The orientation dependence of the visible-light-stimulated photochemical reduction of aqueous Ag⁺ on polycrystalline hematite Fe₂O₃ was determined by observing the relative amount of reduced Ag⁺ on crystals of known surface orientation over all possible orientations. The results show that surfaces oriented within 20° of the (1102) plane are the most active and surfaces close to the (0001) plane are the least active. A strong correlation is observed between the orientation-dependent activity and the orientation-dependent surface potential measured by scanning Kelvin probe force microscopy. Surfaces near the most active (1102) plane and the least active (0001) plane are, respectively, at the most positive and the least positive ends of the potential range among all grains. The trends in activity are concluded from a combination of internal fields associated with surface charges and bulk transport effects.

I. Introduction

HEMATITE (α-Fe₂O₃) is a promising photocatalyst because it absorbs visible light, it is inexpensive, readily available, stable in aqueous environments, and it does not contain environmentally hazardous elements. The band gap energy of 2.2 eV is near the intensity maximum of the solar spectrum. While hematite can readily photo-oxidize water to generate oxygen, it cannot photoreduce water to produce hydrogen because the conduction band lies 0.21 eV below the reduction level of hydrogen. Nevertheless, hematite has been widely studied as a heterogeneous photocatalyst. Despite its promise, the photocatalytic efficiency of hematite is limited by low carrier mobilities and short carrier lifetimes. Because these carrier mobilities are a function of orientation, one expects the photochemical activity of hematite to be anisotropic. Anisotropic activity can also arise from orientation-dependent surface features, including chemical terminations, reconstructions, and adsorbates, because these affect the net surface charge and the near surface space charge region. In this paper, we explore the anisotropic photochemical reduction of aqueous Ag⁺ to solid Ag⁰ on hematite surfaces of all orientations under visible light illumination, and demonstrate a strong correlation between the local activity to the local surface potential.

α-Fe₂O₃ adopts the hexagonal corundum crystal structure (see §1 of the supplemental material) that consists of layers of close-packed oxygen anions (O²⁻) stacked along the c-axis, with iron cations (Fe³⁺) filling two-thirds of the octahedral interstitial sites. This layered structure is apparent in Fig. S1 (a). The anisotropic bonding in the hexagonal structure is reflected in the electronic properties: the measured (n-type) electronic conductivity along the c-axis is four orders of magnitude lower than along directions perpendicular to it. As a result, the photocurrent density on orientations perpendicular to the c-axis is 5–10 times higher than on the basal faces.

Surface properties are also expected to be strongly anisotropic. Schematic examples of ideal bulk-truncated (0001) and (1102) surfaces are given in Fig. S1, which highlight the possibility of surfaces having different terminations and charges. While the real surfaces of hematite differ considerably from these ideal versions, their terminations still vary with orientation and they can be charged. Chemisorption of O₂ occurs in one second when the pressure is higher than 10⁻² Torr, which implies oxygen termination is likely in dry air. H₂O chemisorption occurs above 10⁻⁴ Torr, and the partial pressure of H₂O in air varies from 0.1 to 33 Torr. Generally, there are three types of adsorbed hydroxyls: single-, double-, and triple-coordinated hydroxyls, having charge states of −½, 0, ½, respectively. The amount and type of these hydroxyls vary with the surface orientation and preparation methods, and further affect the local surface charge density and activity.

Whatever the origin of this surface charge, it causes the near surface bands to bend in a semiconductor and generates an internal electric field that affects the driving force for photogenerated carriers to move to the surface. Examples of this band bending are shown in Figs. 1(a)–(c) for a neutral, positive, and negative surface, respectively. Each of these images is schematics of the relevant electronic energies (see caption for definitions) associated with both a sample (left side) and a nearby metallic tip (right side) to which the sample is grounded. As a result of the band bending in (b) and (c), two things occur for the positively (negatively) charged surface that favor reduction (oxidation) reactions: the population of electrons at the surface of the n-type semiconductor increases (decreases), as does the driving force for the photogenerated electrons (holes) to drift to the surface. Another consequence of band bending is that the contact potential difference between the tip and sample varies with the local surface charge, shown as E_{CPD} in Fig. 1. Smaller work function materials and more positively charged surfaces will result in a less positive (more negative) values of E_{CPD}.

Kelvin probe force microscopy (KFM) is a scanning probe analytical method that yields a measure of this contact potential difference; such measurements should therefore allow correlations to be made between the local surface potential and reactivity.

The purpose of this paper is to describe the relative photochemical activity of all possible orientations of α-Fe₂O₃ and to correlate this with local surface charge. For the activity, we employ a method used earlier to study the photochemical anisotropy of BiVO₄ and TiO₂. The orientations of many crystals at the surface of an α-Fe₂O₃ polycrystal were determined by electron backscatter diffraction (EBSD). Aqueous Ag⁺ was then photochemically reduced to insoluble Ag⁰ on the surface and the locations of reduction were correlated with the crystal orientation. The most active orientations are found to be near the (1102) orientation, while the most inactive orientations are found close to the basal plane (0001). We then measured the relative surface potential of each plane using KFM. We find that the surface potential is strongly
correlated to activity, with (1102) having the most positive surface potential and (0001) having the least positive surface potential.

II. Experimental Procedure
Polycrystalline Fe₂O₃ was produced by conventional powder processing. Fe₂O₃ powder (99.975%, Alfa Aesar, Ward Hill, MA) was ball-milled in ethanol using yttria-stabilized zirconia grinding media (Inframet Advanced Materials, Manchester, CT). After ball-milling, a small amount (typically 1–2 wt%) of polyethylene glycol (PEG, ~8000 g/mol, Alfa Aesar) was added as a binder, and mixed thoroughly. Pellets of the dried powder were formed under uniaxial loads in a 1-cm diameter stainless steel die. After pressing, the pellets were loaded into an alumina crucible, heated in air to 600°C at 10°C/min, and held at 600°C for 12 h to burn off the binder. They were then heated to 1200°C at 5°C/min, sintered for 48 h at 1200°C, and finally cooled in air at 10°C/min. The sintered samples were lapped flat using a 3 mm alumina suspension. The polished samples were annealed at 1100°C for 6 h in air to repair polishing damage and etch the grain boundaries (heating and cooling rates were 10°C/min).

The orientations of the surface grains were determined using EBSD. EBSD patterns were acquired using a Quanta 200 SEM (FEI, Hillsboro, OR) with the sample tilted to 70° and with an accelerating voltage of 25 kV. Patterns were automatically analyzed and indexed using TSL data collection software (EDAX, Mahwah, NJ). Several steps of data cleaning were applied. First, pixels having a low confidence index (CI < 0.1) were removed from the data set, typically arising from grain boundaries, surface pores, or scratches. Then, the EBSD data were cleaned using a single iteration of grain dilation, using a minimum grain size of 50 pixels and a disorientation angle threshold of 5°. Finally, each pixel of a grain was assigned the average orientation for that grain.

The photochemical reduction of aqueous Ag⁺ to solid Ag⁰ was carried out as described previously. A Viton O-ring (diameter ~1 cm) was placed on top of a hematite pellet, 0.115 M AgNO₃ aqueous solution was poured into the O-ring, and a quartz slip was then placed on top, sealing the solution in the O-ring by capillarity without an air bubble. The assembly was illuminated using a commercially available blue LED operated at 750 mA (λ_peak = 470 nm, Philips Lumileds, San Jose, CA) for up to 20 min. After reaction, the samples were rinsed with deionized water.

The surfaces were examined before and after photochemical reaction with optical, atomic force microscopy (AFM), and KFM. Conventional AFM images were obtained using an NTegra or Solver Next AFM (NT-MDT, Moscow, Russia). Aluminum-coated silicon tips (NSG10, NT-MDT) having a rated resonant frequency of 240 Hz were used for semicontact mode imaging. The local surface potential of active and inactive grains was measured using KFM (with the sample covered and not exposed to ambient light sources) with either NSG03 tips coated by Pt/Ir or 190E-G tips coated by Cr/Pt (Φ ≈ 5.1 eV). A lengthy description of the KFM measurements is given in the supplemental information (§ 2). Briefly, KFM is a two-pass semicontact mode technique. The first pass acquires the sample topography. During the second pass, the tip is maintained (using the topography information acquired during the first pass) at a user-defined distance (10 nm) above the sample surface, and a dc-bias V_SP is applied to offset the Coulomb force. V_SP is related to the contact potential difference (shown in Fig. 1): V_SP = – a × ECPD/e, where a is a constant that relates to the scan settings (0 < a < 1). Because V_SP has the opposite sign to ECPD, smaller work function materials and more positively charged surfaces will result in a more positive values of V_SP.

Finally, we used a Au (Φ = 5.1 eV) – Pt (Φ = 5.7 eV) standard sample to calibrate the KFM for every experiment. While V_SP should be more positive for Au than for Pt, majority (70%) of experiments. The values reported herein were corrected (sign inverted) such that they agree with the expectations for the controls (presented above for E_CPD and V_SP).

III. Results
Two characteristic topographic AFM images are shown in Fig. 2, which were recorded after a 10 min photochemical reaction. Bright (dark) regions are topographically high (low). The dark interconnected lines arise from the thermally grooved grain boundaries. The relatively uniform intermediate contrast enclosed by the grain boundaries arise from the
relatively smooth surfaces of individual grains. The small bright features arise from particles of photodeposited silver, which was confirmed using energy-dispersive spectroscopy in a scanning electron microscope and X-ray diffraction.

It is immediately clear that not all grains have the same relative activity for Ag⁺ photoreduction, based simply on the relative number or total amount of bright particles on different grains. We classified the relative activity into three groups: highly (denoted with “H”), moderately (denoted with “M”), or poorly (grains unmarked in Fig. 2) active. The classification was based on the relative area of the grain surface that was covered with bright particles. H (M) grains exhibited Ag⁰ particles uniformly spread across their surface covering over 10% (between 2% and 8%) of the total grain area. Poorly active grains either had no observable Ag⁰ particles, or a few randomly distributed particles covering less than 1% of the grain area. We recorded 11 similar AFM images (each 30 μm × 30 μm) from different regions on the surface after silver photoreduction, and classified their grains in an identical fashion. Overall, we characterized 69 grains for activity using AFM images, with 21 (or 30%), 20 (or 29%), and 28 (or 41%) classified as highly, moderately, and poorly active, respectively.

The orientations of the surface grains that were classified for their activity were then determined using EBSD. In the inverse pole figure (IPF) map given in Fig. 3, each pixel is colored according to the orientation of the local surface normal (the legend is given as an inset). Regions of constant color correspond to grains of constant average orientation. For reference, the regions shown in Fig. 2 (Fig. 5) are marked and outlined by white squares (red rectangle) in Fig. 3.

The activity of different grains is plotted versus their orientation on a stereographic projection in Fig. 4. The symbols correspond to the relative activity of each grain. Most of the 21 highly active grains (red solid triangles) are clustered near the (1102) orientation. While most of the grains near (1102) are highly active, not all are. More than half of the poorly active grains (open circles) are within 40° of the (0001) orientation; 17 of the 28 existing in the angular space of the triangle from (0001) to (0114). Most of the poorly active grains are away from (1102) orientation, with one outlying poorly (highly) active grain overlapping (outside) the region of orientation space in which the highly active grains mainly exist. The moderately active grains are spread in orientation space, but they mainly separate the regions of highly and poorly active grains, while having a significant overlap with these other clusters.

While AFM is a good indicator of the initial activity, owing to its high sensitivity to topographic variations, it is time-consuming to generate significantly larger data sets. As such, dark-field (DF) optical microscopy (OM) was used to quantify the relative coverage of silver particles on a much larger set of grains spread over a much larger area. Figure 5(a) is a DF-OM image of the Fe₂O₃ surface after the photochemical reduction of silver (for 20 min). In the image, the grain surfaces appear dark, while the grooves at the...
We again classified the relative activity of grains by quantifying the percentage of each grain covered by Ag, as indicated by the percentage of white pixels on the each grain surface (away from the boundaries) in the processed DF-OM images. Four DF-OM images were used, taken from regions also characterized with EBSD; the data set contained 547 grains (compared to the 69 used in the AFM dataset). The range in relative surface potential values for all grains was from -35 to $+45$ mV (all values being relative to the average potential in the image from which they were taken). The orientation dependence of the measured relative surface potential is given in Fig. 8(a). For simplicity of presentation, we segmented the stereographic projection into 39 regions, separated along a 10° grid line for the hexagonal system, and plot the number average relative potential of all grains in the region. There are an average of ≈ 4 grains per region, with the lowest having 1 and the highest having 9 grains. Orientations within 30° from the (0001) plane are at one extreme of the potential range, having the least positive relative surface potential. Orientations within 30° of the (1102) plane are at the opposite potential extreme, having the most positive relative surface potential.

The absolute activity (not using the classification scheme of Fig. 6) of the 547 grains from the DF-OM analysis is plotted in Fig. 8(b) versus their orientation on the same stereographic projection given in Fig. 8(a). The values plotted are the number average percentage of Ag coverage (white pixels) for all grains in the region, according to the color legend in the figure. There is a very strong correlation between the relative activity (absolute coverage of Ag) and the extremes in the measured relative surface potentials: grains close to the (0001) orientation are the most inactive grains and they have the most negative surface potential values, while grains near (1102) are the most active grains and they have most positive surface potentials. It should be pointed out that outliers were observed: not all active grains had positive surface potentials (though most did), and not all grains with large positive surface potentials were active (though most were).
A number of experiments were conducted to test the reproducibility of the observations and the sensitivity to the experimental conditions. First, a surface layer thinner than the average grain size was removed by polishing, and the high-temperature thermal etching treatment was repeated. When the reduction reaction was also repeated, the same grains were active. Second, KFM images recorded after an extended immersion in water and KFM images recorded after drying at 120°C were compared: there were no significant differences in the measured relative surface potentials between these experiments. Third, when the silver was removed from the surface after the reaction, the measured relative surface potential was the same as that measured before the reaction. Finally, samples were annealed under different temperatures and using different times. Most often we found the results described above, and we always found a correlation between activity and surface potentials, the primary observation of this work. Also, the (0001) was always the least active orientation and had the least positive surface potential. However, we did observe that the orientation of the highly active grains with the most positive surface potentials was sometimes found to be within 15° of the (1210) prismatic plane, for a small number of samples. This phenomenon is possibly due to a different surface reconstruction and surface absorption layer for samples processed in different conditions.

IV. Discussion

The results show that the photochemical activity of α-Fe₂O₃ for the reduction of aqueous Ag⁺ to solid Ag⁰ is strongly anisotropic, as are the measured KFM surface potentials. Surfaces oriented near (0001) are significantly less active than other orientations, while surfaces oriented near (1102) are significantly more active than others (for samples annealed at 1100°C). The measured KFM surface potentials are strongly
correlated with the activity: surfaces oriented near (0001) have less positive surface potentials than other orientations, while surfaces oriented near (1102) have more positive surface potentials than others.

The idealized bulk-truncated surfaces of the (1102) plane were depicted in Fig. S1(b). The oxygen terminated surfaces depicted in Fig. S1(b) would be neutral or negatively charged, in contrast to the observations. The (1102) plane is reported to be hydrated and ∼75% of the absorbed water molecules are dissociated at surface.32,33 The hydrated surfaces are also reported to be positively charged in a pH < 8.5 environment,32,34 which is in accordance with the KFM measurements that indicate the surface is positively charged. The hydrated (0001) plane is predominantly terminated by doubly coordinated hydroxyls,35 which are relatively inert to the protonation–deprotonation reactions, and is reported to be more negatively charged compared to all other prismatic and rhombohedral planes under acidic to neutral conditions.11,35,36 Our KFM observations are generally consistent with these earlier reports, and the reactivity is well correlated with the measured surface charge.

The anisotropic photochemical properties of oxides can arise from both bulk and surface properties. Past studies focusing on the anisotropic properties of hematite α-Fe2O3 have focused on bulk property differences between basal (perpendicular to the c-axis) and prismatic planes (parallel to the c-axis). As noted earlier, photocurrent densities measured for prismatic surfaces are larger than basal surfaces.11 This was attributed to the greater electronic conductivity parallel to the basal plane, which improved the electron-hole separation and therefore decreases recombination. While the low conductivity (and associated low mobility of carriers) along the [0001] direction of hematite is consistent with the poor activity of its basal plane, these bulk properties alone cannot explain why the (1102) has the highest activity. The bulk conductivity favors activity on the prismatic faces, which have normal in directions of highest conductivity,37 not on the (1102) face.

Fig. 7. A representative KFM image (a) and the associated AFM topography image (b), as well as the DF-OM image after reaction (c). The horizontal scale is the same in all images, given in (a). The color range in the KFM image runs from −220 mV (dark) to −100 mV (light), and in the AFM image from 0 nm (dark) to 200 nm (light).

Fig. 8. (a) The average relative potential value (see text) measured by KFM (for 167 grains from 16 different images) plotted versus orientation on a stereographic projection broken into 39 regions. (b) A similar plot of the average activity (see text) measured from DF-OM images (for 547 total grains).
It is possible that anisotropic light absorption, relative to the momentum of the photogenerated carriers, affects the overall activity, as proposed for SrTiO$_3$. A calculated band dispersion diagram for hematite Fe$_2$O$_3$ is shown in Fig. S2. This anisotropic absorption (see § 3 of supplemental) behavior further reinforces an expected low activity of (0001) because the direct band gap for electrons traveling perpendicular to this face is 0.3–0.5 eV larger than for electrons traveling toward the prismatic and rhombohedral faces. This would result in fewer photogenerated carriers traveling in these directions, and a resultant lower activity. However, one expects no significant difference in electron populations (based on band gap absorption) for directions normal to (1210), (1100), and (1102). Again, while the anisotropy of this bulk property supports the poorly active nature of the (0001) basal plane, it cannot explain the higher activity of the (1210) plane compared to the prismatic planes.

Reports suggest that the increased activity of certain orientations of TiO$_2$ results from the presence of certain highly active surface planes. The anisotropic activity of SrTiO$_3$ has been attributed to both the differences in the energies needed to create electron–hole pairs with momentum along different crystallographic directions and to differences in surface polarity. Surface polarity from internal polarization in ferroelectrics has also been shown to be an important factor in local activity. More recently, it was shown that centrosymmetric ferroelastics can exhibit surface polarizations that directly affect surface photochemical reactions. The correlation observed here for Fe$_2$O$_3$ between the anisotropic surface potential measured with KFM and the anisotropic activity indicate that surface charges play a significant role in determining the local photochemical activity. A similar effect was reported for ZnO, for which the high photochemical activity of the (110) plane was ascribed to greater lar effect was reported for ZnO, for which the high photochemical activity of the (110) plane was ascribed to greater local activity. 24, 44

Additional Supporting Information may be found in the online version of this article:

Data S1. The orientation dependence of the photochemical activity of α-Fe$_2$O$_3$

J. L. Giocomo and G. S. Rohrer, “The Influence of the Dipolar Field Effect on the Photocatalytic Reactivity of Sr2Nb2O7 and BaTiO3 Microcrys-

