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Abstract The effects of prior stored energy level, an-
nealing temperature, heating velocity, and initial grain size

on annealing twin development during static recrystal-

lization of commercially pure nickel (99.999 %) are in-
vestigated. The twin content (measured as the twin

boundary density or as the number of twins per grain) at the

end of recrystallization is shown to be primarily influenced
by the prior stored energy level and by the initial grain size,

but the effects of heating rate and the annealing tem-

perature are negligible. Taken together, the results are
consistent with a new proposition that roughness of the

recrystallization front promotes the formation of annealing

twins during recrystallization.

Introduction

Grain boundary engineering (GBE), first proposed by
Watanabe in 1984 [1], aims at improving intergranular

damage resistance by maximizing the fraction of special

boundaries in the grain boundary network. Annealing twin
boundaries, both coherent and incoherent twin boundaries,

are fundamental for GBE [2, 3]. Despite the fact that these

twin boundaries are well known from the beginnings of

physical metallurgy [4], the understanding of annealing
twin formation mechanism remains limited.

The growth accident model, in which grain boundary

migration velocity and grain boundary migration distance
are expected to be the two promoting factors of annealing

twin formation, is most commonly used for explaining twin

formation [5–8]. In this model, annealing twin formation is
related to grain boundary migration. However, the exact

relationship between these two phenomena is not clear.

Gleiter and Pande [5, 6] derived models based on growth
accidents to predict twin density evolution. In Gleiter’s

model, the twin formation probability is mainly determined

by grain boundary mobility and migration driving force [5]
and makes no distinction as to the type of driving force.

Accordingly, the annealing temperature influences the twin

formation probability through its effect on grain boundary
mobility. In Pande’s model, however, the number of twin

boundaries per grain is proportional to the variation in

grain size and grain boundary migration driving force, and
is not sensitive to the annealing temperature [6]. Subse-

quently, other works addressed the impact of processing
and microstructural factors on annealing twin formation.

Studies aimed to maximize annealing twin boundary con-

tent mainly by varying prior cold deformation level and
annealing temperature and were conducted on commer-

cially pure nickel [9–11]. The low deformation strains

(\10 %) meant that these studies were limited to the case
of strain-induced grain boundary migration (SIBM). In our

previous work [12], through an in situ experiment, we

confirmed that annealing twins are mainly formed during
recrystallization [13]. Some recent studies were performed

to analyze twin formation in the recrystallization regime.

Li et al. [14] studied the role of deformation temperature
and strain while performing grain boundary engineering in

Inconel 600. Nevertheless, due to the complexity of
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microstructural evolution during hot deformation, the pre-

cise roles of these parameters on annealing twin develop-
ment could not be determined. Wang et al. [15] analyzed

the influence of stored energy on twin formation during

primary recrystallization in a nickel-based alloy and con-
cluded that the number of twin boundaries per grain in-

creases with increasing stored energy level. However, in

this study, annealing twins were quantified only at the end
of recrystallization and only the number of twins per grain

was considered. In addition, Bair et al. [16] found that the
heating velocity could also promote annealing twin content

during recrystallization of pure nickel. However, the actual

values of the applied heating rates were not given in that
study. Recently, the effect of annealing temperature on

annealing twin evolution during recrystallization was ad-

dressed in [17] for cold-rolled pure nickel and [18] for a
nickel-based alloy. In both works, samples underwent heat

treatments at different temperatures for a fixed duration.

Depending on temperature, the obtained microstructures
corresponded to different stages of recrystallization and

grain growth. Therefore, these two studies do not allow a

precise analysis of the annealing twin content at the end of
recrystallization. Furthermore, the role of prior deforma-

tion level on annealing twin content was also investigated

in [18], but only within the grain growth regime.
The present paper aims at establishing the influence of

three thermo-mechanical factors (i.e., stored energy level,

annealing temperature, and heating velocity) and one mi-
crostructural factor (i.e., initial grain size) on annealing

twin formation during static recrystallization of commer-

cially pure nickel. Since annealing twin content can be
interpreted differently via different quantification methods

[11, 19, 20], three different annealing twin quantification

methods, viz. twin density, number of twin boundaries per
grain and twin boundary length fraction, are used. The

experiments and results related to the influence of tem-

perature and strain on the one hand and of heating rate and
initial grain size on the other hand are presented in the third

and fourth sections, respectively. A new proposition for

how the recrystallization front morphology affects the an-
nealing twin formation is presented in the fifth section, as a

consistent explanation of the whole set of results.

Experimental and data processing details

Commercially pure nickel (99.999 wt% obtained from Alfa

Aesar) was used in the present study. Two distinct series of

experiments were performed to analyze the influences a) of
prior deformation amount versus annealing temperature

and b) of heating velocity on annealing twin formation

during recrystallization. A different initial grain size was

used in the ‘‘heating rate experiments’’ to assess the in-

fluence of that microstructural parameter.
All samples (initially fully recrystallized) were submit-

ted to compression tests at room temperature and subse-

quently annealed at a temperature between 350 and
550 "C.

Microstructures were quantitatively analyzed by Elec-

tron BackScatter Diffraction (EBSD). Specific ex-
perimental details are given in ‘‘Experimental details’’

sections.
The OIMTM software was used to analyze the EBSD

data. The recrystallized grains were defined in the EBSD

maps using the criterion that the grain orientation spread
(GOS) was less than 1" [21]. GOS is defined as the average

of the misorientation angles between the orientation of

each point inside a grain and the average orientation of that
grain. For grain detection, the minimum misorientation

angle to define a high-angle grain boundary was set to 15".
Annealing twins are defined by a misorientation of 60"
about the\111[ axis with a tolerance of 8.66", according
to Brandon’s criterion [22], regardless of their coherent

versus incoherent character.
Three different quantities were used to quantify an-

nealing twins: the annealing twin density (NL), the number

of annealing twin boundaries per grain (NG), and the twin
boundary length fraction (L%), respectively, which are

defined as

NL ¼ Ltb
S

" 2

p
; ð1Þ

NG ¼ N2 % N1

N1
; ð2Þ

L% ¼ Ltb
LHAB

" 100; ð3Þ

where Ltb is the twin boundary length detected in a given

sample section area S, N1 is the number of grains ignoring
R3 boundaries in the grain detection procedure, N2 is the

number of grains by considering R3 boundaries as grain

boundaries, and LHAB is the length of all the high-angle
grain boundaries including R3.

Influence of prior deformation level and annealing
temperature

Experimental details

Two cylindrical samples, 5 mm in diameter and 8 mm in
height with a fully recrystallized microstructure (average

GOS of 0.6", which is close to the angular resolution of

EBSD under the acquisition settings that were used) and an
average grain size (arithmetic mean) of 90 lm, Fig. 1a,
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were compressed at room temperature to 30 or 60 % height

reduction. The corresponding macroscopic true strains (e)
are indicated in Table 1. The compressed samples were

then cut into semi-cylinders, which were then annealed at

350 or 450 "C to perform recrystallization. Several an-
nealing steps were performed on the same samples until

recrystallization was complete. The microstructure

X_RY refers to the sample with X % deformation level and
recrystallized at Y "C. The heating device was a Thermo

ScientificTM Lindberg/Blue MTM MiniMiteTM tube fur-
nace. EBSD characterizations were performed in an FEI

XL30 ESEM microscope equipped with a TSL EBSD

system. EBSD orientation maps, which all have the same
size (800 lm 9 800 lm), were recorded with a 1.2-lm
step size. At the end of recrystallization, the EBSD maps

contained 100–500 recrystallized grains depending on the
thermo-mechanical history (twin boundaries being ignored

and grains with equivalent diameter smaller than 3 lm not

considered). It is worth mentioning that the average grain
size calculated based on the EBSD maps with a low grain

count (e.g., 100) may diverge appreciably from the true
value.

Fig. 1 EBSD map of the state
of the material before (a) and
after 60 % (b) and 30 %
(c) height reduction by
compression at room
temperature; the microstructure
is shown within an orientation
color-coded scale (Compression
Direction CD) projected in the
standard triangle); Unreliable
pixels are plotted black and will
not be further considered
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Experimental results

The EBSD maps in Fig. 1 illustrate the microstructure in
the initial state and after 60 and 30 % height reduction,

observed in the longitudinal cross-section. The two defor-

mation levels can be qualitatively distinguished by the
gradient of the IPF colors. However, the resolution of the

EBSD map does not allow for capturing the fine details of

the microstructure of the 60 % deformed sample. The
overall recrystallization kinetics is illustrated in Fig. 2.

Owing to the rapidity of recrystallization, the early re-

crystallization stages were not captured in the samples
annealed at 450 "C (60_R450 and 30_R450). On the other

hand at 350 "C, for 60_R350, it took as long as 260 min to

complete recrystallization and for 30_R350, recrystalliza-
tion was still not completed after 460 min. For the latter,

the annealing temperature was subsequently increased to

550 "C for an additional 5-min annealing to achieve full
recrystallization.

The microstructural evolution in the four samples during

recrystallization is illustrated in Fig. 3. Despite the differ-
ence in recrystallization kinetics, the samples with the

same deformation level but annealed at different tem-

peratures (e.g., 60_R450 and 60_R350) have similar mi-
crostructures. The twin density evolutions in the four

samples are plotted as a function of the recrystallization

fraction in Fig. 4a and as a function of the average re-
crystallized grain size in Fig. 4b. With a greater amount of

stored energy, the twin density at the end of recrystalliza-
tion is higher. This observation is consistent with ex-

perimental results reported previously in nickel-based

superalloys [15, 23]. Meanwhile, the annealing tem-
perature, in the present range, has no obvious effect on

annealing twin development during recrystallization, which

is consistent with another experimental result reported re-
cently in nickel [16], but contrary to the Gleiter’s model, in

which annealing temperature should influence the twin

formation probability [5].

The arithmetic average grain size ( !D) and the annealing
twin content at the end of the recrystallization regime were

primarily determined by the deformation level but not the

annealing temperature, as indicated in Table 1 and visible on
Fig. 4. Meanwhile, the number of twin boundaries per grain

and the twin boundary length fraction (given in Table 1) ex-

hibit an inverse trend from the twin density in those annealing
twin quantifications. As indicated byEq. 1, the twin density is

solely determined by the twin boundary length after the

completion of recrystallization. On the other hand, the twin
boundary length fraction, Eq. 3, is inversely proportional to

the total grain boundary length. Higher deformation levels

result in smaller final recrystallized grain size [24]. Smaller
recrystallized grain size results in greater total grain boundary

length (per unit area). Therefore, in contrast to the twin den-

sity, the annealing twin length fraction decreases with higher
deformation levels.

In the growth accident model, the grain boundary migra-

tion distance and the grain boundary migration driving force
are considered as two key factors promoting the generation of

annealing twins.During recrystallization, the driving force for

recrystallization front migration is dominated by the stored
energy level, which increases with the prior cold deformation.

Consistently, greater deformation resulted in more twin

boundaries per unit length, thus to higher twin density in the
overall microstructure. Meanwhile, the number of twin

boundaries per grain, Eq. 2, depends also on the grain

boundarymigration distance, which can be considered here to
be half of the recrystallized grain diameter. In the samples

with different average final recrystallized grain sizes, due to

the difference in grain boundary migration distance, the av-
erage number of twin boundaries per grain cannot solely re-

flect the effect of grain boundary migration driving force.

Table 1 Annealing twin quantification and grain size in the four
samples after the completion of recrystallization

350 "C 450 "C

30 % 30_R350 30_R450

e ¼ 0:36 e ¼ 0:36

D ¼ 60 lm D ¼ 65 lm

NL = 29 mm-1 NL = 31 mm-1

NG = 10.6 NG = 10.5

fL = 0.64 fL = 0.66

60 % 60_R350 60_R450

e ¼ 0:91 e ¼ 0:91

D ¼ 34 lm D ¼ 32 lm

NL = 46.4 mm-1 NL = 44.8 mm-1

NG = 6.7 NG = 6

fL = 0.55 fL = 0.53

Fig. 2 Recrystallization kinetics at 350 or 450 "C after 30 or 60 %
height reduction by compression at room temperature
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Fig. 3 Microstructure
evolution during
recrystallization at 350 and
450 "C after cold compression
to 30 or 60 %; low-angle grain
boundaries (1"–15") are shown
as gray thin lines with high
angle boundaries shown as
black lines; twin boundaries
within Brandon’s tolerance
criterion are plotted red; the
sample reference and the
corresponding cumulative
annealing time are indicated
under each map (Color figure
online)
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For the purpose of eliminating the effect of recrystallized
grain size on annealing twin content interpretation, three

grains having similar sizes (equivalent circle grain diameter

of about 140 lm) were selected in each of the four samples
at the end of recrystallization (colored in Fig. 5), and twin

contents inside these grains were compared. Relatively large

grains were selected, as small grains in the observed 2D
section can be large ones in 3D. Those three grains account

for 27–33 % of the surface area of the EBSD maps in each

state. In addition, the grains were selected in such a way that
they were not in contact with the borders of the EBSD ac-

quisition area to correctly calculate the number of twin

boundaries per grain and the equivalent grain size. The
number of twin boundaries per grain and twin density con-

firm the conclusions drawn from the overall average values

(Table 2): higher stored energy level promotes annealing
twin formation during recrystallization and the effect of

annealing temperature on annealing twin formation is neg-

ligible within the investigated range.

In addition, we re-emphasize that different final re-

crystallized grain sizes may lead to different interpretations
of the twin content in the overall microstructure depending

on the quantification methods used.

Discussion

As expected, the recrystallization kinetics were accelerated
by higher prior cold deformation amount and higher an-

nealing temperature. During recrystallization, the driving
force for recrystallization front migration depends mainly

on the stored energy level, which increases with the cold

deformation amount. Besides, the grain boundary mobility
generally increases with temperature [25]. Thus, the re-

crystallization front migration velocity increases with both

the deformation amount and the annealing temperature
through their effects on driving force and mobility, re-

spectively. An issue still requiring clarification is why

annealing twin formation is promoted by the grain
boundary migration velocity. From an atomistic point of

view, two types of atomic motions can be depicted during

grain boundary migration in molecular dynamic simula-
tions [26, 27]:

Type 1: string-like cooperative motions parallel to the

grain boundary plane;
Type 2: single-atom jumps across the grain boundary

plane.

Type 2 controls the rate of boundary migration and is
necessary to redistribute the free volume to allow for Type

1 motion [26]. With higher driving force and higher an-

nealing temperature, the characteristic times associated
with both types decrease [26, 28]. These two types of

motions, that cause the atoms to change from one grain

orientation to another, are very likely to be related to the
formation of annealing twins, especially Type 1 which

controls the position of the latest added atoms on the un-

derlying atomic plane. However, the exact role of atomic
movement inside grain boundaries on annealing twin for-

mation is not clear, especially due to the complex structure

of high angle boundaries [28]. The explanation of anneal-
ing twin formation at an atomistic scale requires thus a

more detailed and targeted study.

Influence of heating velocity

Experimental details

A cylindrical sample, 5 mm in diameter and 8 mm in
height, was used. The initial microstructure, fully recrys-

tallized (average GOS equal to 0.6") with an average grain

size (arithmetic mean) equal to 16 lm, is described in
Fig. 6a. The sample was then compressed at room

Fig. 4 Annealing twin density evolution during recrystallization,
plotted as a function of (a) recrystallization fraction (b) average
recrystallized grain size, at 350 or 450 "C after 30 or 60 % height
reduction by compression at room temperature
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temperature to 50 % height reduction, and the resulting

microstructure is shown in Fig. 6b. The compressed sample
was cut into two semi-cylinders. These two samples

referred to as V500 and V5 were then heated to 350 "C at

500 and 5 "C/min, respectively, to recrystallize them.
Several annealing steps were performed on the same

samples until recrystallization was complete. The cooling

rate was identical for the two samples, *200 "C/min. The
EBSD characterizations were performed in a ZEISS

SUPRA 40 FEG SEM equipped with a Bruker CrystAlign

EBSD system. The step size for EBSD map acquisition was
0.46 lm. Grains were detected with a threshold angle at

15", twin boundaries being ignored. The grains with an
equivalent circle diameter smaller than 1 lm were not

considered in this analysis.

Experimental results

The microstructural evolution in both samples during re-
crystallization is illustrated in Fig. 7. In each sample, an

Fig. 5 Selected recrystallized grains having similar grain sizes in the four samples at the end of recrystallization; the annealing temperature and
the corresponding cumulative annealing time are indicated under each map (Color figure online)

Table 2 Average annealing twin contents obtained, thanks to dif-
ferent twin quantification methods and grain size of the three selected
grains after recrystallization completion

350 "C 450 "C

30 % 30_R350 30_R450

D ¼ 150 lm D ¼ 143 lm

NL = 29 mm-1 NL = 28.5 mm-1

NG = 22 NG = 19

60 % 60_R350 60_R450

D ¼ 135 lm D ¼ 141 lm

NL = 46 mm-1 NL = 41 mm-1

NG = 42 NG = 38
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almost fully recrystallized microstructure (about 94 %) was
obtained at the end of the heat treatment series. The cumu-

lative annealing time at 350 "C ismuch shorter forV5 than for

V500. This phenomenon is consistent with another study re-
cently published by Bair et al. [16]. As indicated in Fig. 7,

about 70 % of the microstructure was recrystallized in V5 at

the moment when the annealing temperature was reached.
Meanwhile, in V500, the recrystallization fraction was only

22 % after a 1-min annealing at 350 "C. Therefore, different
from the almost instantaneous heat up in V500, recrystal-
lization initiated during heating in V5, which decreased the

annealing time to complete recrystallization at 350 "C.
The twin densities in both samples are expressed as a

function of the recrystallization fraction, Fig. 8a, and as a

function of the average recrystallized grain size, Fig. 8b.

Despite the difference in recrystallization kinetics, for the
same recrystallization fraction, the twin densities in the two

samples are almost identical. In addition to the twin den-

sity, the length fraction of annealing twin boundaries and
the number of twin boundaries per grain in the overall

microstructure at the end of the recrystallization regime

were calculated for both samples, Table 3.

At near-complete recrystallization, the average grain

sizes (arithmetic mean) and the twin contents including NL,
NG, and fL are very close in V5 and V500. This observation

indicates that the heating velocity, within the present range,

influences neither the grain size nor the twin content during
the course of recrystallization.

Discussion

Our results indicate that the heating rate has a negligible effect
on annealing twin development during recrystallization.

However, in thework reported recently byBair et al. [16] about

twin formation during recrystallization, also in nickel, the twin
boundary fraction (fL) increased with decreasing heating rate.

In the latter work, the thermo-mechanical path has some dif-

ferences with the one we designed for our experiments, e.g.,
the annealing temperature is higher (600–750 "C). In addition,
the difference in the applied heating rates is not given. Details

are missing in the paper, which makes it difficult to make a
direct comparison to the current work.

In this section, the height reduction of the samplewas 50 %.

However, the twin density at the end of the recrystallization
regime is much higher as compared to the samples with 60 %

height reduction in the series of ‘‘Influence of prior deforma-

tion level and annealing temperature’’ section. The initial grain
size before deformation was 90 lm in the 60 % compressed

sample, Fig. 1a, but only 16 lm for the 50 % compressed

samples Fig. 6a. This difference is likely to be responsible for
the difference in twin density. A fine-grained initial mi-

crostructure leads to a more random distribution of recrystal-

lization nucleation sites [29]. Randomly distributed
recrystallization nuclei can grow independently at the early

stage of recrystallization before impingement with other nu-

clei. In a previous study [12], annealing twins are reported to be
formed mostly before the impingement of recrystallized

grains, since the impingement decelerates the growth of indi-

vidual recrystallized grains. Therefore, as illustrated in Fig. 8,
after a 1-min annealing (about 20 % recrystallized), the twin

density in the recrystallized part of sample V500 (higher than

80 mm-1) is much higher than in the initially coarse-grained
samples. Since the annealing twin formation decelerated after

the impingement of recrystallized grains in both initially fine-

grained and coarse-grained samples, this difference created at
the beginning of recrystallization could result in a difference in

annealing twin density at the end of recrystallization.

On the influence of the recrystallization front
tortuosity

In the experiment aimed at testing the impact of prior de-

formation level and annealing temperature, only the de-
formation level but not the annealing temperature

Compression 
Direction 

Radial 
Direction 

CD 

(a)

(b)

Fig. 6 EBSD map of the state of the material before (a) and after
(b) 50 % height reduction by compression at room temperature
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promoted the annealing twin formation within the present

range. This result suggests that the grain boundary migra-
tion velocity influences annealing twin formation only

through the effect of the migration driving force, which

appears to be consistent with Pande’s model [6].
The numbers of annealing twin boundaries per grain,

NG, in the six analyzed samples in the present study [12]

are plotted as a function of the average grain size in Fig. 9.
The average NG in the overall recrystallized microstructure

increased continuously during recrystallization. Mean-
while, the correlation between NG and the average grain

size depends on the whole thermo-mechanical history of

the sample, e.g., the deformation amount and the initial
grain size before deformation. (Not shown here: NG was

also calculated in the five largest grains in each mi-

crostructure. The evolution of NG in the largest grains is
very similar to that of the average value in the overall

recrystallized microstructure.) As mentioned, in Pande’s

model, the grain boundary migration driving force and the

grain boundary migration distance are supposed to be the

only two factors influencing annealing twin formation.
However, in the present study, the initial grain size before

deformation, which could not influence significantly the

average recrystallization front migration driving force, in-
fluences considerably the annealing twin development

during recrystallization. Therefore, we need a new ap-

proach to explain annealing twin formation mechanisms
and their dependence on thermo-mechanical history.

In the previous paper [12], we proposed a semi-atomistic
model to explain the relationship between annealing twin

formation and grain boundary curvature. According to this

model, annealing twins are more likely to be formed be-
hind the convex portions of the recrystallization front. In

practice, annealing twins are mostly generated during re-

crystallization and behind the migrating recrystallization
front(s). Following the growth accident model, a twin is

more likely to form if the recrystallization front, or at least

a portion of it, has {111} facets. Those facets are wider if

Fig. 7 Microstructure evolution during annealing at 350 "C after
heating at either 5 "C/min (samples labeled V5_Xmin) or 500 "C/min
(V500_Xmin); the annealing time and the corresponding recrystal-
lization fraction are given below each map. The microstructure
V5_0 min (a) was obtained by heating the sample up to 350 "C at

5 "C/min and cooling down immediately. Low-angle grain bound-
aries (1"–15") are shown as gray thin lines with high angle boundaries
shown as black thick lines; the red lines denote

P
3 boundaries (Color

figure online)
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the front is close to being parallel to {111} (at the meso-

scopic scale). As schematized in Fig. 10a, the more tortu-

ous the recrystallization front is, the higher is the
probability to find portions of it parallel to any given kind

of plane but especially to {111} (arrowed on Fig. 10a).

Among those {111} portions, those moving opposite to
their curvature (double arrows) are more likely to form

coherent twins according to the principle described in the

previous study [12].
For a rough recrystallization front, the variations in local

curvature should therefore lead to more potential sites for

annealing twin generation. Overall, this implies that the
recrystallization front tortuosity could also influence

annealing twin formation during recrystallization. There-

fore, we quantified the recrystallization front tortuosity
within our EBSD maps (i.e., at the mesoscopic scale).

According to Epstein [30], the tortuosity of the recrys-

tallization front (s) can be calculated by a simple
relationship:

s ¼ LRF
R

; ð4Þ

where LRF is the length of the recrystallization front
(geodesic length) and R is the end-to-end length of the

recrystallization front (Euclidean length). With Eq. 4, and

as illustrated in Fig. 10, the average tortuosity of the re-
crystallization front in the overall microstructure was cal-

culated with the following steps within the OIM software:

1. Reconstruct the high-angle grain boundaries (twin

boundaries excluded) in the overall microstructure

based on the triple junctions (blue segments in Fig. 11a).
The maximum deviation between reconstructed bound-

ary and corresponding boundary segments is 30 times

the EBSD acquisition step sizes (e.g., 36 lm for the
EBSD maps shown in Fig. 3). It is worth mentioning

that the applied deviation (30 pixels) is the maximum

value allowed in the OIM software. For the considered
EBSDmaps, with this value, nearly all of the high-angle

grain boundaries defined between two triple junctions

can be reconstructed by a single straight line.
2. Calculate the total length of high-angle grain bound-

aries in the overall microstructure L0GB
! "

(twin bound-

aries are excluded) and the total length of the

corresponding reconstructed boundaries (R0).

3. Repeat step 1 and step 2 inside the deformed matrix
only and the recrystallized part only as indicated,

respectively, in Fig. 11b and c. LRexGB , L
Def
GB , R

Rex, and

RDef denote, respectively, the length of high-angle

grain boundaries inside all the recrystallized grains and

the deformed matrix, and the length of reconstructed
boundaries inside all the recrystallized grains and the

(a) 

(b) 

60 

70 

80 

90 

100 

110 

120 

130 

140 

0.0 0.2 0.4 0.6 0.8 1.0

N
L (

m
m

-1
)

Recrystallized fraction

V500 
V5 

60 

70 

80 

90 

100 

110 

120 

130 

140 

0 2 4 6 8 10 12 14 16 

N
L (

m
m

-1
)

Grain Size (µm)

V500 
V5 

Fig. 8 Annealing twin density evolution in the two samples during
recrystallization (at 350 "C) plotted as a function of (a) recrystalliza-
tion fraction and (b) recrystallized grain size

Table 3 Annealing twin measurements and grain size for the two
different heating rates after the completion of recrystallization

Ref D (lm) NL (mm-1) fL NG

V5 11 128.5 0.56 3.1

V500 11.5 131 0.55 3.4

Fig. 9 The average number of annealing twin boundaries per grain in
the overall recrystallized microstructure plotted as a function of the
average recrystallized grain size in the six analyzed samples
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deformed matrix. Those values do not include the

recrystallization front lengths.

4. The lengths of the recrystallization front and of the
corresponding reconstructed boundaries are then cal-

culated using the following:

LRF ¼ L0GB % LRexGB þ LDefGB

! "
; ð5Þ

R ¼ R0 % RRex þ RDef
! "

: ð6Þ

The tortuosity of the recrystallization front was calcu-

lated in the three EBSD maps 30_350_110, 60_350_60,
and V5_0 min where the recrystallization is in progress

and recrystallized grains impinge on each other, forming

clusters. As the deviation between reconstructed boundary
and the corresponding boundary segments is defined by the

EBSD acquisition step size, for the sake of consistency, the

step size of the EBSD map of V5_0 min was converted
from 0.46 lm to 1.38 lm, which is close to the step size

used the experiment aiming at testing the impact of prior

deformation level and annealing temperature (1.2 lm),
before applying the above procedure. As indicated in

Table 4 and in Fig. 12, the recrystallization front tortuosity

during recrystallization is positively correlated with the
annealing twin density at the end of recrystallization.

This observation is consistent with our idea that the

variation in local curvature of the recrystallization front
could promote annealing twin formation by providing more

potential nucleation sites. The tortuosity of a migrating

recrystallization front is found to arise when the stored
energy level in the adjacent deformed matrix is non-uni-

form [31]. Indeed the stored energy level determines the

driving force for recrystallization migration. Thus, the local
fluctuation in stored energy level introduces local variation

in recrystallization front migration velocity, which changes

the local morphology of the front. This local migration and
its relation to annealing twin formation were previously

reported in Inconel 600 [32]. This rationale may also ex-

plain the effect of deformation amount and the initial grain
size before deformation on annealing twin formation

RF

Recrystallized grain

Deformed material (a)

RF

R

Recrystallized grain

Deformed material (b) 

Fig. 10 a Schematic of a recrystallization front (RF) with portions
close to be parallel to {111} (arrowed). Following the principle
proposed on Fig. 2.26, the convex ones, moving opposite to their
curvature (double arrows), are potential sites for perfect coherent
twins; the concave ones moving towards their curvature center

(simple arrow) can only lead to coherent segments associated with
incoherent ones which may further migrate and make the new twin
annihilate. b Same recrystallization front (RF) and its end-to-end
length (R)

Fig. 11 Schematic of
recrystallization front tortuosity
calculation procedure; a the
overall microstructure; b the
non-recrystallized part; c the
recrystallized part. Low-angle
grain boundaries (1"–15") are
shown as gray thin lines, black
lines are the general boundaries
with a disorientation higher than
15", red lines are R3 boundaries
(within the Brandon’s criterion),
and blue lines are the
reconstructed grain boundary
segments (with a parameter for
the allowed distance to the
boundary of 30 pixels) (Color
figure online)
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observed in the present study through their influence on the

fluctuations in the stored energy field. It is unclear whether
increasing strain tends to homogenize or on the contrary to

make the strain field more heterogeneous, considerations

which are in addition very much scale dependent. There
could be different answers depending on the strain range,

on the material plasticity anisotropy, on its crystallographic

texture, and many other microstructure properties. A
dedicated study must be performed to answer such ques-

tions. On the other hand, prior grain boundaries give rise

for sure to locally large orientation gradient due to strain
incompatibility between the neighboring grains [29].

Therefore, a fine-grain initial microstructure could also

promote the heterogeneity in the stored energy field with
shorter characteristic distances, and therefore higher tor-

tuosity of the recrystallization front, and thus lead to higher

twin densities.

Conclusion

Two recrystallization experiment series were performed

separately to analyze the influence of three thermo-me-
chanical processing parameters on annealing twin forma-

tion, i.e., the stored energy level and annealing temperature

on one hand and the heating velocity on the other hand,
leading to the following conclusions:

• For a given initial grain size, annealing twin density in
the overall microstructure after the completion of

recrystallization appears to be primarily influenced by

the deformation level

• For a given strain level, smaller initial grain size leads
to higher twin density.

• Different annealing twin quantification methods, in-

cluding twin density, number of twin boundaries per
grain, and twin boundary fraction, can lead to different

twin content interpretations depending on whether the

average grain size is constant or not.
• The annealing twin content, measured as the twin

density or the number of twin boundaries per grain in

grains of similar sizes, is higher in the samples with
higher deformation level. Therefore, the prior defor-

mation level is confirmed to be a promoting factor for

annealing twin formation during recrystallization.
• In the considered ranges, the annealing temperature and

the heating velocity did not show any obvious effect on

annealing twin formation during recrystallization.
• The recrystallization front tortuosity, as measured at the

mesoscale in EBSD maps, appears to be positively

correlated with the annealing twin density at the end of
recrystallization, consistently with the effect of grain

boundary curvature proposed in a previous paper [12].

The latter point should be further confirmed by
applying the proposed method to larger datasets (2D

and 3D, and more thermo-mechanical conditions).
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