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Abstract
Spatially selective surface photochemical reactivity provides charge and half-reaction separation
on a surface of a single material, which generally leads to improved photocatalytic performance,
including for water-splitting. In this article, we review observations wherein spatially selective
reactivity has been observed on the surfaces of two types of ferroic materials: non-
centrosymmetric ferroelectrics and, more recently, centrosymmetric ferroelastics. We further
propose that there is an interesting connection between these materials. Some ferroelectrics can
be described as ferroelastics with aligned dipoles: they are ferroelectric ferroelastics.
Centrosymmetric ferroelastics known to exhibit domain selective reactivity can be described as
ferroelastics with anti-parallel aligned dipoles: they are anti-ferroelectric ferroelastics. We
discuss potential mechanisms for spatially selective reactivity in such anti-ferroelectric
ferroelastics. Finally, we identify additional anti-ferroelectric ferroelastics of interest for spatially
selective reactivity.

Keywords: photocatalysis, anti-ferroelectrics, ferroelastics, ferroelectrics, BiVO4, WO3, BaTiO3

(Some figures may appear in colour only in the online journal)

1. Introduction

Over four decades of rigorous research in the field of solar
water splitting and artificial photosynthesis has not yet
resulted in an efficient and economical system to produce
hydrogen. This fact highlights the intricacy of the problem
that stands between us and a carbon-free energy supply.
Morrison [1] has formulated a list of six physical attributes to
be satisfied by a material to be a potential solar water splitting
photocatalyst. Firstly, the band gap of the photocatalysts
should be such that they absorb a large part of the solar
intensity spectrum, and a lot of research has been carried out
on utilizing visible light active photocatalysts [2, 3]. Next,
photogenerated charge carriers and half-reaction sites need to
be separated. Macroscopic separation is built into photo-
electrochemical cells (PECs) [4–6] having distinct electrodes.

Microscopic separation occurs in heterostructured photo-
catalysts, or materials composed of two or more materials
differing in band energies [7–11]. Microscopic separation on
the surface of a single material occurs owing to spatially
varying internal fields, either from the aligned dipoles of
ferroelectrics [12–22] or native surface charges of different
surface chemistry [23, 24]. Some photocatalysts are prone to
photodegradation, and hence need protection [15, 21, 25–30].
Appropriate energy levels of the conduction and valence
bands are a thermodynamic requirement to enable the pho-
tocatalyst to oxidize and reduce water simultaneously.
Engaging size effects has been shown to be one way of
engineering these levels [31]. Lastly, many ingenious
nanostructures have been developed by researchers to inte-
grate all of these requirements in a holistic photocatalytic
system [32, 33].
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A large variety of materials systems have been explored,
which fall into the following broad categories—inorganic
[34–37], organic [5, 8, 38, 39], inorganic–organic composites
[39–41], and bio-inorganic hybrids [42]. Some of these sys-
tems have shown tremendous potential for water splitting.
100% photon-to-hydrogen efficiency has been achieved using
a CdSe quantum dot embedded asymmetrically in a Pt-tipped
CdS quantum rod [37]. A solar efficiency of 5.4% has
been reported by combining organic absorbing layers with
inorganic co-catalysts [40]. ‘Artificial leaves’ capable of
standalone water splitting have been demonstrated using
silicon-based semiconductors [36, 43]. Recently, a CO2

reduction system that exceeds natural photosynthetic effi-
ciencies using Ralstonia eutropha bacteria in conjunction with
voltage-driven inorganics gave solar-to-chemical fuel effi-
ciencies of 7.1%–9.7% [42].

While these results (and others) show that solar fuel pro-
duction is extremely promising, none of them are economically
competitive in a commercialized technology [44]. Therefore, it is
important to continue to develop new materials and new systems
for solar water splitting. We have been particularly interested in
individual materials that exhibit bi-functional surfaces: surfaces
with some regions that preferentially oxidize molecules and other
regions that preferentially reduce molecules. Dunn [45] advo-
cated the use of ferroelectric materials for water splitting, and
Tiwari and Dunn [22] reviewed photochemistry on ferroelectric
surfaces. We later reviewed a broader range of photocatalysts
with internal electric fields [12] that promote spatial selectivity of
reactions and increase efficiencies by decreasing recombination
and back-reaction of intermediates. For ferroelectrics, individual
materials that spatially separate reactions, the overlap with the
solar spectrum is generally low. The few known solar active
ferroelectrics have deficiencies with respect to the other materials
criteria. Thus, their utility in solar fuel production is low.

Clearly, a wider range of solar absorbing spatially
selective materials is needed. Recently, we found that some
centrosymmetric ferroelastics, which are not polar, surpris-
ingly exhibit spatially selective reactivity and absorb visible
light. In fact, similar spatially selective surface reactivity was
observed on ferroelectrics and centrosymmetric ferroelastics,
the first of which is polar in the bulk and latter of which is not.
The purpose of this article is to compare the similarities and
differences of these distinct materials for photocatalysis,
examining mechanisms for domain based reactivity on their
surfaces, and discussing paths for their inclusion in solar
water splitting systems.

This review (or perspective) is organized as follows. In
section 2, we provide a foundation for understanding ferroe-
lastic, ferroelectric, and anti-ferroelectric materials, as well as
the basic photodeposition reactions discussed later. In
section 3, a summary of domain-based charge separation in
ferroelectrics, coated ferroelectrics, and centrosymmetric fer-
roelastics is given. Section 4 contains a discussion of
mechanisms for spatially selective reactivity in each of these
materials. Section 5 summarizes the article and provides our

perspective on the potential of anti-ferroelectric ferroelastics
in solar water splitting in the light of reports in literature.

2. Foundation

2.1. Ferroics, anti-ferroics, and multi-ferroics

Ferroic materials, such as ferromagnets, ferroelastics, and
ferroelectrics, share some common features. They all involve
the long-range parallel order of a local vector quantity,
namely magnetic moment, strain, and polarization respec-
tively, below a critical temperature referred to as the Curie
temperature (TC). This leads to a net local magnetization,
strain, or polarization. Importantly, the ordered vector quan-
tity can be switched between a small number of energetically
degenerate directions. Above TC, either the local order or the
magnitude of the vector quantity vanishes, resulting in no
order or net value for the vector quantity. Given that this
article is based on ferroelastics, let us now consider the
ferroelastic transformation.

A schematic of the transformation is given in figure 1,
where an orthorhombic high-T structure (all angles are 90°)
transforms into a monoclinic low-T structure (the angles are
not 90° in this plane). States 1 and 2 are energetically
degenerate states, each having the same structure but state 2 is
a mirror image of state 1. Generally, the ferroelastic trans-
formation is driven by atomic displacements within the unit
cell that lower the overall energy and create a local strain
relative to the parent structure.

Multi-ferroics are materials that have more than one type of
ferroic order with some coupling between the two order para-
meters. Many, if not most, ferroelectrics are also ferroelastics.
This is because, similar to ferroelastics, a ferroelectric trans-
formation is also driven by ordered atomic displacements. A
schematic of local displacements in a ferroelectric is given in
figure 2(a); these displacements lead to a polarization because
the local center of positive and negative charge is different. In
ferroelectrics, these local polarizations order in a parallel fash-
ion. While most ferroelectrics are also ferroelastics, the opposite
is not true. This is because ferroelectricity (FE) requires non-

Figure 1. Schematic illustrating domain formation due to a
ferroelastic phase transformation (adapted from Wadhawan [142]).
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centrosymmetry, a restrictive crystallographic condition, while
ferroelasticity does not. Because both transformations are driven
by atomic displacements, they might be expected to be coupled
in ferroelectric ferroelastics. The coupling of strain and polar-
ization is obviously interesting for piezotronics.

To minimize the overall energy below TC, ferroic mate-
rials organize into volumetric domains that have the same
order direction within a domain, but different order directions
across domains. The macroscopic net value of the ordered
vector quantity can be zero if the volumes of each type of
degenerate domains are equal. A schematic is given in the
lower central portion of figure 1, for two unit cells of adjacent
domains stacked vertically (state 2 on state 1). Comparing the
three lower panels to the parent structure, the central one with
two domains is closest to the shape of the parent (and thus has
the lowest overall strain energy). In ferroelastics, the crys-
tallographic orientation of the unit cells in a given domain is
the same, but changes across domain boundaries.

Domain boundaries in ferroelastics are named with
respect to the angular rotation about a low index axis that
brings the unit cells in the two adjacent domains into coin-
cidence. The domain boundary (horizontal boundary between
the two monoclinic cells constituting the lower central figure)
in the schematic of figure 1 is a 180° domain boundary: a
180° rotation about the horizontal axis brings the cells into
coincidence. Because the domain boundaries separate regions
of distinct crystallographic orientations, the boundary plane is
usually subject to significant crystallographic restrictions [46].
Further, most materials are polycrystalline in nature, and a
grain typically contains many domains. In much of the pho-
tocatalysis work on polycrystalline ferroelectrics, the exis-
tence of surface domains allows one to probe the effect of
different polarization and orientation states simultaneously.

By the application of an external field, the relative
volumes of different domains can be modified, ideally
allowing an entire crystal to adopt a single domain (this is
called poling). For example, domain switching between
energetically degenerate configurations (state 1 and 2 in
figure 1) can be carried out by the application of a shear
stress. As such, ferroics all exhibit hysteresis in their net

moment versus field plots, which can be understood as the
competition between the drive to lower the energy by forming
domains and the strength of the local ordering interactions. In
photocatalysis, poling [13–15] or local domain writing [47]
has been used to correlate the direction of the local polar-
ization to the type of chemical reactivity.

Anti-ferroic materials, such as anti-ferromagnets, anti-
ferroelastics, and anti-ferroelectrics, have anti-parallel order-
ing of their local order vectors below a critical temperature
referred to as the Neél temperature (TN). The anti-parallel
alignment results in no net magnetization, strain, or polar-
ization, because the local vector moments cancel out over
relatively small length scales. A schematic of atomic dis-
placements in an anti-ferroelectric are shown in figure 2(b).
Although there still are local polar units, the net polarization
is zero. Interestingly, application of an external field can drive
some anti-ferroics into a ferroic state. This is a common
expectation for anti-ferroelectrics, whose parallel alignment is
only stable under the applied field. One could envision con-
verting the atomic distribution in figure 2(b) to that in
figure 2(a), under the correct field. In such cases, the energy
difference between the anti-ferroic and ferroic states must
be small, as is the case for nearby metastable states. Anti-
ferroelectrics do not require non-centrosymmetry, but usually
have nearby non-centrosymmetric structures into which they
transform in the appropriate field.

Multi-ferroics have two or more ferroic or anti-ferroic
order parameters. We are interested here in anti-ferroelectric
ferroelastics, which could have interesting coupling between
polarization and strain, especially with low-energy
ferroelectric structures nearby in phase space. Many good
piezoelectrics are solid-solutions with energetically similar
ground states of ferroelectricity (FE) and anti-ferroelectricity
(AFE) inherited from the parent phases, like PbTiO3–PbZrO3

(FE-AFE). Obviously, the coupling between ferroelasticity,
FE, and AFE is well known in the field of piezotronics.
Recently, it has come to our notice that this coupling could be
important for the design of high performing photocatalysts.
We discuss here the use of anti-ferroelectric ferroelastics as a
potential class of novel photocatalysts, comparing them to
ferroelectric ferroelastics that have been well studied as
photocatalysts.

2.2. Correlating reactivity to domain structures

Photodeposition is the process of depositing insoluble metal or
oxide nanoparticles on the surfaces of semiconductors sub-
merged in a solution while under illumination by light of a
suitable wavelength [48]. Photodeposition can be used for
adding functionality to a semiconductor photocatalyst, such as
loading it with a co-catalyst for improved reactivity [48] or for
examining preferential reaction sites [16, 17, 20, 21, 23, 29, 30,
49–53] by subsequently mapping the location and amount of
photodeposited products. This is especially useful in the
investigation of heterogeneous surfaces having different grain
or domain orientations.

The authors of the reports discussed later have used
photodeposition to deposit insoluble silver or lead oxide on

Figure 2. Schematic atomic displacements in (a) a ferroelectric and
(b) an anti-ferroelectric. The blue ions with a ‘−’ are negatively
charged while the yellow ions with a ‘+’ are positively charged. The
black arrows denote the directions of the atomic displacements in
both figures.
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photocatalyst surfaces from silver nitrate and/or lead acetate
solutions. The Ag+ ions in the silver nitrate solutions are
reduced to elemental silver (Ag) on the surface of the pho-
tocatalyst by the photogenerated electrons. Similarly, Pb2+

ions in the lead acetate solution are oxidized to Pb4+ which
are deposited on the surface as PbO2 particles by the photo-
generated holes. These two reactions have been referred to as
the ‘Ag photoreduction’ and ‘Pb photo-oxidation’ respec-
tively, throughout the article. In a typical experiment, the
photocatalyst is placed within a vessel (e.g., a viton O-ring),
which is filled with solution, as shown in figure 3. A quartz
slip is used to cover the solution, which allows UV and
visible light to pass through. After reaction, the relative
quantity and location of photodeposited product can be
mapped using optical microscopy, scanning electron micro-
scopy (SEM), or atomic force microscopy (AFM).

To correlate reactivity with the domain structure, the
latter needs to be imaged and the polarity of constituent
domains needs to be ascertained. The domain structure in
ferroelastics can be mapped using SEM (especially using
backscatter electron, or BSE, imaging) and AFM. The
polarity of domains can be mapped when the domains are
piezoresponsive or have different surface work functions by
using piezoforce microscopy (PFM) and Kelvin probe force
microscopy (KPFM), respectively [54]. In addition to allow-
ing structure and reactivity to be spatially correlated, PFM
and KPFM offer the ability to identify specific polarization
states of the surface domains.

3. Spatially selective reactivity in ferroelastics

3.1. Ferroelectric ferroelastics

Inoue et al [13–15] first studied the effects of ferroelectric
polarization on surface properties using coated poled ferro-
electric crystals. They showed that O2 adsorption (surface
conductivity) was much higher for NiO films supported on
negatively poled (positively poled) LiNbO3 crystals than for
similar films on oppositely poled LiNbO3 [13]. Additionally,
the photocatalytic activity of TiO2 films supported on
poled-LiNbO3 [15] was enhanced compared to standard

titania. Later, they also showed that the photocatalytic
hydrogen evolution from uncoated lead zirconate titanate
(PZT) [14] crystals was 10–40 times higher on positively
poled PZT than on negatively poled PZT [14]. All of these
observations could be explained by the effects that the fer-
roelectric polarization had on band bending in the substrate or
film, where negative (positive) polarizations lead to upward
(downward) band bending in the adjacent substrate or film.
Electronic carriers were influenced by these fields, with holes
(electrons) attracted to the negative (positive) polarization.

Later, to understand the heterogeneous nature of ferro-
electric surface reactivity, we studied the photodeposition of Ag
and PbO2 on unpoled polycrystalline ferroelectrics, including
BaTiO3 [17] and TiO2-coated BaTiO3 [21, 30, 49, 55]. Poly-
crystalline surfaces having many domains are bi-functional
surfaces, with some domains carrying out reduction and some
carrying out oxidation. Figures 4(a) and (c) are AFM topo-
graphy images after Ag photoreduction and Pb photo-oxidation
on the same surface of BaTiO3. The bright regions in each
image are photodeposited solid products. It is immediately clear
that the reactivity of the surface is spatially heterogeneous. The
reactivity patterns are exactly correlated with the domain pat-
terns of the underlying substrate. Importantly, the regions of the
surface that are reactive (unreactive) for reduction in figure 4(a)
are unreactive (reactive) for oxidation in figure 4(c). We call
this type of bifunctional surface reactivity complementary
reactivity: some domains are cathodic and some are anodic.
One can describe such a surface as a series of short-circuited
PECs dictated by the surface domain structure. Using the
polycrystalline nature of the samples, it was shown that similar
complementary and spatially selective reactivity was observed
across all of orientation space, implying the ferroelectric effects
were more important than orientation effects (which are known
for other photocatalysts like BiVO4 [56], SrTiO3 [57, 58] and
NaNbO3 [59], amongst others).

Figure 3. Schematic illustrating the setup for the photodeposition
reactions.

Figure 4. Topography of (a), (c) ferroelectric BaTiO3 and (b), (d)
coated ferroelectric TiO2/BaTiO3 substrates after photodeposition of
(a), (b) Ag and (c), (d) PbO2. Vertical scales: (a) 100 (b) 55 (c) 110
(d) 80 nm. Figures (a), (c) and (b), (d) are reproduced with
permission from [30, 49] respectively.
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Unfortunately, many photocatalysts (including BaTiO3)
suffer from photodegradation. A thin stable coating (such as
TiO2) can offer protection from photodecomposition.
Figures 4(b) and (d) are AFM topography scans after Ag
photoreduction and Pb photo-oxidation respectively on the
same surface of TiO2-coated BaTiO3. Similar to the bare
substrate, the coated ferroelectric exhibits complementary
reactivity, with some domains promoting Ag photoreduction
and others promoting PbO2 photo-oxidation. Importantly, for
these 15 nm films, the photocathodic (photoanodic) regions of
the bare substrate are also photocathodic (photoanodic)
regions for the supported film. This is consistent with the
mechanism that carriers photogenerated in the ferroelectric
substrate are responsible for the reactivity on the non-
ferroelectric film surface. The substrate dominated photo-
catalytic activity of the film was supported by the observa-
tions that spatially selective reactivity was independent of the
phase of the titania in the film or the orientation of the sub-
strate or film. Of course, the domain influence disappears
when the film is too thick [15, 30] and the interfacial charge
of the polar domains is screened by the film or the film’s
absorption is greater than that of the substrate. For example,
100 nm thick films did not exhibit spatially selective patterns
of reduced silver [55].

While Inoue et al [13–15] were able to pole single
crystals to demonstrate the correlation between reactivity and
polarization, other methods are needed on the polycrystals.
Hu et al [60] reported that domains with a positive out-of-
plane polarization etched fastest in HCl. These were followed
by domains with in-plane polarization. The slowest to etch
were the domains which had a negative out-of-plane polar-
ization. Using this method, Giocondi et al [16, 17, 49]
showed that photocathodic (photoanodic) domains had posi-
tive (negative) polarization. They saw that the regions that
reduced silver, etched faster in HCl, indicating they had a
positive polarization. Higher reactivity implies an enhanced
drift of reducing photogenerated electrons towards the surface
of that domain, which is consistent with being attracted to
positive out-of-plane polarization.

Kalinin et al [54] used surface potential microscopy (also
known as KPFM) to image the polarity of domains on
BaTiO3. Bhardwaj et al [20] followed up by using KPFM to
correlate reactivity to domain polarization on BaTiO3. A
KPFM image of the surface of a BaTiO3 ceramic is shown in
figure 5(a), with a grain boundary running slightly off vertical

in the center. In this image, contrast arises from regions
having different work functions. Different work functions
arise from different near-surface band bending owing to the
local dipole moments or charges [19], which in this case
correspond to different domain polarizations. The KPFM
image maps the ferroelectric domains clearly. An AFM image
of the surface after Ag photoreduction is shown in figure 5(b).
The photochemical reactivity is clearly correlated with the
domains mapped by KPFM. The dark domains in KPFM,
which were identified as the positive polarization domains,
are photocathodic (reactive for Ag photoreduction), while the
light (negative polarization) domains are not. It has been
widely reported that ferroelectrics have improved photo-
chemical reactivity in comparison to similar non-ferroelectric
materials. Stock and Dunn [61] reported unexpectedly high
activity of CO2 reduction on the surface of ferroelectric
LiNbO3. It was proposed that the strong polarization
(70 μC cm−2), which shuttles photogenerated electrons and
holes away from each other, also leads to very long carrier
lifetimes, resulting in the high efficiency. Additionally, the
band bending at the surface was considered to allow for
charge injection at lower energy levels, adding further to the
efficiency. Morris et al [62] showed experimentally that the
spontaneous polarization in single crystal BaTiO3 mitigates
charge recombination and extends carrier lifetime. Dunn and
Tiwari [63] also proposed that ferroelectric polarization leads
to a reduction in the photoelectric threshold in LiNbO3, which
is another source of potential improvement. Due to the
reduction of the threshold, the photoelectric effect could be
engaged to generate free electrons, adding to the increased
carrier lifetimes and internal charge separation. In some cases,
domain selective adsorption driven reactivity has been
reported [64]. In this mechanism, positive (negative) mole-
cules preferentially adsorb to negative (positive) ferroelectric
domains. A three-fold increase in photodegradation of rho-
damine B was observed for nanophase BaTiO3 photocatalysts
with higher phase ratios of tetragonal to cubic (ferroelectric to
non-ferroelectric) BaTiO3 [65]. The authors have attributed
the increased reactivity due to internal charge separation as
well as strong polarization-driven adsorption of the dye
molecules on the surface.

A fundamental limitation to the use of most ferroelectric
photocatalysts for solar energy conversion is that they have
wide band gaps and their absorption is limited to the UV
region of the solar spectrum. BiFeO3 is an exception, with a
band gap of 2.81 eV [66]. Kalinin et al used scanning probe
methods to directly write domains of specific polarizations
(local poling), and directly demonstrated photocathodic
(photoanodic) domains had positive (negative) polarization
using PFM [47]. Schultz et al [53] carried out photodeposi-
tion experiments on ferroelectric BiFeO3 and correlated
reactivity with polarization using PFM. The PFM out-of-
plane phase difference is shown in figure 6(a), which shows
clear polygonal piezoresponsive domains. The topography of
the same area after Ag photoreduction with blue light is
shown in figure 6(c). The bright regions in figure (c) are
coated with Ag, and these correspond to the dark domains in
the PFM image of figure 6(a). Even for the solar absorbing

Figure 5. (a) KPFM image of a BaTiO3 surface. (b) Topography of
the same region after Ag photoreduction. Vertical scales: (a) 175 mV
and (b) 60 nm. Figures (a), (b) are reproduced with permission
from [20].
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BiFeO3, it was shown that reactivity on certain domains was
greater than others and that the influence of domain polar-
ization overwhelmed effects of crystallographic orientation.

Zhang et al [29] carried out similar photodeposition
investigations on TiO2-coated BiFeO3. As was the case for
other coated ferroelectrics, when the film was thin (10 nm),
spatially selective reactivity was observed. The PFM out-of-
plane phase difference of the coated BiFeO3 system is shown
in figure 6(b). The topography of the same area after Ag
photoreduction with blue light is shown in figure 6(d). The
bright regions in figure (d) are coated with Ag, and these
correspond to the dark domains in the PFM image figure 6(b).
Because TiO2 does not absorb visible light, the primary
photo-generation of charge carriers takes place in the ferro-
electric substrate. The substrate domain polarization then
influences the drift of photogenerated carriers to the film/
substrate interface. The carriers then traverse the coating and
react at the TiO2 surface in patterns identical to those of
the substrate. Notably, a small maximum polarization of
6.1 μC cm2 exists along the 〈111〉 direction of BiFeO3 [53].
Hence, for any other orientation, the out-of-plane component
is expected to be even smaller. This smaller component was
seen to be enough to influence reactivity through a 10 nm film
of TiO2 [29]. Hence, it suggests that smaller polarizations
below 10 μC cm-2 are enough to drive spatially selective
reactivity on photocatalysts coated with thin films.

3.2. Anti-ferroelectric ferroelastics

The prior section discussed spatially selective reactivity in
ferroelectrics, driven by spatial differences in surface band

banding related to domain polarization. Notwithstanding
BiFeO3, ferroelectrics are mostly UV absorbing materials.
Recently, it was shown that some non-polar solar absorbing
ferroelastics also exhibit spatially selective photochemical
activity that is analogous to ferroelectric photochemical sur-
face reactivity. Munprom et al [52] were the first to report
spatially selective reactivity on BiVO4, a centrosymmetric
ferroelastic. BiVO4 exhibits ferroelasticity on cooling through
a phase transformation from the tetragonal scheelite to the
monoclinic fergusonite structure at 255 °C [67]. Ferroelastic
BiVO4 is centrosymmetric and potentially anti-ferroelectric
[68]. The ferroelastic domains are clearly observable by
AFM, as shown in figure 7(a). When Ag photoreduction was
carried out using UV light or blue LEDs, the surface reac-
tivity was observed to be correlated to the ferroelastic domain
structure, as shown in figure 7(c) [52]. The domain structure
of BiVO4 is complex, and only some of the domains promote
Ag photoreduction, which is apparent in the central grain of
figures 7(a) and (c). The set of domains highlighted with
white lines are photo-active. Within those photo-active
domains, the other set of domains modulates the reactivity,
reinforcing the importance of the ferroelastic domains on
surface reactivity.

Very recently, we reported similar spatially selective
reactivity for centrosymmetric ferroelastic WO3 [69]. WO3

undergoes two ferroelastic transformations: a tetragonal to
orthorhombic (α-WO3→β-WO3) one at 740 °C and an
orthorhombic to monoclinic (β-WO3 to γ-WO3) one at 310 °C
[70, 71]. Similar to BiVO4, γ-WO3 is a centrosymmetric anti-
ferroelectric ferroelastic [72–74]. The dual transformation
leads to a complex hierarchical domain structure, two levels
of which are apparent as chevron patterns shown in
figure 7(b). After carrying out Ag photoreduction, a clear

Figure 6. (a) and (b) PFM images (out-of-plane phase difference) of
(a) ferroelectric BiFeO3 and (b) TiO2 coated ferroelectric BiFeO3. (c)
and (d) AFM topographic images after Ag photoreduction. Dark to
bright vertical scales are: (a) 180° to 0°, (b) 180° to −180°; (c)
0–60 nm and (d) 0–15 nm. Figures (a), (c) and (b), (d) are
reproduced with permission from [29, 53] respectively.

Figure 7. (a) AFM topographic image of BiVO4 and (b) secondary
electron (SE) image of WO3 surfaces, both before reaction. (c) AFM
topographic image of BiVO4 and (d) SE image of WO3, both after
reaction and from the same areas as (a) and (b). Figures (a), (c)
reproduced with permission from [52].
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correlation of the spatially selective surface reactivity to the
underlying domain structures was found, as shown in
figure 7(d).

While this spatially selective photochemical reactivity is
similar to that on ferroelectrics, centrosymmetric ferroelastic
domains are not expected to have polar surfaces. To deter-
mine whether the surfaces of BiVO4 and WO3 were polar,
they were imaged by PFM. As illustrated in figure 8(a),
γ-WO3 exhibits surface piezoresponsivity. This implies that
the surfaces of γ-WO3 are polar, even though the bulk is not.
A polar surface response was first reported for heavily
reduced WO3 [75] and later for epitaxial γ-WO3 (100) sur-
faces [74]. The reaction pattern after Ag photoreduction is
shown for the same area in figure 8(b), and there is a clear
correlation between the PFM domains and the reactive
domains, suggesting that the piezoresponse (or polarity)
drives the spatially selective reactivity.

The micrographs in figure 9 illustrate the complementary
characteristic of the photochemical reactivity on the surface of
BiVO4. Figure 9(a) shows the domain selective reactivity for
Ag photoreduction, while figure 9(b) shows MnO2 photo-
oxidation on the same area. This surface had clear piezo-
responsivity and complementary photochemical reactivity
that correlated directly with the surface polarity. In contrast to
the ferroelectric ferroelastics, wherein the polarization was the
dominant driving force, both crystal orientation and domain
type were important for spatially selective reactivity on
BiVO4 [51]. Spatially selective reactivity was observed over

the entire orientation space. However, surfaces closer to (001)
plane were more active for Ag photoreduction.

Finally, Munprom et al [51] showed that the spatially
selective photochemical reactivity improved the net reactivity
for co-doped BiVO4. Using photodeposition experiments,
they compared the reactivity of Na- and V- co-doped samples
of BiVO4 on either side of the composition dependent phase
boundary. It was shown that higher reactivity was observed
on the monoclinic sample, which had piezoresponsive sur-
faces, than on the tetragonal sample, which did not have
piezoresponsive surfaces. Overall these observations indicate
that surfaces of monoclinic BiVO4 and γ-WO3 are polar, and
the local polarization is large enough to influence surface
photochemical activity, resulting in complementary reactivity
similar to that observed in ferroelectrics.

4. Potential mechanisms and evidence

4.1. Computational models of ferroelectric photocatalysis

Spatially selective reactivity has been widely observed on
ferroelectrics, as described above, and ferroelectrics are
known to improve the net efficiency for many photochemical
reactions [62, 65, 76]. The primary models used to account
for these observations are that screening the ferroelectric
polarization internally causes surface band bending or exter-
nally causes preferential adsorption. Sub-surface band bend-
ing results in internal fields that separate charge carriers and
enhance carrier lifetimes. A one-dimensional (1D) schematic
of this polarization driven surface reactivity is shown in
figure 10. The positive (negative) polarization at the surface
bends bands downward (upward) in the near surface bulk,
representing an internal electric field. In the schematic, the
length is equal to the sum of the two space charge regions on
either side of the particle (hence the bands are not flat
anywhere in the schematic). Carriers photogenerated in the
space charge regions are driven in opposite directions: holes
(electrons) to the negatively (positively) polarized surface.
Whether a carrier driven away from the surface traverses the
bulk and arrives at the opposite surface depends on the size
and electronic transport properties of the material. The
question arises: what is the maximum quantitative effect that

Figure 8. (a) PFM image of γ-WO3 and (b) SEM image after Ag
photoreduction. The white arrows mark the same secondary domains
in both figures. Vertical scale: (a) 37°. Figure reproduced with
permission from [69].

Figure 9. Topographic AFM images of BiVO4 after photodeposition
of (a) Ag and (b) MnO2. ‘O’ indicates the oxidative domains
whereas ‘R’ indicates the reductive domains. Vertical scale: (a)
80 nm (b) 150 nm. Figure reproduced with permission from [51].

Figure 10. A schematic of the 1D polarization driven photochemical
reactivity for a ferroelectric.
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this mechanism can have on the overall photocatalytic
efficiency?

Recently, the internal quantum efficiency (IQE) was
modeled computationally for a 1D coated ferroelectric [77].
The structure was a single-domain poled electrode with only
one surface modeled as a reactive surface. The model was also
used to explore the effects on the IQE caused by a number of
independent parameters, including majority carrier kinetics,
film thickness, applied potential, minority carrier lifetime, and
ferroelectric polarization. The most important observation was
that an IQE >90% was attainable for specific combinations of
parameters whose values were all physically reasonable.

One important question is, of course, how does the value of
surface polarization impact properties? Polarization values for
ferroelectrics can vary from a few to a hundred μC cm−2. The
polarization for BaTiO3 (PBTO) is≈26 μC cm−2. Glickstein et al
[77] used the 1D computational model to vary the surface
polarization from zero to 2PBTO. They observed that the most
significant improvement occurred for the initial increase in
polarization from a neutral surface (0 μC cm−2) to that having
¼PBTO (≈7 μC cm−2). The initial jump in polarization (from 0
to¼ PBTO) corresponded to an increase in IQE by a factor on the
order of 5–100. Further increasing the polarization value from ¼
to 2 PBTO increased the IQE by only a factor on the order of 2–5.
This indicates that the largest improvement may be the initial
increase in polarization, indicating that even low polarization
values on the order of 5–10μC cm−2 may be interesting for
highly efficient photocatalysts. Depending on the origin of sur-
face polarization in anti-ferroelectric ferroelastics, their surface
polarizations may be in this range.

Glickstein et al [78] followed up that study with a 2D
model that simulated the surface of a coated ferroelectric
having 180° domains of finite and equal widths. The model
was designed to assess the physical experiments discussed
relative to figure 4(b), for TiO2-coated BaTiO3. When mod-
eling the experimental conditions of anatase TiO2 on BaTiO3,
the IQE was computed to be less than 1%. Again, by opti-
mizing the relevant parameters, an IQE of over 90% could be
obtained on the single surface having oxidation and reduction
occurring on spatially separated domains.

A schematic of this is shown in figure 11. Holes photo-
generated in the positive domains are shuttled towards the

negative domains flanking them. Conversely, electrons photo-
generated in the negative domains are shuttled towards the
positive domains flanking them. In the photolysis of water,
domains shuttling electrons (holes) towards the surface pro-
mote the hydrogen evolution reaction (oxygen evolution
reaction), as marked in figure 11. In order to obtain the
highest IQEs, domains must be sufficiently wide to allow for
full space charge layers to develop (a few tens of nm) but
sufficiently narrow to allow for carriers shuttled away from
the surface in one domain to successfully migrate to the
surface in an adjacent domain for reaction (a few hundreds of
nm). For domains with widths in the range of ≈50–400 nm
(in BaTiO3), the IQE was on the order of 90% of the max-
imum IQE for a specific set of conditions, indicating a rea-
sonable range of domain sizes can provide near-optimal
performance.

In contrast to ferroelectrics, ferroelastic BiVO4 and WO3,
which also show spatially selective reactivity, are cen-
trosymmetric and non-polar. In other words, there is no bulk
polarization that can impact surface properties as in the
models described here. Therefore, there is no immediately
obvious mechanism to explain why ferroelastic surface
domains are polar and piezo-responsive, and how the domains
lead to spatially selective and complementary reactivity.
However, two mechanisms have been proposed to explain the
origin of polarization:

(a) Flexoelectricity from surface strain gradients
(b) FE from a surface phase transformation

4.2. Surface flexoelectricity

Flexoelectricity is a physical phenomenon wherein a strain
gradient in a crystal causes a dipole moment [79]. Unlike FE,
flexoelectricity is not restricted by the crystallography of the
material [79]. A flexoelectric polarization is possible even in
centrosymmetric materials. Because strain gradients are likely
to exist at surfaces, there have been many studies of surface
flexoelectricity.

Munprom et al [52] proposed that two kinds of stress
relaxations could contribute to flexoelectric polarization at the
surface of ferroelastic domains. The first arises from surface
restructuring owing to the high energy of the bulk terminated
structure, and the degree of freedom associated with the free
surface (in principle, surface piezoelectricity could arise in a
similar fashion). This can result in a surface strain gradient
normal to the surface on the unit cell level, a common
description of the origin of flexoelectricity in materials. A
schematic is shown in figure 12 [52]. In the schematic, the
relative displacements of the Bi ions are shown, along the
c-axis of the fergusonite structure. Atoms closer to the free
surface are displaced further than atoms far from the surface,
which more or less retain their bulk positions. This difference
in the magnitude of shift of position of atoms will give rise to
a strain gradient, which will in turn contribute to polarization
via flexoelectricity. In figure 12(a) (figure 12(b)), the bismuth
ions displace away from (towards) the free surface resulting in

Figure 11. A schematic of the 2D polarization driven photochemical
reactivity for a ferroelectric with a thin anatase coating. Figure
reproduced with permission from [78].
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negative (positive) flexoelectric polarization from the surface
strain gradients.

The second relaxation proposed to explain surface flex-
oelectricity is associated with residual transformation strains
from the ferroelastic phase transformation. Domains form
during the ferroelastic transformation from tetragonal to
monoclinic BiVO4 to minimize the overall volumetric strain
(see figure 1) energy. For a polycrystalline surface, in which
each grain (or crystal) is mechanically attached to the sur-
rounding grains of different orientations, not all of the
transformation strain can be fully relaxed. The residual
transformation strain can be somewhat accommodated at the
free surface. A schematic of a free surface is shown in
figure 13. A free surface before surface relaxation is shown in
figure 13(a), while surface undulations due to surface
relaxation are shown in figure 13(b), and how these could
lead to alternating dipole moments. The undulation is exag-
gerated in the schematic to alternate every unit cell, to
describe the atomic displacements. However, the specific
surface relaxation is related to the local stress states in such a
model, which are ultimately determined by the domain and
grain structure. If the relaxation couples to the domain

structure, which exists to alleviate strain energy, then one
could envision spatially selective reactivity, with the polarity
changing on the period of domains [79]. It should be noted
that surface relaxations are also a function of the orientation
of the grain and, hence, they may not always result in
appropriate strain gradients or alternating polarizations. The
net dipole from flexoelectricity in many materials is generally
rather small, being a function of the material’s coupling
constant between polarization and the magnitude of the strain
gradient. Materials with large coupling constants often have
internal dipolar units or are susceptible to the formation of
polar units, such as ferroelectrics and related dielectrics,
including incipient ferroelectrics, anti-ferroelectrics, and
relaxor ferroelectrics. Typical polarization values are on the
order of a few μC cm−2 for materials with large coupling in
reasonable strain gradients. The observation that the tetra-
gonal phase of co-doped BiVO4 does not exhibit intragranular
spatial selectivity or piezoresponsiveness at the surface indi-
cates that the ferroelastic transformation to the monoclinic
structure is key for surface polarization [51]. The monoclinic
BiVO4 structure can be described as anti-ferroelectric, as can
the γ-WO3 structure. In both, local polar groups are oriented
in an anti-parallel fashion. At the surface, where long-range
periodicity is broken, the anti-polar displacements are also
locally perturbed. It is of interest then, to understand the
potential coupling between the anti-polar structure, surface
relaxation, residual transformation strains, and ferroelastic
domain structure, to understand if significant enough flexo-
electric coupling can explain the surface photochemical
properties. The computations from Glickstein et al [77, 78]
indicate that a reasonable value of flexoelectric polarization,
in the range of a few μC cm−2, is enough surface polarization
to modify reactivity significantly.

4.3. Surface FE

One of the interesting features of an anti-ferroelectric is that
an applied electric field can induce a phase transition into a
ferroelectric state [80], in which the anti-parallel alignment
becomes a parallel alignment of local dipoles. Anti-ferro-
electric to ferroelectric phase transitions are well documented
in thin films, induced by epitaxial strain [81–84] and surface
terms [84]. All of these occur because of the relatively small
energy differences between the polar and non-polar structures
(parallel and anti-parallel dipole alignments) [80, 85, 86].
Thus, a second potential origin of the polar surface states and
spatially selective reactivity observed for WO3 (and possibly
BiVO4) is that the surfaces undergo a phase transformation to
a ferroelectric polar state, from their bulk anti-ferroelectric
structures.

Interestingly, a ferroelectric phase transition has been
induced in anti-ferroelectric (Pb0.97La0.02)(Zr0.90Sn0.05Ti0.05)O3

films as a result of an adjacent Ni–Mn–Ga shape memory alloy
undergoing a ferroelastic phase transition [87]. This indicates
that a ferroelastic strain can be large enough to drive a thin
adjacent anti-ferroelectric layer to a polar state. One can thus
envision that the polished surface of an anti-ferroelectric

Figure 12. Differential displacement of bismuth ions (a) away from
the surface—downward dipole moment (b) towards the surface—
upward dipole moment. Figure reproduced with permission
from [52].

Figure 13. (a) Unstrained free surface before domain formation,
(b) development of undulations and alternately polarized domains
after strain relaxation at free surface. Figure is adapted from
[79, 143].
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ferroelastic is susceptible to a surface phase transition on
cooling through its own ferroelastic phase transition, owing to
the degrees of freedom at the surface. Recently, the origin of
AFE in PbZrO3 has been described as being stabilized from
flexoelectric coupling [88]. Thus, a surface strain gradient
provides another potential factor that influences the competition
between polar and anti-polar phases.

WO3 shows an anti-polar dipole arrangement [72] and
has been recognized as an anti-ferroelectric [80, 89]. Addi-
tionally, ò-WO3 is a stable ferroelectric phase below −40 °C,
or ≈70 °C below room temperature [90]. The presence of an
energetically similar ferroelectric phase could allow for a
polar surface phase to develop, that would explain its fer-
roelastic spatially selective reactivity. Alternating surface
stress states could stabilize different orientations of the
dipoles in the polar surface phase. BiVO4 is not generally
described as an anti-ferroelectric, but structurally it meets the
crystallographic requirements to be categorized as one [68].
Because a polar phase has not been previously reported nor
computationally investigated (yet its existence is allowed by
crystallography [68]), the observation of a polar surface phase
would be more surprising in BiVO4 than in WO3.

5. Summary and outlook

In section 3.1, we reviewed the observations that uncoated
and coated ferroelectric materials exhibit spatially selective
surface photochemical reactivity. Polarization driven charge
separation leads to spatially selective reactivity that enables
both photocathodic and photoanodic reactions to take place
on different regions of a surface of a single material. In
section 4.1, we reviewed recent computational work demon-
strating that IQEs of 90% are possible by adjusting the
domain widths, polarization, and reaction conditions (e.g. pH)
of such materials. Thus, having both electrochemical reac-
tions occur on distinct, organized regions on a single surface
can be highly beneficial for achieving solar water splitting.
However, the number of ferroelectric materials is limited:
they must belong to one of only 10 of 32 crystallographic
point groups [134]. Further, the number of ferroelectric
materials that absorb visible light limits the number of fer-
roelectric solar water splitting photocatalysts [53, 135, 136].

In section 3.2, we reviewed recent observations for spa-
tial separation of photochemical reactions on solar absorbing
ferroelastics. Ferroelastic BiVO4 and WO3 both exhibit
domain selective reactivity and polar surface properties, as if
the surfaces were ferroelectric. In sections 4.2 and 4.3, we
discussed two likely sources of surface polarity in BiVO4 and
WO3: surface flexoelectricity and surface FE. In either case,
one might expect the surface polarization to be lower than that
of a strong ferroelectric, but the computation discussed in
section 4.1 indicates values on the order of 5–10 μC cm−2

should be sufficient to improve the IQE, in qualitative
agreement with the beneficial effect of spatial selection
reported for co-doped BiVO4.

In principle, flexoelectricity can arise in any crystalline
material (i.e., there are no crystallographic restrictions). Fur-
ther, because the surface causes a break in inversion sym-
metry (the surface is not centrosymmetric by definition), polar
surface states (surface piezo-electricity or FE) can exist even
in centrosymmetric materials. This potentially opens the door
to search for similar effects in a host of materials. Ferroe-
lastics are of particular interest because they are abundant in
nature (more than 30% of the earth’s crust is made up of
ferroelastic materials [137]) and they exhibit well-defined
domain structures conducive for spatially selective reactivity.

It should be clear from our discussion that the nature of
these surface charges on centrosymmetric ferroelastics
remains an open question. However, the magnitude of the
polarization at their surface is expected to be coupled to the
material’s ability to polarize under a given strain state.
Throughout the article, we emphasized the fact that both WO3

and BiVO4 have local dipolar units within a unit cell that
have anti-parallel alignment: they can be considered anti-
ferroelectrics. We propose that the observed surface polarity
and spatially selective reactivity originate from the coupling
of ferroelastic transformation strains with surface relaxations
associated with the local ordering (surface flexoelectricity) or
long range ordering (surface FE) of dipoles near the surface.

We think anti-ferroelectric ferroelastics represent an
interesting new class of materials that can have spatially
selective reactivity, exhibit improved IQEs relative to the
neutral surfaces, and may offer a wider range of solar
absorbing materials for which band alignments may prove
favorable. Table 1 lists some potential anti-ferroelectric fer-
roelastics whose surface photochemical properties are worth
investigating. In other words, spatially selective reactivity
could also be expected on the surfaces of these materials. In
addition to those compounds which have already been stu-
died, BiNbO4, BiTaO4 and AgNbO3 seem promising candi-
dates for solar water splitting considering their relatively
small band gaps. These materials have all been studied pre-
viously as solar active photocatatlysts: BiNbO4 [138, 139],
BiTaO4 [140], and AgNbO3 [141]. However, other than the
reports on BiVO4 and WO3 discussed above, there have been
no reports on the spatially selective reactivity of these
ferroelastics.

6. Conclusions

Spatially selective reactivity has been widely reported for room
temperature ferroelectrics, such as UV-active BaTiO3 and solar-
active BiFeO3, as well as for these (and other) ferroelectrics
coated with non-ferroelectrics. By optimizing materials para-
meters, domain structures, and reaction conditions, IQEs much
greater (≈90%) than Z-scheme methods (maximum of 50%) are
attainable for a given ferroelectric surface. Recently, non-polar
ferroelastic BiVO4 and WO3 were reported to have ferroelastic
spatially selective reactivity correlated with surface polarity.
While the origin of the surface polarity is an open question, as is
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its magnitude, it likely involves surface flexoelectric or surface
ferroelectric states. Because polarization values of a few
μC cm−2 were shown computationally to result in significant
performance improvements, these observations indicate a new
direction to explore for photocatalyst design. Interestingly, both
materials can be described as anti-ferroelectric ferroelastics,
having a local dipolar unit in the unit cell ordered in an
anti-parallel fashion. It is likely that these local dipolar groups
are related to the spatially selective properties. Much work is
needed to quantify the origin and magnitude of spatially
selective polarization and reactivity in ferroelastics. However,
because of the significant advantages that spatial separation of
photogenerated charge carriers and electrochemical reaction
sites have in the context of efficient photocatalysis, the possible
identification of a new class of materials for photocatalyst
design is of great interest for solar water splitting.
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