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Abstract—Atomistic simulations using the embedded atom method were employed to compute the energies of 408 distinct grain boundaries in bcc Fe
and Mo. This set includes grain boundaries that have tilt, twist, and mixed character and coincidence site lattices ranging from R3 to R323. The
results show that grain boundary energies in Fe and Mo are influenced more by the grain boundary plane orientation than by the lattice misorien-
tation or lattice coincidence. Furthermore, grain boundaries with (110) planes on both sides of the boundary have low energies, regardless of the
misorientation angle or geometric character. Grain boundaries of the same type in Fe and Mo have strongly correlated energies that scale with
the ratio of the cohesive energies of the two metals.
� 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Because grain boundaries have a significant influence on
the physical properties of polycrystalline solids [1–4], their
properties, including energy, have been the subjects of
extensive experimental and computational study. In
annealed polycrystals, the grain boundary energy distribu-
tion (GBED) is known to be inversely correlated to the
grain boundary character distribution (GBCD), defined as
the relative areas of grain boundaries distinguished by lat-
tice misorientation and grain boundary plane orientation
[5,6]. Morawiec [7] developed a technique to determine
the GBED from three-dimensional electron backscatter
diffraction (3D-EBSD) data, and this has been applied to
measure grain boundary energies in a number of ceramics
and metals including MgO [8,9], Y2O3 [10], Ni [11], a
Ni-based alloy [12], a ferritic steel [13], and an austenitic
steel [14]. This method requires large amounts of data
because there are no assumptions about the functional
form of the GBED, and the number of unknown energies
scales with the discretization of the system. Furthermore,
the results are relative, rather than absolute, values of the
grain boundary energies. Nevertheless, to the extent that
comparisons of the measured and calculated energies have
http://dx.doi.org/10.1016/j.actamat.2015.01.069
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been possible, there has been satisfactory agreement
between experiment and simulation, especially for the most
frequently observed grain boundaries in the materials
examined (R3 and R9 boundaries) [15,16].

The agreement between grain boundary energies derived
from experiment and simulation suggests that both meth-
ods are reliable when properly applied [16]. Therefore, com-
puter simulations by the embedded atom method (EAM)
can be utilized to survey and compare a large number of
grain boundary energies [17,18]. For example, Holm et al.
[17] recently showed that the grain boundary energies in
Al, Au, Cu, and Ni, which share the face-centered cubic
(fcc) crystal structure, are correlated and scale with the
shear modulus. One purpose of the present study is to
determine whether or not body-centered cubic (bcc) metals
exhibit the same phenomenon; we therefore employ similar
methods.

There have been a number of atomistic simulations of
grain boundary energies in bcc metals [19–25]. Wolf
[22–24] showed that the energy anisotropies of Fe and
Mo were similar for symmetrical tilt boundaries, twist
boundaries on (1 00) and (110) planes, and certain general
grain boundaries. Morita and Nakashima [20] investigated
the boundary energy of <001> symmetric tilt boundaries in
Mo, producing results consistent with the boundary ener-
gies calculated by Wolf [22–24] and with experimental
boundary energies measured by the thermal grooving
reserved.
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method [18]. Tschopp et al. [21] examined a large data set
of grain boundary energies in Fe using molecular statics.
Kim et al. [19] used molecular statics calculations to popu-
late a grain boundary energy database that uniformly sam-
ples the five parameter grain boundary space for bcc Fe.
While these simulations uniformly covered misorientation
space in 10� increments, the discretization of the grain
boundary plane space was coarser.

Recently, Yesilleten and Arias [25] showed that the
boundary energies of <110> symmetric tilt boundaries in
Mo were influenced by the incorporation of vacancies.
Specifically, the coherent twin boundary energy increased
from 0.61 J/m2 to 2.13 J/m2 when half of the atoms in the
plane adjacent to the grain boundary were removed. This
result illustrates the significant influence that the atomic
structure of the interface can have on the computed energy.
In general, if only one starting configuration is considered,
there is no guarantee that the minimized energy of that
boundary corresponds to the global minimum boundary
energy. In their study of grain boundaries in fcc metals,
Olmsted et al. [18] addressed this difficulty by minimizing
the energies of hundreds or more of crystallographically
identical boundaries that had different microscopic starting
configurations. This exploration of microscopic configura-
tions provides a greater likelihood that an energy near the
minimum is reached. In general, one would expect that
the naturally occurring boundaries have sufficient time
and ample supply of point defects to reach a minimum of
their free energies in the grand canonical ensemble.

The database created by Kim et al. [19] contains far
more grain boundary energies for a bcc material than any
of the other calculations. However, they considered only
one initial configuration for each grain boundary type, so
it is not obvious that these energies represent the minimum
energy states. The purpose of this paper is to report the
results of the calculation of 408 grain boundary energies
in Fe and Mo. For this survey, between 100 and 10,000 dif-
ferent initial microscopic states were considered for each
type of boundary and we report the minimum energy. We
chose Fe and Mo because these materials are widely used
in the polycrystalline form and there are previous reports
to which we can compare subsets of the results. We also
examine the correlation between the grain boundary ener-
gies in Fe and Mo and consider the extent to which isomor-
phic materials have correlated grain boundary energies.
Table 1. Selected materials properties for Fe and Mo.

Materials properties Mendelev
Fe EAM2a

Lattice constant a0 (Å) 2.8553
Melting point Tm (K) 1773
Cohesive energy Ecoh (eV) 4.122
Coherent twin energy (mJ/m2) 26.2
Bulk modulus B (GPa) 177.8
Voigt average shear modulus lvoigt (GPa) 89.28
C0 (GPa) 49.2
C11 (GPa) 243.4
C12 (GPa) 145.0
C44 (GPa) 116.0

a Simulated materials properties of Fe are from Refs. [30,37,39].
b Experimental materials properties of Fe and Mo are from Ref. [40] exce
c Simulated materials properties of Mo are from Ref. [31] except for Tm f
2. Methods

This work considers the grain boundaries in all bicrys-
tals that can be constructed in a periodic cell with dimen-
sions less than or equal to 20a0/2, measured parallel to
the grain boundary, where a0 is the lattice spacing. The
408 boundaries that fit within this cell have 80 different
misorientations and a range of characters; 176 are twist
boundaries, 381 are tilt boundaries, and 20 are neither pure
tilt nor pure twist boundaries. Note that 169 of the bound-
aries are both twist and tilt, depending on the choice of axis
[26–28]. The 408 boundaries are not evenly distributed
throughout the space of possible grain boundaries and do
not provide complete coverage. For example, there are 40
R3, 27 R5, 21 R7, and 29 R9 grain boundaries, meaning that
29% of the 408 grain boundaries are concentrated at four
misorientations. Because these grain boundaries were
selected based only on a maximum periodicity condition,
they are of relatively high symmetry and are not expected
to mimic the actual distribution of grain boundary types
in real polycrystals.

Grain boundary energies were computed by minimizing
system energy using the conjugate-gradient method in the
LAMMPS code [29] at T = 0 K with embedded-atom
method (EAM) interatomic potentials. The computational
cell has periodic boundary conditions in the y and z direc-
tions with a minimum length of 17a0/2. The minimum
length in the x direction, which is normal to the plane of
grain boundary, was 20a0/2. The computational scheme is
similar to prior studies of the grain boundary energy for
fcc metals, which has been described in detail elsewhere
[17,18]. The Mendelev potential 2 was used for Fe [30]
and the Finnis–Sinclair potential was used for Mo [31].
These potentials were selected because they reproduced
the lattice constants and the elastic constants of Fe and
Mo (see Table 1), and have also been used to simulate grain
boundary energies [21–24] For each macroscopic grain
boundary structure, the energies of 100–10,000 initial con-
figurations were minimized. These initial configurations
were generated using a method similar to that described
by Olmsted et al. [18] with a modification to the step where
atoms are removed if they were too close together. Before
removing atoms, each atom in the grain boundary region
was perturbed by a very small distance in a random direc-
tion. This displacement should have little or no effect in the
Experimental
values of Feb

Finnis–Sinclair
Mo EAMc

Experimental
values of Mob

2.8664 3.1472 3.1470
1811 3062.6 ± 7.6 2896
4.28 6.82 6.82
– 38.9 –
168.7 262.6 259.8
86.8 125.98 126.7
43 151.6 153.0
226 464.7 463.7
140 161.5 157.8
116 108.9 109.2

pt for Ecoh from Ref. [41].
rom Ref. [42].
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current work, where atoms were removed in groups, as in
Ref. [18]. In the case where atoms are removed one at a
time, the random displacement improves the search by pre-
venting multiple atom pairs from being exactly at the same
distance [32,33]. The grain boundary energy is taken to be
the smallest value among the results obtained from
minimizing the energies of each of a large number of initial
configurations separately.

It is important to recognize that the grain boundary
energy calculated here (and in all molecular statics studies)
is the zero-temperature free energy, i.e. enthalpy. At finite
temperatures, entropic effects cause the boundary free ener-
gy to decrease as temperature increases. While there is no
experimental data for the change in free energy with tem-
perature, atomic simulations show that the free energy
decreases by about two-thirds from 0 K to the melting tem-
perature [34–37]. Because this behavior seems consistent
among boundaries studied [37], it is assumed that finite-
temperature free energy scales with enthalpy; thus enthalpy
is an appropriate measure of the relative (but not absolute)
boundary free energy. However, it is likely that there are
boundaries that do not follow this scaling, particularly if
they undergo a structural transformation upon heating [38].
Fig. 1. Comparisons of the present results and previously simulated
grain boundary energies of Fe (a) and Mo (b). Each point corresponds
to a particular grain boundary type and the coordinates are the
energies computed in the present work and the energies reported
previously [19–25]. The solid line has a unit slope. Note that the
boundary energy of the R3 (111) twist boundary, R7 (111) twist
boundary, and R13 (111) twist boundary calculated by Wolf [22–24]
are colored purple, yellow, and brown, respectively. The minimum
energy corresponds to the R3 (112) symmetric tilt boundary. (For
interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
3. Results

The full boundary energy data set for Fe and Mo is
available as Online supplemental material. A comparison
between the previously calculated grain boundary energies
[19–25] and the energies of the same boundaries calculated
as part of this work is shown in Fig. 1. For Fe (Fig. 1a),
there is excellent agreement between our calculations and
previous studies, with some scatter for the higher energy
boundaries. Because Wolf [22–24] and Kim et al. [19] used
different potentials from those used here, some differences
are expected. Four of the boundary energies calculated by
Wolf [22–24] and one calculated by Kim et al. [19] show
a positive deviation from the present work, while those of
Tschopp et al. [21] are nearly identical to our calculations.
It should be noted that the present work and the previous
calculation by Tschopp et al. [21] included multiple initial
configurations for the same macroscopic grain boundaries.
Because Wolf [22–24] and Kim et al. [19] considered only a
single initial configuration for each grain boundary, their
boundary energies might not represent the minimum energy
structures. However, note that two of the energies reported
by Wolf [22–24] and one reported by Kim et al. [19] are
slightly below those calculated here. While we do not know
the origin of the deviation, it is of small magnitude and
occurs only for three of the highest energy boundaries.
Finally, it should be noted that while Kim et al. [19] calcu-
lated the energies of many boundaries, the grain boundary
plane inclinations generally deviated from the exact
orientations of the boundaries considered here, so this also
contributes to differences in the energies. The three included
here are those cited by Kim et al. [19] as the minimum ener-
gies at R3 and R9 and the maximum energy at R3, which we
compare to the R3 (112) symmetric tilt, the R9 (110) twist,
and the R3 (111) twist, respectively.

The trend for Mo (Fig. 1b) is similar to the results for
Fe. Note that when the previous calculations deviate from
the present ones, they are higher in energy in all but two
cases. The boundaries with small negative deviations are
high energy (111) twist boundaries calculated by Wolf
[22–24]. The Wolf and Morita boundaries with positive
energy deviations likely result from initial atomic structures
that are not close enough to the minimum energy
configuration. In contrast, Yesilleten and Arias [25] did
an extensive survey of microscopic parameters with
approximately 400,000 initial configurations, so their
boundary structures are presumed to be correct. The differ-
ence, in this case, is that they used an interatomic potential
developed by Moriarty [43,44], rather than the Finnis–
Sinclair potential [31] used in the present study, the previ-
ous work by Wolf [22–24], and by Morita and Nakashima
[20]. The Moriarty potential appears to give higher overall
boundary energies while maintaining similar relative
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energies between boundaries. In fact, a plot of boundary
energy scaled by the coherent twin energy would show
excellent agreement between our data and that of Yesilleten
and Arias [25]. The consistency between our grain bound-
ary energies and earlier calculations verifies our approach.

A small number of grain boundary energies in Fe and
Mo have also been computed using density functional the-
ory (DFT) [45–51]. These energies are uniformly larger
than those computed in the present study using the embed-
ded atom method. For example, for the R3 boundary
terminated on (111) planes in Fe, the grain boundary ener-
gies computed by DFT are 1.61 [45], 1.57 [51], and 1.52 [48]
J/m2 while the energy of the same boundary in the present
study is 1.27 J/m2. Similarly, for the R3 boundary terminat-
ed on (112) planes, the grain boundary energies computed
by DFT are 0.47 [47], and 0.34 [48] J/m2 while the energy of
the same boundary in the present study is 0.262 J/m2. We
presume that differences arise from the way that the two
methods handle magnetism, although differences in the
assumed atomic structure may also contribute. For Mo,
two values have been computed by DFT for the R5 (310)
boundary, 1.70 [49] and 1.55 [50] J/m2. Both of these values
are somewhat larger than the value computed for the same
boundary by EAM in this work, 1.33 J/m2.
Fig. 2. Calculated boundary energies of Fe (a) and Mo (b). Squares
(blue): boundaries with {110} planes on both sides. Triangles (red):
boundaries with {112} planes on both sides. Diamonds, green, yellow,
and brown, are boundaries made up from {841}{221},
{11,7,1}{331}, and {13,11,5}{531} planes, respectively. Open circles
are other boundaries. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this
article.)
Fig. 2 shows the calculated boundary energies of Fe and
Mo as a function of disorientation angle (defined as the
minimum misorientation angle for all rotation axes). There
are no distinct trends as a function of disorientation angle,
which is consistent with results in fcc metals [18]. Two
specific types of boundaries are indicated by different sym-
bols: those terminated by {110} planes (squares) and those
terminated by {112} planes (triangles). Note that with the
exception of those boundaries with a 60� disorientation,
each set of boundaries has a roughly constant energy, inde-
pendent of disorientation angle. It is also notable that
boundaries with (1 10) planes on either side of the interface
are unusually low in energy, regardless of the disorientation
angle. This trend has been observed previously [24] and
supports a model of the grain boundary as the total energy
of adjoining surfaces minus the binding energy [5,6].
Because the (110) surface has the lowest energy [52], grain
boundaries composed of two (1 10) planes should have
relatively lower grain boundary energies. However, the
limitations of this simple explanation are revealed by
the cases of boundaries terminated by planes with high sur-
face energies that also have low grain boundary energies.

The grain boundary energies of Fe and Mo are plotted
in Fig. 3 as a function of the R value, defined as the inverse
of the fraction of coincident lattice sites for a specific
misorientation. The results illustrate that the R value is a
poor indicator of grain boundary energy, as previously not-
ed for fcc boundaries [18]. For example, boundaries with
the R3 misorientation have energies that span the spectrum
from the lowest to nearly the highest energy, from 0.26 J/m2

and 1.27 J/m2 in Fe and from 0.39 J/m2 and 1.84 J/m2 in
Mo. Similarly, a high R grain boundary can also show a
large range of energies. In Fe, the R43 grain boundary
has energies ranging from 0.58 J/m2 to 1.32 J/m2 and in
Mo the energies range from 0.88 J/m2 to 1.83 J/m2. Even
if one considers the average of the energies over all of the
grain boundary plane orientations that were sampled (see
Table 2), there is no trend to suggest that the energies scale
with the lattice coincidence. Finally, we note that the mean
of all of the grain boundary energies for Fe is
1.11 ± 0.209 J/m2, which compares favorably with the
mean R3 energy of 1.06 ± 0.247 J/m2. We also note that
the mean boundary energy is on that same order as the
average boundary energy of 0.985 J/m2 measured in Fe at
1480 �C by Roth [53]; however, as noted above, the
agreement between calculated enthalpy and measured free
energy is likely fortuitous.

Finally, the variation of the boundary energy with the
grain boundary plane orientation can be considered. This
is only meaningful in the cases where the energies of a suf-
ficient number of grain boundary plane orientations were
calculated at constant misorientation (R3, R9, and R5).
This is identical to the presentation of the grain boundary
energies in the experimental study of ferrite [13] and similar
to the presentation of the calculations by Kim et al. [19]. As
illustrated in Fig. 4, the most significant trends for the R3
misorientation are that the maximum energy occurs for
the (111) twist boundary and the minima occur in the zone
of orientations at 90� to this position. For Fe, this agrees
with the results calculated by Kim et al. [19] and the
experimental study [13,54]. The most significant trends for
the R9 misorientation are that the minimum energy occurs
for the (110) twist boundary and the maxima occur in the
zone of orientations at 90� to this position. For Fe, this
agrees with the results calculated by Kim et al. [19] and



Fig. 3. Calculated grain boundary energies for Fe (a) and Mo (b)
plotted versus R, the inverse density of coincident lattice sites. Squares
(blue): boundaries with {110} planes on both sides. Triangles (red):
boundaries with {112} planes on both sides. Diamonds, green, yellow,
and brown, are boundaries made up from {841}{221},
{11,7,1}{331}, and {13,11,5}{531} planes, respectively. Open circles
are other boundaries. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this
article.)
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the results of the experimental study for the grain boundary
distribution, which shows a maximum population at the
minimum energy, as expected [5,13]. The distribution of
grain boundary energies for the R5 misorientation is more
isotropic and biased toward higher energies in both Fe
and Mo.
4. Discussion

Consistent with the results of the calculated energies for
fcc metals [18], the grain boundary energies of bcc metals
are more sensitive to the grain boundary plane orientation
than to the lattice misorientation. Subsets of the data
support the hypothesis that low index planes, which have
low surface energies, are often found in low energy grain
boundaries. For example, (110) is the lowest energy
surface, and boundaries with (110) planes on both sides
have consistently low grain boundary energies [52,55].
There are significant counter examples, however. For the
R3 misorientation, the energies of the 60� (110) symmetric
tilt grain boundaries are slightly higher than the energies of
the (112) symmetrical tilt grain boundaries (the coherent
twin boundary) in both Fe and Mo. The relatively low ener-
gy of the (112) coherent twin boundary is consistent with
its measured relative energy in Fe [13,54,56] and Mo [57].
It should also be noted that the ratio of the coherent twin
boundary energy to the average R3 boundary energy in
Fe (0.25) and Mo (0.26) are very close to the measured
energy ratio of the coherent twin boundary and ordinary
grain boundaries in silicon ferrite reported as 0.22 by Dunn
et al. [54].

While low energy grain boundaries often have low index
planes, grain boundaries that have high index planes and
low energy also appear in these data. For example, the
quasi-symmetric boundary with (741) planes at the disori-
entation angle of 50.48� has an energy (0.57 J/m2 and
0.80 J/m2 in Fe and Mo, respectively) that is even lower
than the (110) twist boundary at this disorientation angle.
Furthermore, there are three asymmetric R3 mixed bound-
aries with boundary planes of (8,4,1)(2,2,1), (11,7,1)(3,3,1),
and (13,11,5)(5,3,1) that have relatively low energies in both
Fe and Mo; these boundaries are called out in Figs. 2 and 3.
Therefore, while low energy boundaries are frequently
associated with low index, low energy planes, there are
exceptions, as noted above. The reasons for these excep-
tions likely derive from the details of boundary structure,
which are beyond the scope of the present study.

Consistent with the hypothesis that grain boundary
population is inversely related to energy, the R3 coherent
twin is the highest population boundary in both fcc and
bcc polycrystals. However, where the coherent twin typical-
ly accounts for 10–50% of the grain boundary area in an
annealed fcc polycrystal (c.f. [58]), the coherent twin
population in ferritic steels is 3% or less (c.f. [13,59]). Our
data suggest two factors that may contribute to this differ-
ence. First, the coherent twin energy is simply not as small,
either in absolute or relative terms, in bcc metals as it is in
fcc metals. For example, the coherent twin energy in fcc Ni
is reported as 0.064 J/m2, or 0.058 of the average boundary
energy [18]; for bcc Fe the coherent twin has energy of
0.26 J/m2, or 0.23 of the average energy. In addition, in
the fcc boundary survey, the coherent twin was relatively
unique in its low energy [18], whereas there are several
boundaries of comparably low energy in the bcc survey,
as seen in Fig. 2. Both its higher energy and the availability
of other low energy boundaries could serve to decrease the
relative population of coherent twins in bcc metals.

Comparing the energies in Figs. 2–4, it is clear that the
energy distributions in Fe and Mo are similar. The strong
correlation between the energies of the two metals is
demonstrated in Fig. 5, where each point represents one
of the 408 grain boundaries and the coordinates of the
point are determined by the energies of that boundary in
Fe and Mo. The fact that the points fall close to a single
line (with correlation coefficient 0.99) shows the strong cor-
relation among the energies. In other words, if a certain
type of grain boundary has a relatively low (high) energy
in Fe, it will also have a relatively low (high) energy in
Mo. While the coherent twin boundary has the lowest ener-
gy in both Fe and Mo, the highest boundary energies in Fe
(1.40 J/m2) and Mo (1.97 J/m2) are not associated with
the same grain boundary; however, in this energy regime
there are many boundaries with nearly degenerate energies.
The strong correlation between the grain boundary energies
of metals with the same crystal structure is consistent with
what has been observed for the calculated grain boundary
energies in fcc metals [17].



Table 2. Average energies of grain boundaries at fixed R.

R Number of GBs Ave. energy, Fe, J/m2 Std. dev. Fe Ave. energy, Mo, J/m2 Std. dev. Mo

3 40 1.06 0.247 1.50 0.347
5 27 1.11 0.171 1.58 0.230
7 21 0.998 0.322 1.43 0.453
9 29 1.17 0.166 1.66 0.234
11 9 1.11 0.198 1.58 0.276
13 15 1.22 0.118 1.73 0.160
15 19 1.14 0.195 1.63 0.269
17 9 1.18 0.088 1.68 0.115
19 8 1.02 0.231 1.45 0.324
21 17 1.06 0.196 1.52 0.280
23 3 1.16 0.067 1.67 0.062
25 12 1.12 0.236 1.59 0.348
27 15 1.05 0.212 1.50 0.297
29 3 1.22 0.093 1.71 0.115
31 3 0.997 0.176 1.41 0.242
33 13 1.06 0.251 1.50 0.350
35 8 1.14 0.060 1.64 0.084
37 3 0.857 0.488 1.23 0.685
39 6 1.03 0.368 1.51 0.529
41 6 1.26 0.053 1.77 0.064
43 6 1.12 0.188 1.60 0.254
45 17 1.10 0.229 1.58 0.325
47 3 0.955 0.275 1.38 0.414
49 18 1.05 0.232 1.49 0.327
All 408 1.11 0.209 1.59 0.293

Fig. 4. Calculated grain boundary energies for the R3 (a and d), R9 (b and e), and R5 (c and f) misorientations in Fe (a, b, c) and Mo (d, e, f), plotted
in stereographic projection. The [100] direction is horizontal and to the right, the [010] direction is vertical, and the [001] direction is in the center
and perpendicular to the plane of the page. In (a) and (d), the [111] misorientation axis is marked by a triangle and in the others, the misorientation
axes are in the plane of the page and marked by the arrows.
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The scatter in the energies from the perfect correlation
might derive from several sources. First, different function-
al forms of the EAM potentials for Fe and Mo may favor
slightly different structures and therefore energies in some
boundaries. Second, for each macroscopic grain boundary,
the lowest energy microscopic configuration chosen from a
large number of initial states might not be the same in the
two metals. Finally, Fe and Mo are physically distinct, so



Fig. 5. The relationship between the calculated boundary energies for Fe and Mo. Each point corresponds to two crystallographically identical grain
boundaries in two different materials. The horizontal and vertical axes show the boundary energy in Fe and Mo, respectively. Note that the data are
colored according to the grain boundary types: (110) symmetrical boundaries (green circles), R3 boundaries (red squares), the coherent twin
boundary (black square), and the other type of boundaries (blue diamonds). Lines show scaling factors predicted by the various materials
parameters. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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some structural differences are expected. Considering these
factors, the scatter about the line is not too surprising.

Several lines have been placed on Fig. 5 to compare the
scaling of the grain boundary energies to physical para-
meters, including ratios of the elastic moduli, the twin
boundary energy, and the cohesive energy per atom. In
each case, multiples of the lattice constant have been
applied to make the dimensions comparable (energy per
area). The ratio of the cohesive energies (Ecoh/a0

2), which
is 1.4, is closest to the actual scaling factor. Because a grain
boundary disrupts bonds between atoms, it makes sense
that the grain boundary energy would scale with the cohe-
sive energy per atom. Indeed, this is the basis for the broken
bond model of grain boundary energy [60–62]. However,
this is not the same scaling seen in fcc metals, where
boundary energies are observed to scale with the largest
shear modulus (a0C44) and the Voigt average shear modu-
lus (a0lvoigt) [17]. Without results for more materials, it is
not possible to gauge whether these different scaling results
can be expected to apply to all fcc and bcc metals. The envi-
ronment of atoms in grain boundaries spans a spectrum
from perfectly crystalline to substantially distorted. The
elastic moduli describe very small displacements from the
perfect crystal (bond stretching), while the cohesive energy
captures the complete separation between atoms (bond
breaking). Therefore, grain boundary energies should be
expected to have contributions from both effects. It is likely
that neither the shear modulus nor the cohesive energy pro-
vides a complete model for grain boundary energy scaling.

Finally, we note that the nearly perfect scaling between
the grain boundary energies in Mo and Fe is yet another
strong indication that the energy anisotropy is mostly a
function of the grain boundary geometry, namely of the five
macroscopic degrees of freedom. Even though there may be
variations in the atomistic grain boundary structure and
relaxations from material to material, these differences are
dwarfed by the influence of grain boundary geometry. This
suggests that there is an as yet undetermined function that
can be used to compute the grain boundary energy as a
function of the geometric parameters, as was found for
the fcc metals [63].
5. Conclusions

The energies of 408 grain boundaries in Fe and Mo have
been calculated using embedded atom method simulations.
When the initial boundary structure is properly optimized,
our results agree well with previous studies. The calculated
energies vary significantly with the grain boundary plane
orientation, and low energy grain boundaries are likely to
be comprised of low index planes, although low energy
boundaries with high index boundary planes are also
observed. The energies do not, however, show any distinct
trends with misorientation angle or with the density of
coincident lattice sites. The R3 coherent twin has the
smallest boundary energy among the boundaries surveyed;
however, it is neither as small or as uniquely small as in fcc
metals. The energies of grain boundaries in Fe and Mo,
which share the same crystallography, are (linearly) pro-
portional to each other with a slope proportional to the
ratio of their cohesive energies, indicating that boundary
structure governs energy in bcc metals.
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