
Acta Materialia 96 (2015) 390–398
Contents lists available at ScienceDirect

Acta Materialia

journal homepage: www.elsevier .com/locate /actamat
Abnormal grain growth in the Potts model incorporating grain boundary
complexion transitions that increase the mobility of individual
boundaries
http://dx.doi.org/10.1016/j.actamat.2015.06.033
1359-6454/� 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
William E. Frazier ⇑, Gregory S. Rohrer, Anthony D. Rollett
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 16 April 2015
Revised 3 June 2015
Accepted 15 June 2015

Keywords:
Abnormal grain growth
Potts model
Complexions
Grain boundaries
The Potts model of grain growth was adapted for the purpose of simulating abnormal grain growth (AGG)
resulting from grain boundary complexion transitions. The transition in grain boundary structure
between specific complexion types results in changes in properties. Where the transitions decrease
energy and increase the mobility of boundaries, AGG occurs provided that such transitions predomi-
nantly occur via propagation to adjacent boundaries. Thus the model increases the mobility of selected
boundaries on the basis of their adjacency to zero, one, or a multiplicity of boundaries that have already
transitioned. The effect of transitions to a high mobility complexion was investigated separately from the
effect of changes in energy. The influence of the frequency of complexion transitions with different
adjacencies on the occurrence of AGG was explored. The simulations show how propagating complexion
transitions can explain the AGG observed in certain ceramic systems.
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1. Introduction

Abnormal grain growth occurs in a wide variety of different
materials systems, including alumina [1], yttria [2], barium tita-
nate [3], boron carbide [4], tungsten carbides [5], nickel alloys
[6], molybdenum alloys [7], and steels [8]. A variety of mechanisms
have been proposed to explain AGG, but in the absence of inert
particles or pores that pin most boundaries, it is generally agreed
upon that the boundaries surrounding an abnormally large grain
must have a sustained mobility and/or energy advantage. For
example, Rollett et al. [9] used two dimensional Potts model sim-
ulations to show that a relatively large grain decreases in size rel-
ative to the average grain size unless the grain has a mobility
advantage (a greater grain boundary velocity per applied driving
force) and energy advantage (a lower grain boundary energy).
Similar results were obtained in three dimensions [10]. Rollett
and Mullins [11] analyzed relative growth rates of grains assigned
a mobility and/or energy advantage and established a simple quad-
ratic relationship between the maximum relative size and the two
ratios; Humphreys [12] published a similar theory at the same
time. A reasonable expectation from these analyses is that the ten-
dency for a grain to grow abnormally should be related both to the
mobility (and energy) advantage and to the fraction of the grain
surface area that has that advantage. In order, however, for a given
grain to grow to a large enough size relative to the average in order
to be observable as abnormal, the property advantage must be sus-
tained over a large number of changes in the boundaries on its
perimeter. This in turn motivated the investigation of what effect
propagating transitions in grain boundary structure and properties
might have on abnormal grain growth.

In experimental studies of doped aluminas, Dillon and Harmer
[13] associated abnormal grain growth with the presence of certain
grain boundaries that not only had higher mobilities, but also had
microscopically distinguishable structures and compositions [14].
These distinguishable grain boundary states have been called
‘‘complexions’’ [15]. More recently, it has been found that these
higher mobility boundaries can also have lower grain boundary
energies [16,17]. The coexistence of the high mobility, low energy
grain boundary complexion with the lower mobility, higher energy
complexion suggests that one of them is metastable with respect
to the other and that there is a nucleation energy barrier associated
with the transition from the metastable to equilibrium state. In
fact, under the assumption that the number of abnormal grains is
proportional to the number of transitioned grain boundaries, the
temperature dependence of the transitioned boundaries is consis-
tent with a thermally activated process. In the Ca doped alumina
system, the nucleation barrier for a complexion transition was esti-
mated to be 275 kJ �mol�1 [16].
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It has also been observed that the abnormally large grains that
occur are relatively rare. For example, if a grain is 10 times the
average diameter, and makes up 10% of the total volume, then
there are approximately 10,000 average grains for each abnormal
grain. One open question is, what fraction of the grain boundaries
must be transitioned to the high mobility, low energy complexion
to lead to an abnormally large grain? While it seems clear that one
high mobility boundary is unlikely to result in an abnormally large
grain, it is also likely that it is not necessary to transition every sin-
gle boundary surrounding a grain. The combined observations that
abnormal grains are rare and that the abnormal grains must have
multiple transitioned boundaries in close proximity suggest that
the nucleation of new transitioned boundaries is not a random pro-
cess. This suggests the hypothesis that grain boundaries in contact
with transitioned boundaries are more likely to transition, which
in turn leads to AGG.

There is some experimental evidence for this. Recent measure-
ments of grain boundary energies around abnormally large grains
in Ca doped yttria showed that the energies of boundaries around
the largest grains were systematically lower than those around
small grains separated from the large grains by at least five grain
diameters [18]. This was taken as evidence that the boundaries
around the largest grains have transformed to a lower energy, higher
mobility complexion. However, the boundaries around small grains
in contact with the larger grain had energies that were indistin-
guishable from the large grains. This suggests that these boundaries
had transformed after contact with the fast growing grains.

The purpose of this paper is to show, through grain growth sim-
ulations, that abnormal grain growth can be stimulated if transi-
tions of a fraction of grain boundaries to a high mobility, low
energy complexion are accelerated by the presence of a neighbor-
ing, already transitioned boundary. Conversely, if the transforma-
tion to a high mobility, low energy complexion occurs randomly
and without regard to the state of the adjacent boundaries, then
abnormally large grains will not be observed.
2. Methods

The Potts model in this work is similar to that used by Rollett
et al. [9] (and many others) to study abnormal grain growth in
the mid and late 1980s, which in turn was based on the pioneering
work of Anderson et al. [19]. The Potts model is itself a generaliza-
tion of the Ising model for magnetism. A grid of ‘‘spins’’, or grain
identity (ID) numbers, is assembled, and randomly selected spins
can change spin to that of a neighbor with a probability dependent
on the energy change associated with the change of spin and the
‘‘mobility’’ of the boundary between the neighbors. The local
energy for site i in the grid is defined by the equation:

E ¼ � J
2
�
XNN

j

ðdSiSj
� 1Þ

Here, J is the grain boundary energy between i and j, Si and Sj

denote spin, d is the Kronecker delta function [20], and NN is the
number of nearest neighbor cells. In the basic (isotropic) Potts
model, J is constant. Self evidently, the energy of the system is
the sum (over i) of all the individual site energies. Thus, the prob-
ability of ID reorientation can be expressed by the piecewise
defined function:

p ¼
M � J; DE < 0

M � J � e
�DE
J�kT ; DE P 0

(

Here, M is the grain boundary mobility, DE is the energy associ-
ated with the grain ID reorientation, T is temperature and k is the
Boltzmann constant. It is important to understand that
temperature in this context is not a physical temperature govern-
ing boundary migration rates, for example, but instead controls the
disorder associated with the boundaries e.g. their roughness. To
prevent artificial pinning effects associated with the cubic lattice
of the Potts model simulation [21,22], we use a constant tempera-
ture value, kT = 1.0, in all of the described simulations.

The model incorporates the mobility and energy changes asso-
ciated with transitions on grain boundaries by creating respective
functions M(i, j) and J(i, j), which are defined as follows:

Mði; jÞ ¼
1; Trði; jÞ ¼ 1
MMin; Trði; jÞ ¼ 0

�

Jði; jÞ ¼
JMin; Trði; jÞ ¼ 1
1; Trði; jÞ ¼ 0

�

where the function Tr(i, j) is an indicator that returns one when the
grain boundary is transitioned and zero when the grain boundary is
not transitioned, or nonexistent. Now, the fraction of transitioned
grain boundaries, fT, is the number of transitioned boundaries
divided by the total number of grain boundaries:

f T ¼
PNIDs

i

PNIDs
j Trði; jÞ � Bði; jÞPNIDs

i

PNIDs
j Bði; jÞ

Here NIDs is the number of grain IDs in the microstructure and
B(i, j) is an indicator that returns one when the grain boundary
exists and zero when it does not. Although not a requirement in
the Potts model, the grains are numbered uniquely.

We define three different rules for allowing boundaries to tran-
sition to the high mobility complexion. First and most obviously,
the ‘‘N0’’, or ‘‘Independent’’ rule specifies that some fraction of
grain boundaries transition to the high mobility, low energy com-
plexion regardless of the state of their neighboring boundaries.
This condition ensures that at least some of the grain boundaries
are transitioned in the simulation.

The second rule, the ‘‘N1’’, or ‘‘Adjacency’’ rule, allows grain
boundaries that border at least one already transitioned grain
boundary to transition. Any boundary connected to an already
transitioned grain boundary through a triple line can transition
by this rule when selected. The adjacency transition is not a simple
‘‘enveloping’’ step, since the transition can occur for any grain
boundary bordering the transitioned boundary by a triple line.
This means that any three transitioned boundaries produced by
this mechanism do not necessarily have to share one grain. The
third and final rule, the ‘‘N2’’, or ‘‘Double Adjacency’’ rule, allows
grain boundaries to transition if they border two transitioned grain
boundaries which are themselves adjacent. Schematic representa-
tions of these three rules can be seen in Fig. 1, and the require-
ments set by these rules are expressed mathematically in Table 1.

We stress that each transition made is characterized only by the
mechanism that was initially used to transition the boundary. For
example, a grain boundary may meet the criteria to perform an
adjacency transition, but make an independent transition instead.
Thus sometimes, by chance, some grain boundaries that made
independent transitions will appear to have made adjacency tran-
sitions. In the same way, some grain boundaries that made adja-
cency transitions will become disconnected from their
neighboring transitioned boundaries over time, and appear to have
made independent transitions (see Table 2).

The numbers of grain boundaries that can undergo each type of
transition to the high mobility grain boundary complexion by a
given mechanism, {NI, NAdj, NDAdj}, can be calculated in the follow-
ing manner. Grain boundaries are ‘‘sites’’ for independent transi-
tions when (a) the grain boundary in question exists and (b) the
grain boundary has not already transitioned i.e. Tr(i, j) = 0 and



Fig. 1. (a) The ‘‘Independent’’ grain boundary transition, (b) the ‘‘Adjacency’’ grain boundary transition, and (c) the ‘‘Double Adjacency’’ grain boundary transition. Here the
blue surfaces represent not transitioned grain boundaries and the red surfaces represent the transitioned grain boundaries. Note that in the case of the adjacency transition,
mechanism is not a simple ‘‘enveloping’’ step, as the transition can occur for any grain boundary bordering the transitioned boundary by a triple line. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
The different grain boundary transitioning mechanisms and their conditions.

Type of transition Explanation Transitioning condition

The ‘‘NI’’ or
‘‘Independent’’
transition

Grain boundary transitions without preferential site Trði; jÞ ¼ 0; Bði; jÞ ¼ 1

The ‘‘NAdj’’ or
‘‘Adjacency’’
transition

Preferential site for grain boundary transition provided by one
previously transitioned grain boundary

Trði; jÞ ¼ 0; Bði; jÞ ¼ 1PNNj

k Trði; kÞ þ
PNNi

l Trðj; lÞ > 0

The ‘‘NDAdj’’ or ‘‘Double
Adjacency’’
transition

Preferential site for grain boundary transition provided by two
adjacent, previously existing transitioned grain boundaries

Tði; jÞ ¼ 0; Bði; jÞ ¼ 1PNNj

k

PNNj

l Trði; kÞ � Trði; lÞ � Bðl; kÞ þ
PNNi;

m
PNNi

n Trðj;mÞ � Trðj;nÞ � Bðm;nÞ > 0

Table 2
A table showing the expected grain boundary transitioning behavior that will come
from different variations in the independent, random branching and percolated
transition limits.

Scenario Expected behavior

N0 > N2 = N1 = 0 Only independent transitions appear
N1 > N0 > N2 = 0 Independent transitions and adjacency transitions appear
N2 > N1 > N0 > 0 Independent transitions, adjacency transitions, and double

adjacency transitions appear
N2 > N0 > N1 = 0 Independent transitions appear, and double adjacency

transitions may appear
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B(i, j) = 1. Therefore, the number of grain boundaries that can
undergo an independent transition, NI, is:

NI ¼
XNIDs

I

XNIDs

j

ð1� Trði; jÞÞ � Bði; jÞ
2

We divide the summation by two to prevent grain boundaries
from being double counted. Similarly, grain boundaries that are
sites for adjacency transitions meet these previous two conditions,
but also (c) at least one of the neighboring boundaries is transi-
tioned. This means that the grain boundary shares a triple line with
some neighbor of the first grain that has a transitioned boundary
with the second grain, or some neighbor of the second grain that
has a transitioned boundary with the first grain. These two condi-
tions, of course, are not mutually exclusive. This condition can
therefore be expressed mathematically as:

XNNj;

k

Trði; kÞ þ
XNNi

l

Trðj; lÞ > 0

Applying a summation over all possible grain boundaries and
once again dividing by two to prevent double counting, we have
NAdj, the number of grain boundaries in our simulation that are
sites for adjacency transitions:

NAdj ¼
XNIDs

i

XNIDs

j

1=2;
XNNj;

k

Trði;kÞþ
XNNi

l

Tðj; lÞ> 0

0; else
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2
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Finally, grain boundaries that are sites for double adjacency
transitions meet the first two conditions stated, but also (d) two
adjacent grain boundaries that are themselves adjacent to each
other are both transitioned. These two conditions as well are not
mutually exclusive. We can express this statement mathematically
as:

XNNj

k

XNNj

l

Trði;kÞ � Trði; lÞ � Bðl;kÞ þ
XNNi;

m

XNNi

n

Trðj;mÞ � Trðj;nÞ � Bðm;nÞ > 0

Once again, we apply a summation and divide by a factor of two
to prevent double counting, yielding our expression for NDAdj, the
number of grain boundaries in our simulation that are sites for
double adjacency transitions.
NDAdj ¼
XNIDs

i

XNIDs

j

1=2;
PNNj;

k

PNNj

l
Trði; kÞ � Trði; lÞ � Bðl; kÞ þ

PNNi;

m

PNNi

ln
Trðj;mÞ � Trðj;nÞ � Bðm;nÞ > 0

0; else

2
64

3
75 � ð1� Trði; jÞÞ � Bði; jÞ

0
B@
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The number of sites that can be transitioned by each rule on a
given step, NT, is simply the minimum between the preset limit,
R, which defines the number of complexion transitions allowed
per step, and the number of sites available. Each respective mech-
anism of transition only occurs when the fraction of transitioned
boundaries is below that mechanism’s preset limit. These preset
limits are put in place to reflect the assumption that most grain
boundaries are not transitioned.

NT;I ¼
minðNI;RIÞ; f T < N0

0; f T P N0

�

NT;Adj ¼
minðNAdj;RAdjÞ; f T < N1

0; f T P N1

�

NT;DAdj ¼
minðNDAdj;RDAdjÞ; f T < N2

0; f T P N2

�

Fig. 2. A plot of the fraction of transitioned boundaries as a function of time during
simulations. The model transitions boundaries at a constant rate until the fraction
of boundaries transitioned reaches a preset threshold, at which point the model
stops transitioning boundaries and some grain boundaries are eliminated. The
oscillations at long times indicates that, in the event that the fraction of transitioned
boundaries falls below the preset limit, transitions are added at the same rate until
the fraction of transitioned boundaries has once again exceeded the threshold.
In each round of transitions, the model first makes independent
transitions, then adjacency transitions, and finally double adja-
cency transitions. An illustration of how the fraction of transi-
tioned boundaries should change with time can therefore be seen
in Fig. 2:

Amended with these rules, the Potts model was used with a 100
by 100 by 100 grid with �2500 grains for 107 time steps, transi-
tioning grain boundaries at a rate of RI = RAdj = RDAdj = 50 every
5000 time steps. Although much larger domains are feasible on
current computers, this domain size allowed large numbers of con-
figurations to be tested, such that several hundred simulations
were performed using different set values of N0, N1, and N2.
Among the different variations of the three parameters that can
exist, certain combinations were singled out for scrutiny.
The condition N0 > N2 = N1 = 0 ensures that only the indepen-
dent transitions are allowed. In such simulations, no propagation
of transitions will occur.

The condition N1 > N0 > N2 = 0 ensures that the grain boundaries
will only make independent or adjacent transitions. This scenario
increases the probability of a given grain boundary transitioning
if it borders an already transitioned grain boundary; double adja-
cency, however, has no effect. The propagation of transitioned
boundaries through the microstructure is completely random with
adjacency transitions, but transitioned boundaries will be more
likely to share a common grain.

The condition N2 > N1 > N0 > 0 allows for independent, adja-
cency, and double adjacency grain boundary transitions.
Preferred sites created by the independent and adjacent transitions
should provide many sites for double adjacency transitions and
grains transitioned in this way will always share a grain with at
least two other transitioned boundaries.

Finally, the condition of N2 > N0 > N1 = 0 allows for independent
and double adjacency transitions, but disallows adjacency transi-
tions. In other words, the probability of a grain boundary transi-
tioning increases upon adjacency to two transitioned boundaries
that are themselves adjacent, but not upon adjacency to one single
transitioned boundary. This means that sites for double adjacency
transitions will only appear once two neighboring grain bound-
aries undergo independent transitions.

For this work, special attention was given to the region of the
parameter space in which the total number of independent, adja-
cency, and double adjacency boundaries consisted of less than 1%
of the boundaries because preliminary simulations suggested that
this region contained a frontier that, when crossed, AGG goes from
being highly unlikely to highly likely. In an effort to determine how
the likelihood of AGG changed with the changing parameters and
gain insight into what features of a grain may promote AGG
besides the formation of grain boundary complexions, an addi-
tional three sets of simulations were run: one with a pair of
inserted independent transitions allowing for varying fractions of
adjacency transitions, one with an independent transition border-
ing an adjacency transition allowing for varying fractions of double
adjacency transitions, and finally one with a varying fraction of
independent transitions allowing for a high number of double
adjacency transitions.
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Each simulation was checked for the presence of abnormal
grains at t = 107, with an abnormal grain being defined as having
a volume ten times that of the average grain. Although normal
grain size distributions extend out to this multiple of the average
size, the criterion was found to correspond well to visual inspec-
tion of microstructures. Visual representations of the simulations
were collected as each simulation progressed. Visual inspection
of a subset of the evolving microstructures confirmed the numeri-
cal indications of AGG.
Fig. 4. (a) The microstructure and (b) the transitioned boundaries (filtered for
M > 0.5) colored white and outlined in black, with abnormal grains in blue, light
blue, and red formed from adjacency and independent transitions in the modified
Potts model after 107 MCS, with N0 = 0.0001 (�3 boundaries), N1 = 0.005 (�85
boundaries), and N2 = 0. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
3. Results

Fig. 3 shows the occurrence of AGG in the region in which
between 0 and 100 adjacency transitions were allowed (limited
to 0.6% of all boundaries in the microstructure) and independent
transitions, with a ratio of N1:N0 of at most 60. Note that the curves
apparent in the figure are a consequence of the controls on transi-
tion rates in the code and have no significance per se.

It is obvious from this plot that the occurrence of AGG becomes
more likely as more adjacency transitions are allowed in the sim-
ulation, and becomes close to certain after around 0.3% of all
boundaries (roughly 60 boundaries in the simulation) are allowed
to make the adjacency transition. Fig. 4 shows a microstructure
from one of these simulations.

Here, an abnormal grain with multiple transitioned boundaries
has clearly appeared, which demonstrates that AGG can occur with
a simple ‘‘random branching’’ propagation of complexion transi-
tion propagation over triple lines, as some grains gain enough tran-
sitioned boundaries to grow abnormally simply by chance. Further,
AGG can also occur when transitions are only allowed to propagate
by the double adjacency rule, as shown in Fig. 5. With enough inde-
pendent transitions allowed in the simulation, occasionally some
of them come into contact, allowing the transitions to propagate
by the double adjacency rule. Thus, as with when only adjacency
and independent boundary transitions were allowed, some grains
gained enough transitioned boundaries to grow abnormally.
However, when only independent grain boundary transitions are
allowed, abnormal growth does not occur, as Fig. 6 demonstrates.

Results from models propagating transitions from a single inde-
pendent transition, an independent adjacency junction or ran-
domly touching independent transitions show a clear region
where AGG is possible. When only adjacency transitions were
allowed to propagate from the independent transition, AGG
became close to certain after roughly 0.3% of boundaries (roughly
60 boundaries) were allowed to make adjacency transitions, which
can be inferred from Fig. 8 as the cumulative probability of AGG in
the set of such simulations becomes roughly linear at this point.
Fig. 3. A plot of the occurrence of AGG with varying numbers of independent
transitions and adjacency transitions in a microstructure initially containing 19,629
boundaries.
Fig. 8 shows that, when only double adjacency transitions were
allowed to propagate from the independent adjacency junction,
the occurrence of AGG became close to certain after a much smal-
ler fraction of boundaries was transitioned – the cumulative prob-
ability plot becomes linear with only 0.05% of grain boundaries
allowed to transition (�10 boundaries). Further, Fig. 7 shows that
when double adjacency transitions were essentially free to occur,
but constrained by the presence of randomly touching indepen-
dent transitions, the cumulative probability of AGG becomes linear
after the fraction of transitioned boundaries allowed to occur by
independent transitions is roughly 0.1%.

In addition, Fig. 9 shows the fraction of transitioned boundaries
on abnormal grains at t = 107 in three different scenarios. In the
first scenario, independent and adjacency transitions occurred, in
the second, independent and double adjacency transitions
occurred, and in the third all three types of transitions were
allowed to occur. Grain boundaries that make double adjacency
transitions are guaranteed to share a grain with at least two other



Fig. 5. Grain growth over 107 steps for N2 = 0.9% and N0 = 0.114% after 107 steps: (a), N2 = 0.9% and N0 = 0.276% after 3 * 106 steps; (b) N2 = 0.9% and N0 = 0.816% after 3 * 106

steps. Resulting microstructures are shown on the left and transitioned grain boundaries in the microstructures are shown on the right (filtered for M > 0.5) in white and
outlined in black, as well as the present abnormal grains, which are blue. AGG is clear in (b) and (c), with connectivity between transitioned grain boundaries obviously high.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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transitioned grain boundaries, so microstructures experiencing
AGG in the first scenario should on average have a smaller fraction
of their transitioned boundaries on the abnormal grains them-
selves than in the third scenario.

The number of abnormal grains was also tracked in these sim-
ulations, as well as whether or not abnormal grains appeared to
cluster or impinge. ‘‘Clustering’’ of abnormal grains in this case
was regarded as a situation in which one abnormal grain forms
while in contact with an abnormal neighbor, while simple
‘‘impingement’’ was regarded as two abnormal grains growing into
each other. In each of the three scenarios abnormal grains
appeared with only one percent of all boundaries transitioned,
but scenario three resulted in an over twofold increase in the num-
ber of abnormal grains per volume.
4. Discussion

There is a relatively simple probabilistic explanation for why
AGG occurs in the simulations where the transitioned boundaries
with high mobility are added in clusters and why AGG does not
occur when the grain boundary transitions are independent, i.e.
spatially correlated. If we assume that the probability of any grain
boundary transitioning over a period of time is one percent and
that a typical fourteen sided grain needs half of its boundaries to
transition to become abnormal, this suggests that the probability
of a particular grain growing abnormally is p = (0.01)7 = 10�14. At
most only one in a trillion grains could possibly be abnormal and
this would never be observed.

However, assuming that a boundary neighboring a transitioned
boundary is more likely to transition by a factor of fifty, then the
chances of a grain accumulating enough transitioned boundaries
to grow abnormally is roughly p = (0.01)(0.5)6 = 0.000156. Dillon
and Harmer [23] estimate similar abnormal grain number fractions
in their observations of AGG in Ca doped alumina, and speculate
that the fraction of abnormal grains in a ‘‘typical’’ microstructure
is on the order of 1 in 10,000 to 1 in 1,000,000.

We can make simple probabilistic estimates that two transi-
tioned boundaries will share a triple line, the requirement in our
simulations for a double adjacency transition, in an analogous
fashion to estimating the probability that two individuals in a
room share a common birthday. If we assume that grains have
on average fourteen grain boundaries [24], then the total number
of boundaries in the system is about seven times the number of
grains, Q. Each grain boundary (or facet) on average is enclosed
by five triple lines, so transitioning one grain boundary in the



Fig. 6. Grain growth over 107 steps for N0 thresholds of 0.1% (a), 1% (b), and 10% (c) of all grain boundaries, with no N1 or N2 transitions allowed. Resulting microstructures are
shown on the left and transitioned grain boundaries in the microstructures are shown on the right (filtered for M > 0.5) in white, outlined in black. No AGG is present and no
isolated clusters of transitioned boundaries are present.

Fig. 7. The cumulative probability of AGG in the set of simulations upon allowing
for a set fraction of independent transitions and a set fraction of double adjacency
transitions.

Fig. 8. The cumulative fraction of all simulations performed in which AGG occurred
when a set number of adjacency transitions and a set number of double adjacency
transitions were allowed to occur. Note that double adjacency transitions result in
AGG at substantially smaller fractions.
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microstructure means that on average eleven grain boundaries
(five neighboring boundaries from each grain, plus the transitioned
grain boundary itself) cannot transition in order to avoid forming a
double adjacency site. Therefore, the total number of ‘‘people’’ in
the room is NT, the number of transitioned boundaries, the total
number of possible ‘‘birthdays’’ is 7Q, and every additional
‘‘person’’ eliminates eleven birthdays. We can then estimate the
probability that at least two transitioned grain boundaries in the
system will come into contact as:

PSite � 1�
YNT

i¼1

1� 11i
7Q

� �



Fig. 9. Box and whisker plots of the fraction of transitioned boundaries on
abnormal grains after 107 MCS in simulations allowing for either the independent
and double adjacency propagation mechanisms, the independent and adjacency
propagation mechanisms, or the independent, adjacency, and double adjacency
propagation mechanisms. Ten simulations were performed for each combination of
transition types.
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When Q = 3000 (�21,000 grain boundaries) and NT = 100 (�0.5%
of all boundaries transitioned), the probability of at least two of
these boundaries being in contact, thus creating a double adja-
cency site is approximately 93%. With less than one in one hundred
boundaries in the system transitioned, we can expect at least a few
grain boundaries in the system to meet the criteria for making a
double adjacency transition, if this type can occur.

Many attempts to model different forms of AGG make some
grains ‘‘special’’ either due to an advantageous orientation, high
stored energy (in a case of recrystallization), or giving a single par-
ticular grain low energy subgrains. For example, Park et al. [20]
have demonstrated that a single grain with several low angle sub-
grains can grow abnormally in the Potts model when a fraction of
its grain boundaries are allowed to have low energies, as long as
the growth occurs in the presence of particles. Simulations per-
formed by Rollett et al. [9] picked a single grain and gave its
boundaries high mobility and low energy, also resulting in AGG.
This latter case begs the question of how a given grain can sustain
a perimeter with special properties. This only has a simple answer
in the case of a subgrain structure with low mosaic spread but an
occasional subgrain is sufficiently misoriented with respect to the
average that its perimeter is consistently a high angle and there-
fore high mobility boundary [25–27].

However, there are a number of simulations that do not need to
seed the microstructure for AGG to appear. As just mentioned,
coarsening of subgrain structures has been modeled by making
the grain boundary energy and mobility dependent on grain
boundary misorientation and including a cutoff misorientation
above which grain boundary mobility and energy both increase
[25–27]. The AGG that emerges in this model has been shown to
be representative of the apparent nucleation of new grains in pri-
mary recrystallization. Kim and Park [28] has shown that AGG
can occur in a phase field simulation that includes solute drag
via breakaway of boundaries from their pinning atmospheres. No
variations in grain boundary mobility or energy anisotropy, varia-
tion in texture, particle pinning, or seeded sites of any kind were
needed or included. The mechanisms of complexion transition for-
mation and propagation employed in this work are hypothetical,
but demonstrate an analogous, seedless mechanism by which
AGG can occur.
The results of this work suggest that abnormal grains form
because transitioned grain boundaries form clusters within the
microstructure, germinating from a small number of transitioned
grain boundaries. If this is indeed true, then preventing the most
vulnerable grain boundaries from appearing could possibly control
AGG. Alternatively, if abnormal grains form because certain high
energy grain boundaries changing complexion occasionally come
into contact and allow others to transition, keeping these bound-
aries separated could control AGG.

5. Conclusions

A mesoscale model of grain growth incorporating the selected
transition of some grain boundaries to a high mobility complexion
has been developed. This model shows that complexion transitions
on a subset of grain boundaries to a higher mobility state can lead
to abnormal grain growth provided that adjacency is allowed to
influence the transition rate. If, however, such transitioned bound-
aries are randomly dispersed in the microstructure, they are unli-
kely to initiate abnormal grain growth. The key to obtaining
abnormal growth is when the nucleation of transitioned bound-
aries is stimulated by the presence of an adjacent, already transi-
tioned boundary, so that clusters of transitioned boundaries are
formed, resulting in a few abnormally large grains. The results sug-
gest that the nucleation of complexion transitions occurs heteroge-
neously such that a transition on any given grain boundary
increases the probability of a complexion transition on an adjacent
boundary so that clusters of transitioned boundaries are created.
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