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Abstract
In this work, we offer a set of algorithms that convert a voxellated image to a
conformal surface mesh that is targeted for polycrystalline materials containing
grains with a wide range of sizes and complex shapes. More specifically, we
propose a simple but effective algorithm for approximating the grain boundary
networks that are implicit in three-dimensional digital images of polycrystals.
The algorithm segments a three-dimensional digital image of a polycrystalline
microstructure and then smoothes an interpolated conformal surface mesh of
the grain boundary network while maintaining certain characteristic features
of the microstructure. It is found that the proposed algorithm successfully
approximates the grain boundary network based only on the digital, voxellated
images of the polycrystal. Simulated microstructures are used to verify that the
resulting mesh qualitatively and quantitatively approximates the true structure,
in terms of the displacement of the nodes, the grain volume change and the
dihedral angle distribution along triple junctions after smoothing. The effect
of the use of the cubic grid for mapping digital microstructures on the grain
boundary approximation is also discussed.

Keywords: 3D polycrystals, grain boundaries, surface mesh, segmentation and
smoothing

(Some figures may appear in colour only in the online journal)

1. Introduction

In ideal, fully dense, single-phase polycrystals, grains form a complex network of conformal
grain boundaries and junctions without leaving any empty space. Many theories on the
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morphology and evolution of the polycrystalline structures are based on this premise [1–6]. In
general, the grain boundaries and junctions in polycrystals have a range of smoothly changing
curvatures, depending on the relative grain sizes of the neighboring grains, the number of
neighboring grains and the nature of the grain boundaries (misorientations and energies). In
contrast, the majority of the microstructural images from simulations and experiments are
digitized, resulting in various kinds of aliased, stair-stepped, discrete grain boundaries and
junctions that are influenced by the type of the regular grid used to construct the image.
With rare exceptions, aliasing of the boundaries is attributed to inadequate resolution in the
characterization. Therefore, it is essential to extract physically plausible geometric features
from the digitized images before computing such quantities as area, orientation, curvature,
volume and connectivity.

In fact, the realistic approximation and characterization of grains and grain boundary
networks in polycrystals is of significant interest because many of the properties and behaviors
of polycrystals are functions of their microstructural parameters. More interestingly, many
materials science phenomena related to polycrystals are three-dimensional in nature. However,
microstructures are traditionally characterized by observing two-dimensional plane sections.
Even though stereological methods [7] can be used to extract three-dimensional information
of the microstructural entities from plane sections, such deductions always require certain
assumptions about the shape, distribution and even statistical information about the objects
in the microstructure. For example, three-dimensional grain boundary character distributions
(GBCDs) have either been stereologically calculated based on two-dimensional electron back-
scatter diffraction (EBSD) maps of polycrystals [8–15] or measured by combining information
partially from adjacent EBSD maps from serial sectioning experiments [16–18]. However,
these methods do not yet use a complete mesh of all the grain boundaries in the given volume
of microstructure.

If full, three-dimensional, realistic, grain boundary meshes were available for
experimentally reconstructed polycrystals, it would be possible to make more accurate
measurements of grain characteristics and better understand the evolution of the polycrystals
during coarsening [19, 20]. Rowenhorst et al [19] showed that the integral mean curvature
of the grain faces and the mean width of grains are sensitive to the method used to smooth
the grain boundary surface mesh. Using their own simple and effective smoothing scheme
on experimentally reconstructed three-dimensional digital images of β-titanium grains in Ti–
21 S, they verified various coarsening theories and numerical models in terms of grain size
distribution, number of neighboring grains vs. grain size, mean curvature and width of grains
and the growth rates of individual grains. However, their constrained Laplacian smoothing
technique still produces locally aliased, unsmoothed triple junctions and curvature-driven
motion of the grain boundaries and junctions, resulting in either under- or over-estimation
of grain boundary curvature and grain volume.

Recently, efforts have been made to generate conformal surface/volume meshes in
polycrystalline materials obtained from both simulations and experiments [21–30]. One of
the main purposes of these studies is to generate conformal meshes of a quality that would be
sufficient for the finite element method (FEM) simulations. For example, Voronoi cells are
segmented using tetrahedral elements to represent the polycrystalline grain network [21, 22].
Although this method produces elements of high quality, the short and long-range curvatures
of the grain boundaries and junctions are absent from segmented elements because Voronoi
cells, by their nature, contain only flat boundaries and junctions [21, 31–33], which makes it
hard to use them as inputs to simulations of the grain boundary dynamics or the grain boundary
distribution. Conversely, other studies have tried to extract a more realistic grain boundary
mesh by fitting individual grain boundaries to polynomial functions [24–26], followed by
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constructing the whole volumetric mesh inside the polycrystal [24, 25]. However, this method
adopts additional polynomial surface approximation to get rid of overlaps or gaps between
neighboring grains, leading to sporadic, unrealistic grain boundary traces and junctions when
compared to the original voxel image of the surface of the microstructure. Other notable
attempts use a minimization of surface energies by a gradient descent method [20, 28] or by a
local volume conservation scheme [29, 30]. Again, the extracted grain boundaries are either
almost flat [20, 28] or have unrealistic, aliased or corrugated curvatures [29, 30] due to the
nature of the methods used.

In light of aforementioned challenges, we propose a simple but effective segmentation
and smoothing algorithm to approximate the grain boundary networks in three-dimensional
digital images of polycrystals. The goal of the proposed algorithm is to extract and smooth the
grain boundary surface mesh while maintaining some features of the microstructures (such as
the positions of the nodes in the grain boundary mesh, the long-range curvature of the grain
boundaries and junctions, the sharpness of triple/quadruple junctions, the volume of individual
grains) as far as possible and, at the same time, eliminate the aliasing from the segmentation
method. Accordingly, our method uses the following steps: (1) grain boundary network
segmentation using the multi-material marching cubes algorithm [34, 35], which results in a
conformal triangular mesh of aliased grain boundaries and grain junctions in a polycrystal;
(2) smoothing the segmented junctions of grains (i.e. the triple/quadruple junctions inside the
polycrystal and the grain boundary traces on the surface of the polycrystal) using a constrained
line smoothing (CLS) method; and (3) smoothing the grain boundaries inside the polycrystal
using a constrained Laplacian smoothing (CLpS) method, followed by a volume conservation
scheme. In this paper, the method is explained in detail using a digital unit cell image (spherical
particles grown from the body-centered cubic grid) and a hypothetical test polycrystal obtained
from a numerical simulation (the Monte Carlo Potts model for isotropic grain growth [36–39]).
The remainder of this paper is structured as follows. In section 2, the preparation of digital
test microstructures is discussed. In section 3, the segmentation and smoothing algorithms
are presented in detail. In section 4, the results from the grain boundary approximation are
presented. Sections 5 and 6 present the discussion and summary, respectively.

2. Preparation of hypothetical test microstructures

To test the capability of the proposed segmentation and smoothing method, two different
hypothetical test microstructures were prepared. The first hypothetical test microstructure is
a unit cell on a 50 × 50 × 50 cubic grid where 16 half-a-quarter spheres with total volume
fraction of ∼0.85 are grown from the body-centered cubic (BCC) grid points of the unit cell
(‘Microstructure I’, figure 1). Voxellated images of ‘Microstructure I’ are shown in figure 1,
where (a) is the surface, (b) are the particles and (c) is the matrix of the microstructure. The
reason for choosing this microstructure as a test case for the proposed algorithm is because
it contains a combination of straight, curved and looping junctions between volumes with
flat and curved boundary faces, it also has a matrix phase with a complex geometry. The
second hypothetical test microstructure is a polycrystal generated through the Monte Carlo
Potts (MCP) model for isotropic grain growth [36–39] on a 100 × 100 × 100 cubic grid
(‘Microstructure II’, figure 2). The grains obtained from the MCP isotropic grain growth
model are fairly equiaxed, and the grain boundaries and their junctions relax towards local
equilibrium, so that the dihedral angles along the triple junctions are theoretically 120◦ for
such ideal polycrystals. The number of grains in Microstructure II is 375. The voxellated
images of the polycrystal are presented in figure 2, where (a) is the surface of Microstructure
II and (b) is the image of selected grains in the corresponding polycrystal.
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Figure 1. Voxellated images of ‘Microstructure I’: (a) surface, (b) particles and
(c) matrix. Note that the microstructure possesses various kinds of features, such as
straight lines, curved lines, loops, flat boundary faces, curved boundary faces and a
matrix phase with a complex geometry. Individual volumes (i.e. particles and matrix)
in the microstructure are randomly coloured.

Figure 2. Voxellated images of ‘Microstructure II’: (a) surface and (b) selected grains.
Individual grains are randomly coloured. Note that the grains in Microstructure II have
fairly isotropic shapes (shown in (b)) because Microstructure II is generated from the
isotropic Monte Carlo grain growth simulation (100 × 100 × 100 cubic grid).

3. Numerical methods

Each microstructure introduced in section 2 can also be described as a set of surfaces bounding
the grains (i.e. grain boundaries inside the microstructures and grain trace areas on the surface of
the microstructures) that are linked at grain boundary junctions (i.e. triple/quadruple junctions
inside the microstructures and grain boundary traces on the surface of microstructure). Based
on these characteristics, the segmentation and smoothing of the grain boundary network
proceeds as follows.

3.1. Segmenting grain boundary network

The first step in approximating a grain boundary network is to numerically extract the
three-dimensional grain boundaries in a cubic-gridded digital microstructure as a conformal
triangular mesh. Such segmentation is accomplished by using the three-dimensional multi-
materials marching cubes algorithm [34]. Here, we present the highlights of the multi-materials
marching cubes algorithm. The details can be found elsewhere [34, 35]. The marching cubes
algorithm was originally designed for the binary case [35], where eight neighboring cubic
voxels in three-dimensional images, representing two different regions at maximum, can form
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one local marching cube out of 256 (=28) possible different configurations. However, if there
are more than two neighboring regions (eight materials, domains, grains, identifiers (IDs)
and spins at maximum), as in polycrystals, then the number of different configurations for a
marching cube increases enormously and it is not practical to keep track of all the possible
configurations. Wu and Sullivan [34] showed that a conformal triangular boundary mesh
between different regions in the three-dimensional digital image is generated by modifying
the original marching cubes algorithm. At the beginning, the boundary lines on the faces of
each marching cube are determined by introducing the nodes at the centers of the sides and
the face of each square. This is trivial because only four neighboring pixels, representing
four different materials at maximum, can form one out of 16 possible different configurations.
As explained in their original work [34], two ambiguous degenerate cases arise in which the
opposing diagonal corners of a face have the same material. Here, this ambiguity is treated
such that the connectivity of the regions takes precedence over other conditions. Next, the
nodes at the body centers of the marching cubes are introduced, if necessary, and then the
loop traces of the boundary lines between different regions inside the marching cubes are
identified. Once the loops are identified, triangles are constructed inside each loop. Then, all
of the boundary edges and triangles are conformal throughout the microstructure. However, the
segmented mesh obtained from this algorithm has aliased, stair-stepped morphology because
the nodes in the mesh are the centers of the sides, the faces or the bodies of marching cubes,
which requires a smoothing scheme to extract a realistic grain boundary network4.

For this study, the IDs of the nodes, edges and triangles of the grain boundary mesh
are systematically ordered and matched with the neighboring grain IDs during the mesh
segmentation so that the characteristics of nodes, edges and triangles can be used easily for
future analyses such as grain volume calculations and mesh smoothing. From the in-house
multi-material marching cubes segmentation code, the following characteristics of the mesh
can be determined.

(1) Position and type of each node. Position means the spatial coordinate, (x, y, z), of each
node. The type of each node is the number of grains that it belongs to. Therefore, it equals
2 if the node is on a grain boundary, 3 if on a triple junction, 4 if on a quadruple junction
and so on. A unique, consecutive integer ID is assigned to each node.

(2) Two ending nodes, neighboring grain IDs and type of each edge. The algorithm produces
the IDs of the two ending nodes of each edge. It also evaluates the neighboring grain IDs
and type number for each edge. Type of an edge is the number of grains it touches. For
example, if an edge is surrounded by three different grains as neighbors, then the type of
the edge is 3—signifying that the edge is on a triple junction. Each edge has a unique,
contiguous integer ID.

(3) Three nodes and edges, and two neighboring grain IDs of each triangle. The IDs and
sequence of three nodes and edges of each triangle are obtained. Then, the relative
locations of two neighboring grains across each triangle are determined based on the
sequence of three nodes of the triangle and the neighboring grain configuration in each
marching cube.

Using this information, one can define each grain junction and boundary as a contiguous set
of edges and triangles with the same pair of neighboring grain IDs, respectively. Then, it is
sensible to define each grain in the microstructure as a set of grain boundaries having one of
the neighboring grain IDs in common. The segmentation results on two test microstructures
will be presented in section 4.

4 The in-house multi-material marching cubes code was successfully used for three-dimensional characterization of
a β-titanium alloy [19].
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Figure 3. Schematics of: (a) the initially segmented grain junctions (bold black line with
solid circles), (b) the grain junctions after the constrained line smoothing, CLS (coloured
lines with open circles) and (c) final smoothed grain junctions after CLS + distance
minimization scheme (dashed colour lines) as opposed to the original segmentation (gray
bold lines with solid circles) and CLS junctions (coloured bold lines with open circles).
For simple and effective visual presentation, the junction is drawn in two-dimensions.
One can extend directly the two-dimensional CLS algorithm to three-dimensional one
by using the three-dimensional vectors and the equation of a straight line.

3.2. Smoothing grain boundary junctions and grain traces

The second step in approximating the grain boundary network is to smooth the grain junctions
(i.e. the triple/quadruple junctions inside the microstructures and the grain boundary traces
on the surface of the microstructures). Once the information on the nodes and edges of the
junctions from the initially segmented, aliased grain boundary mesh is identified, a CLS method
is applied to approximate the junctions as a set of straight lines (usually, a set of edges), which
collectively represent local and long-range curvatures of the junctions. Consider a junction5,
identified as a set of edges with two ending nodes, in figure 3. The two ending nodes of the
junction, A and B, are mainly quadruple points inside the three-dimensional polycrystals and/or
triple junction points on the surface of the polycrystals. One of the most important assumptions
we make for the smoothing algorithm is that points, such as A and B, are constrained to be fixed
during the CLS and the CLpS. In the figure, the originally aliased edges and nodes are presented
with thick bold black/gray lines and solid circles, respectively. The CLS method transforms
this stair-stepped, aliased, discrete line of edges into a string of smoother line segments using
the following procedures6:

(1) Construct a straight line from starting node, A (large solid circle marked as A in figure 3(a)),
to the midpoint of the next edge (the first thin blue solid line in figure 3(a)).

(2) If the distance from each of the previous nodes (including node A) to the constructed line
is smaller than a user-defined threshold distance, dJ,th, then construct the next straight line
to the midpoint of the next edge (the second thin blue solid line in figure 3(a)).

(3) If the distance from any of the previous nodes to the newly constructed line is longer than
dJ,th, then discard the current line (for example, dashed blue line in figure 3(a)). Instead,

5 For a simple and effective visual presentation, the junction in figure 3 is drawn in two-dimensions. One can extend
directly the two-dimensional CLS algorithm to three-dimensional one by using the three-dimensional vectors and
equation of straight line.
6 The line straightening part in the proposed CLS method is similar to the two-dimensional grain boundary
reconstruction method employed in TSL software [40].
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use the previously constructed straight line and move the last node before the line to the
perpendicular foot on the line (large open circle in figure 3(a) on the second thin blue
solid line). Then, move all of the intermediate nodes to equidistant points on the newly
reconstructed line segment (small open circle in figure 3(a) on the second thin blue solid
line).

(4) Make the last node (large open circle in figure 3(a) on the second thin blue solid line) the
starting node for the next line segmentation.

(5) March through all edges in the junction and repeat steps from (1) to (4) until the last node,
B, is reached (figure 3(b)).

As shown in figure 3(b), this procedure yields a string of linear segments (thick solid coloured
lines with open circles) that lie on top of the originally aliased junctions (solid circles and thick
black lines in the figure).

During the CLS method, the junctions move toward the center of local curvature, leading to
changes in the volumes of neighboring grains for most of the three-dimensional cases. Now,
it is necessary to move the nodes to the new positions, from which a certain characteristic
measure of the neighboring geometry is minimized (or maximized). For two-dimensional
cases, an area conservation scheme has been successfully implemented for the heterophase
interface boundaries [41]. However, in three dimensions, no analytical approach was found to
calculate the new positions of the nodes on the junctions, so that the original volumes of three
or more neighboring grains are recovered at the same time. Instead, a distance minimization
scheme is applied after each CLS process for this study.

(1) Find unit translation vectors, u (dashed arrows in figure 3(c)), for each ending node (large
open circles in figure 3(c)) of the individual smoothed linear segments (bold coloured
lines in figure 3(c)) such that ui = (ei,i−1 + ei,i+1)/|ei,i−1 + ei,i+1|, where ei,i−1 and ei,i+1

are unit vectors from the current ending node i to the neighboring ending nodes, ĩ1 and
i + 1. The translation vectors for A and B are zero because they are supposed to be fixed
during smoothing procedures. If the previous CLS step produces a straight line from point
A to B, then a unit vector of the sum of the vectors from all of the nodes between A and B
to the corresponding nodes of the original, aliased mesh, umid, is calculated and assigned
to the midpoint between A and B.

(2) Decide the direction of the unit translation vectors, [sign(ui )], such that sign(ui ) = 1 if
[ui−1 · ui] < [ui−1 · (−ui )] and sign(ui ) = −1 if not. This maintains the slopes of the
approximated linear segments from the previous CLS step as far as possible during the
distance minimization process.

(3) Find the value of a parameter troot such that the sum of the distances from the originally
segmented nodes (solid gray circles in figure 3(c)) to the line segments, newly translated
by trootui (dashed coloured lines in figure 3(c)), is minimized. In order to find troot, the
minimum value of the sum of the distances is tracked as the line sweeps through the
neighboring regions using tui with a discrete step, t = ±(ndt), n = 0, 1, 2, . . . nmax.
Here, dt = βdx, where dx is the real step size of the voxel and β is a user-specified
parameter related to the sweeping resolution. nmax is defined as db/dt , where db is
the user-defined distance to the bounds of neighboring regions swept. For example, if
β = 0.01 and db = 3 dx, then the approximated line sweeps through the regions bounded
by 3 voxel length with 100 times higher resolution than original image. Then, it is sensible
to consider that troot is very close to the real solution.

(4) Move all intermediate nodes to the equidistant positions on the new linear segments
constructed from trootui (dashed coloured lines in figure 3(c)). Because the local curvature
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Figure 4. Images of: (a) the originally segmented and (b) the smoothed grain boundaries
on a two-dimensional section of a real three-dimensional microstructure map with
dJ,th = 0.1 (in units of pixel length), NJ,Iter = 4 and β = 0.001 for the verification
of the smoothing method. Individual grains are obtained from an electron back-scatter
diffraction image of IN100 (a Ni-based superalloy). It is clear from the figure that
the proposed method successfully smoothes the grain boundaries by eliminating the
unphysical stair-steps from the original mesh and approximating both local and long-
range curvatures of the grain boundaries.

of the newly segmented lines from the CLS is to be maintained during the distance
minimization process and the obtained value for troot is usually very small (typically,
the average value of troot is less than 0.5 when normalized by dx), it is reasonable to use
the ui , as explained above, for local relocation of the nodes.

Note that the proposed algorithm for smoothing grain boundary junctions and traces retains
the number of nodes along the lines. An iteration of the combined CLS and the distance
minimization process is completed when they are applied in both directions along each junction
between two end-points (i.e. from point A to point B and from point B to point A in figure 3).
Currently, the smoothing process stops after a user-prescribed number of iterations, however,
one can stop the process by setting up a terminal threshold value for the average distance
moved by the node. For example, figure 4 shows the images of (a) the originally segmented
and (b) the smoothed grain boundary traces on a two-dimensional surface of a real three-
dimensional microstructure image with dJ,th = 0.1 (in units of pixel length), number of
iterations, NJ,Iter = 4, and a sweeping resolution, β = 0.001 for the verification of the
method. It is clear from the figure that the proposed method successfully smoothes the grain
boundary traces on the surface of microstructure by eliminating the unphysical aliasing (i.e.
stair-steps) from the original mesh and approximating both the local and long-range curvatures
of the grain boundary traces. Typically, such a process results in an average displacement of
∼0.2 (in pixel length) for the relocated nodes from their original positions. Achieving such a
small shift confirms that the newly smoothed, distance-minimized segments are defined inside
the regions bounded by unit pixel length from the initial segments. Also, the grain volume
changes due to this process in three-dimensional polycrystals are very small. The quantitative
results will be presented in section 4.

3.3. Smoothing grain boundaries

As the final step, the nodes on the grain boundaries in the polycrystal are smoothed while
the previously smoothed triple/quadruple junctions are fixed in space. Specifically, a CLpS
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method, followed by a volume conservation scheme, is used to remove the stair-stepped artifacts
from the original marching cubes mesh, and to maintain the local and long-range curvatures of
the grain boundaries at the same time. In a conventional Laplacian smoothing of the surface
mesh, the new position of each node, Xnew

j , is calculated using the current position of the node
j , Xj , and the positions of its N neighboring nodes, Xk, and it is given by

Xnew
j = Xj + λ

[
1
N

N∑

k=1

(
Xk − Xj

)
]

= (1 − λ) Xj + λX̄neigh, (1)

where X̄neigh is the average position of the N neighboring nodes, and λ is a weighting factor
between 0 and 1. Thus, the conventional Laplacian smoothing forces the node j to move to a
position that divides the line segment between Xj and X̄neigh with a ratio of λ : (1 − λ).

Conventional Laplacian smoothing is computationally efficient and easy to implement.
However, it has some disadvantages, such as: it creates a non-uniform element size and poor
triangle quality in general, even after a few iterations; and, it may generate folded or inverted
triangles depending on the concavity of the polygons that the neighboring triangles form. For
the calculation of metrics associated with grain boundaries, such as the GBCD, the shapes
and volumes of grains, the first disadvantage is trivial and its effect on such analyses can be
ignored. However, the second disadvantage is problematic. It usually occurs most often at the
triangles adjacent to triple/quadruple junctions with significant local curvature variations. To
minimize this, we calculate a modified average position of the neighboring nodes, X̄neigh, for
the current node j , as given by

X̄neigh = 1
N

N∑

k=1

[
(1 − δ)Xk + δ{αXk + (1 − α)Xj }

]
, (2)

where α is a weighting factor between 0 and 1, and δ = 0 if the neighboring node k is on
grain boundary and δ = 1 if on triple/quadruple junctions. Choosing a value of α = 0.3–0.5
mitigates the effect of the fixed triple/quadruple junctions on the possible folding or inversion
of triangles attaching to them during smoothing. Also, a further constraint is imposed on the
method so that no node can travel further than a user-specified maximum distance during an
iteration of smoothing. This is realized as

Xnew
j =






X̄neigh if
∣∣X̄neigh − Xj

∣∣ ! dGB,th dx,

Xj + (dGB,th dx)
X̄neigh − Xj∣∣X̄neigh − Xj

∣∣ otherwise,
, (3)

where dGB,th is a user-defined normalized threshold distance between 0 and 1 (in voxel length,
dx). Then, dGB,th dx is the actual maximum distance that a node is allowed to travel during
each smoothing iteration. In this way, we have an indirect control over the maximum and
average displacement of the nodes after smoothing, combined with proper dGB,th and number
of smoothing iterations, NGB,Iter.

After a user-defined number of the CLpS iterations, NGB,Iter, are applied on each grain
boundary, a volume conservation scheme follows. During the CLpS, each grain boundary
moves toward the center of its local curvature, leading to changes in the volumes of neighboring
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grains across the boundary for most of the cases. In other words, during the CLpS, grain growth
occurs. The algorithm for the volume conservation scheme is given as follows:

(1) Calculate the unit normal vectors of triangles on each grain boundary and make all of
them point towards one of two neighboring grains in common, n.

(2) Calculate a translation vector, si = η [wi/|wi |], for each node i on the grain boundary.
wi is an area weighted vector, given by wi = [&j (Ajnj )]/(&jAj ), where Aj and nj

are the area and the normal vector of neighboring triangle j of node i. Also, the effect
of tension from the fixed grain junctions on each node of the grain boundary is taken into
account and realized by setting η = 'j /'max, where 'j is the minimum distance from
node j to the junctions of the grain boundary and 'max is the maximum among 'j s of all
nodes on the grain boundary.

(3) Define a signed volume, V , of each grain boundary consisting of T triangles such that
V = &k[(rk·nk)Ak/3.0], k = 1, 2, 3, . . . , T , where rk is the position vector at the
midpoint of triangle k7. Then, find the value of a parameter troot such that the signed
volume, Vnew, defined by each translated grain boundary by trootsj , are comparable to the
signed volume of that grain boundary defined by the initially segmented marching cubes
mesh, Vmcubes. For this study, troot is chosen when (|Vnew|–|Vmcubes|)/|Vmcubes| < 10−6.
The conventional bisection method is applied for this process.

(4) Move all the grain boundary nodes by the amount of trootsj .

The proposed grain boundary smoothing algorithm retains the numbers of nodes, edges and
triangles from the marching cubes segmentation. Typically, this combined process results in a
small average shift for the relocated nodes on grain boundaries. Achieving such a small average
shift, together with conserving the grain volumes, and both the local and long-range curvatures
of the grain boundaries, is a desirable result for smoothing the grain boundary network from
three-dimensional digital images of polycrystals. The relevant quantitative analyses will be
given in section 4.

4. Results

The surface meshes of the grain/phase boundary networks of three microstructures are obtained
using the in-house multi-material marching cubes code that were described in section 3. For
smoothing the originally aliased segmented meshes, the following parameters are used for all
three microstructures, consistently: dJ,th = 0.1, NJ,th = 6 and β = 0.005 for the CLS of the
junctions and the grain boundary traces on the surfaces of the microstructure, and dGB,th = 0.1,
NGB,th = 6 and α = 0.45 for the CLpS of the grain boundaries. The parameters are chosen so
that the average displacement of the shifted nodes is comparable to, or smaller than, unit step
size of the digital images (unit voxel length).

4.1. Surface meshes from segmentation and smoothing

In figures 5 and 6, the originally segmented surface mesh generated from the in-house multi-
material marching cubes code ((a) and (b)), and the smoothed mesh obtained from the algorithm
((c) and (d)) of Microstructure I and II are presented, respectively. In the figures, (a) and (c)
are the images of the surface of each microstructure while (b) and (d) show selected grains
of each microstructure before and after smoothing, respectively. It is evident from the images
that the stair-stepped, aliased grain junctions, grain boundary traces and grain boundaries of

7 For each triangle, k, in a grain boundary, a volume is defined, given by (rk · nk)Ak/3.0, a signed volume formed
by connecting the origin and the vertices of the triangle.
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Figure 5. Images of the originally segmented ((a) and (b)), and the smoothed mesh ((c)
and (d)) of Microstructure I, respectively. The numbers of nodes, edges and triangles are
37281, 114510 and 77240, respectively. In the images, (a) and (c) show the surface of
the microstructure while (b) and (d) show selected grains of the microstructure before
and after smoothing, respectively. As is evident from the images, the stair-stepped,
aliased grain junctions, grain boundary traces and grain boundaries of the originally
segmented microstructures are successfully approximated as smoothly changing lines
of edges and patches of triangles with reasonable long-range curvatures based on the
originally segmented images. Each grain boundary in (b) and (d) is coloured using a
random colour scheme.

the originally segmented microstructures are successfully approximated as smoothly changing
lines of edges and patches of triangles with reasonable long-range curvatures based on the
originally segmented images. In other words, the curvatures of the lines and boundaries from
the proposed algorithm are determined only by the segmented images from the voxellated
microstructures, not by any assumed laws of motion or mathematical functional. Also, note
that the triangles attached to the grain junctions and grain boundary traces are elongated toward
the centers of the boundaries they belong to. This is a consequence of the imposition of the
parameter α in equation (2) to keep them from folding or inverting as much as possible.

4.2. Displacement of nodes after smoothing

As previously mentioned, the parameters for the smoothing process are designed so that the
average displacement of the shifted nodes is smaller than, or comparable to, the unit step size
of the digital images (unit voxel length). Now, it is of immediate interest to measure how far
the nodes move during the smoothing. To do that, a normalized displacement of the shifted
nodes, d ′

s, is defined as d ′ = ds/dx, where ds is the distance shifted for each node from its
original position and dx is the length of unit step size of the cubic voxel for the images. For
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Figure 6. Images of (a) and (b) originally segmented, and (c) and (d) smoothed
mesh of Microstructure II. The numbers of nodes, edges and triangles are 330655,
1034070 and 703791, respectively. In the images, (a) and (c) show the surface of the
microstructure while (b) and (d) show selected grains of the microstructure before and
after smoothing, respectively. As is evident from the images, the stair-stepped, aliased
grain junctions, grain boundary traces and grain boundaries of the originally segmented
microstructures are successfully approximated as smoothly changing lines of edges
and patches of triangles with reasonable long-range curvatures based on the originally
segmented images. Each grain boundary is coloured using one the neighboring grain
IDs.

this calculation, the quadruple points inside the microstructure, triple points on the surface of
the microstructure and the nodes on the grain trace area on the surface of the microstructure
are excluded because they are either fixed or move only laterally on the flat surface of the
microstructure during smoothing. In figure 7, the distributions of d ′

s for (a) Microstructure
I, and (b) Microstructure II are shown, respectively. The average distance and the standard
deviation in the distributions are 0.21 and 0.10 for Microstructure I, and 0.24 and 0.12 for
Microstructure II. Note that the proposed algorithm positions the smoothed grain boundary
networks near the original segmentation well within a unit voxel length. Also, note that d ′

s is
an overestimating measure of the shifted distance of each node because d ′

s is always equal to
or bigger than the distance from its originally segmented position to the smoothed boundary,
which once again confirms the claim above.

4.3. Volumes of grains

Each step in the proposed segmentation and smoothing procedure involves changes in the
grain volume. During segmentation, the volumes of individual grains in the voxellated
microstructure are not maintained because the multi-materials marching cubes algorithm uses
the midpoints of sides and face/body centers of each marching cube for triangulation of the
boundaries. The maximum grain volume change caused by the segmentation is about 3% for the
microstructures examined in this paper. However, we do not attempt to rectify this error because
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Figure 7. Distributions of normalized displacement, d ′
s , after smoothing

(a) Microstructure I and (b) Microstructure II, respectively. The bin size is 0.02. The
number of nodes, and the maximum distance, the average distance and the standard
deviation in the distribution are (a) 23280, 0.64, 0.21 and 0.10; and (b) 60364, 1.19,
0.24 and 0.12, respectively. Note that the proposed algorithm positions the smoothed
grain boundary networks near the original segmentation well within unit voxel length.

we lack information about where the grain boundaries are exactly at this resolution. Instead,
we focus on conserving the volume of each grain obtained from the originally segmented mesh
using the marching cubes algorithm during smoothing. During grain junction smoothing using
the CLS method, the changes in volumes of the neighboring grains are found to be very small
(less than 0.2% with a maximum change of ∼0.6%) for the microstructures considered here.
This confirms that the distance minimization scheme in the proposed CLS method works
successfully in terms of grain volume conservation.

The change in volume of each grain i, 'Vi, between the volume from the originally
segmented mesh, Vi,mcubes (labeled as ‘mcubes’) and that from the smoothed mesh, Vi,smoothed

(labeled as ‘smoothed’), is defined as 'Vi = Vi,mcubes–Vi,smoothed. In figure 8, the errors of
'Vi created through the smoothing process are plotted against Vi,mcubes for all of the grains
in (a) Microstructure I, and (b) Microstructure II, respectively. Note that most of the grains
experience less than 0.2% volume changes during the smoothing procedure and that smaller
grains experience larger volume changes due to the relatively poor resolution of both the
original images and segmented triangles when compared to the larger ones, as one might
reasonably expect [42].

4.4. Dihedral angles along triple junctions

One of the design features of the smoothing algorithm is to prevent the triangles attached to the
triple/quadruple junctions from folding or inverting by imposing a parameter α during the CLpS
method. This is crucial for future applications of the three-dimensional grain boundary mesh
of the polycrystals to microstructural characterization, such as the direct measurement of the
grain boundary energy distributions (GBEDs) [43]. The triangles obtained from the original
marching cubes algorithm are neither folded nor inverted, forming only discrete values of
dihedral angles between neighboring triangles, such as 180◦, 90◦ and 45◦. Because of the
constraints imposed by small threshold distances dJ,th and dGB,th during smoothing, neither
folded nor inverted triangles are found on the grain boundaries of the smoothed mesh for the
test microstructures. The last region where one might need to check the quality of the triangles
is the triple junction. In figure 9, the dihedral angle distributions of the triple junctions of the
smoothed mesh are given for (a) Microstructure I and (b) Microstructure II, respectively. The
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Figure 8. Volume of grains from initial segmentation versus error in volume change
of each grain after smoothing (a) Microstructure I and (b) Microstructure II. The error
term is define by (Vmcubes–Vsmoothed)/Vmcubes. Note that most of the grains have less than
0.2% volume changes during smoothing procedure, and that smaller grains experience
larger relative volume changes.

Figure 9. Dihedral angle distributions at the triple junctions of the smoothed mesh (a)
Microstructure I and (b) Microstructure II. The dihedral angles are calculated using the
winding sequence of neighboring triangle triplets, which share a common edge at the
triple junctions. The binning size is 4◦. For Microstructure I (a), a discrete distribution
is found due to the regularity of the unit cell structure. For the simulated polycrystalline
case ((b)), the distributions are well centered at 120◦ with a relatively small standard
deviation of 15.95◦, signifying that the proposed smoothing algorithm recovers the
isotropic nature of the triple junctions in the simulated microstructure.

dihedral angles are calculated using the winding sequence of neighboring triangle triplets, all
of which share a common edge at the triple junctions. For Microstructure I, the distribution is
discrete due to the regularity of the position, shape and size of particles in the unit cell structure
(figure 9(a)). For the simulated polycrystalline case, the distributions are centered at 120◦ with
relatively small standard deviations of 15.95◦ (figure 9(b)), which suggests that the smoothing
algorithm correctly recovers the isotropic nature of the triple junctions in the microstructures
generated from the isotropic grain growth simulation.

4.5. Grain morphology

Figure 10(a) shows one of the large grains and (b) shows one of the small grains in
Microstructure II after smoothing. In the figure, thick black lines are triple junctions while
thick white lines are quadruple junctions bounding the grains. Each grain boundary is
coloured by its neighboring grain ID, as prescribed in the voxellated microstructure before
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Figure 10. (a) One of the large grains and (b) one of the small grains in Microstructure
II after smoothing. Thick black lines are triple junctions and thick white lines are
quadruple junctions bounding the grains. Each grain boundary is coloured according
to neighboring grain ID using a random colour scheme. Note that the large grain has a
concave shape and more neighboring grains whereas the small grain is surrounded by
convex boundaries and less neighboring grains, signifying that, from the microstructural
images, the proposed algorithm recovers the first order characteristic of the isotropically
grown polycrystals.

the segmentation and smoothing processes. As is obvious in the figure, the quadruple junction
lines are sporadically located on the grain boundary edges, which are unrealistic features
of the ideal, stable polycrystalline structures because of the finite resolution of the original
voxellated microstructural image. One can clean out these features in the original voxellated
microstructures before segmentation if needed. Note that the large grain has a concave shape
and more neighboring grains whereas the small grain is surrounded by convex boundaries
and less neighboring grains, signifying that the proposed algorithm recovers the first order
characteristic of the grains in the isotropically grown polycrystals by using only the digital
images.

5. Discussion

5.1. Effect of the cubic simulation lattice on the dihedral angle distribution obtained from the
proposed algorithm

One might argue that the observed values of the standard deviations in dihedral angles of
Microstructure II are too large to permit a conclusion that the smoothing algorithm works
well because the microstructures from the isotropic grain growth simulations are expected
to have a theoretical dihedral angle of 120◦ at the triple junctions. By contrast, Harker
and Parker [44] analytically showed that the angles between the traces of two vertical grain
boundaries at 120◦, measured on the arbitrary intersection planes, form a Gaussian distribution
with a peak at 120◦. The reason for the angles not being exactly 120◦ is because they are
measured from the two-dimensional planes at an arbitrary angle. From the dihedral angle
measurements on the two-dimensional sections of the digital polycrystals obtained from the
Monte Carlo Potts isotropic grain growth simulation, Chandross and Holm [45] also observed
that wider dihedral angle distributions occur because of ‘geometric mapping’ [45] onto a
cubic lattice and ‘boundary anisotropy’ [45] of the cubic lattice. Based on these reports, it
is now of interest to compare the dihedral angle distribution from the smoothed image of
Microstructure II, generated through the Monte Carlo Isotropic grain growth, to the previous
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Figure 11. Cumulative distribution of the dihedral angles in Microstructure II after the
smoothing, compared to those from previous reports [44, 45]. In the figure, the dashed
line and the solid line represent the cases of an ideal polycrystal where all of the grain
junctions meet at 120◦, but the dihedral angles are measured in two dimensions [44] and
three dimensions, respectively. Note that the proposed smoothing algorithm produces
the narrowest measured distribution, while its deviation from the ideal 120◦ distribution
(dashed line) can be ascribed to both the finite resolution and the anisotropy of the cubic
simulation lattice used for this study as similarly proposed [45].

findings. In figure 11, the cumulative distribution of the dihedral angles in Microstructure II
after smoothing is compared to those from previous reports. In the figure, the dashed line
and the solid line represent the cases of an ideal polycrystal where all of the grain junctions
meet at 120◦, but the dihedral angles are measured in two dimensions and three dimensions,
respectively. Note that the smoothing algorithm produces a narrower distribution than the two-
dimensional measurements, as expected. However, even though the grain boundary network
in Microstructure II is smoothed in three dimensions, there is no particular expectation that the
dihedral angles have to be precisely 120◦ in an evolving microstructure using the Monte Carlo
Potts model on a cubic lattice. Such deviations can be ascribed to both the finite resolution
and the anisotropy of the cubic simulation lattice identified by the previous work [45]. This
issue is explored in more detail as follows.

To examine the effect of the finite resolution, the type and the anisotropy of the simulation
lattice on the measured dihedral angles, 18 full and partial hexagonal columns are mapped
onto a 60 ×70 ×50 cubic lattice (figure 12(a)). Also, a magnified portion of a cross section of
the structure, perpendicular to the columnar direction (x–y planes in figure 13), is examined to
compare the dihedral angles around triple junctions from the discrete image (figure 12(b)) to
analytical values (the analytical dihedral angle around the triple junctions between hexagonal
columns is 120◦). Interestingly, the ratio of the distance m along the x direction to the vertical
distance n along the y direction, measured from the digitized image (red arrows in figure 12(b)),
is 1.667 (10 : 6 in voxel length ratio), whereas the corresponding analytical value of the ratio
is

√
3 = 1.732. In other words, the dimensional ratio of the hexagon mapped with a finite

resolution is not commensurate with the analytical value, even though the discrepancy decreases
as the resolution of the mapping grid increases. This dimensional discrepancy has an effect
on the local triple junction geometry, such that the dihedral angles around the triple junctions
are not 120◦. In figure 12(b), two triple junctions are approximated with straight white and
black arrows, respectively. The white triple junction is composed of vectors with components
of (10, 5), (−10, 5) and (0, −5) in voxel length, and the black triple junction has vectors with
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Figure 12. (a) Hexagonal columns mapped onto a 60 × 70 × 50 cubic lattice, and (b) a
magnified portion of a cross section of the structure (x–y plane) perpendicular to the
columnar direction z. Note that the dimensional ratio of the mapped hexagon with this
finite resolution is not commensurate with analytical value, which, in turn, creates triple
junction geometries of which the dihedral angles are not 120◦ but range approximately
from 114◦ to 130◦.

Figure 13. Effect of the proposed smoothing algorithm on the curvatures of the
boundaries of the discrete hexagonal columns: (a) variation in direction cosine values of
the boundaries with respect to x direction after smoothing without the volume correction
step, and (b) variation in direction cosine values of the boundaries with respect to x
direction after smoothing with the volume correction step. Note that, for case (b), long-
range curvatures are introduced to individual boundaries, depending on their voxellated
local curvatures, while for case (a), each boundary has a unique, relatively constant
direction cosine value, close to the values determined by the voxellated local triple
junction geometry.

components of (−10, −6), (10, −6) and (0, 5). Obviously, two exemplary triple junctions are
not identical, and, as labeled in the figure, the dihedral angles are different from 120◦. In fact,
there are found five different triple junction geometries in this structure, of which the dihedral
angles range approximately from 114◦ to 130◦. Therefore, there are inherent errors in dihedral
angles measured from the discrete lattice image of the microstructure. Even more complicated
situations arise if the hexagonal columns are mapped along an arbitrary direction other than x,
y or z, and the measured dihedral angles will vary due to the anisotropy of the mapping grid.

More importantly, in figure 12(b), it should be noted that the truncated pixel areas with
different colours across the straight boundaries are not equal to each other. In other words, the
original volumes of the neighboring hexagonal columns are not maintained if flat boundaries
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Figure 14. A portion of smoothed mesh of: (a) Microstructure I and (b) Microstructure
II with dJ,th = 0.05, NJ,th = 2 and β = 0.005 for the CLS of the junctions, and
dGB,th = 0.033, NGB,th = 3 and α = 0.45 for the CLpS of the grain boundaries. Note
that, during smoothing, such small parameters help maintaining the local features of the
original segmentation, if necessary, compared to the results in figures 5 and 6.

are used for this structure. For such cases, after the proposed volume conservation step is
applied, the boundaries between neighboring columns (i.e., prism planes) are not flat and,
instead, show long-range curvature since the boundaries have to move to maintain the volumes
of neighboring objects based on the original segmented image. In figure 14, the effect of the
smoothing algorithm on the curvatures of the prism planes is presented using the absolute
direction cosine values of the local boundary normal vectors with respect to x direction of
the microstructure. In figure 13(a), the variation in direction cosines after smoothing without
the volume correction step is presented. For this case, each prism plane has a unique, nearly
constant direction cosine value, which is close to the values determined by the voxellated
local triple junction geometry. For the volume conservation case that is shown in figure 13(b),
long-range curvatures are introduced to individual boundaries, depending on their voxellated
local curvatures. The standard deviation in the dihedral angles measured from the surface
mesh in figure 13(a) is 5.80◦, which is a reasonable value, considering that the dihedral angles
from the voxellated triple junctions is found to range from 114◦ to 130◦. This suggests that the
smoothing without the volume conservation step generates flat boundaries very close to straight
lines on the triple junction geometries in figure 12(b). By contrast, the standard deviation in
the dihedral angles measured from the surface mesh in figure 13(b) is 14.52◦; signifying that,
for this structure, the volume conservation scheme broadens the dihedral angle distribution,
leading to greater uncertainty, which needs to be avoided when approximating boundaries. In
other cases, depending on which characteristics of the microstructure are being measured, the
volume conservation step is sometimes obviously necessary (for example, ‘Microstructure I’
in figure 5). Therefore, the dihedral angles measured (figure 9(b)) in the microstructures
obtained from the isotropic grain growth simulations using the MCP (figure 6(c)) include
errors from the finite resolution and the anisotropy of the cubic simulation lattice. Since
most of the grain boundaries in polycrystals result from microstructural evolution through
curvature-driven motion, it seems to be reasonable to include the volume conservation step
during smoothing the grain boundary network in polycrystals in order to realize the curvatures
of the boundaries.
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5.2. Effect of the parameter values on mesh smoothing

During the CLS of the junctions and the CLpS of the grain boundaries, the threshold distances,
dJ,th and dGB,th, determine the roughness of the smoothed junctions and grain boundaries with
a given smoothing iteration number, NJ,th and NJ,th, respectively. Larger threshold distances
will generate flatter junctions and grain boundaries during the smoothing process in a given
iteration, whereas smaller threshold distances produce wavier junctions and grain boundaries.
Conversely, one can also control the roughness of the smoothed mesh by using small iteration
numbers with a given threshold distance value. Figure 14 shows a portion of mesh of (a)
Microstructure I and (b) Microstructure II after smoothing using dJ,th = 0.05, NJ,th = 2 and
β = 0.005 for the CLS of the junctions, and dGB,th = 0.033, NGB,th = 3 and α = 0.45 for the
CLpS of the grain boundaries. Compared to the results given in figures 5 and 6, obtained from
dJ,th = 0.1, NJ,th = 6 and β = 0.005 for the CLS, dGB,th = 0.1, NGB,th = 6 and α = 0.45
for the CLpS, it is clear that such small parameter values help to maintain the local features of
the original segmentation. Even though the resultant meshes in figure 14 only seem to have
artifacts resulting from insufficient smoothing of the corresponding microstructures, one can
preserve local nonuniformities in the curvature, if any are physically significant (for example,
protrusions or cusps), by using combinations of small parameter values during the smoothing
process.

6. Summary

In this paper, a segmentation and smoothing algorithm for approximating the boundary
networks in the digital images of polycrystalline microstructures is proposed. The main
goal of the proposed method is to extract the realistic grain boundary network from digital
images of polycrystalline microstructures, possibly obtained from either simulations or
experiments, while eliminating any artificial, aliased features from segmentation while at
the same time maintaining their characteristic features. Specifically, the algorithm performs a
simple segmentation of the grain boundary network using the multi-materials marching cubes
algorithm and allows the grain boundaries to get smoothed while maintaining the segmented
volumes of grains. The stair-stepped, aliased grain junctions, grain boundary traces and
grain boundaries of the originally segmented microstructures are successfully eliminated,
resulting in smooth lines of edges and patches of triangles with the long-range curvatures
based on the originally segmented images. The curvatures of these lines and boundaries are
realized based on the original voxellated and segmented microstructural images, not by the
application of any assumed physical processes. Moreover, the local features of the originally
segmented mesh can be maintained by assigning small values to the selected parameters during
smoothing. The smoothing algorithm produces smooth grain boundary networks while at the
same time it positions them near the original segmentation well within one unit voxel length and
conserves the grain volumes from the original segmentation. The dihedral angle distribution
in the Monte Carlo Potts model generated isotropic polycrystalline image after segmentation
and smoothing is verified to be very reasonable when compared to the previously reported
analytic solutions and measurements. However, the dihedral angle distributions in the digitized
microstructures are found to have errors, depending on (1) the characteristics of microstructures
under examination, and (2) the type and the anisotropy of the mapping lattice for digital
microstructural images. From the individual grain morphologies, it is found that the proposed
algorithm successfully recovers the expected variation of curvature with grain size. Given these
findings, one can apply the proposed method to the real three-dimensional, experimentally
reconstructed single-phase polycrystals and directly characterize the grain boundary networks
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in terms of grain size distribution, number of neighboring grains versus grain size, mean
curvature and width of grains, growth rate of individual grains, the GBCD and the GBED.
For a FEM analysis, additional procedures (such as triangle quality enhancement, control of
numbers of triangular elements and volumetric element meshing from the enhanced surface
mesh) are required. These issues will be explored in the future.
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