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The intervariant boundary characteristics of a commercially pure Ti microstructure formed by the b/a

martensitic phase transformation were described according to the crystallography of the displacive
transformation and the boundary plane orientation. The martensitic transformation created a micro-
structure whose grain boundary misorientation angle distribution had four distinct peaks that were
consistent with the misorientations between the variants produced by the Burgers orientation rela-
tionship. Interestingly, about 60% of population corresponded to 60�/½1120� intervariant boundaries.
Three-variant clusters with a triangular morphology were observed frequently. This configuration is
consistent with the phenomenological theory of martensite, which predicts that these clusters, separated
by 60�/½1120� boundaries, have a lower transformation strain than other possible variant cluster ar-
rangements. Other intervariant boundaries resulted from the impingement of different combinations of
distinct three-variant clusters. The five-parameter boundary analysis revealed a strong anisotropy in the
plane orientation distribution, showing that boundaries have a tendency to terminate on prismatic
fhki0g and pyramidal f1011g planes, when misorientation was ignored. The dominant 60�/½1120�
intervariant boundaries had symmetric tilt ð1101Þ boundary planes, which are a low energy
configuration.

© 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Grain boundaries have an undisputable effect on themechanical
response of polycrystalline materials. In titanium alloys, grain
boundaries impede dislocation motion by imposing barriers that
depend on grain boundary type, and this can result in localized
stresses [1]. Interestingly, grain boundary geometry and structure
affect the localized stress state and the dislocation/grain boundary
interaction. Previous studies [2e4] assumed that high angle a/a
boundaries in Ti alloys were resistant to dislocation movement and
potential sites for cavity nucleation and intergranular fracture.
However, the extent of dislocation slip propagation depends on the
a boundary characteristics and the type of dislocation. For example,
f1012g twin boundaries with a low energy configuration [5]
impede the prismatic slip dislocations [6], though it can transmit
basal dislocations, if the stress is large enough [7e9]. On the other
hand, f1011g twin boundaries can act as barriers to the basal slip
Beladi).
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dislocations [8]. Therefore, by engineering the microstructure and
grain boundary network of titanium alloys, it may be possible to
optimize the mechanical properties of interest.

Most Ti-alloys undergo the b/a phase transformation during
cooling, which is governed by a specific orientation relationship
(OR), known as the Burgers OR [10]. The resultant orientation
correspondence between the high temperature b and low tem-
perature a phases provides specific crystallographic a variants,
which in return affects the microstructure and texture. Interest-
ingly, the impingement of possible a variants defines specific a/a
intervariant boundary arrangements. The formation and arrange-
ment of the variants are influenced by the crystallographic con-
straints of the transformation, the related transformation strain
energy [11e13], and the externally applied strain energy that might
arise from deformation or precipitation [14e17].

The strain energy associated with the b/a martensitic phase
transformation stimulates specific a-variant cluster arrangements
to accommodate the transformation strain [11,12,18]. These clusters
provide a specific population of intervariant boundaries, as indi-
cated byWang et al. [12] in commercially pure titanium. They have
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shown that the formation of three and/or four a-variant clusters
relaxes the transformation strain energy and theoretically results in
a high population of 60�=½1120� and 63:26�=½10 5 5 3� intervariant
boundaries. However, despite the detailed description of the
martensitic transformation and the resultant grain boundary
network, there is still a lack of information regarding the grain
boundary plane character associated with the intervariant bound-
aries formed in the martensitic microstructure of a commercially
pure titanium. A previous study [19] of a Ti-6Al-4V alloy found that
the two most common intervariant boundaries have mis-
orientations of 63:26�=½10 5 5 3� and 60�=½1120� and have grain
boundary plane orientations of ð4130Þ and ð1011Þ, respectively.

In the current study, commercially pure Ti was subjected to a
martensitic transformation and its intervariant boundary plane
characteristics were studied using a stereological interpretation of
conventional EBSD maps. This five-parameter crystallographic
analysis made it possible to measure the grain boundary plane
distribution of all intervariant boundaries in the martensitic
microstructure [20]. The microstructure characteristics were
consistent with the phenomenological theory of martensite, which
was used to calculate the transformation strain energy in
commercially pure titanium to determine the nucleation possibil-
ities for different a-variant cluster arrangements and the associated
intervariant boundaries.

2. Experimental procedure

2.1. Material and heat treatment procedure

The commercially pure titanium used for this study had a grade
II chemical composition [21], was received in an extruded condi-
tion, and had an equiaxed microstructure. The sample was heat
treated in an induction furnace embedded in a servo-testing ma-
chine. To prevent the titanium from being oxidized at high tem-
perature, it was coated with glass (a delta glaze coating). The
sample was reheated to 950 �C and held for 3min to transform the
entire microstructure to the b-phase, before water-quenching it to
room temperature, to obtain a martensitic microstructure.

2.2. Microstructural and texture characterization

The microstructure and texture of the samples were studied by
scanning electron microscopy (SEM) equipped with electron back-
scattered diffraction (EBSD) technique along with transmission
electron microscopy (TEM). Note that the microstructure was not
uniform through the thickness of 10mm. At the surface, it was
mostly martensitic, but in the middle of the sample, the micro-
structure was a mixture of martensitic and Widmanst€atten a-
phase. Because of the low thermal conductivity of Ti alloys
(K ¼ 19� 23 W :m�1:k�1 [22]), it is likely that the cooling rate was
slower in the centre of the sample than on the surface. To measure
the cooling rate, two holes with 1.1mmdiameterwere drilled along
the diameter of 10 mm� 15mm cylindrical sample at depths of
5mm (centre) and 9mm (sub-surface). K-type thermocouples wire
were brazed into the holes and temperature profile was recorded
throughout the heat treatment schedule for both positions. The
heat treatment was conducted 3 times to examine the reproduc-
ibility of the result. The measured cooling rates were 135± 15 �C/s
and 175 ± 9 �C/s at the centre and sub-surface of sample, respec-
tively. Recognizing this gradient, all microstructure and texture
measurements were conducted approximately 1000 mm beneath
the surface of the water-quenched sample, a region that was close
enough to the surface to obtain martensitic microstructure while
far enough away not to be affected by oxidation.

EBSD analysis: A two-step procedure was used to prepare the
EBSD samples. First, the samples were ground to 4000 grit SiC
paper and then mechanically polished with a 0.4 mm OPS suspen-
sion. In the second step, the surface was electro-polished by an
appropriate electropolishing routine (i.e., a voltage of 30 kV and at
the temperature of 22 �C) and the A3 Struers™ electrolyte solution
(i.e., 240ml Butoxyethanol, 400ml methanol, 40ml Perchloric
acid). The microstructure was then examined by EBSD on a plane
parallel to the extrusion direction. The EBSD measurements were
conducted using a FEG Quanta 3-D FEI SEM instrument equipped
with a fully automated EBSD device. The EBSD measurements were
made with an accelerating voltage of 20 kV, a working distance of
10.5mm, and on a hexagonal grid with a step size of 1 mm (as-
received sample) or 0.3 mm (martensite sample). Multiple scans
covering an area of ~875,000 mm2 have been measured by EBSD for
the martensitic microstructure. The average confidence index was
between 0.4 and 0.6. The EBSD post-processing was conducted
using the TexSEM Laboratories Inc., software (TSL).

Intervariant boundary analysis: A stereological analysis, which
has been described previously [20,23], was used here to identify the
intervariant boundary plane distribution in the martensitic struc-
ture. This approach was employed extensively in earlier studies for
different materials [24e28]. The number of boundary segments/
traces required for such a measurement depends on the crystal
structure (50,000 segments/traces for cubic and 200,000 for hex-
agonal materials [20]). Before extracting the boundary segments
from the EBSD maps, a multiple step cleaning procedure was
conducted. First, the ambiguous data was removed through the
grain dilation function. Then, a single average orientation was
assigned to the neighbouring groups of pixels with a disorientation
angle of less than 5� (one single grain). To extract the boundary line
traces/segments from the EBSD data, the reconstructed grain
boundary function with a boundary deviation limit of 2 pixels
(0.6 mm) [29] was used. Here, a total of ~200,000 boundary line
traces were extracted from the EBSDmaps. After extracting the line
segments, the stereological procedure was applied to calculate the
five-parameter grain boundary character distribution (GBCD). The
five-parameter GBCD was then used to determine the grain
boundary plane distribution at different grain boundary
misorientations.

TEM analysis: To produce TEM foils, discs of 3mm in diameter
were taken from 1000 mm below the surface. They were them
mechanically ground to a thickness of ~70 mm and then twin-jet
electro-polished using the solution employed for EBSD sample
preparation. The electro-polishing was conducted at a temperature
of about�40 �C and a voltage of 30 V. TEM examination of thin foils
was conducted using a JEM 2100 microscope operated at 200 kV.

Texture measurements: The overall texture of the as-received and
transformed samples was measured by EBSD using a Zeiss LEO 530
FEG SEM instrument equipped with an Oxford Instruments EBSD
attachment. The data were obtained using the Aztec software and
processed using the HKL channel 5 software. As discussed later, the
parent b phase undergoes significant grain growth during reheat-
ing to 950 �C. To obtain unbiased and statistically reliable texture
data from many grains, the EBSD measurements were carried out
using a coarse step size of 30 mmon 30 different sections of both the
as-received and martensitic samples, covering an area of
4:17 mm � 3:12 mm.

3. Results

The as-received equiaxed microstructure had an average grain
size of 10.9± 0.1 mm (Fig. 1). The overall crystallographic texture of
the as-received titanium revealed a strong fibre texture with an
intensity of 6.2 multiples of a random distribution (MRD) (Fig. 2a),
which is typical for extruded titanium alloys [30]. The intensity of



Fig. 1. The band contrast image of the as-extruded commercially pure titanium alloy.
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the texture arises from the alignment of the [0001] axes perpen-
dicular to the extrusion direction. The (1 0 1 0Þ and ð1 1 2 0Þ pole
figures revealedmaximamainly around extrusion directionwith an
intensity of 3.5 MRD (Fig. 2a). The main texture component covers
about 43.2% of the orientation space.
3.1. The evolution of microstructure and texture in martensite
transformation

The data in Fig. 3 show that the heat treatment procedure re-
sults in a microstructure that resembles martensite, as fully
martensitic microstructure is difficult to form in commercially pure
Ti due to the absence of alloying elements. A bright field TEM ex-
amination also confirmed the presence of elongated martensitic
laths, typically contained only internal dislocations without any
transformation twinning (Fig. 4). This structure hereafter is referred
to as a martensitic microstructure. The two-dimensional EBSD
images showed two distinct morphological features. The first were
elongated packets of martensitic laths stacked up in parallel arrays
(Fig. 3bec). The parallel laths were separated either by low
misorientation angle boundaries (�5�) (Fig. 3b) or by high
misorientation angle boundaries, mostly with a misorientation of
60�/½1 1 2 0� (Fig. 3c). The second morphology consisted of the
martensitic laths stacked up in a triangular shape (highlighted as ‘C’
in Fig. 3a). The interior of the triangle was progressively filled with
smaller triangles (highlighted as ‘D’ in Fig. 3a and shown in Fig. 3d).
This suggests that the first laths that nucleate fragment the parent
b-grain and reduce the volume available for the nucleation of new
variants, leading to a smaller average lath size. The variants formed
in the triangular morphology were mostly separated by boundaries
with a 60�/½1 1 2 0�misorientation (Fig. 3d). It should be noted that
the observation of the triangular morphology depends on the
orientation of the section plane through the grain.

Interestingly, the texture after the martensitic transformation
was nearly the same as the as-received condition (Fig. 2), though
the fibre consisted of multiple maxima. In general, the martensitic
transformation led to a decrease in the overall texture intensity
from 6.2 MRD to 5 MRD for the f0001g pole figure (Fig. 2b).
Although the {1010g and f1120g pole figures showed similar
overall textures to the as-received condition, their texture strengths
were different. The overall texture in the {1010g pole figure
decreased from 3.5 MRD in the as-received condition to 2.6 MRD
after the martensitic transformation. By contrast, the intensity of
the maximum in the f1120g pole figure increased from 3.5 MRD to
6 MRD (Fig. 2).

3.2. The martensite intervariant boundary plane character
distribution

The misorientation angle distribution of the martensitic
microstructure revealed multiple peaks at the positions of ~10�,
55e65� and ~90�, which was significantly different from what is
expected from a random distribution (Fig. 5a). The misorientation
axis distribution associated with each peak was clustered at a
specific axis. According to the Burgers orientation relationship, the
b/a phase transformation in titanium can create 12 distinct a-
phase variants from a given prior parent b-grain. These variants are
listed in Table 1. The impingement of these a-variants establishes 11
intervariant boundaries (Table 1). However, because of crystal
symmetry, there are only 5 distinct misorientation angle/axis pairs
(Table 1). These intervariant boundaries are consistent with the
observed misorientation angle/axis distribution (Fig. 5a), meaning
that the martensitic phase transformation closely followed the
Burgers orientation relationship. However, the distribution of
observed intervariant interfaces differed significantly from those
expected in a theoretical distribution calculated under the
assumption that all variants occur in the product phase with equal
probability (Fig. 5b). Interestingly, the most common intervariant
boundary has a misorientation of 60�/½1120�, and makes up 60% of
all boundary length. The 10.53�/½0001� intervariant was the least
common, making up only 2% of all boundary length. The length
fractions of the 60.83�/½1:377 1 2:377 0:359�, 63.26�/½10 5 5 3� and
90�/½1 2:38 1:38 0� intervariant boundaries were ~12%, 13% and 6%,
respectively.

The relative areas of all boundary planes, independent of
misorientation, are plotted in stereographic projection in the
crystal reference frame (Fig. 6). In the distribution, the f0001g basal
plane is placed in the centre of the stereogram and the prismatic
planes (f1120g and f1010g) are located at the circumference of the
stereogram. The distribution was anisotropic with a maximum in-
tensity of 1.6 MRD, revealing two characteristic peaks at prismatic
and pyramidal orientations. The first peak is positioned at the
f4130g orientation and spreads towards f1010g. The second peak
corresponds to a pyramidal plane with the f1011g orientation.
Interestingly, the distribution minimum was positioned at the
f0001g orientation (Fig. 6).

The maxima in the misorientation angle/axis distribution
(Fig. 5a) specify the misorientations where the distribution of grain
boundary planes should be examined. Here, the distribution of
intervariant boundary planes for each misorientation was plotted
in stereographic projection and compared with the schematic
representation of the characteristic grain boundaries drawn by the
Glowinski's grain boundary toolbox software [31] (Fig. 7). The
distribution of grain boundary planes at the 10.53�/[0001] misori-
entation had no maxima greater than 0.5 MRD and was not
considered significant. The distribution of intervariant boundary
planes for grain boundaries with a misorientation of 60�/½1 1 2 0�
had a single maximum near the pyramidal ð1101Þ plane with the
maximum intensity of 500 MRD (Fig. 7a). The ideal symmetric tilt
boundary, which also has 180�-twist and 180�-tilt character, has the
ð17 17 0 18Þ orientation. The orientation of the ideal plane differs
from ð1101Þ by only 1.6�, which is less than the resolution of the
distribution, which is about 10�. The boundary plane distribution
for the 60.83�/½1:377 1 2:377 0:359� intervariant boundary has a
maxima near ð9630Þ planes with an intensity of 14 MRD. This
boundary was deviated by ~4� from the ð5320Þ tilt boundary, which
is also within the experimental resolution (Fig. 7b). For the 63.26�/
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½10 5 5 3� intervariant boundary, there was a peak around the
ð19 13 6 3Þ planewith amaximum intensity of 200MRD. This plane
is ~6� from the ð3 2 1 0Þ twist and 180�-tilt boundary plane (Fig. 7c).
The intervariant plane distribution for the 90�/½1 2:38 1:38 0� has a
diffuse maximum at the ð17 17 0 18Þ plane with an intensity of 30
MRD. This boundary also has twist and 180�-tilt character, and
spreads between the ð1 2 1 3Þ and ð4 3 1 0Þ planes (Fig. 7d).

4. Discussion

4.1. Transformation texture and variant selection

The martensite overall texture is qualitatively similar to the
overall texture of the extruded sample, revealing a fibre texture
with ½0001� perpendicular to the extrusion direction (Fig. 2). This is
mostly due to the texture memory effect, which was also reported
by others when the material was subjected to a heat treatment
above the transus temperature through both experiment and
simulation in steel [32] and Ti alloys [30,33,34]. The extruded a

grains in the as-received microstructure transform to the b parent
Fig. 2. The basal and prismatic pole figures of (a) the as-extruded and
during the reheating at 950 �C and this transforms back to
martensitic a during cooling. The presence of the Burgers OR for
both transformations to some extent leads the martensitic trans-
formation texture to be similar to the starting extrusion texture.
However, it is worth mentioning that the parent b grains grow
during annealing at 950 �C, eliminating some pre-existing orien-
tations and resulting in a relatively coarse grained structure before
the martensitic transformation on rapid cooling.

Despite the texture similarity, the martensitic transformation
produces a weaker overall texture and the appearance of multiple
peaks in the ð0001Þ pole figure (Fig. 2). The texture weakening is
expected because rapid cooling reduces the difference in the phase
transformation driving force for distinct variants, promoting the
formation of all possible variants associated with Burgers OR in a
given parent b grain (variant multiplication). This ultimately re-
duces the overall texture strength. However, the presence of mul-
tiple peaks suggests that some variant selection does occur in the
transformation to accommodate the transformation stress/strain.
Variant selection should not promote specific orientation/s because
of variant multiplication. On the other hand, the coarsening of the b
(b) the martensitic microstructures. ED is the extrusion direction.



Fig. 3. a) The image quality map of the martensitic microstructure revealing different
morphologies; (b) parallel laths separated by low angle boundaries, highlighted by “A”
in (a), c) parallel laths separated by the 60�/ ½1120� boundaries, shown by “B” in (a), and
d) 3 differently oriented variants clustered in an indentation and\or triangular shape,
separated by the 60�/ ½1120� boundaries, marked by “C” in (a). The triangle inset in (d)
represents the colour codes referred to normal direction. The red lines indicates the
60�/ ½1120� boundaries in (c) and (d). (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)

Fig. 4. TEM bright-field micrograph of the martensitic a laths containing dislocation
substructure.
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grains may lead to the strengthening of a specific b orientation and/
or the promotion of low energy b grain boundaries [34,35], which
may promote a specific a crystallographic variant/orientation on
either side of the b-boundary [33,36,37]. A similar observation is
made here through back-calculating the orientation of the high
temperature parent b phase from martensitic a-variants obeying
the Burgers OR (Fig. 8), using the software developed in the Lor-
raine university, as described in Ref. [38]. It appears that the pres-
ence of special b boundaries provides preferred nucleation sites for
a variants sharing same Burgers orientation relationship with both
b grains (i.e., having similar orientations) at either side of the parent
b grain boundary (Fig. 8). In other words, the a variants nucleated at
either side of the b/b boundary sharing a common (110)b pole have
the same (0001) pole and obey Burgers OR with both parent b
grains (i.e., double Burgers boundary) [36,39]. Similar observations
have been reported after the martensitic transformation of a rolled
Zr alloy [40]; limited variant selection on special b-boundaries led
to a texture memory effect and the promotion of a specific texture
component.
4.2. Rationalization of the martensitic microstructure in pure
titanium

The martensitic transformation in materials usually results in a
relatively large shape change, which is accommodated by specific
variant arrangement/s to minimise the associated strain energy. In
the case of commercially pure Ti, where the martensite transition
temperature is as high as 802 ± 10 �C, the shape change can be
accommodated by the plastic flow of the relatively soft matrix. In
the current study, the martensitic laths have a wedge shaped
morphology, assembled into triangular clusters of three differently
oriented variants (Fig. 3). This is a common characteristic of the
self-accommodation morphology. Interestingly, there were no
signs of twins inside the assembled laths (Fig. 3), suggesting that
slip is the dominant operating mode for accommodation of



Fig. 5. a) The misorientation angle distribution of martensitic microstructure of CP
titanium alloy, and b) the length fraction of intervariant boundaries associated with
Burgers orientation relationship. The theoretically calculated fractions are based on the
assumption that all variants have equal statistical probability during the phase
transformation.

Fig. 6. The distribution of grain boundary planes for all misorientations in the
martensitic microstructure. MRD is the multiples of a random distribution.
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inhomogeneous strain at high temperatures. This implies that the
critical resolved shear stress for slip is less than for twinning at the
transformation temperature [41]. The clustering of the martensite
variants to minimise the transformation induced shear strain is
known as the self-accommodation phenomenon [42], which in-
fluences characteristics of the microstructure including the texture
and the intervariant boundary characteristics. To test the idea that
these clusters do minimise the transformation strain, the
Table 1
Individual variants of Burgers OR corresponding to the b matrix and the a

Variants Orientation relationship

1 ð110Þb==ð0001Þa; ½111�b==½112
2 ð101Þb==ð0001Þa; ½111�b==½112
3 ð011Þb==ð0001Þa; ½111�b==½112
4 ð110Þb==ð0001Þa; ½111�b==½112
5 ð101Þb==ð0001Þa; ½111�b==½112
6 ð011Þb==ð0001Þa; ½111�b==½112
7 ð110Þb==ð0001Þa; ½111�b==½112
8 ð101Þb==ð0001Þa; ½111�b==½112
9 ð011Þb==ð0001Þa; ½111�b==½112
10 ð110Þb==ð0001Þa; ½111�b==½112
11 ð101Þb==ð0001Þa; ½111�b==½112
12 ð011Þb==ð0001Þa; ½111�b==½112
phenomenological theory of the martensitic phase transformation
presented by Bowels and McKenzie [43] was employed to identify
the shape deformation relating to each variant and the character-
istics of microstructure.

The crystallography of martensite transformation: The Burgers
lattice correspondence between the b-phase (bcc crystal structure)
and the a-phase (hcp crystal structure) results in the choice of a
minimum distortion (the Bain deformation) and rigid body rotation
of the parent lattice vectors. To calculate the Bain deformation, the
Burgers lattice correspondence is defined based on the orthohex-
agonal axis systems where a distorted hexagonal crystal can be
defined from the parent b-phase (Fig. 9). The Bain strain and the
rigid body rotation produce an invariant line strain, which is a
result of the implementation of two invariant plane strains (IPS).
Therefore, the total transformation strain can be identified by the
shape deformation and a shear strain (i.e., lattice invariant
deformation).

S ¼ BR ¼ PQ (1)

Where, S indicates the total transformation strain, B is the Bain
strain, R is the rigid body rotation, Q is the lattice-invariant shear
and P is the shape deformation associated with the martensitic
phase transformation. The complementary shear is to maintain the
integrity of the crystal structure (i.e., the deformation must be
lattice invariant), which results in reducing the shape change
through different shear systems (i.e., twinning and slip). The
product phase [12,19].

Intervariant boundary (from V1)

0� e

0� ½1120�=60�
0� ½1120�=60�
0� ½1 2:38 1:38 0�=90�
0� ½10 5 5 3�=63:26�
0� ½1:377 1 2:377 0:359�=60:83�
0� ½1 2:38 1:38 0�=90�
0� ½1:377 1 2:377 0:359�=60:83�
0� ½10 5 5 3�=63:26�
0� ½0 0 0 1�=10:53�

0� ½1:377 1 2:377 0:359�=60:83�
0� ½1:377 1 2:377 0:359�=60:83�



Fig. 7. Distribution of intervariant interface/boundary planes character for different intervariants and the corresponding calculated geometrically characteristic boundaries in the
martensitic microstructure.
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Fig. 8. (a) The IPF map of martensitic microstructure of CP Ti alloy. b) the corre-
sponding IPF map of reconstructed b-phase of (a), showing the position of prior
austenite grain boundaries. The white dash line in (a) represents a special b boundary
where two b grains at either side of boundary have a common (110) pole. The triangle
insets in (a) and (b) represents the colour codes referred to normal direction. ED
represents the extrusion direction. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)

Fig. 9. The orthogonal lattice correspondence between the parent b-phase and
daughter a-phase.
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current research assumed possible shear systems given by the Bilby
and Crocker inequality [44], provided in Ref. [45], to find out
whether the shear system is able to be a lattice invariant strain
(LIS). Some of the possible shear systems in the parent and the
corresponding product phase, which have been employed in the
calculations, are listed in Table 2. These shear systems corresponds
to possible slip deformation in titanium alloys [45,46], which make
the lattice invariant deformation invisible on themacroscopic scale.
A four stage calculation method, presented by Bhadeshia [47], has
been employed for calculating the habit plane, and the shape
deformation associated with the phase transformation. Each
operating shear system mentioned in Table 2 results in four
possible habit planes in which the closest habit plane that lies
within the experimental {334} habit plane [18] was considered for
further calculations. Therefore, the shape deformation tensor, the
dilatational (d) and shear components (s) of the transformation can
be calculated, as identified in Table 3. Furthermore, the shape
deformation tensors (P) of the possible 12 a-variants (mentioned in
Table 1) were identified and the corresponding stress tensors (TÞ
were calculated in the following way:

T ¼ PtP � I
2

(2)

Here, I is a unit matrix and the Pt is the transpose of shape
deformation tensor. Finally, the degree of the self-accommodation
for different variant combinations can be determined from the
Von-Mises equivalent strain (εVM). The Von-Mises equivalent strain
is computed from the overall transformation stress tensors for
different variant combinations (i.e., 2-, 3- and 4-variant cluster
combinations) in the following way:

εVM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
ðT211 þ T222 þ T333 þ

1
2

�
4T212 þ 4T213 þ 4T223

�r
(3)

The different possible combinations of stress tensors considered
in this study are shown in Fig. 10. There are 132, 1320, and 11880
different possible 2-, 3-, and 4-variant combinations, respectively.
For each type of variant cluster, the minimum εVM has been iden-
tified and listed in Table 4. The ð110Þb½111�b shear system produces



Table 2
The Bilby and Crocker criterion (1 and m) for 5 of the possible shear systems in the
product hcp martensitic phase for variant 1 [44].

Shear system (S.S) No. b.c.c h.c.p l m

Plane Direction Plane Direction

1 ð011Þ ½111� ð1101Þ ½1213� <0 <0
2 ð101Þ ½111� ð1011Þ ½1210� <0 <0
3 ð110Þ ½111� ð1101Þ ½1213� <0 <0

4 ð011Þ ½111� ð1011Þ ½2113� <0 <0
5 ð101Þ ½111� ð1011Þ ½2113� <0 <0

Fig. 10. The calculation of εVM for different 2, 3 and 4 variant cluster combinations
using Von Mises criteria.
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the lowest Von-Mises equivalent strain for all types of variant
cluster combinations. Interestingly, the three variant cluster has the
minimum εVM (0.0011) resulting in 4 possible 3-variant clusters
(i.e., V1V2V3, V4V5V6, V7V8V9 and V10V11V12). The nearest equiva-
lent strain for the other shear systems mentioned in this study
provided values of at least an order of magnitude higher than the
calculated values for the ð110Þb½111�b shear system. This means
that the reduction of strain energy during the martensite trans-
formation leads to a lattice invariant deformation, by the
ð110Þb½111�b slip system. Therefore, to minimise strain energy, the
transformation preferentially produces 3-variant cluster with a
triangular morphology, as seen in Fig. 3. In different alloys that also
undergo a bcc to hcp martensitic phase transformation, this is
known as a self-accommodation morphology [12,18,48].

According to Fig. 3, the triangular morphology is initially formed
by the large martensitic laths and the space needed for the newly
nucleated variants decreases as the transformation proceeds. This
ultimately leads to a smaller cluster size. In some parts of the
microstructure, 2-variant clusters are also observed as twin related
parallel laths (Fig. 3c). However, according to Table 4, the lowest
equivalent strain (εVM) for a 2-variant cluster is an order of
magnitude higher than the three-variant cluster. Therefore, the
twinned lathmorphologymight be a sectioning artefact and appear
when a pyramid shaped stack of 3-variant clusters is sectioned in
such a way that only two of the variants lie in the section plane.

Contrary to the current observations, Wang et al. [12] reported
two types of 3- and 4-variant clusters for the martensitic trans-
formation in pure Ti. This discrepancy most likely arises from the
way the transformation strain accommodation is calculated. In the
previous work, only the shear component of the strain reduction
was used to predict the possible variant combinations. In the cur-
rent study, the reduction of both the dilatation and shear compo-
nents of the shape strain (the Von-Mises criteria) are used to
Table 3
The typical calculated crystallographic sets considering the activation of different shear

S.S No. Habit plane (p) Invariant line strain (S)

1 0
@0:497

0:519
0:696

1
A

0
@ 1:044 0:0371 0:0955

0:0452 1:0495 0:0509
0:0798 0:0808 0:8746

2 0
@ 0:489

0:4948
0:7163

1
A

0
@1:0451 0:0431 0:0637

0:0426 1:0452 0:0625
0:0781 0:0766 0:8879

3 0
@0:4258

0:5604
0:7115

1
A

0
@1:0454 0:0179 0:450

0:0680 1:0449 0:0809
0:0594 0:0965 0:8877

4 0
@0:4903

0:383
0:779

1
A

0
@1:0470 0:0625 0:0478

0:0275 1:0467 0:0187
0:0567 0:0255 0:8915

5 0
@0:4707

0:4991
0:7280

1
A

0
@1:0369 0:0255 0:0262

0:0555 1:0468 0:0523
0:0468 0:0598 0:9054
determine the probable variant cluster combinations. The latter
appears to be more consistent with the current martensitic
microstructure, where it mostly consists of 3-variant clusters. This
suggests that it is essential to consider the relaxation of all shape
strain components to better predict the variant selection mecha-
nism in the martensitic transformation.

Theoretically, the combination of three consecutive variants
results in the formation of 60�/½1120� intervariant boundaries
(Table 1). Accordingly, the variants in the observed clusters are
separated by the 60�/½1120� boundaries (Fig. 11) leading to a
significant population (60%) in the martensitic microstructure
(Fig. 5b). Interestingly, the most populated intervariant boundary
in a case of a Ti-6Al-4V alloy [19] was reported to be 63.85�/
½10 5 5 3�. This may suggest that the chemical composition can
alter the Bain deformation (by changing the lattice parameters)
during the martensite transformation and consequently vary the
variant cluster arrangement/s. Moreover, as Fig. 11 suggests, the
intersection of two clusters results in the formation of other
system numbers (S.S No.).

Shape deformation (P2) d and s
1
A

0
@1:062 0:064 0:086

0:038 1:039 0:053
0:088 0:092 0:877

1
A d¼ 0.022

s¼ 0.228

1
A

0
@1:0418 0:0423 0:0611

0:0441 1:0446 0:0647
0:0749 0:0758 0:8903

1
A d¼ 0.023

s¼ 0.1935

1
A

0
@1:02722 0:0036 0:0455

0:0486 1:0639 0:0811
0:0673 0:0885 0:8876

1
A d¼ 0.021

s¼ 0.169

1
A

0
@ 0:9533 �0:036 �0:074

0:027 1:1021 0:044
�0:056 �0:044 0:911

1
A d¼ 0.0216

s¼ 0.1384

1
A

0
@ 0:945 0:0584 0:0851

0:0963 1:10207 0:1488
0:1253 0:1328 1:1937

1
A d¼ 0.1467

s¼ 0.3237
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intervariant boundaries, including 10.53�/[0001], 60.83�/
½1:377;1; 2:377; 0:359�, 63.26�/½10553�; and 90�/
½1; 2:38; 1:38; 0�, as illustrated in Fig. 11b. It should be
mentioned that some fraction of boundaries (~10%) do not follow
any misorientation angle/axis pairs associated with the Burgers
orientation relationship, as they are the result of the intersection
of two crystallographic variants transformed from two distinct
adjacent prior b grains (variants that impinge at the prior b grain
boundaries).

4.3. Characteristics of martensitic intervariant boundaries

The intervariant boundary with the largest area fraction has a
60�/ ½1120� misorientation and a ð1101Þ boundary plane orienta-
tion (Fig. 7a). As noted before, this orientation is within experi-
mental resolution of the more ideal ð17 17 0 18Þ boundary plane,
which has symmetric and quasi-symmetric character. The inter-
variant boundarywith the second largest area fraction has a 63.26�/
½10 5 5 3� misorientation and a ð19 13 6 3Þ boundary plane orien-
tation, which is only deviated by ~6� from ð3 2 1 0Þ twist and 180�-
tilt boundary (Fig. 7c).

It is well demonstrated that the relative areas of grain bound-
aries in microstructures correlate inversely with boundary energy
in both simulations [49e51] and experiments [19,20,52e54]. A
limited number of grain boundary energies in Ti have been calcu-
lated by molecular dynamics simulation, and they are mostly tilt
boundaries [5]. These data, though, do not correspond with all
intervariant boundaries associated with the present martensitic
transformation. Therefore, the interplanar spacing is employed
here as another criteria to evaluate the grain boundary energy
[55e57]. The flattest, smoothest surfaces have the fewest broken
bonds and the largest interplanar spacings. Because of this, they
have relatively low surface energies and they form relatively low
energy grain boundaries. Within this simple framework, grain
boundary energy is inversely correlated to interplanar spacing. For
commercially pure Ti, the basal (0001) plane has the greatest
interplanar spacing (i.e., 2.0283 A

̊

), followed by the pyramidal
ð1011Þ plane (i.e., 1.8019 A

̊

) and the prismatic planes (i.e., ð1010Þ,
ð1120Þ and ð4130Þ planes with the interplanar spacing of 1.7038,
1.4755, and 0.4725 A

̊

, respectively, Table 5). Therefore, if one con-
siders the interplanar spacing relationship with the relative energy,
the basal plane should have the lowest energy and highest popu-
lation among other boundary planes in Ti. However, in the distri-
bution of the intervariant planes for themartensitic microstructure,
the basal orientation is a minimum in the population and the
maxima are at the prismatic and pyramidal orientations (Fig. 6).
This suggests that the grain boundary population in the current
study does not have an inverse relationship with the boundary
energy. A similar observation has been made for the martensitic
microstructure in a Ti-6Al-4V alloy [19], showing the maximum
population around the prismatic f1010g planes. From such find-
ings, it can be concluded that the crystallographic constraints
imposed by the Burgers orientation relationship can lead to
boundaries with intervariant planes that do not necessarily have a
low energy configuration (e.g., ð4130Þ boundary planes), as previ-
ously demonstrated in lath martensitic steels [27,28] and titanium
alloys [19,58].

Through a similar approach [19,57], the interplanar spacings of
the observed characteristic planes has also been computed and
summarised in Table 5. The intervariant boundary with the greatest
relative area (60%) has a misorientation of 60�=½1120� and is mostly
terminated on the pyramidal ð1101Þ plane (near the symmetric tilt
ð17 17 0 18Þ plane). This boundary is also both proper and
improper quasi symmetric (Fig. 7a). This is because the ½1120� axis
is a two fold symmetry axis [59]. This plane has the second largest



Fig. 11. The IPF (a) and corresponding band contrast (b) images showing three variant clustering in the martensitic microstructure. Yellow, red, green, blue and white lines in (b) are
the 10.53�/½0001�, 60�/½1120� , 60.83�/½1:377 1 2:377 0:359�, 63:26�=½10 5 5 3� and 90�/[1�2.38 1.380] intervariant boundaries, respectively. A, B, C and D,E,F labels in (a) and (b)
represent 3-variant clusters of 1 and 2, respectively, as plotted in (0001) pole figures (c). The triangle inset in (a) represents the colour codes referred to normal direction. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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interplanar spacing (i.e., 1.8019 A, Table 5), suggesting a relatively
low energy configuration. This is consistent with the molecular
dynamics energy calculation [5], showing that the pyramidal
ð1101Þ plane has the minimum energy (168.7mJ/m2) among the
½1120� tilt boundaries. Interestingly, the other sets of planes pre-
dicted to have low energies by the calculation, such as ð1013Þ,
̊

Table 5
The interplanar spacing (dℎkl) for different measured intervariant planes and their corre

Intervariant boundary

Axis/Angle Plane

Fig. 6 All boundaries ð1 0 1 0Þ
ð1 1 2 0Þ
ð0 0 0 1Þ
ð1 01 1Þ
ð4 1 3 0Þ

Fig. 7 10.53�/½0 0 0 1� ð19 8 11 0Þ
60�/½1 1 2 0� ð1 1 0 1Þ
60.83�/½1:377 1 2:377 0:359� ð9 6 3 0Þ

ð5 3 2 0Þ
63.26�/½10 5 5 3� ð3 2 1 0Þ

ð19 13 6 3Þ
90�/½1 2:38 1:38 0� ð17 17 0 18

a Taking into account the structure factor as the plane passing through an additional
ð1012Þ and ð2021Þ at rotation angles of 31.39�, 42.47� and 74.7�,
respectively, are absent from the misorientation angle distribution
of the martensite sample. This suggests that the martensitic
transformation in commercially pure Ti and the associated crys-
tallographic constraints can simultaneously provide low energy
configurations in the form of three-variant clusters terminating on
sponding population.

Intensity (MRD) Interplanar spacing (Å)

1.5 0.8519 or 1.7038a

1 1.4755
0.36 2.0283
1.62 0.3604 or 1.8019a

1.62 0.2363 or 0.4725a

0.49 0.1547

504.0 0.3604 or 1.8019a

14.01 0.3219
12.00 0.1954 or 0.3908a

160.73 0.3219 or 0.6439a

204.21 0.0251 or 0.1258a

Þ 30.68 0.0416 or 0.0833a

atom [57].
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pyramidal planes. In other words, the 60�=½1120� with low energy
ð1101Þ plane accounts for ~60% of total boundary area in the
microstructure. The other intervariant boundaries reveal higher
energy configurations resulting from the intersection of these
triangular clusters (e.g., 63.26�/½10553� intervariant boundaries
terminated on f19 13 6 3g planes, Fig. 7c).

5. Conclusion

In the current study, the characteristics of intervariant bound-
aries in commercially pure Ti subjected to the martensitic trans-
formation were investigated by conventional EBSD mapping and a
five parameter analysis of the boundary data. The following sum-
marises themost important findings drawn from this investigation:

� The as-received and transformed microstructures had similar
textures, with the (0001) pole figure revealing multiple peaks
perpendicular to the extrusion direction. However, because of
variant multiplication, the martensitic transformation
decreased the strength of the texture.

� The grain boundary misorientation angle distribution revealed
four distinct peaks closely associated with the theoretical
intervariant boundaries expected from the Burgers orientation
relationship. The 60�=½1120� intervariant boundary made up
60% of the boundary area.

� Three-variant clusters separated by 60�/½1120� boundaries
frequently appeared in the martensitic microstructure. Accord-
ing to the phenomenological theory of martensite, this specific
triangular morphology minimises the transformation strain
compared to other possible cluster arrangements involving four
or fewer variants.

� The grain boundary plane distribution, ignoring misorientation,
is strongly anisotropic with most boundaries terminated on the
prismatic fhki0g and pyramidal ð1101Þ planes. The ð1101Þ
boundary orientations are associated with the symmetric tilt
60�/½1120� intervariant boundaries. The other intervariant
boundaries expected from the Burgers orientation relationship
largely terminated on prismatic planes, but did not necessarily
have low energy interface arrangements.
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Appendix

A.1 Phenomenological theory of martensite transformation

Based on the phenomenological theory of martensite intro-
duced by Mackenzie and Bowels [60], it has been shown that the
total atomic displacements and the transformation strain has the
characteristic of an invariant plain strain, which leaves the habit
plane invariant (i.e., undistorted and unrotated). The magnitude m
of the shape deformation can be determined as its unit displace-
ment vector d. The habit plane of the martensite (unit normal p) is
the invarianteplane of the shape deformation. The shape defor-
mation can be represented bymeans of a shape deformationmatrix
P:

P ¼ I þm½d�ðpÞ (4)

Where the basis is chosen to be orthonormal, although the
equation is valid for any basis.
However, the invariant plane strain, IPS, cannot solely change

the structure of a bcc structure into a hcp structure. On the contrary,
an invariant line strain (ILS) can accommodates the phase structure
change associated with the martensite transformation. The ILS can
be factorised into two plain strains. Therefore, another invariant
plane Q, which is considered as a complementary simple shear,
with the magnitude of n on a plane with unit normal of q and in a
unit direction of e accompanies the shape deformation:

Q ¼ I þ n½e�ðqÞ (5)

Therefore, the invariant line strain is identified by two homo-
geneous invariant plane strains in a way that S ¼ P:Q . However, the
shape change due to the simple shear Q is rendered invisible on a
macroscopic scale since there is also an inhomogeneous lattice-
invariant deformation, which can be slip or twinning. This can-
cels out the shape change due to Q , without altering the lattice
structure. The macroscopic shape change is solely due to P and
therefore has the characteristics of an invarianteplane strain, as
experimentally observed. The transformation strain, S, can be fac-
torised into a Bain strain, B, combined with an appropriate rigid
body rotation, R, such that S ¼ R:B. The invarianteline of trans-
formation strain lies in the planes p and q, and the invariant-normal
of S defines a plane containing d and e. Hence:

S ¼ R:B ¼ P:Q (6)
A.2. Determination of lattice transformation strain

The deformation matrix representing the Bain strain, which
carries the bcc b-lattice to the hcp a-lattice in an orthonormal basis
(Fig. 9) is given by:

B ¼
8<
:

h1 ¼ ch
. ffiffiffi

2
p

ab 0 0

0 h2 ¼
ffiffiffi
3

p
ah

. ffiffiffi
2

p
ab 0

0 0 h3 ¼ ah=ab

9=
; (7)

To find the rigid body rotation, first the invariant line and
invariant plane normal should be identified, based on the condition
that the invariant line of Smust lie within the shear plane to cancel
the complementary shear Q. Therefore, the unit vector of
½u� ¼ ½u1u2u3� must lie in the shear plane ðwÞ ¼ ðw1w2w3Þ
meaning:

w1u1 þw2u2 þw3u3 ¼ 0 (8)

The magnitude of the ½F;u� prior to the deformation is:

���u2��� ¼ u21 þ u22 þ u33 ¼ 1 (9)

The Bain strain takes ½u� ¼ ½u1u2u3� in the orthonormal refer-
ence frame into ½x� ¼ ½x1x2x3�. As a result the deformation u be-
comes a new vector x but the magnitude of the vector remains
unchanged (i.e., ½u� ¼ B:½x�). Therefore;

u21 þ u22 þ u23 ¼ h21u
2
1 þ h22u

2
2 þ h23u

2
3 (10)

Equations (8)e(10) can be solved and give two solutions for the
undistorted line. Consequently, for the invariant normal of the
invariant lattice strain, the invariant plane ðhÞ ¼ ðh1h2h3Þ should
contain the shear direction ½r� ¼ ½r1r2r3�. Then;
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r1h1 þ r2h2 þ r3h3 ¼ 0 (11)

Furthermore;
���h2��� ¼ h21 þ h22 þ h23 ¼ 1 (12)

The lattice deformation (i.e., Bain deformation) converts ðhÞ to
ðlÞ ¼ ðhÞB�1. Therefore;

h21 þ h22 þ h23 ¼ h21
.
h21 þ h22

.
h22 þ h23

.
h23 (13)

Consequently, equations (11)e(13) can be solved to give two
solutions for the undistorted normal. To convert the Bain strain into
an invariant line strain, S, the rigid body rotation, R, must be
employed, bringing an undistorted line (i.e., ½x�) and undistorted
normal (i.e., ðhÞ) back into the original direction along with the ½u�
and ðhÞ. For both ½x� and ðlÞ, there are two solutions. Therefore, there
would be four solutions for converting B into S.

x ¼ Bu l ¼ hB�1 (14)

Also, the cross product of ðhÞ and ½u� (i.e., u� h ¼ aÞ is converted
(i.e., x� l ¼ bÞ into S after the Bain deformation [47]. Therefore, the
rigid body rotation can be obtained through the following
equations:

u ¼ R:x h ¼ R:l a ¼ R:b (15)

By converting these equations into a 3� 3 matrix, they can be
defined as:

0
@u1 h1 a1

u2 h2 a2
u3 h3 a3

1
A ¼

0
@R11 R12 R13

R21 R22 R23
R31 R32 R33

1
A
0
@ x1 l1 b1

x2 l2 b2
x3 l3 b3

1
A (16)

Here, R, B and S are explained in the orthogonal coordinate system
(Fig. 9) and they can be defined in parent (i.e., b) coordinate, as
below:

Bb ¼ T�1B0T Rb ¼ T�1R0T Sb ¼ RbBb (17)

The transformation matrix can be described as:

T ¼
2
4
1
. ffiffiffi

2
p

�1
. ffiffiffi

2
p

0

1
. ffiffiffi

2
p

1
. ffiffiffi

2
p

0
0 0 1

3
5 (18)

A.3. Calculating the habit plane and the shape deformation

The habit plane (i.e., unit normal, p) can be solved through
equations (4)e(6), considering the fact that S is an invariant line
strain. In addition, the invariant line ½u� of S must lie in shear plane
ðwÞ and the invariant-normal ðhÞ, containing the shear direction ½r�.
Therefore, the habit pane must be compatible with the chosen
lattice shear system. Considering equations (4)e(6), the habit plane
can be given by normalization of equation (19):

ðpÞ ¼ ðwÞ � ðqÞS�1 (19)

Now to completely define the shape deformation, the values of
½d� and m in equation (6) should be identified, as below:

cm½d� ¼ S½e� � ½e� (20)

Here, c is dot product of the habit plane and ½e�, and m is the
magnitude of the involved displacement, which is factorised into a
shear component s (s ¼ ðm2 � d2Þ parallel to the habit plane and a
dilatational component d ðd ¼ m½d�:ðpÞÞ. Note that e is the shear on
the directionwhere the Q (complementary shear) is being canceled
out (½e� ¼ ½r�).

Hence, the homogenous shear (Q) can be identified, as below:

Q ¼ P�1:S (21)
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