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Grain boundary energy anisotropy plays an important role in many science and engineering problems.
This paper presents a new numerical method for determining the grain boundary energy distribution
(GBED) from the microstructures of polycrystalline materials. The method assumes that triple junctions
are in local equilibrium, that this equilibrium is described by the Herring equation, and can be expressed
using the Hoffman-Cahn formalism of the capillarity vector. The conventional method discretizes the
five-parameter space and then fits the energy for each discrete bin. The new method minimizes the
difference between similar boundaries in the dataset while obeying the equilibrium equation at triple
junctions. This non-parametric approach shows smaller error than the conventional method, and it can
also determine the grain boundary energies from datasets that have small numbers of triple junctions if
their configurations are clustered in the five-parameter space, which is not possible using the conven-
tional method. In addition, the proposed non-parametric approach performs better when the number of
triple junctions increases, which is not always true for the conventional method.

© 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Background

The property and performance of polycrystalline materials can
be modified by engineering the grain boundary network [1]. For
example, Kokawa shows a one-step thermomechanical process can
suppress the weld-decay of an austenitic steel as the degree of
sensitization drops 63% and the corrosion rate drops 44% [2]. It was
shown that the steady state creep rate of Ni-16Cr-9Fe decreases 96%
at 360�C in an argon atmosphere as the fraction of coincident site
lattice boundaries increases from 16% to 43% [3]. Underlying such
dramatic performance changes is the fact that grain boundary
properties are anisotropic. This paper focuses on determining the
relative grain boundary energies, which govern the evolution of the
grain boundary network at high temperatures.

Decades of research have been devoted to finding a concise and
r).

Elsevier Ltd. All rights reserved.
descriptive function for the dependence of the grain boundary
energy on the five crystallographic parameters. Several theoretical
models [4e8] are inspired by experimental observations [9e12].
However, though the existing models usually work well under their
specific set of assumptions, most of them fail to capture the entire
grain boundary energy landscape [13]. The greatest obstacles are
the vast number of distinct grain boundary types and limited
experimental data. Recently, Bulatov proposed an interpolation
function which appears to successfully capture variations of grain
boundary energy in face-centered cubic materials for the first time
[13]. Nevertheless, Bulatov's function was entirely based on the
Read-Shockley-Wolf function [14] and 388 grain boundary energies
calculated bymolecular dynamics simulations [15]. It is likely that if
more accurate and abundant experimental data becomes available,
it will be possible to create a similar, or more general, experiment-
based grain boundary energy function.

A method to extract relative grain boundary energies from
experimental data was described by Morawiec in 2000 [16]. The
experimental data used as input for the method consists of the
geometries of many triple lines; for each triple line, the three grain
orientations, the triple line direction, and the orientations of the
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three grain boundary planes are specified. The method has been
used to reconstruct the grain boundary energy distributions of
MgO, Ni, Y2O3, austenite, and ferrite [17e21].
1.2. Preliminaries

Grain boundaries can be characterized by five macroscopic pa-
rameters. Typically, three parameters are used for the lattice
misorientation across the boundary and the other two for the
boundary plane orientation [22]. Experimental systems provide
voxel-wise orientations in a 3D volume, which can be used to
determine grain orientations and boundary plane inclinations.
Using the same notation as in Ref. [16], the orientations of the two
neighboring grains are represented by two special orthogonal
matrices o1 and o2 (the over-line means that the variable is in the
sample frame, otherwise the variable is in the crystal frame). So the
misorientation is m ¼ o1o

T
2, and the normal direction of the

boundary directed from the first grain to the second grain is rep-
resented by a unit vector n. The macro-parameters m and n
together will determine the grain boundary energy g. For conve-
nience, we can use a 4� 4matrix b to represent all five parameters:

bðm;nÞ ¼
�

m n
�nTm 0

�
:

As a result of crystal symmetry, there are many distinct sets of
parameters corresponding to physically indistinguishable grain
boundaries. A 4� 4 matrix

Ci ¼
�
ci 0
0 1

�
;

where ci is a 3� 3 matrix used to represent one of the symmetry
operations of the crystal point group (without improper rotations).
Then, the set of physically identical grain boundaries of b consists of

CibCj; Cib
TCj; Cib

�Cj; Ciðb�ÞTCj, where b� ¼ bðm; � nÞ. We use
SqðbÞ as the qth element in this set. Obviously, all elements in this
set have the same energy because they are physically identical.

It is convenient to define the “distance” between boundaries i
and j as c2 ¼ c2ij ¼minq

��SqðbiÞ � bj
��2=2, where the norm k , k of a

matrixM is given by kMk ¼ trðMTMÞ1=2. The exceptional case is the
distance from the “nomisorientation boundary” bðI3;nÞ, where I3 is
the identity matrix. Since the normal direction is irrelevant when
there is no misorientation between grains, in this case we define
c2 ¼minq

��SqðmÞ � I3
��2=2, wherem is the 3� 3misorientation for

boundary bðm;nÞ and SqðmÞ are the misorientations symmetrically
equivalent to m, i.e., cimcj and cimTcj for all ci;cj.

The grain boundary energy gðbÞ ¼ gðSqðbÞÞ is what we want to
infer from experimental data. Based on the assumption of local
equilibrium, we can recover relative grain boundary energies from
the triple junction geometries.

For the triple junction that consists of grain boundaries i;j;k, the
equilibrium equation is

�
xi þ xj þ xk

�� t ¼ 0; (1)

where t is tangent to the junction and xi is the capillarity vector of
the ith boundary. The capillarity vector is defined as

x ¼ gnþ vg

vn
:

For more details on the capillarity vector, readers are referred to the
original papers [23e25].
1.3. Conventional method

We refer toMorawiec's method [16] as the conventional method
in this paper. In the conventional method, the five-parameter space
is divided into discrete bins and each bin is associated with one
unknown capillarity vector xa (we use Greek letters as the indices
of the bins). For every grain boundary in the experimental dataset,
its capillarity vector xi is calculated by averaging all the capillarity
vectors xa of the bins that contain bi’s equivalences. Substituting
the xi’s in Eq. (1) with linear combinations of xa’s for all triple
junctions yields a set of linear equations for xa’s

A,X ¼ 0 ; (2)

where X ¼ ½xx1 xy1 xz1 … xxa xya xza … xxM xyM xzM �T ,M is the total number

of bins, xxa; x
y
a; x

z
a are the x; y; z components of xa, and matrix A is

derived from the equilibrium equations and the symmetry opera-
tions. See Ref. [16] for the detailed expression of matrix A. Finally,
we solve for the xas from this linear equation set by minimizing the
sum of squared residuals while keeping the norm of the vector of
unknowns. The solution is the eigenvector corresponding to the

smallest eigenvalue of ATA. It can be solved by gradient-based
iterative methods.

So, mathematically, this method uses a set of basis functions
(having value 1 in one bin and value 0 in other bins) for the
capillarity vector function xðbÞ, and all the capillarity vectors, xa,
defined on the bins are the coefficients. The reconstruction process
is to find the best set of coefficients to approximate a xðbÞ that
satisfies all the equilibrium equations. When the grain boundary
parameters are discretized, the three Eulerian angles giving the
disorientation are considered within the domain of 0 to 90+. For the
spherical angles defining the boundary inclination, the polar angle
is also considered within the domain of 0 to 90+ and the azimuthal
angle is considered within the domain of 0 to 360+. Using a typical
discretization with 10+ bins, there are M ¼ 94 � 36 bins and 3M ¼
708588 coefficients to be fit [26,27].

Currently, a typical 3D microstructure dataset measured by
electron backscatter diffraction (EBSD) [28] or high energy X-ray
diffraction microscopy (HEDM) [29] contains 104 � 105 triple
junctions [20,21], and each triple junction gives one equilibrium
equation (Equation (1)), which corresponds to two independent
scalar equations. So the reconstruction problem is an under-
determined inverse problem, which has more unknowns
(708588) than equations, i.e. A in equation (2) has more columns
than rows, so ATA has multiple eigenvectors corresponding to the
smallest eigenvalue 0. In the original paper [16], the author
addressed this issue by setting the starting point to be the boundary
normal unit vector (i.e. xa0 ¼ na) and using the gradient descent
algorithm to find the minimum. Empirically this works very well
for most cases, and the reconstructed grain boundary functions are
consistent with theoretical expectations [17e21].
1.4. Motivation

While the conventional approach has been useful, it also has a
number of limitations:

� It can not take advantage of increasing dataset size. If the dataset
is too large, the discretization of five-parameter space can lead
to some unexpected artifacts. See Section 4.3 for details.

� In many samples, grain boundaries are not distributed uni-
formly in the five-parameter space and in some cases, they are
concentrated in a small region of five-parameter space and we
only want to get the grain boundary energy function in that
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region. The conventional method cannot determine grain
boundary energies from this kind of dataset easily. See Section
4.2 for details.

In this paper, we propose a new framework for determining
grain boundary energies from triple junction geometry. Instead of
discretizing the five-parameter space and fitting the coefficients,
this approach directly fits the capillarity vector xi of each grain
boundary in the dataset. Because the proposed approach does not
use any parametric model for the grain boundary energy function,
we refer to it as the non-parametric reconstruction method. The
reconstruction method is described in detail in Section 2, and some
results reconstructed from simulated triple junction geometries are
presented in Section 4.
Fig. 1. Comparison of convergence rate of different optimization methods. Projected
Gradient Descent, Accelerated Projected Gradient Descent, and LOBPCG were used for
the same problem. LOBPCG outperforms the other two methods.
2. Non-parametric reconstruction framework

The goal of our new approach is to reconstruct the capillarity
vector xi of each grain boundary in the dataset without dis-
cretizing the five-parameter space. The unknowns can be written
as a vector

X ¼
h
xx1 xy1 xz1 … xxi x

y
i x

z
i … xx3W xy3W xz3W

iT
;

where W is the total number of triple junctions and the number of
unknowns is 9W (three capillarity vectors for each triple junction,
and three components for each vector).

We define SðJÞ as the set of grain boundary IDs that consist in
triple junction J, whose equilibrium equation (Eq. (1)) can be
written as

0 ¼
X
i2SðJÞ

X
l

Bi;lJ;ax
l
i;

where Bi;lJ;a≡
P
b;c
εabct

c olbi and εabc is the permutation symbol. See

Appendix A for details.
Using the subscript ðJ; aÞ as the row index, and the superscript

ði; lÞ as the column index of matrix B, we have a matrix equation B,
X ¼ 0 to represent the equilibrium equations of all the triple
junctions. There are 3W equations, and only 2W of them are in-
dependent, so this reconstruction problem is also an under-
determined inverse problem. Because of this, some regularization
techniques are needed. Mathematically, we can write it as a con-
strained minimization problem:

min
X

RðXÞ

s:t:
���Xk2 ¼ 1; B,X ¼ 0: (3)

There are many choices for the regularization term RðXÞ. A common
choice is based on the assumption that grain boundary energy
functions are smooth, which means that if two grain boundaries i
and j have similar physical characteristics (i.e., cij is small), then
their capillarity vectors should be similar, i.e.,

RðXÞ ¼
X

ði;jÞ2E

wij
��xi � Tij,xj

��2; (4)

where E ¼ fði; jÞj boundary i and j are similarg, wij is the weight
that is proportional to the similarity of boundaries i and j, and Tij is
the operator that makes boundaries i and j have similar plane
normal directions, i.e., Tijnjzni. Appendix A shows how to
calculate Tij from the symmetry operator and the misorientation.
This regularization term penalizes the difference between capil-
larity vectors of physically similar grain boundaries. The form of the
weightwij and the criterion for including a pair of boundaries in the
set E are essential in this non-parametric framework. In this paper,
the set E contains the boundary pairs whose distances are smaller
than a threshold, and we use the inverse of distance as the weight
wij ¼ 1=cij. See Appendix A for more details.

Other regularization terms are also possible in this framework,
for example using “similar energy” instead of “similar capillarity
vector”. Different choices correspond to different prior knowledge
of the grain boundary energy distribution (GBED) and they will
influence the results, robustness, and efficiency of the recon-
struction. One thing we need to emphasize is that, no matter
which regularization term we chose, the reconstruction result
always satisfies all the equilibrium equations. The comparison of
different regularization terms is beyond the scope of this paper; in
the following sections, we will use Eq. (4) as the regularization
term.

There are many methods to solve this constrained minimization
problem. In this paper, we convert it into an approximate eigen-
value problem and then find the eigenvector corresponding to the
smallest eigenvalue (see Appendix A for more details). Once the
capillarity vectors are reconstructed, the grain boundary energy is
gi ¼ xi,ni. Based on the values gi, the landscape of grain boundary
energy function can be constructed by any interpolation method.
2.1. Optimization method

Both the conventional method and the non-parametric
approach make it necessary to solve a minimization problem. The
projected gradient descent method was used in the prior work [16].
In this paper, we rephrase theminimization problems as eigenvalue
problems, which can be solved efficiently by the Locally Optimal
Block Preconditioned Conjugate Gradient (LOBPCG) method [30]. It
is also an iterative method but uses more information besides the
gradient. A comparison between several different optimization
methods was made. In Fig. 1, the LOBPCG method converges much
faster than other two methods. Faster optimization methods not
only make it possible to reconstruct larger datasets, they also allow
for more extensive investigation of the performance of the recon-
struction under varying conditions.
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3. Simulated datasets

We tested the non-parametric method and the conventional
method on several simulated datasets, which are only collections of
triple junction geometries instead of thewhole 3Dmicrostructures.
Based on any user-defined grain boundary energy functions, the
simulation code can calculate the capillarity vector for any grain
boundary parameters, and it randomly generates the triple junction
geometries that satisfy the equilibrium equations. The details of the
simulation are in the Appendix of [16].
3.1. Model grain boundary energy function

In this paper, the grain boundary energy functions that were
used to create simulated triple junction geometries are based on a
uniform energy distribution with superimposed cusps. The cusps
are shaped in analogy to the Read-Shockley model [4]:

f ðx; aÞ ¼ axð1� ln xÞ þ ð1� aÞ for 0< x � 1

f ð0; aÞ ¼ 1� a and f ðx; aÞ ¼ 1 otherwise;

where a determines the “depth” of the cusp and x is the “relative
distance” from the cusp center. For the model that has cups at bk
(k ¼ 1;2;3:::), the grain boundary energy is
gðbÞ ¼ Pkf ðcðb;bkÞ=wk; akÞ where wk; ak are the width and depth
of cusp k. The distance c is defined in Section 1.2. So, the grain
boundary energy is unity everywhere outside the cusps, and the
cusps have the shape of the Read-Shockley expression.

3.2. Datasets

We used two hypothetical grain boundary energy functions,
whose cusps are listed in Table 1. The depth of each cusp is 1=

ffiffiffiffi
S

p
and the width is p=ð12 ffiffiffiffi

S
p Þ.

Model A has eight cusps and their Ss are the unit cell volume of
the coincidence site lattice (CSL) in units of the elementary unit cell
volume. Based on model A, we generated a dataset containing
260000 random triple junctions, which we refer to as DA26. The
grain boundaries in DA26 are nearly uniformly distributed in the
five-parameter space. We refer to the first 60000 triple junctions in
DA26 as DA06, which is close to the size of a real experimental
dataset.

Model B mimics a sample with ideal axial texture and a
columnar microstructure. It has 2 cusps, one is zero misorientation
(S ¼ 1), and the other one is manually picked whose S is just used
in the simulation code for calculating the depth and width but is
not related to the inverse coincidence. Usingmodel B, we generated
Table 1
Cusps in our grain boundary energy function models. We used 1=

ffiffiffiffi
S

p
as the depth of

the cusp and p=ð12 ffiffiffiffi
S

p Þ as the width of cusp.

Model S misorientation boundary

angle (�) axis plane

A 1 0.00 N/A N/A
3 60.00 [1 1 1] (1 1 1)
5 36.87 [1 0 0] (0 2 1)
7 38.21 [1 1 1] (1 2 3)
9 38.94 [1 1 0] (1 1 2)
11 50.48 [1 1 0] (2 2 3)
13 22.62 [1 0 0] (0 3 2)
13 27.80 [1 1 1] (1 3 4)

B 1 0.00 N/A N/A
2 20.00 [0 0 1] (1 1 0)
a dataset containing 1538 triple junctions, which we refer to as DB.
The grain boundaries in DB are constrained in a 2D subspace of the
five-parameter space: all misorientation axes are ½0 0 1� and all
boundary normals are perpendicular to ½0 0 1�. In other words, in
this dataset, all grains' ½0 0 1� directions are parallel to a same di-
rection, and that direction is also parallel to all junctions. Model B's
cusps were chosen in this 2D subspace deliberately.

4. Results

Because Eq. (1) is homogeneous, all grain boundary energies can
only be determined up to a constant factor. To compare with the
ground truth, we normalize the reconstructed grain boundary en-
ergies so that the average energy is the same as the average energy
of the ground truth distribution; we refer to these as ”normalized
energies,” grec. grec then has whatever units are used to define the
ground truth dataset.

4.1. Results on a normal size dataset

The performance of the reconstruction on DA06 is representa-
tive of real datasets. Fig. 2 shows the GBED for the S7 misorienta-
tion of DA06, the stereographic projections are generated by a
method based on boundary-space metrics [27]. Fig. 3 demonstrates
the energies of grain boundaries that are inside of S1 cusp. Both the
conventional method and the non-parametric method recon-
structed the grain boundary energies well.

Fig. 4 shows the reconstruction error in more detail. For every
grain boundary (GB), we calculate the difference between
normalized reconstructed energy and the ground truth grec �
gtrue, which have zero mean over the whole dataset by the defi-
nition of grec. However, after we bin the grain boundaries by their
true energy gtrue, the averaged grec � gtrue for each bin is no longer
zero. As shown in Fig. 4 (a), grain boundaries with smaller gtrue
tend to have larger grec � gtrue, which means the cusps in the grain
boundary energy function are smoothed by the reconstruction.
Fig. 4(b) and (c) are the detailed grec � gtrue distributions in the
bins 0:45<gtrue <0:6 and 0:75<gtrue <0:9, respectively. As we can
see, the non-parametric method results have smaller bias and
variance than the conventional method in almost every bin.

4.2. Results on a clustered dataset

Sometimes in real materials grain boundaries are not uniformly
distributed in the five-parameter space. For example, the data will
be clustered in a textured sample, and we may want to reconstruct
the energy of grain boundaries in those datasets. In these cases, we
actually only need the grain boundary energy function values in
constrained regions of the five-parameter space. While the
Fig. 2. Stereographic projections of the normalized grain boundary energy distribution
(GBED) for the S7 misorientation of DA06. (a) Ground truth; (b) reconstructed by the
non-parametric method.



Fig. 3. Comparison of the conventional method and the non-parametric method
reconstruction results near the S1 cusp of DA06. The distance c is defined in Section
1.2. Every point represents one grain boundary, blue points are results of the con-
ventional approach, red points are results of the non-parametric approach, and the
ground truth are represented by black points. Reconstructed energies have been
normalized so that they have the same average value as the ground truth distribution.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

Fig. 4. Reconstruction results of the conventional method and the non-parametric method
truth grec � gtrue for every grain boundary. All grain boundaries are binned by their true ener
gtrue , which is shown in (a). The gray bars in (a) are the number of grain boundaries in the
0:45<gtrue <0:6 and bin 0:75<gtrue <0:9, respectively. The blue line and bars are results of
method. (For interpretation of the references to colour in this figure legend, the reader is r
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conventional method still tries to reconstruct the grain boundary
energy function on the whole five-parameter space, the non-
parametric approach inherently exploits the clustered structure
in the datasets. Therefore, we can expect that the non-parametric
approach can use less data but get a better reconstruction result
than the conventional method.

Dataset DB is an extreme case of a clustered dataset with all
grain boundaries located in a 2D subspace of the five-parameter
space. We tested both the conventional method and the non-
parametric method on this dataset, and the reconstructed en-
ergies are shown in Fig. 5. In Fig. 5, all grain boundaries are ordered
by their true energy gtrue so that smaller grain ID corresponds to
lower gtrue. We can see that the non-parametric method can
reconstruct the energies of DB fairly well. Fig. 6 shows the mean
value and standard deviation of the difference between recon-
structed energy and the ground truth grec � gtrue for grain bound-
aries with different gtrue.

4.3. Effects of the dataset size

It is important to know how dataset size influences the re-
construction's performance. To investigate this, we reconstructed
the grain boundary energies using only the first k� 104 triple
junctions in DA26, where k ¼ 1;3;6;12;14;16;17;18; and 26. The
reconstruction results on these subsets are shown in Fig. 7. Because
the reconstruction errors are different for the cusp and the
remaining region, we separated the grain boundaries into two
categories, gtrue >0:9 and gtrue <0:9, which correspond to the grain
on DA06. We calculated the difference between reconstructed energy and the ground
gy gtrue, and for each bin we calculated the mean value and standard deviation of grec �
bins. The histograms in (b) and (c) are the detailed grec � gtrue distributions in the bin
the conventional method, and the red line and bars are results of the non-parametric
eferred to the Web version of this article.)



Fig. 5. Comparison of the conventional method and the non-parametric method
reconstruction results of DB. All grain boundaries are ordered by their true energy gtrue
so that smaller grain ID corresponds to lower gtrue. Every point represents one grain
boundary, blue points are results of the conventional method, red points are results of
the non-parametric method, and the ground truth is represented by black points.
Reconstructed energies have been normalized so that they have the same average
value as the ground truth distribution. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)

Fig. 6. Reconstruction results of the conventional method and the non-parametric
method on DB. We calculated the difference between reconstructed energy and the
ground truth grec � gtrue for every grain boundary. All grain boundaries are binned by
their true energy gtrue, and for each bin we calculated the mean value and standard
deviation of grec � gtrue . The gray bars are the number of grain boundaries in the bins.

Fig. 7. Reconstruction errors using only subsets of DA26 with different sizes (k� 104).
Based on the ground truth energies, the grain boundaries in each subset are devided
into two categories, gtrue >0:9 (dashed line) and gtrue <0:9 (solid line), which are
outside and inside of cusps, respectively. Blue lines are results of the conventional
method, and red lines are results of the non-parametric method. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web version
of this article.)

Y.-F. Shen et al. / Acta Materialia 166 (2019) 126e134 131
boundaries that are outside and inside of the cusps, respectively.
The reconstruction error is measured by the square root of mean

squared error
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgrec � gtrueÞ2

q
, which includes the effect of bias and

variation. As expected, the error of the non-parametric method
decreases when the dataset size increases. Surprisingly, the errors
in the conventional method are sometimes greater in larger data-
sets. We will discuss this further in Section 6.
4.4. Effects of measurement noise

Experimental data always has measurement noise. For a
microstructure measured by EBSD or HEDM, the uncertainty of
grain orientation is negligible, and the main error is the triple
junction geometry. To analyze the reconstruction robustness
against the error in measuring the triple junction geometry, we
artificially added noise to DA06. For every triple junctions in DA06,
we applied a rotation ðdf; dq;0Þ to the junction direction, where df

and dq are randomly generated from a Gaussian distribution with a
zero mean. We tested both the conventional method and the non-
parametric method on different noisy datasets with different s (in
units of degrees) as the standard deviation of the Gaussian distri-
bution. Fig. 8 demonstrates the reconstruction errors.
5. Application to an experimental measurement of MgO

To demonstrate the efficacy of this method for analyzing
experimental data, we applied the non-parametric approach to
data from an MgO ceramic, originally reported in Ref. [17]. The
details of the sample preparation, experimental procedure, and
data acquisition can be found in earlier publications [17,31,32]. The
three-dimensional orientation data made it possible to determine
the geometries of 1:9� 104 triple junctions and these measure-
ments were used as input for the grain boundary energy
reconstruction.

In general, the reconstruction errors depend on the energy
models. If we assume that the analysis in Section 4.3 and Section 4.4
still hold for the real grain boundary energy function of MgO, then
the reconstruction error of normalized grain boundary energy is
less than 0.05 because, for this experimental data, k ¼ 1:9 in Fig. 7
and s<10+ in Fig. 8.

Fig. 9 shows stereographic projections of the reconstructed
grain boundary energy distribution (GBED) produced by the new
method, the conventional method, and the grain boundary char-
acter distribution (GBCD) for MgO for amisorientation of 5+ around
½1 1 0�. The GBCD and GBED were reported in an earlier publication
[17]. The GBCD is presented in units of multiples of a random dis-
tribution (relative areas). The two grain boundary energy distri-
butions agree in some places. For example, the maximum energy of
both distributions is near the position of twist boundaries (marked
by circles). However, they disagree at the position of the symmetric
tilt boundary (marked by a square), which has a near minimum
energy in the GBED produced by the non-parametric method and is
a local maximum in the GBED produced by the conventional
method. Note that the GBCD has a maximum at the symmetric tilt
position. Based on the well-known inverse correlation between the
GBED and the GBCD [22], a minimum energy at this position is
expected, consistent with the result of the non-parametric method.



Fig. 8. Reconstruction errors of the conventional method and the non-parametric
method on the dataset DA06 with noises of different s values (in units of degrees),
which are the standard deviations of the Gaussian noise that were applied to the triple
junction directions. Based on the ground truth energies, the grain boundaries in each
dataset are devided into two categories, gtrue >0:9 (dashed line) and gtrue <0:9 (solid
line), which are outside and inside of cusps, respectively. Blue lines are results of the
conventional method, and red lines are results of the non-parametric method. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the Web version of this article.)

Fig. 10. Geometric interpretation. (a) Red star is the true solution, yellow plane is the
linear span of the basis functions, green plane is the subspace that satisfies all triple
junction equilibrium equations, red line is the overlap of yellow plane and green plane,
black dot is the iteration starting point, red dot is the approximated solution found in
the yellow plane, which is at the red line and close to the black dot. (b) The yellow
plane is the linear span of the basis functions, one set of equilibrium equations
constrain the solution on the red line, another set of equations constrain the solution
on the blue line, black dot is the iteration starting point. If the dataset only contains the
first set of equations, then the approximate solution is at red dot; and if the dataset
only contains the second set of equations, then the approximate solution is at blue dot.
However, if the dataset contains both, then the approximate solution is at purple dot,
which is far away from the true solution. (For interpretation of the references to colour
in this figure legend, the reader is referred to the Web version of this article.)
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6. Discussion

We demonstrated in Fig. 4 that both the conventional method
and the non-parametric method perform well on a normal size
dataset DA06. For most grain boundaries, the reconstruction errors
are less than 0.1. Cusps are smoothed in the reconstruction, i.e.
reconstructed energies of grain boundaries in the cusps are biased
to be larger than their true energies. Although the measurement
error of triple junction geometries depends on the method of data
preprocessing, s<10+ is a reasonable estimation. As shown in
Fig. 8, both methods are robust below this level of noise. For the
non-parametric method, the reconstruction error is below 0.04 for
grain boundaries inside the cusps and below 0.02 outside the cusps.

An advantage of the non-parametric method over the conven-
tional method is that it utilizes the clustered structure in the
datasets, so that it can reconstruct the grain boundary energies of a
clustered dataset even if it only contains a small number of triple
junctions, which is not possible (without creating a new sub-space
for discretization) using the conventional method. As demon-
strated by Figs. 5 and 6, the non-parametric method reconstructed
the grain boundary energies in DB with an error of less than 0.2.
Therefore, the energy in that subspace is recovered with reasonable
accuracy.
Fig. 9. Stereographic projections of the (a) GBED reconstructed using the non-parametric m
character distribution (GBCD) for grain boundaries in MgO with a 5+ misorientation aroun
normalized energies.
The effect of dataset size is interesting. As shown in Fig. 7, the
reconstruction error of the conventional method increases when
the number of triple junctions increases in some range. A geometric
interpretation is presented in Fig. 10. As we showed above, the
conventional method finds the coefficients of a set of basis func-
tions which can span a linear space (yellow plane), and generally
the true capillarity vector function (red star) is not in this space, and
the solution we find is an approximation (red dot), which satisfies
the force balance equations of all the triple junctions. In most cases,
the problem is under-determined, so the solution always exists but
is not unique. Choosing a good starting point (black dot) for the
gradient descent iteration makes the problem converge to a solu-
tion (red dot) that can approximate the ground truth (red star).
However, if we have more triple junctions, there are more con-
straints and the solution (purple dot) may not be close to the
ground truth anymore.

One way to address this problem is to stop the iterative solution
before convergence. The conventional method converges after
about 2000 iteration steps for the large size dataset DA26. Fig. 11
demonstrates the errors of some intermediate results in the first
200 iteration steps. As we expected, l ¼ kAXk2=kXk2 keeps
decreasing, where A and X are the equation coefficients and vari-
ables in Eq. (2). The reconstruction errors decrease in a few itera-
tion steps at first, but increase dramatically after about 150
interation steps. Therefore, for the dataset DA26, if we stop before
150 iteration steps, the reconstruction results will be close to the
ground truth. The grain boundary energy distribution (GBED) for
the S11 misorientation of the intermediate reconstruction is
ethod, (b) GBED reconstructed using the conventional method, and (c) grain boundary
d ½1 1 0�. The GBCD has units of multiples of a random distribution and the GBEDs are



Fig. 11. Errors of the intermediate reconstruction results using the conventional
method on dataset DA26. Based on the ground truth energies, the grain boundaries are
divided into two categories, gtrue >0:9 (dashed line) and gtrue <0:9 (solid line), which
are outside and inside of cusps, respectively. The green line is l, which is defined as
kAXk2=kXk2, where A and X are the equation coefficients and variables in Eq. (2). (For
interpretation of the references to colour in this figure legend, the reader is referred to
the Web version of this article.)
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shown in Fig. 12. After 10 iterations, the conventional approach
shows a GBED that is expected for the S11 misorientation. How-
ever, it has not converged yet. After 200 steps, the result deviates
from the ground truth. So, the number of iterations is an important
hyper-parameter for the conventional reconstruction method. The
non-parametric approach does not have the same problem as the
conventional method, because it does not limit the solution to a
subspace. So, as shown in Fig. 7, the reconstruction error of the non-
parametric method decreases as the number of triple junctions
increases, which is as expected.

Finally, let us note that in this non-parametric framework, the
regularization term is based on the ”distance” between grain
boundaries. The choice of the metric affects the regularization term
and, in consequence, the reconstruction results. The definition of
grain boundary distance in Section 1.2 follows [16], but other
metrics have been discussed in the literature [33e37]. Moreover,
with 1=cij as the weight in the regularization term, the singularity
at cij ¼ 0 may cause problems on clustered data sets. Testing
Fig. 12. Stereographic projections of the GBED for the S11 misorientation at different
iteration steps. (a) Ground truth; (b) step 1; (c) step 10; (d) step 200. (b)e(d) are
reconstructed by the conventional approach using dataset DA26.
alternative metrics and regularization terms for the non-
parametric framework will be the subject of future research.

7. Conclusions

In this paper, a new framework for reconstructing grain
boundary energy from triple junction geometry is demonstrated.
This new framework gives good reconstruction results with 6� 104

triple junctions, evenwhen the data are noisy. With more data, the
reconstruction results have smaller error. In addition, the perfor-
mance on a small clustered dataset is also good enough to give
information about the grain boundary energy function. Future
research will study the performance of the non-parametric
reconstruction on different energy function models and with
different forms of regularization terms. We will also apply this
procedure to several new experimental 3D data sets.
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Appendix A. Details of non-parametric approach

Appendix A.1Rewriting the equilibrium equation

We define SðJÞ as the set of grain boundary IDs that consist in
triple junction J. Vectors and tensors in sample frame are over-
lined, otherwise they are in crystal frame. Writing all vectors and
tensors in component form, the equilibrium equation becomes:

0 ¼
X
b;c

εabc

X
i2SðJÞ

x
b
i t

c

¼
X
b;c

εabct
c X
i2SðJÞ

�
oT
i xi

	b

¼
X
b;c

εabct
c X
i2SðJÞ

X
l

olbi x
l
i

0 0 ¼
X
i2SðJÞ

X
l

Bi;lJ;ax
l
i;

where Bi;lJ;a≡
X
b;c

εabct
colbi :

Appendix A.2The regularization term

Most of the computation time of the non-parametric approach
is spent on constructing the regularization term. Because we need
to find “neighbors” for each grain boundary, a naive algorithm has
Oðn2Þ time complexity, where n is the total number of grain
boundaries in the dataset.

For every grain boundary b there are a set of physically identical
boundaries SqðbÞ, and they are all related by linear symmetry op-
erators. To compare the capillarity vectors of boundaries i and j, we
need the operator Tij that makes boundaries i and j have similar
plane normal directions, i.e., Tijnjzni, which can be calculated as
follows:
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Tij ¼

8>>>>><
>>>>>:

c1 if Sq	
�
bj
� ¼ C1bjC2

�c1m
T
j if Sq	

�
bj
� ¼ C1b

T
j C2

�c1 if Sq	
�
bj
� ¼ C1b

�
j C2

c1m
T
j if Sq	

�
bj
� ¼ C1

�
b�
j

	T
C2

;

where q	 ¼ argmin
q

��bi � Sq
�
bj
���2:

After we find all the neighboring pairs and include them in the
set E ¼ fði; jÞj boundary i and j are similarg, we can construct the
regularization term:

RðXÞ ¼
X

ði;jÞ2E

1
cij

��xi � Tij,xj
��2;

where cij is the “distance” between boundaries i and j defined in
Section 1.2. The unknowns are represented by

X ¼ ½xx1 xy1 xz1 … xxi x
y
i x

z
i … xx3W xy3W xz3W �T . In this paper, we use

E ¼ fði; jÞ



 cij <0:03g for DA06 and E ¼ fði; jÞ




 cij <0:015g for DB,

so that most boundaries have more than 30 “neighbors”.

Appendix A.3Solving the minimization problem

If we use the equilibrium equations and normalization condition
as the constraints, and try to minimize the regularization term, we
get the following constrained optimization problem:

min
X

X
ði;jÞ2E

1
cij

������xi � Tij,xjk2≡min
X

������C,Xk
2

s:t
���Xk2 ¼ 1; B,X ¼ 0;

Where C is defined by this regularization term.
Oneway to solve it is to choose a large enough number l and the

optimization problem approximately becomes:

min
X

����C$Xk2 þ l2
���B$Xk2	 ¼ min

X
XT

�
CTCþ l2BTB

	
X

s:t:
���Xk2 ¼ 1:

This is again an eigenvalue problem and the eigenvector of
ðCTCþ l2BTBÞ corresponding to smallest eigenvalue can be effi-
ciently computed by LOBPCG method.

Another advantage of introducing l is that, if the dataset is noisy
we may want to relax the equilibrium equation constraints, we can
then use smaller l and have a trade-off between smoothness
kC,Xk2 and the noisy measurements kB,Xk2.
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