0.4 which
is qualitatively consistent with other data sets, see, for exam-
ple, [23,25,38,39]. Figures 3(a) and 3(b) are consistent with
each other since the probability density functions for radius
Pr and volume PV are related by Pr (r) = 4πr2 PV [V (r)]. The
factor of 4πr2 is present due to the fact that the volume
interval covered by dr scales with the surface area of the
sphere.

At least two biases could be present in the size distributions
shown in Fig. 3. The maximum grain size included is ≈5 ×
105 µm3 which corresponds to a spherical equivalent diameter
(SED) of 100 µm which is comparable to the vertical size of
the measured volume (He = 195 µm). The center of such a
spherical grain would have to be well centered in the measured
volume in order to not be eliminated from the statistics used
here. A rough correction that accounts for the reduction in
volume available for the center of mass of a spherical grain of
diameter D is

P∞(V )dV ≈ dN
N

1
(
1 − D

Le

)2 (
1 − D

He

) , (3)

where D = 2( 3
4π

V )
1/3

and Le is the measured square cross
section side length and He is the height of the measured vol-
ume. Open symbols in Fig. 3 show these corrected values for
the post-annealing state. As seen in Fig. 2, typical measured

FIG. 4. The distribution of the number of faces or nearest neigh-
bors per grain in each measured state. The frequency is the number
of occurrences of F , NF , divided by the total number in each state.
Error bars are

√
NF /Ntot. There exist (but are not shown) grains that

have values as high as F = 80. The inset shows the corresponding
distribution for the 3299 matched grains whose evolution is discussed
in Sec. III B.

grains are not particularly spherical and this may increase
or decrease the appropriate correction factor depending on
anisotropy relative to the shape of the anisotropic measured
volume.

The second possible bias in Fig. 3 occurs at small grain
sizes where diffraction signals may become weak and lead
to reduced sensitivity. The cutoff in grain size described in
Sec. II B helps to assure that this effect is not present or not
large in the distributions shown. In fact, using a less aggressive
cutoff shows a continued increase in the number of observed
grains below the volume limit in Fig. 3(a).

Over most of the volume range, the shape of Fig. 3(a) is
essentially unchanged while in the large grain limit a subtle
(on the logarithmic scale) increase is seen which corresponds
to the increased average grain volume. The finite volume
correction tends to make the logarithmic plots more power-
law like, but there remains significant curvature over the
entire three and a half decades of volume variation. Without
additional anneal states, it is not possible to speculate on a
trend toward a power-law behavior.

b. Number of faces distribution. The number of faces or
nearest neighbors F of a grain is a fundamental topological
quantity [5,6,40]. The distribution of F over the measured
grains is shown in Fig. 4. Note that the inclusion of the
large number of small, unresolved grains would increase the
frequency of small neighbor numbers if they could be reliably
included and a similar effect may reduce the large F limit of
the distribution due to the finite measurement volume. For the
included grains, the average number of faces is ⟨F0⟩ ≈ 12.0
in the initial state, and ⟨F1⟩ ≈ 11.8 in final state; the peak is
at F ≈ 7.5 in both states. This distribution, like the volume
distribution, is essentially unchanged under the annealing.
There is a long tail containing a small number of grains having
as many as 80 neighbors (not shown). Not surprisingly, the
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FIG. 5. Statistics of diameter changes for grains with different
numbers of nearest neighbors (or faces) in the initial state. Pairs of
face numbers have been binned for clarity. The mean (blue points)
and standard deviations of the distributions in each bin (red vertical
bars) are shown for each grain class. The smaller green error bars
are the standard deviations of the estimated mean values, which are

1√
n times the distribution standard deviations (red error bars), where

n is the number of grains in each bin. (a) includes only matched
grains, whereas (b) also includes a statistically estimated correction
for grains that disappear and therefore have &D = −D0 (see text for
discussion).

grains in the tail of this distribution are also in the large grain
tail of the volume distribution. The shape of the distribution
shown here is similar to those seen in Fig. 4(b) of Zhang et al.
[23]; counting statistics do not allow detailed comparisons to
their evolving distributions. Additional statistics are presented
in the Appendices.

B. Statistical characterization of grain evolution

Changes in grain size are expected to correlate with
topological characteristics of grains and their neighborhoods.
While the average behaviors shown below appear consistent
with the isotropic theory, the variations within each topolog-
ical class are found to be at least comparable to the overall
variation in the average behavior.

a. Dependence on number of grain faces. As a first statistic,
consider changes in the spherical equivalent diameters of
grains as a function of the grains’ number of nearest neigh-
bors. The spherical equivalent diameter is D = 2( 3

4π
Vg)

1/3
and

we use subscripts 0 and 1 for the initial and annealed states.
Note that most grains are far from spherical but D can be used
as a linear characterization of size, growth, or shrinkage.

Figure 5(a) shows diameter differences &D = D1 − D0 for
each of the 3299 matched grains as a function of F0, the
number of faces in the initial state. Since F0 correlates with
grain size and large grains are expected to grow, a positive
correlation of &D with F0 is expected. The appropriate trx
end in the mean is apparent in the figure, apart from the
upturn at small face numbers (see below). However, for grains
in each class, the standard deviation of diameter changes is
comparable to the overall variation in the mean. The large
standard deviations at F0 = 46 and 48 and the lack of standard
deviations at larger numbers are due to the fact that only one

or a few grains exist at these face numbers. It is apparent that
at each value of F0, some grains grow while others shrink. In
spite of the fact that large F0 correlates with large grains, this
metric alone is not predictive of even the binary question of
growth versus shrinkage of a particular grain.

The upturn in &D at small F0 may be counterintuitive,
but can be attributed to the fact that only grains that survive
the annealing are included. Many small grains (typically
with small F0) should contribute &D = −D0. This bias can
be removed in a statistical way. As stated above, there are
30.2% of initial state grains that are not paired in the forward
matching and 12.4% in backward matching. Again assuming
no nucleation, 12.4% is the estimated error rate in matching
and the remaining 17.8% (885 grains) should be roughly the
number of grains that disappeared. We randomly choose 885
of the forward matching unpaired grains and assume that
they had &D = −D0. Including these yields Fig. 5(b) with
intuitively reasonable average behavior of shrinking grains
with small F0 and growing grains at large F0.

The mean growth curves in Fig. 5 cross zero at F stagnent
0 ≈

19, larger than ⟨F ⟩ ≈ 12. Figure 4 shows that about 80% of
grains have F < F stagnent

0 ; nevertheless, only roughly 50% of
grains shrank and 50% grew. A recent isotropic phase-field
simulation [39] yields both a zero average growth rate and an
average face number of ≈15 for a variety of initial grain sizes
and face number distributions and at different time points.
These distinctions are discussed in Sec. IV.

b. Dependence on grain neighborhoods. Under the assump-
tion that grain boundary interface energies and mobilities are
independent of the five crystallographic parameters specifying
grain boundary character, grain growth process should be
described by the MacPherson-Srolovitz model. [4] Mullins
and von Neumann [5,6] showed that the evolution of grain
boundary interfaces is driven by the local mean curvature of
that boundary, and as a result, the total volume growth rate is
given by

dV
dt

= V 1/3Mγ g, (4)

g = − 1
V 1/3

∫

Faces

(
1

R1
+ 1

R2

)
dS, (5)

where M is a mobility constant for the grain boundary, γ is
the excess interfacial energy per unit area, and g represents
the normalized integral mean curvature of the grain faces. R1
and R2 are local radii of curvature of the boundary and dS is
an element of interfacial area. It is based on (4) and (5) that
MacPherson and Srolovitz were able to obtain (2).

To compare with our experimental data, Eq. (4) is con-
verted to integral form, &V 2/3 = 2

3

∫
Mγ g dt . Earlier work

by Rowenhorst et al. [38,41] showed empirically that g is, at
least in an averaged sense, proportional to F − m(F ), where
F is the number of faces of a grain and m(F ) is the average
number of faces of that grain’s nearest neighbors; we refer to
F − m(F ) as the “excess face number.” As shown in Fig. 6,
for most of the grains, the value of F − m(F ) does not change
dramatically during the annealing. For grains with a given
value in one state, the mean value in the other state is the
same within a standard deviation of ≈4. We infer that there
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FIG. 6. Changes of the excess grain face number. Each point
represents an individual grain. See discussion in the text. The outlier
in the red box is discussed below in Sec. III C.

should be a roughly linear relation between g and F − m(F )
and therefore that

&V 2/3 = V 2/3
1 − V 2/3

0 ∝
∫

[F − m(F )] dt

≈ [F1 − m(F1)] &t . (6)

Figure 7 demonstrates that the isotropic prediction Eq. (6)
is not obeyed since for given values of F − m(F ), a wide
distribution of values of &V 2/3 is observed. On the other
hand, there is a subtle shift of the histograms toward positive
&V 2/3 as the excess face number increases. It is also clear
from these histograms that the total number of grains (integral
under the curves) decreases strongly with increasing excess
face number.

Figure 8 shows the means and standard deviations of
distributions like those shown in Fig. 7 over a broad range
of excess face number. The range −20 ! F1 − m(F1) ! 20
corresponds to a range over which the number of entries
is large enough that the statistical result is robust. Remark-
ably, the mean values of the broad distributions do appear

FIG. 7. Histograms of &V 2/3 in (6) for three excess face numbers
F − m(F ). Here F = F1 is taken from the annealed state.
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FIG. 8. Test of the linear relation of Eq. (6). (a) Matched grains
only while (b) includes a statistically estimated correction, based
on the size distribution of unmatched grains, for grains that were
consumed during annealing; these grains were assigned V1 = 0. As
in Fig. 5, blue points and red vertical bars are the means and standard
deviations of the distributions in each bin (with examples shown in
Fig. 7). The smaller green error bars are the standard deviations of
the estimated mean values.

to roughly correlate with Eq. (6). The mean values roughly
follow a straight line which crosses zero volume change near
F1 − m(F1) = 0. However, the region F1 − m(F1) < 0, where
neighbors have more faces than the grain in question, appears
to deviate from the linear trend. As discussed with respect
to Fig. 5, this is likely due to neglect of disappearing grains.
Performing the same correction as in that case yields Fig. 8(b)
with an improved linear region around zero volume change.
The large standard deviations are consistent with Fig. 7 and
are seen to be comparable to the overall trend in the mean.

Again in this case, the variation in response within each
category, indicated by the standard deviation bars, is large and
crosses zero volume change in almost every class. The average
behavior is again not a good predictor of a particular grain’s

FIG. 9. Changes in diameter for all 3299 matched grains as a
function of initial size. Each point represents a single grain. A
large grain, discussed in Sec. III C that shrank during annealing, is
identified by a red box.
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FIG. 10. The yellow grain is large but is seen to shrink during
annealing. The bottom of the green grain is cut off by the end of the
measurement volume.

response. We discuss this failure, which is consistent with
prior work [17,23] in Sec. IV; the next section gives anecdotal
examples of unexpected behaviors.

C. Examples of anomalous behavior

The large standard deviations discussed above imply that
local fluctuations in behavior are important and that outlier
behavior can be expected. While a comprehensive analysis
of grain boundary movements correlated with grain boundary
character is beyond the scope of this paper, we show here
examples of counterintuitive behavior. These examples illus-
trate both intrinsic effects and ambiguities that arise from the
parameters associated with defining and matching grains.

Big vs bigger: In a large ensemble, it is not surprising
to find two or more large grains that are nearest neighbors.
Since “large” grains are expected to consume “small” ones,
this is one mechanism to explain the observation that some
large grains shrink. Such behavior is entirely consistent with
curvature driven growth laws, either with or without the
isotropy assumption. With the statistical correlation between
face number and grain size shown in Fig. 14, this effect can
explain at least some of the dispersion seen in Figs. 5 and 8.

Figure 9 shows the change in spherical equivalent diameter
for grains with a wide range of initial diameters. There is
only a weak average trend for larger grains to grow, as is
implicit in Fig. 5. Again, dispersion is the dominant feature.
The red box indicates an initially large grain (initial SED of
62 µm or volume ∼105 µm3) that shrinks substantially during
annealing. Figure 10 shows this grain in yellow and two of its
neighbors (green and purple) that are even larger in the two

FIG. 11. The light blue grain in the initial state (left) is split in
two (right) by a growing small yellow grain. The flat bottom of the
large dark blue grain in the annealed state indicates that it reached
the edge of the measurement volume.

FIG. 12. Two grains that have a low angle boundary of ≈1.8◦

disorientation, indicated by the black lines. With the disorientation
tolerance (=2◦) used in DREAM.3D, they were considered together
as one grain, so the change of relative volume ratio caused the change
of the average grain orientation.

states. The yellow grain appears to be convex over much of
the visible boundary and it is consumed by the large and oddly
shaped green grain beneath it as well as by the unseen grain
in front.

FIG. 13. Disorientation distribution with bin size equal to 0.5◦.
The solid red line is the Mackenzie distribution [46] for randomly
oriented cubes. The distribution is essentially unchanged during
annealing.
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(a)

(b)
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FIG. 14. Relation between grain spherical equivalent diameter
and the number of nearest neighbors F . The grains with the same
numbers of neighbors are grouped together and the mean (blue
line) and standard deviation (red bar) are calculated for each group:
(a) initial state and (b) final state.

Anomalous grain division and matching. Another interest-
ing case is the grain boxed in red in Fig. 6: in the initial state,
it has a substantial excess number of faces, F0 − m(F0) ≈
35. But the grain boundary topology changed dramatically
during annealing so that F1 − m(F1) ≈ 0 afterwards. After
some investigation, it turns out that the relevant grain (light
blue) was split in two by a growing small grain, as shown
in Fig. 11. The grain matching algorithm, when run in the
forward direction, matched the initial grain to one of the two
split grains, resulting in the dramatic reduction in excess face
number. In the reverse direction, both split grains are matched
to the same initial whole grain. This anomalous behavior also
caused the unexpected drop in Fig. 5 between 40 < F0 < 50.
The mystery, of course, is why did the small yellow grain
succeed in growing through its larger neighbor? An alternate
explanation would be some sort of unexpected reconstruction
artifact in one or the other state.

Apparent grain rotation. For grains with diameters of sev-
eral microns and larger, grain rotation is not expected during

(a)

(b)

FIG. 15. Aboav-Weaire plots [47,48] giving the relation between
the number of neighbors a grain has F and the average number
of neighbors its neighbors have m(F ). Subscripts on F indicate
(a) initial and (b) final anneal states. Grains with each neighbor
number F are grouped together and the mean (blue) and standard
deviation (red) of m(F ) for those grains are plotted. The dashed line
separates regions in which m(F ) > F (upper left) from the region
with m(F ) < F (lower right).

the coarsening process because the constituent crystallites are
highly constrained by their neighbors. The distribution of
disorientation angles between matched grain pairs are shown
in Fig. 16(c). Most have !0.1◦ disorientations which is the
resolution of the measurement and is therefore consistent with
zero. However, there are several cases (out of 3299 matched
pairs) where the disorientations are >0.2◦. Figure 12 explains
one extreme case and shows that this case is an artifact of the
arbitrary threshold used in segmenting grains. The two grains
shown are separated by a low angle boundary, indicated by the
black lines, of ≈1.8◦ disorientation. With the disorientation
tolerance of 2◦ used in DREAM.3D for segmenting voxels
into grains, these two grains were grouped together as one.
The change of relative volumes caused by motion of the low
angle boundary during annealing caused the grain average
orientation to change while the orientations of each subgrain
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did not change beyond the experimental resolution. Again, the
grain matching algorithm in this paper uses the disorientation
angle as one of its criteria, so it may miss grain pairs whose
average orientation rotated too much (>0.5◦) due to such low
angle boundary motions.

IV. DISCUSSION

Near-field high energy x-ray diffraction microscopy makes
possible this statistical study of α-phase iron grain coarsen-
ing. Over 10 000 grains are reconstructed with the forward
modeling method [19,29] in each of two sample states. The
grain statistics and changes thereof presented here are not
dependent on resolution of individual grain boundaries and
therefore do not involve boundary smoothing and tracking.
On the other hand, the estimation of the probability density
for finding grains of volume V (Fig. 3) is affected by the
finite measured volume and finite experimental resolution. We
give an estimated correction for the finite volume effect and
we use a conservative small size cut-off to avoid distortions
due to reduced sensitivity in this limit. The most significant
contribution to uncertainty in the grain evolution analysis is
the lack of perfect matching of grains between the two states;
this problem is most apparent for small grains as shown in
Appendix B but also has a contribution due to initial grains
that grow past the boundaries of the measured volume in the
final state.

We assume that new grains do not nucleate in the fully
recrystallized material with tens of micron grain dimensions.
While rare exceptions have been observed in nickel [42]
associated with very low energy annealing twin formation,
corresponding low energy boundaries are not available in the

α phase, bcc structure measured here. The lack of large twin
populations simplifies analysis relative to current studies of
nickel [43].

In an averaged sense, the isotropic model for coarsen-
ing that assumes that all boundaries have the same energy
and mobility compares very well with the observed grain
evolution. This implies that the normalized mean curvature
alone can be used to describe average grain growth behavior.
However, as shown in Figs. 5 and 8, individual grains within a
topological class vary in their growth by as much as ∼±100%
of the observed range of average behaviors. This range of
variation is consistent with prior observations of coarsening
in two-dimensional succinonitrile [C2H4(CN)2] polycrystals
[17], with recent observations of iron by Zhang et al. [23],
and with our observations of nickel [43]. In the succinonitrile
case, the authors observed that the growth rate of the average
grain area ⟨A⟩ within topological classes specified by the
number of grain sides or neighbors n was consistent with
the classic, isotropic n − 6 dependence [5,6]. But, similar to
the recent observations, large variations from grain to grain
were observed with variations in each class of order 100% of
the observed range of averaged behaviors.

There are a number of possible origins of the observed
large dispersion in growth characteristics within topological
classes. (i) The empirical relation between F − m(F ) and
mean curvature g itself has substantial dispersion but less than
the range of variation in g [38]. It is based on experimen-
tally measured curvatures so a portion of observed dispersion
may be due to measurement uncertainties. It appears that
this contribution does not account for observed variations in
Figs. 7 and 8. (ii) During the annealing used here, the values
of F − m(F ) are not constant as shown in Fig. 6. However,

FIG. 16. Distributions of matched grain properties. (a) The ratio of spherical equivalent diameters D1/D0. (b) The distance between
centers-of-mass in the two states divided by D0. (c) The rotation angle required to bring matched grain orientations in the two states into
coincidence is typically less than 0.1 deg. (d)–(f) The center-of-mass displacements between states in Cartesian component form; the z direction
is perpendicular to the line focused x-ray beam plane.
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given the slope of the mean in Fig. 8, changes of ±4 as
consistent with Fig. 6 are not sufficient to generate the ob-
served large distribution widths. (iii) More interestingly, grain
boundary energies and mobilities are, in fact, not uniform
and the inclusion of many boundary types within topological
classes can be expected to generate dispersion in the statistics
presented here. Furthermore, Zhang et al. [23] speculate that
their observed reduction in growth rate may be associated with
large variations in mobility. These observations strongly mo-
tivate on-going work that will analyze motions of individual
boundaries and that can extract, for example, boundary en-
ergy distributions [44]. Further experimental work is certainly
warranted. Extending measured volumes while maintaining
comparable grain sizes can increase the dynamic range of the
measurements. Expanding the range of growth may elucidate
how distributions evolve toward the steady state.

On a measurement technique note, the apparent near-field
HEDM measurement sensitivity to almost four decades in
grain volume while the detector sensitivity spans only about
three decades can be understood from the fact that observed
intensities on the near-field detector do not scale with grain
volume as they do in a more traditional (or in a far-field
HEDM [28]) measurement. In a subgrain resolved diffraction
measurement, detector pixel intensities are proportional to the
subvolume of the grain V grain

( j,k) that projects intensity to the
pixel rather than the entire grain volume. Here ( j, k) specifies
a pixel coordinate. For a large grain, V grain

( j,k) is proportional
to the pixel area (and the beam height and geometric factors
specifying the scattering geometry for a given Bragg peak).
Until the volume “seen” by the pixel starts to extend beyond
the grain’s boundaries (due to either small grain size or when
scattering originates from near a boundary of a large grain)
the intensity is independent of grain size.

V. CONCLUSIONS AND PROSPECTS

New x-ray probes of three-dimensional grain geometries
and evolution which study significant volumes of microstruc-
ture are leading to improvements in understanding of grain
coarsening phenomena. The summary statement at this point
is that averages over topological classes follow expected
behavior based on isotropic models of curvature driven evolu-
tion, but that individual grains deviate by large amounts from
this simplified model.

Further understanding can be expected based on the combi-
nation of improved experimental methods and facilities and on
the use of modern numerical methods. For example, it appears
to now be practical to extract grain boundary energies from
geometries of very large numbers of triple junctions [44] such
as measured here. This approach may then provide a means
for separating the roles of energy and mobility. It has also
been suggested that this separation may be possible through
purely experimental observations of boundary motions [30].
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APPENDIX A: STATISTICAL DISTRIBUTIONS

Figure 13 shows the distributions of disorientations at grain
boundaries, weighted by boundary area (the boundary area is
calculated without any smoothing, so this is larger than the
real boundary area). Note that the distributions are similar to
the Mackenzie distribution, but are slightly larger than random
for low angle boundaries and there is a deficit near the peak
at 45◦. These features, as well as the peak at 60◦, reflect the
anisotropic grain boundary energies presented in Ref. [45]. As
expected, the peak due to the low energy twin boundaries at
60◦ is weaker than that found in fcc nickel [27].

(a)

(b)

FIG. 17. Statistics of unmatched grains. (a) Shows the size distri-
butions in each state in terms of the number of 3 × 3 × 3 µm3 cells,
each of which corresponds to about eight reconstructed voxels. A
small number of larger unmatched grains are not shown. (b) Shows
the locations in z coordinate in microns of unmatched grains.
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Other important statistics are about grain faces. Figure 14
confirms that on average larger grains have more faces than
small grains. The dispersion in the SED values here is smaller
than the overall trend, in contrast to the growth characteristics
discussed in the text.

Figure 15, similar to Fig. 7 of [38], shows that grains with
small face numbers F are likely to be surrounded by grains
having more faces; grains with F ≈ 18 have zero excess face
number, which is consistent with Figs. 5 and 8. Figure 8 shows
that this value separates, on average, grains that grow from
grains that shrink. However, this criterion is not predictive
for individual grains. These plots are similar to, but with
slightly different parameters from plots seen in, for example,
Refs. [38,39].

APPENDIX B: MATCHED GRAIN PAIR
CHARACTERISTICS

The following figures show statistical analysis of the grain
pairs found through the analysis described in Sec. II C. These
figures validate the parameters used in the grain matching
algorithm. Figure 16(a) shows the size ratios of paired grains.
Of the tracked grains, roughly as many decreased in size
as increased. Of course, many grains disappeared or were
consumed by others (and therefore were not matched); such
events break the near symmetry and result in increased aver-
age grain size.

Figure 16(b) shows the ratio of center-of-mass displace-
ments to the spherical equivalent diameter in the final state.
Most displacements are less than one diameter but a few
are substantially larger indicating asymmetric growth, which
results primarily from some small grains.

The misorientation angles between tracked grains in the
initial state and after annealing are shown in Fig. 16(c) to

be generally less than 0.1◦ which is the nominal resolution
of the measurement. A small number of pairs extend up to
the maximum rotation allowed by the parameters used in the
matching algorithm. The cutoff at ≈0.04◦ probably indicates
residual misalignment of the two sample states.

Figures 16(d)–16(f) show individual center-of-mass dis-
placement components in the sample coordinate system. The
mean values correspond to ≈(−7, 10, 4) µm with x and y
being in the plane of each layer measurement and z being per-
pendicular thereto. With average grain diameters of ≈30 µm,
these displacements are consistent with data of Fig. 16(b). The
fact that these component displacements are not centered on
zero may indicate a residual lack of alignment or simply the
statistics of grains that were tracked. Note that the average z
displacement corresponds to roughly one layer spacing in the
measurement; the in-plane voxel side lengths are 3 µm.

Next, we turn to the statistics associated with unmatched
grains. Figure 17(a) shows the size distribution of unmatched
grains in each state. Most contain fewer than 100 voxels
in the initial state and an even tighter distribution in the
final state. Many of these grains may have been consumed
during annealing and therefore are not present after annealing.
However, those grains having spherical equivalent diameters
<5 µm, which is less than the offsets shown in Figs. 16(d)–
16(f), also may have been rejected by the matching algorithm.
In addition, smaller grains may tend to have larger volume
change ratios, which is another reason that they could be
wrongly rejected by the matching algorithm. Figure 17(b)
shows the vertical position distribution of unmatched grains,
which is roughly uniform as expected. There are slightly
more unmatched grains at the bottom edge of the initial
state and the top edge of final state; this is consistent with
Fig. 16(f) which shows a ∼4 µm offset between the two
volume measurements.
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