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a b s t r a c t

The distribution of grain boundary curvatures as a function of five independent crystallographic pa-
rameters is measured in an austenitic and a ferritic steel. Both local curvatures and integral mean cur-
vatures are measured from three dimensional electron backscattered diffraction data. The method is first
validated on ideal shapes. When applied to real microstructures, it is found that the grain boundary mean
curvature varies with the boundary crystallography and is more sensitive to the grain boundary plane
orientation than to the disorientation. The grain boundaries with the smallest curvatures also have low
grain boundary energy and large relative areas. The results also show that the curvature is influenced by
the grain size and by the number of nearest neighbors. For austenite, when the number of faces on a
grain is equal to the average number of faces of its neighbors, it has zero integral mean curvature.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Recent advances in three-dimensional (3D) materials charac-
terization methods have made it possible to collect the first large
sets of data on grain shape [1,2], grain topology [3], grain boundary
populations [4], the evolution of the grain boundary population [5],
and grain boundary energies [6]. Grain boundary curvature is one of
the most important properties of a microstructure because the
product of the curvature and energy provide the driving force for
grain growth. Using measurements from about 2000 b-Ti grains,
Rowenhorst et al. [3] found that grains with 15 or fewer faces have,
on average, a positive integralmean curvature and grainswith 16 or
more faces have, on average, a negative integral mean curvature.
Although the integral mean grain boundary curvature is known to
be correlated to the grain size and the number of grain faces [3], less
is known about its correlation to grain boundary crystallography.

Grain boundaries have five independent crystallographic pa-
rameters; three describe the lattice misorientation (Dg) and two
describe the grain boundary plane orientation (n) [7].While studies
of lattice misorientations have a long history, it has only been

through 3D studies that direct measurements of the grain boundary
plane orientations have been possible. Grain boundary properties,
and the macroscopic properties of polycrystals, can be sensitive to
grain boundary plane orientations [8e10]. Therefore, the charac-
terization of all five parameters can be important for establishing
structure-property relations for polycrystalline materials. A num-
ber of measurements have been reported of grain boundary pop-
ulations and grain boundary energies as a function of all five
parameters [11e15]. One general conclusion is that in microstruc-
tures formed by normal grain growth, the grain boundary popu-
lation is inversely correlated to the grain boundary energy [16].

It has not yet been established whether a relationship exists
between local grain boundary curvature and the local grain
boundary crystallography. However, based on anecdotal observa-
tions of microstructure, there is support for a correlation. For
example, the coherent twin boundary in FCC metals, which has a
well-defined crystallography, is often very flat (it has minimal
curvature). The coherent twin boundary also has minimal energy
and a relative large area fraction [12].

Grain growth theories usually assume that, at any instance in
time, there is a constant mean field chemical potential in the
microstructure and that local deviations from this mean value drive
grain growth [17,18]. For example, in Hillert's [17,18] classic grain
growth theory, there is a critical radius (rcr) above which grains
grow and below which they shrink; the time rate of change of a
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grain with radius r is then proportional to the difference between
the chemical potential of a grain with radius and r and one with
radius rcr, which has the mean field chemical potential. In Hillert's
formulation, the chemical potential is not dependent the grain
boundary crystallography. However, the chemical potential in its
most general form does depend on the grain boundary crystallog-
raphy. This is clear from the way Herring [19e21] expressed the
chemical potential ðmnsÞ of a non-singular surface at a specific point
in equilibrium:

mns ¼

 

gðDg;nÞ;þ
v2gðDg;nÞ

vq21

!

k1 þ

 

gðDg;nÞ þ
v2gðDg;nÞ

vq22

!

k2

(1)

where g(Dg, n) is the grain boundary energy, k1 and k2 are the
principal curvatures, q1 is the angle between the normal to the
grain boundary at the point of interest and another normal at a
nearby point on the boundary that is also in the plane of principal
curvature corresponding to k1 and q2 is the corresponding quantity
for the perpendicular plane. In other words, the derivative terms in
Eqn. (1) characterize variations of the grain boundary energy
within the planes of principal curvature. If we ignore the second
derivatives for themoment and define themean curvature asH (Dg,
n) ¼ 1/2 (k1 þ k2), then Eqn. (1) reduces to the simplified form:

mns ¼ 2HðDg;nÞgðDg;nÞ (2)

Assuming a constant mean field chemical potential, Eqn. (2)
argues for an inverse relationship between the mean curvature
and the grain boundary energy. Because the grain boundary energy
varies with grain boundary crystallography, the mean curvature
should also depend on the grain boundary crystallography. Grain
boundary energies have been measured based on the assumption
of local equilibrium at triple junctions [6,11e15] and the measure-
ments produce results that are consistent with calculations, at least
of the most common, lowest energy grain boundaries [22]. Unfor-
tunately, the energies of grain boundaries that occur infrequently
are not well-determined and, because of this, the second de-
rivatives of the measured grain boundary energies needed to apply
Eqn. (1) are not likely to be meaningful.

The argument above applies to grain boundaries with non-
singular orientations, which are orientations where the grain
boundary energy versus orientation at fixed disorientation,
g(Dgjn), is continuous and differentiable. The same will not be true
for singular orientations, which occur at cusps in g(Dgjn) [23]. The
chemical potential of a singular grain boundary is proportional to
its weightedmean curvature (which is inversely proportional to the
size of the grain and is comparable to curvature of a non-singular
boundary) [24] multiplied by the area weighted average energy
of the boundaries that are on the periphery of the singular inter-
face, <gðDg

!!npÞ> [19]. In other words, it is not the energy of the
singular interface that determines its chemical potential, it is the
energies of the boundaries that are nearest to the singular plane in
orientation space [19,20,24]. The reason for this is that the energy
change that occurs when a flat facet advances (retracts) is pro-
portional to the energy required to extend (shrink) the boundaries
on the periphery of the facet. The exact form of the chemical po-
tential of a singular boundary depends on its exact geometry and
the details can be found in Refs. [19,20,24]. We can write an
approximate expression for the chemical potential of a singular
boundary, ms, that is analogous to Eqn. (2):

msza$<g
"
Dg

!!np
#
> (3)

where a is the weighted mean curvature and includes geometric

terms that are specific for each singular interface; the expression
ignores a variable but small contribution from the singular
boundary itself. While Eqn. (3) is highly approximate, it illustrates
the most important difference between the chemical potential of a
singular and non-singular boundary: the chemical potential of the
non-singular boundary is proportional to the energy of that
boundary while the chemical potential of a singular grain boundary
depends on the energies of the grain boundaries that are peripheral
to the singular orientation. In every case where there is more than
one stable orientation, the peripheral orientations have higher
energies than the singular orientation [23].

Based on what is known about the chemical potentials of sin-
gular and non-singular grain boundaries, and the assumption of a
constant average chemical potential, we expect the correlation
between grain boundary energy and curvature to be different for
different types of boundaries. Singular grain boundary orientations
should have low curvatures and low energies. This is consistent
with the observation that twin boundaries are flat and have low
energies. For non-singular grain boundaries, on the other hand, low
energy boundaries are expected to have relatively higher
curvatures.

The purpose of this paper is to test the hypothesis that the mean
grain boundary curvature depends on the grain boundary crystal-
lography. We test the hypothesis through a new analysis of 3D
microstructure data from an austenitic steel and a ferritic steel for
which the five-parameter grain boundary area and energy distri-
butions have already been measured [14,15]. Before analyzing the
real microstructures, the accuracy of the grain boundary curvature
measurement is tested on ideal shapes to establish how the un-
certainty varies with the resolution and reconstruction procedures.
We then determine how the integral mean curvature of the grains
varies with the number of grain faces and with the average number
of faces of its nearest neighbors. Finally, we compute the five-
parameter grain boundary curvature distribution for austenite
and ferrite and compare it to the measured grain boundary energy.

2. Procedures

In this paper, we analyzed 3D orientation maps previously re-
ported for two steels. The first is an austenitic twinning-induced
plasticity (TWIP) steel with the face-centered cubic (FCC) struc-
ture and the second is a ferritic steel with the body-centered cubic
(BCC) structure. Throughout this paper, these samples will simply
be referred to as the austenitic and ferritic steels. The composition
of the austenitic steel was 0.6Ce18Mne1.5Al (wt.%) and the
composition of the ferritic steel was 0.04 Ce1.52 Mne0.2 Sie0.22
Moe0.08 Tie0.033 Al (wt.%). The orientation map of the austenitic
steel was 65 % 40 % 20 mm3 and contained 3185 grains. There were
two orientation maps for the ferritic steel. One was
40 % 35 % 14 mm3 and contained 1113 grains and the other was
30% 50% 22 mm3 and contained 558 grains. Further details of these
samples, including the processing used to produce these micro-
structures, have already been reported [14,15].

The 3D orientation maps were constructed from stacks of par-
allel two-dimensional (2D) orientation maps obtained by electron
backscatter diffraction (EBSD). The serial sectioning was carried out
in a dual beam focused ion beam scanning electronmicroscope (FEI
Quanta 3D FEGSEM). The raw data are available at the grain
boundary data archive [25]. Open source software, DREAM.3D [26],
was then used to reconstruct the 3D orientation maps. After
reading in the data, voxels with low image quality (&120) or con-
fidence index (&0.1) were ignored. Image quality and confidence
index are metrics that indicate the quality of the diffraction pattern
and the confidence in the orientation assignment, respectively, that
are assigned by the TSL OIM software (EDAX, Mahwah, NJ) that is
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used to collect the data [27]. Next, centroid and misorientation
based algorithms were used to correct sub-pixel misalignment
between the 2D sections. To segment the volume into grains, the
orientation of each voxel was compared to its neighbors and voxels
with orientations that differed by & 5' were grouped together and
assigned a unique grain identification (ID) number. Furthermore,
grains had to have at least 100 voxels and at least two neighboring
grains. After this process, the microstructure contained gaps
created by groups with fewer than 100 voxels, mostly made up of
voxels with unknown orientations. The gaps were eliminated by
dilating neighboring grains uniformly using a procedure in
DREAM.3D [28,29,26]. In the final step, all of the voxels within the
grain were assigned the average orientation of all of the voxels in
the group. The voxels that make up the data create stair-stepped
boundaries and triple lines that must be smoothed to extract
grain boundary plane distributions and grain boundary curvature
distributions. While a method has recently been developed to
compute average face curvatures from voxelated microstructures
[30], we are interested in local curvatures and thus must represent
the boundary as a surface composed of discrete triangles. A multi-
material marching cube meshing algorithm was used to model the
grain boundaries as triangular nets and a restricted Laplacian
smoothing was used to create smoothly curved grain boundaries
[3]. The details of the parameters used for the smoothing procedure
and their effect on the results are considered in x3.1. At this stage,
the reconstruction is complete and the microstructures are
composed of discrete grains with unique ID numbers, bounded by a
triangular mesh. Associated with each triangle in the mesh are the
grain ID numbers on each side, the orientations of the grains on
each side, the disorientation across the triangle, the surface normal,
the area, and the curvature (the calculation of the curvature is
described in the next paragraph). This makes it possible to map
these quantities locally and to define how they are distributed over
the crystallographic, volumetric, and topological parameters.

Grain boundary (mean) curvature was calculated locally for the
triangles using the previously established cubic-order algorithm
described in Ref. [31] and implemented in DREAM.3D [3,26]. In this
algorithm, a patch of contiguous triangles surrounding the triangle
of interest, for which we know the crystallographic properties, is fit
to a parabola. The size of neighborhood patch used in our calcula-
tion includes 2nd and 3rd nearest neighbors of the center triangle.
After using a least-squares procedure to fit the parabola, the
Weingarten matrix of this surface patch can be obtained and its
eigenvalues are the principal curvatures k1 and k2. Triangle mean
curvature is then k1 þ k2=2 and its sign is defined as positive for
convex and negative for concave. However, note that only the ab-
solute values of the triangle mean curvatures were used in calcu-
lations of the grain boundary curvature distribution as a function of
crystallographic parameters. The reason lies in the inversion sym-
metry between neighboring grains. While convex and concave are
explicit for an individual grain, there is no way to define such a
property for the network of boundaries between grains. After
calculating the curvature value, each triangle was then classified in
a discrete distribution according to its crystallographic parameters
using the same methods that have been used to compute the grain
boundary character and energy distributions [32,6,33]. Briefly, the
five grain boundary parameters are the three Euler angles (41, F,
42), specifying the lattice misorientation, and the two spherical
angles, (Q, 4), specifying boundary normal direction. Because of
crystal symmetries, there are many indistinguishable representa-
tions of each boundary in the complete domain of boundary types.
Here, we classify the angles 41, F, 42 into discrete bins within the
range from 0 to 90'. Similarly, we classify the spherical angle Q, 4
into discrete bins within the range from 0 to 90' and 0e360',
respectively [7]. The discrete bins have equal volume and there are

9 bins per 90'. The five parameters of every triangle were examined
and its triangle curvature value was added to the corresponding
bin. Because of cubic crystal symmetry, there are 36 physically
indistinguishable representations or combinations of angles for
each triangle within the range of angles considered [7]. After
applying the symmetry operators, the curvature was also added to
all bins corresponding to indistinguishable representations. After
all of the triangles were binned, the curvature values in each bin
were averaged and this gives us the symmetry averaged curvature
for the grain boundary curvature distribution (GBCurD).

3. Results

3.1. Curvature measurements of spheres

It should be recognized that curvatures measured from discrete
voxelized data are necessarily approximations of the true grain
boundary curvature. Intuitively, the accuracy of this approximation
should depend on the resolution of the data (defined as the size of a
voxel compared to the size of a grain) and the way that the trian-
gular mesh representing the grain boundary is smoothed.
Furthermore, when the curvature of an individual triangle is clas-
sified in the discrete five-parameter distribution, it will be averaged
with boundaries that have similar parameters. Therefore, the
symmetry averaged curvatures will also be affected by the discrete
nature of the distribution. To understand how these factors influ-
ence the curvature measurement, we examined the effect of the
data processing on the measured curvatures of simulated spherical
grains.

Ten spheres were created and labeled with different resolutions.
For example, S4 denotes a spherewith 4 voxels per radius. Note that
the number of voxels per object is the critical resolution in the
curvature measurement that allows comparison to experiments.
The actual physical dimensions of each voxel are arbitrary for these
simulations; here, a voxel size of 0.2 mm was used to be consistent
with the experiment. When single crystal spheres were created
within single crystal grains, the smoothing procedure led to a sig-
nificant loss of volume. This corresponds to a shrinking of the
radius and an increase in the curvature. The constrained smoothing
in DREAM.3D uses nearly stationary triple lines and quadruple
points to ameliorate this, so we constructed the spheres at the
center of an assembly of eight other grains that all have the same
disorientation (45'/[100]) with center grain. So, while there are
eight distinct grain boundaries surrounding the sphere, they have
crystallographically indistinguishable disorientations.

Two of the spherical grains are illustrated in Fig.1. An example of
a relatively low-resolution sphere (S6) is illustrated in Fig. 1(a). In
this case, there are six voxels per radius and the cube shaped voxels
make a rather crude approximation of the sphere. A higher reso-
lution sphere (S28) is shown in Fig. 1(d); in this case there are 28
voxels per radius and the spherical shape is much more accurately
reproduced. The triangular mesh created by the marching cube
algorithm in DREAM.3D has to be smoothed to remove stair-
stepped structures. The parameters for the smoothing routine are
the number of iterations, N, and a weighting factor, l. The
weighting factor controls how far a node moves on each iteration
and varies between 0 (no smoothing) and 1 (maximum). We tested
a number of combinations of N and l, and found that the strength
or degree of smoothing increases with the product of these values.
Based on these initial tests, and to cover a range of smoothing that
seemed practical, we selected four trial values for l and N. These
conditions have the following labels (values of l/N) that correspond
to increased smoothing: I (0.05/50), II (0.1/100), III (0.2/200), and IV
(0.4/400). The effects of these different parameters are illustrated in
Fig. 1. With smoothing I, S6 (Fig. 1(b)) is a fairly good approximation
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of a sphere. However, voxel-like steps can still be seen on the sur-
face of the higher resolution sphere S28 (Fig. 1(e)), indicating
inadequate smoothing. Note that protrusions on the spheres show
the locations of the triple lines (12) and quad points (6) that were
added to reduce shrinkage; smoothing is constrained at these lo-
cations. When smoothing III was applied, the higher resolution
sphere S28 (Fig. 1(f)) became smooth and sphere-like while the
lower resolution sphere, S6 (Fig. 1(c)), was over-smoothed and is
more like an octahedron than a sphere. This illustrates that fixed
smoothing parameters are not ideal for all grain sizes at a single
resolution.

The results for the curvatures computed for the triangles asso-
ciatedwith the different spheres and different smoothing processes
are summarized in Fig. 2. The dashed line indicates the ideal cur-
vature value calculated from sphere radius (R(1) and the markers
are the average values of the triangle curvatures for each sphere.

The difference between a marker and the corresponding point on
the dashed line measures the quality of the reconstruction. The
smaller the difference, the better the reconstruction and the better
the calculated curvature approximates the true curvature. From the
plot, we can see that the optimal smoothing parameters are related
to the resolution and feature size. Lower resolution spheres are
better smoothed with smaller smoothing parameters while larger
smoothing parameters worked better for the higher resolution
spheres. This is consistent with the visual interpretation of Fig. 1.
The Laplacian smoothing method makes changes in the mesh
nodes in proportion to local gradients. The low-resolution sphere
(S6) has larger gradients between voxels and was therefore
smoothed in a few iterations. The higher resolution sphere, S28,
had smaller gradients, so more iterations and larger values of l
were required for optimal smoothing. The three exceptions to this
trend in Fig. 2 are S4, S6, and S9with smoothing VI; in this case they
were so over smoothed that their shapes collapsed so that they
were polyhedral rather than spherical.

As illustrated in Fig. 2, the reconstruction quality and smoothing
parameters affect the results and should be selected to best match
the physical measurements. More precisely, we need to know the
resolution of grain boundaries within our sample to properly mesh
the data and measure the triangle curvatures. It is important to
keep in mind that a single resolution value has different impacts on
small highly curved and larger flat boundaries within the same
microstructure. Also, the effect on specific boundaries is not
directly correlated to grain size. To understand the range of cur-
vatures in our data, the distribution of triangle curvatures in the
austenitic steel is plotted in Fig. 3 (the distribution for the ferritic
steel, not shown, is similar). Though the specific shape of the his-
togram depends on the smoothing parameters, results given by the
four smoothing routines were similar and smoothing II was
selected for this example. Because the relevant parameter that af-
fects the curvature measurement is the voxels per grain, the upper
horizontal axis in Fig. 3 represents the ideal sphere resolutions, as
log (number of voxels in volume), determined from Fig. 2, that
corresponds to the measured curvature in the austenitic steel. The
important finding in Fig. 3 is that the number of triangles with large
curvatures is small compared to those with small curvatures. In
fact, 59.5% of the triangles have curvatures with absolute values less

Fig. 1. Shapes of spherical grains S6 and S28 after different reconstruction procedures. Initial structure of S6 (a) and S28 (d). Shape of S6 (b) and S28 (e) after smoothing I. Shape of
S6 (c) and S28 (f) after smoothing III.

Fig. 2. Average triangle curvatures for spheres of different resolutions and smoothing
parameters. The bars represent the standard deviations of triangle curvatures when
spheres are smoothed with smoothing II.
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than 0.5 mm(1 for the austenitic steel. For ferrite, 55.6% of the tri-
angle curvatures have absolute values less than 0.5 mm(1. In other
words, most of the grain boundaries in our microstructure maps
were relatively flat and were comparable to the surfaces of the
larger ideal spheres. Therefore, smoothing II was selected for this
study because it gave the best relative accuracy in the majority low
curvature boundaries and acceptable accuracy for the higher cur-
vature boundaries.

When the curvature distribution is considered as a function of
any of the crystallographic parameters, it is affected by the discrete
binning and symmetry averaging. When the discrete triangles are
classified according to their crystallography, they are grouped into
bins of finite width and averaged. When the curvature of a partic-
ular type of grain boundary is retrieved from these discrete bins, it
is the average of 36 separate bins. Therefore, it is reasonable to
expect there would be a disparity between triangle curvatures and
symmetry averaged curvatures. This effect is not expected to
change with the resolution of the mesh.

The curvature distributions at the fixed misorientation between
the center sphere and the surrounding grains (45'/[100]) were
computed for the ten spheres and the distributions are plotted for
S6 and S28 in Fig. 4. For S6 (Fig. 4(a)), the ideal curvature was
0.83 mm(1 and it should be uniform. The average curvature is
somewhat lower (0.65 mm(1), as expected from Fig. 2, and the in-
dividual values vary from 0.22 mm to 2.8 mm(1 with the largest
outliers arising from the triangles at the triple lines. For the higher

resolution case represented by S28, curvature varied in a much
smaller range (from 0.11 mm to 0.26 mm(1) and the average value
(0.15 mm(1) was much closer to its ideal curvature (0.16 mm(1). The
symmetry averaged curvature distribution information for the
other spheres are summarized in Fig. 5, which includes the mean
triangle curvature (from Fig. 2) and the ideal curvature for com-
parison. While Fig. 2 illustrates the effects of approximating a
curved surface with voxels and allows us to select optimal pa-
rameters for the reconstruction, Fig. 5 adds to this the effects of the
discrete binning and symmetry averaging on the measured curva-
ture. Based on these tests, we conclude that while high curvatures
are underestimated, most curvatures are accurately reproduced.
Furthermore, when curvature distributions are plotted for real data,
the triangles will come from many different grains with different
sizes, so that the underestimations of the highest curvature
boundaries found on the smallest grains will be ameliorated by
averaging with more accurate values from larger grains.

3.2. The integral mean curvature of grain boundary faces

To analyze grain boundary curvature as a function of grain size
and topology, we consider the curvature integrated over grain faces
and entire grains. The integral mean curvatures of grain faces (Ms)
for every reconstructed grain was calculated using Eqn. (4), where
Hij is the mean curvature of the ith triangle on the jth face of the
grain and Sij is its area. The number of faces of the grain is nf and the
number of triangles on one face is nt.

Ms ¼
Xnf

j

 
Xnt

i
Hij % Sij

!

(4)

For the ferrite sample, only the larger of the two volumes con-
taining 1113 grains was analyzed. Furthermore, grains whose cen-
troids fell within 2<R> of the free surfaces of the sample, where
<R> is the average grain radius (1.18 mm for the austenite steel and
1.12 mm for ferrite), were ignored. After this, 1885 grains remained
in the austenite and 538 grains remained in the ferrite.

Grains were categorized into topological classes according to
their numbers of faces and the results are shown in Fig. 6. The
domain of the horizontal axis was limited to 40 to emphasize the

Fig. 3. Triangle curvature frequency in the austenitic steel, produced with smoothing
II.

Fig. 4. (a) Curvature distribution of S6, (b) Curvature distribution of S28.

Fig. 5. Average curvature of the distribution for the 10 spheres when smoothing II is
used for the reconstruction. The dots are mean symmetry averaged curvatures. The
squares are mean triangle curvature. The error bars are standard deviations.
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points near the zero crossing; this excludes only 3.35% of the grains.
The integral mean curvature was positive for grains with a smaller
number of faces and negative for grains with a large number of
faces. This is consistent with theories of grain growth that suggest
grains with many faces grow and those with few faces shrink. Note
that for grains within each class, Ms is a distribution rather than a
constant. The ferrite data is noisier than the austenite data, espe-
cially for classes with a large number of faces (>25). This is probably
because there are fewer grains in the ferrite sample. For ferrite, the
classes with F > 25 faces contain no more than 5 grains. Most of the
grains with between 3 and 20 faces and have smaller standard
deviations in both datasets. Note that the standard deviation in-
creases again for grains with the fewest faces and the largest cur-
vatures. This is probably because larger curvatures are not
measured as accurately as smaller curvatures, as illustrated in Fig. 2.
The integral mean curvature crosses zero at about 17 grain faces for
both the austenitic and ferritic steel. Changing the minimum grain
size did not significantly alter the results.

Rowenhorst et al. [3] proposed that zero curvature grains were
those whose numbers of faces (F) were the same as the average

numbers of faces of their nearest neighbors, <FNN>. We tested the
same idea on the austenitic steel data (see Fig. 7). The normalized
integral mean curvature of grain faces is calculated as G 0 ¼ Ms=R,
where R is the sphere equivalent radius of the grain. The set of
grains for this local topology analysis was limited to ones whose
nearest neighbors also fall 2<R> from free surfaces of the sample,
leaving 930 grains for analysis in austenite. The grey dots in Fig. 10
are normalized grain curvatures of individual grains. Red squares
are average normalized grain curvature for each F-<FNN> class. The
line for the average in each class passes almost exactly through the
point with F-<FNN> ¼ 0 and G 0 ¼ 0. The results for the ferritic steel
are not shown because after grains with incomplete neighbors
were also removed, there were not enough grains left to support a
statistical analysis. Note that a finite number of grains with two
faces were found and observed to be either twins or lens shaped
grains at boundaries.

3.3. Grain boundary curvature distributions in the austenitic and
ferritic steels

In the remainder of this paper, we refer to the symmetry aver-
aged GBCurD simply as the GBCurD. The simplest projection of the
five-parameter GBCurD is the average curvature as a function of
disorientation angle, or the smallest misorientation angle among
all indistinguishable representations for each triangle. The results
for the two samples are shown in Fig. 8, where each point is the
average curvature of all of the triangles with that disorientation.
The data for the austenite and ferrite have the characteristic that
low angle grain boundaries (LAGBs) have curvatures that increase
with decreasing disorientation. The exception is for the lowest
disorientation angle, which had significantly fewer observations.
There is also an increase in curvature at angles near 60'. For the
austenite sample, the average curvature of coherent twin bound-
aries is shown separately and, as expected, this represents a mini-
mum (0.3 mm(1). The coherent twinsmake up 14.6% of the length of
all boundaries in the austenite and tend to be very flat and lie on
(111) planes. For the ferrite sample, the average curvature of sym-
metric tilt ð211Þ S3 boundaries is also shown. The most populous
grain boundary type in BCC ferrite is the ð211Þ S3 boundary; it
makes up ~ 2.5% of total boundary area. The curvature of the ð211Þ
S3 boundary is not significantly less than the average of other
boundaries, even though (as illustrated below) it has the minimum
curvature for all S3 boundaries. When considering these results,
keep in mind that at each of the other points, the value is averaged
over all disorientation axes and grain boundary plane orientations.
Therefore, the higher curvatures at low disorientation angles and
near 60' represent significant trends in the data. Other than these
features, the average curvature is approximately constant between
15' and 55'. The fact that the ferrite data set had fewer grains than
the austenite data set contributes to the greater scatter in the ferrite
curvature distribution.

The data in Fig. 8 suggest that the boundaries at 60' have cur-
vatures that are slightly greater than at other angles. Also, we know
that the singular coherent twin boundary and {211} symmetric tilt
boundary occur at these disorientations. Furthermore, these sam-
ples have more boundaries with this disorientation than any other
type, which means that our measurements of these boundaries are
the most reliable. Therefore, we examine the curvature as a func-
tion of the grain boundary plane orientation for grain boundaries
with a 60' disorientation about the [111] axis (S3) for the austenite
and ferrite samples. The curvature in Fig. 9 is plotted in stereo-
graphic projection with [001] and [100] pointing normal to the
plane of the paper and to the right, respectively. The grain boundary
populations and relative energies, reported earlier [14,15] are
shown for comparison. Note that the grain boundary populations

Fig. 6. Integral mean curvature of grain faces (Ms) as a function of number of faces of
grains (F). The markers represent average Ms for each grain class and the error bars
show the standard deviation within the grain class.

Fig. 7. Normalized integral curvature of grain faces ðG 0Þ as a function of F-<FNN> in
austenite. F-<FNN> is difference between number of faces of one grain (F) and the
average number of faces of its nearest neighbors (<FNN>).
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are not identical to those reported earlier because, in this case, they
were computed using DREAM.3D [26].

For the austenite sample, the most significant feature appears at
the position of the coherent twin. This is the minimum curvature,
maximum population, and minimum energy. This is the boundary
that is terminated by (111) planes on both sides and is very flat. It is
interesting to note that there is a maximum in curvature for
boundaries that are 90' from the twin position and themaximum is
reached at the positions of the (110) boundary planes. This is
consistent with the observation that twined grains are usually
plate-shaped and have large parallel {111} faces connected bymuch
smaller perpendicular boundaries. The high curvature results from
geometric necessity of joining the two parallel {111} planes to
bound the grain.

The distributions for the ferritic sample are nearly opposite that
of the austenitic sample. The lowest curvatures occur in the [111]
zone with the minimum curvature, energy, and maximum popu-
lation occurring at the positions of the ð211Þ; ð112Þ; ð121Þ sym-
metric tilt grain boundaries (these are indistinguishable grain

boundaries). The maximum curvature (1.0 mm(1) and minimum
population occur at the position of the (111) twist grain boundary. It
should also be pointed out the range of the area distribution for the
austenitic sample is much larger than for the ferritic sample, with a
maximum population larger than 300 MRD for the austenitic steel
but only about 9 MRD for the ferritic steel.

When comparing the curvature, population, and energy distri-
butions, it seems clear that for both samples, the curvature is
correlated to the crystallography of the grain boundary, as hy-
pothesized in x1. Furthermore, the comparison of curvature and
energy shows systematic variations. The two boundaries thought to
be singular, the (111) S 3 boundary in austenite and the ð211Þ S3
boundary in ferrite, have the minimum curvature, minimum en-
ergy, and maximum population. This implies a direct correlation
between curvature, energy, and population. However, this is not the
case at all points. For example, if we compare the energy and cur-
vature of the grain boundaries in the [111] zone for austentite (see
Fig. 10) we see an inverse correlation between energy and curva-
ture. Because these are among the highest energy and lowest

Fig. 8. Average curvature as a function of disorientation angle in (a) austenitic steel, (b) ferritic steel.

Fig. 9. Curvature (a, d), population (b, e), and energy (c, f) distributions for austenite (aec) and ferrite (def) for all grain boundaries with a S3 (60'/[111]) disorientation. The small
squares are for reference, marking {110} locations in the [111] zone in (aec) and are omitted from (def) for clarity.
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population of the S3 grain boundaries, we also assume that these
are non-singular orientations.

4. Discussion

The results in x3.1 indicate that measuring curvatures from a
discrete triangular mesh using the method of Goldfeather and
Interrante [31] is accurate provided that there is sufficient resolu-
tion compared to the range of curvature to be measured. A basic
limitation will always be that there is a wide range of grain sizes
with different curvatures and no single smoothing procedure will
be ideal for all grains. Fortunately, the largest fraction of boundaries
has relatively low curvatures that are more accurately measured
and these will dominate the distribution. For example, the curva-
tures of specific grain boundary types, as illustrated in Figs. 8e10,
will be the average of values from the majority low curvature grain
boundaries that are accurately measured and the minority high
curvature boundaries whose curvatures are underestimated. So,
while the underestimated curvature of some boundaries will affect
the results, the effect will be diluted by the majority boundaries
that are measured more accurately.

Because the curvature-energy product is the driving force for
grain growth, there is an extensive literature, dating back to the
work of Smith [34], relating grain topology, integral mean curva-
ture, and the tendency of grains to grow or shrink. Theoretical
treatments of the problem led to the prediction that grains with
more than 13 or 14 faces grow and those with fewer shrink
[35e37]. Rowenhorst et al. [3] reported that zero curvature grains
had 15.5 faces, Mason et al. [38], based on simulations of isotropic
grain growth, found the crossover from negative to positive to take
place around 15 faces, and in the current workwe find it is about 17.
The difference between the value we report and the values re-
ported in the earlier workmight not be significant. Note that while
the data follow the trend of decreasing integral mean curvature
with an increasing number of faces, the curvatures of grains with
between 15 and 20 faces are less than the standard deviation, so the
exact point where the curvature is zero is not clear. We note that
the average numbers of faces per grain in the austenite and ferrite
was 13.6 and 13.7, respectively, which are consistent with the
number reported for b-Ti (13.7) [3] and similar to that reported for
a-Ti (14.2). [39]

MacPherson and Srolovitz [40,41] recently showed that the

number of faces alone does not determine the growth rate of a
grain. Using data from more than 2000 b-Ti grains, Rowenhorst
et al. [3] demonstrated the validity of the idea that zero curvature
grains were those whose numbers of faces (F) were the same as the
average numbers of faces of their nearest neighbors, <FNN>. The
fact that we get the same result from an austenitic steel (see Fig. 7),
which has a significantly different microstructure, suggests that
this is a general feature of microstructures undergoing grain
growth.

The observations reported in Figs. 8e10 provide clear evidence
that the mean curvature of the grain boundary depends on its
crystallographic parameters. In an isotropic system, one would
expect the curvature be dictated by the size of the grain face. While
it seems sensible that the grain and face size will still play a role,
there is a clear effect of both lattice disorientation (Fig. 8) and the
grain boundary plane orientation (Figs. 9 and 10). In Fig. 9(a), the
curvature for the 60'/[111] boundary in austenite varies from
0.3 mm(1 at the position of the (111) twist boundary to 1.2 mm(1 at
the (110)-type positions 90' away. There are also significant cur-
vature variations for the 60'/[111] boundary in ferrite, even though
the anisotropy in the grain boundary population is 30 times
smaller. The variations with grain boundary plane at both of these
disorientations are greater than the average values at different
disorientations (see Fig. 8).

The data in Fig. 6 show that there is a strong correlation between
curvature and the number of faces. Because it is known that grains
with more faces are larger, there is also an intuitive correlation
between curvature and grain size [42,3,39]. When the GBCurD is
computed, all grains are included. This means that for a single
crystallographic type, triangles from small, higher curvature,
shrinking grains are averaged together with triangles from large,
lower curvature, growing grains. Despite this, there is still a crys-
tallographic correlation. One might think this is because the
GBCurD is area weighted, so the larger grains have a more signifi-
cant effect on the distribution than small grains. However, the large
growing grains necessarily share boundaries with smaller shrink-
ing grains, so one cannot attribute the distribution solely to the
large grains.

While the GBCurD is clearly sensitive to crystallography, there is
no single correlation between curvature and energy or curvature
and population. The one trend that is clear is that the lowest energy
boundaries also have small curvature and large areas. If these
boundaries are presumed to be singular and in contact the same
mean field chemical potential, then the curvature should be
inversely proportional to the energies of the boundaries peripheral
to the singular surface. Such boundaries are always have higher
energies than the singular surface, leading to a direct proportion-
ality between the energy of the singular surface and the curvature.
This is certainly obvious from the distributions plotted in Fig. 9.
However, there are also examples of opposite correlations. One
example is clearly illustrated in Fig. 8, which shows that low
disorientation angle grain boundaries have curvatures that increase
as the disorientation decreases. It is well known that the grain
boundary energy decreases at low disorientation angles [43],
where the curvature is observed to increase. A second example is
illustrated in Fig. 10. As noted in x1, non-singular boundaries in
contact with a constant mean field chemical potential should have
curvatures that are inversely correlated to the energy.

Some of the preceding arguments are based on a mean field
chemical potential for the grain boundaries. It should be noted that
each individual boundary is not assumed to have the same chem-
ical potential. However, computing the curvature of a certain type
of boundary involves averaging over many boundaries at different
chemical potentials. The average curvature that results is therefore
representative of mean chemical potential of the boundaries with

Fig. 10. Comparison of the curvature and relative energies of grain boundaries in the
[111] zone of austenite, beginning at the ð110Þ orientation. Because of bicrystal sym-
metry, the values repeat in periods of 60' .
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the same crystallography.
The data in Figs. 9 and 10 show only a small portion of all grain

boundary types. When the data is examined for all grain bound-
aries, the curvature is not strongly correlated to the population or
energy, although the curvature and energy have a weak negative
correlation. The absence of a strong correlation may be because of
the competing behaviors of the singular and non-singular in-
terfaces. Unfortunately, at the present time, is it not obvious how to
classify the boundary types into these categories. It should also be
pointed out the lower the population of a boundary, the greater the
uncertainty in the curvature and energymeasurements, so thismay
also play a role and mask any correlations that might exist. What
we can saywith confidence is that for themost commonly observed
grain boundaries, the dominant trend is that low curvature
boundaries have low energy and larger areas. However, there are no
strong overall correlations between curvature and energy or area,
similar to the area-energy correlation that was observed in many
materials. [16]

5. Conclusions

Grain boundary mean curvatures can be accurately measured
from discrete triangular meshes, but the highest curvatures are
underestimated. The curvatures measured for an austenitic steel
and a ferritic steel show the expected trend that the integral mean
curvature of the grains decreases as the number of grain faces in-
creases. The curvatures are also related to grain topology. In
austenite, when the number of faces on a grain is equal to the
average number of faces of its neighbors, it has zero integral mean
curvature. We find that the crystallography of the grain boundary
strongly influences the curvature. The variation of the curvature
with the grain boundary plane orientation is stronger than the
variation with grain boundary disorientation angle. The lowest
curvature grain boundaries also have the lowest grain boundary
energies and highest grain boundary areas. However, when all
grain boundaries are considered, the curvature is not strongly
correlated to energy or area and this might be the result of con-
flicting mechanisms that determine the curvatures of singular and
non-singular boundaries.
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