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Polycrystalline materials are generally thought to have grain size distributions that correspond
to log-normal. Statistical volume elements can use such geometric shape distributions to sim-
ulate single-phase polycrystals. When the log-normal distribution is used for grain size, how-
ever, it can give rise to nonphysical large grains that cannot be practically accommodated in
finite simulation volumes. The application of other distributions that afford better control of the
upper tails, e.g., truncated distributions, resolves the problem and allows more representative
distributions to be generated. These points are illustrated with an example of generation of a
synthetic three-dimensional (3-D) microstructure to represent the nickel-based superalloy
Inconel 100, which exhibits significant upper tail departure from log-normal. Twin insertion, to
represent annealing twins, will also be discussed.
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I. INTRODUCTION

COMPUTATIONAL modeling of materials has
become a crucial and efficient field of materials science
and engineering. Efforts are now under way to incor-
porate computational materials engineering into the
development of materials and realize some savings in
time and cost that have benefitted other areas of
engineering such as aerospace.[1] Different strategies
have been employed to generate three-dimensional (3-D)
digital microstructures for use in the prediction of
properties from microstructure.[2–8] Saylor et al.[2] and
Brahme et al.[3] used experimental grain size, shape and
orientation statistics in two dimensions to infer 3-D
grain structures and to fit crystal orientations to the
grains. Uchic et al.[4] reconstructed microstructures
directly from serial section data. Groeber et al.[5,6]

incorporated statistical nearest neighbor (NN) informa-
tion into their generation procedure. Fan et al.[7] and St-
Pierre et al.[8] used Voronoi tessellation to simulate
polycrystalline structures.

It is commonly accepted that many single-phase fully
dense polycrystals are described by a log-normal grain
size distribution (GSD).[9–11] These studies confirm a
log-normal fit to a high confidence because of limited
data and the use of histograms that emphasize the
region around the mean. No mention is made, however,

concerning the consequences of deviation from the log-
normal description. Of particular concern is the upper
tail because a ‘‘fat tail’’ may result in large grains being
inserted into the microstructure if the probability
density is finite at grain sizes of the order of the
simulation domain. If, however, the actual upper tail of
the grain size distribution is less strong than log-normal,
then nonphysical large grains may be present in the
digital microstructure and the model will not be repre-
sentative. Thus, subsequent property calculations using,
e.g., the finite-element method (FEM), will accordingly
lose predictive power.[12,13]

The fundamental microstructure feature is the grain,
which is described by shape, size, and orientation. The
term representative volume element (RVE) is applied
frequently to digital microstructures.[14] What must be
addressed carefully is what part of the experimentally
observed input statistics that the volume element repre-
sents. If a digital microstructure is an RVE, then the
distribution of the entities of the microstructure must
match the real material such that an applied stimulus
evokes the real material response.
The difference between an RVE and a statistical

volume element (SVE) is that an SVE does not represent
all of the attributes of the observed distribution in one
instantiation, but it will converge to it in multiple
instantiations.[15] Accordingly, an SVE can be consid-
ered an RVE for only some material metrics (e.g., GSD)
but not others (e.g., fatigue crack damage), which could
be studied using multiple SVEs. SVEs that match lower
order moments (mean and standard deviation) are
suitable for material properties that probe the mean
field (e.g., elastic modulus). Matching higher order
moments (skewness and kurtosis), however, that affect
tails of the distribution would enable the analysis of
responses that probes at the extreme of the GSD,[16,17]

e.g., fatigue crack initiation.
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Based on various useful geometrical properties of
ellipsoids, distributions of ellipsoids are used frequently
as the geometric basis for 3-D digital microstruc-
tures.[2,3,5,6] The utility of ellipsoids is presented in Section
II–B. The chosen distribution dictates the ellipsoids that
are ‘‘seeded’’ into the structure and ultimately become
grains. However, the various stages that are necessary for
the generation of 3-D microstructures cause the distri-
bution of grain sizes to depart from the initial ellipsoid
size distribution. These steps all involve well-known
mathematical techniques and are subsequently discussed
briefly and in Section II. One important point is that the
processes involved in packing a set of objects that
approximate grains and then filling space to arrive at a
fully densemicrostructuremean thatmatching even just a
measured size distribution requires a feedback loop. This
is in contrast to matching orientation and misorientation
distributions, which has been demonstrated to be feasible
under a wide range of circumstances.[1]

A pseudorandom sampling of the chosen distribution
is packed into a volume element of a designated size.
The individual grain sizes are generally binned and
ordered into an empirical cumulative distribution func-
tion (ecdf) to analyze GSDs. In dealing with probability
distributions it is useful to think of bins as confidence
intervals, indicating the likelihood of a particular range
of ellipsoid sizes being chosen and placed into a
structure. In a log-normal distribution, there is a well
defined probability that an abnormally large ellipsoid is
sampled and placed into the structure. ‘‘Abnormal’’ in
this context means a grain whose size is greater than
about three times the average size, which is known as an
abnormal grain or ‘‘as large as’’ (ALA) grain. An
investigation of the likelihood of ALA grain injection is
detailed in Section II–C.

After the structure is ‘‘seeded’’ but before it is densified,
a subset of the ellipsoid collection is chosen that
optimizes space filling and minimizes overlap (between
the ellipsoids). This is done by representing the ellipsoid
centers as Monte Carlo (MC) integration points and
performing a simulated anneal process.[1] Then, the
resulting subset of ellipsoids is nucleated and grown to
fill space with a cellular automaton (CA) based on
ellipsoid size (and shape). At this point, the instantiation
is complete, but several techniques are used to improve
the quality of a structure that address small regions
unrelated to the underlying set of ellipsoids and ‘‘relax’’
grain boundaries to provide more realism. These are
discussed in Section II–G. All these steps impact the final
GSD and are therefore pertinent to the feedback loop
that matches the simulated GSD to the measured one.

The methods described in this study are linked to the
nickel-based superalloy Inconel 100 (IN100). To develop
physics-based models of IN100 such as FEM for
material metrics such as damage and failure,[5,6,18] the
generated models must sufficiently capture the pertinent
statistics with high fidelity. Synthetic microstructures
possessing this level of accuracy are sought after because
a large number of experiments are needed to quantify
variability meaningfully in fatigue life. In general,
insufficient experimental data are available to support
this testing.[18]

If theoretical distributions are successful in matching
measured GSDs accurately, then an RVE for materials
such as IN100 could be produced much more faithfully.
Furthermore, more flexibility would be introduced with
regard to structure size and scalability. The accuracy of
physics-based microstructure simulations is affected
directly by the geometry of the synthetic microstructure.
Inefficient models on the front-end tax the efficiency of
surface and volume meshing procedures and ultimately
FEM simulation by creating more degrees of freedom.

II. REVIEW OF SYNTHETIC
MICROSTRUCTURE GENERATION

A. Log-Normal Distribution

As mentioned in the Section I, many distributions of
particles and single-phase polycrystals empirically fit a
log-normal distribution.[9–11] Log-normally distributed
variables are necessarily positive. The function f(x) is
log-normally distributed with mean (l) and standard
deviation (r) in Eq. [1]. The cumulative distribution
function (cdf) of a log-normal distribution is:

F x; l; rð Þ ¼ 1

2
erfc $ ln xð Þ $ l

r
ffiffiffi
2

p
" #

¼ U
ln xð Þ $ l

r

" #
½1&

B. Ellipsoids

Ellipsoids are the chosen representative object be-
cause they are mathematically simple and are repre-
sented by a length:height:width aspect ratio, so they can
embody anisotropy such as a rolling deformation (plane
strain compression). The equation for an ellipsoid is
written as

x

a

$ %2
þ y

b

$ %2
þ z

c

$ %2
¼ 1 ½2&

where a, b, and c are the three semiaxes and x, y, and z
are coordinates (relative to the ellipsoid center) of a
point lying on the surface of the ellipsoid. Most
convenient for defining the characteristics of polycrys-
talline microstructures is to have electron backscattered
diffraction (EBSD) maps on three orthogonal material
planes. Such maps are regular grids of measurement
points, each of which contains the full crystal orienta-
tion. Such maps can be analyzed for grain orientation
and shape. From the size distributions on the orthog-
onal planes, a set of ellipsoids can be generated whose
cross-section statistics matches the measurements.[19]

Extracting experimental data from a single two-dimen-
sional (2-D) image produces ellipsoids limited to oblate
and prolate. Spheres are used self-evidently for equiaxed
grains. Provided that no spatial gradient in the grain size
exists in the sample, a homogeneous distribution of
ellipsoids is sufficient to represent the GSD.[3]

Different options exist for creating the ellipsoid
distributions, including inputting a list or generating a
set of ellipsoids that approximates a log-normal distri-
bution. The list option is used for inputting ellipsoids
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generated from other means (e.g., EBSD or serial
sectioning). If, for example, all three semi-axes are set
equal to one another in Eq. [2], the ellipsoid geometry
then reduces to spheres of constant radius. The result is
grains that are not only equiaxed but also near
monodisperse. Note that an exactly monodisperse size
requires that the grain centers be placed on a simple
lattice.

C. Truncation in Preprocessing

A log-normal distribution of ellipsoids can place too
many small and large grains in a structure. The small
grains can be ‘‘eroded’’ and ‘‘coarsened’’ as described in
Section II–G; however, there is no simple provision for
removing uncharacteristically large grains once they are
placed into the structure. In short, the values of the
standard deviation in a log-normal distribution that
match observed values can easily produce large grains
that are incompatible with the domain size.

To truncate the upper end of the distribution, the
same log-normal distribution is used except a simple
‘‘if’’ statement is added which compares each sampled
ellipsoid with an upper threshold. If the ellipsoid exceeds
the threshold, then that object is discarded and the
program continues with the sampling.

Table I shows a progression of successively more
restrictive log-normal distribution truncations. Note
that the log-normal mean and standard deviation
inserted into Eq. [1] are those used to generate ellipsoids
for the matched synthetic IN100 discussed in Section III
(l = 4.69 9 10–2, r = 2.37 9 10–2). To interpret Table I,
the minimum simulation domain edge is scaled to 1,
then the other edges are scaled accordingly. Because
ln(0) = 1, only the portion to the right of the decimal is
retained. As the truncation threshold shrinks, more of
the upper tail of the log-normal distribution is cutoff
and the larger and less likely sampled semiaxis values are
eliminated. Note that it is common to sample millions of
ellipsoids in the packing process, meaning that a
~34,000 voxel (volume-pixel) ellipsoid is likely. Consid-
ering a 100 9 100 9 100 domain, a grain this size
occupies ~3 pct of the synthetic structure.

D. Recursive Sampler

With a description of the ellipsoids in hand, the next
step is to seed them recursively into the simulation
domain. The user can incorporate an ellipsoid overlap

allowance (koverlap). The default value is 1.05, which
allows for slight overlap as small degrees of overlap
encouragement increases the fraction of space filled by
the ellipsoids that remain after the packing optimization
process. The criterion for recursive subdivision is

amidkoverlap<bboxmax ½3&

with amid as the intermediate semiaxis of the ellipsoid
and bboxmax as the maximum dimension of the simula-
tion domain. When the ellipsoids are placed, their
centroid will lie within the subdivided cell, ensuring
adequate dispersion.

E. Packing Optimization (Simulated Annealing)

Anoverfilling set of ellipsoids results from the recursive
sampling procedure. A subset is desired that optimally
fills space in the simulation domain.[3] Optimal filling
means that each volume pixel (voxel) of the structure is
contained in one and only one ellipsoid. Simulated
annealing is a global optimization strategy. The simu-
lated annealing algorithm chooses a subset of the initial
set of ellipsoids based on minimizing the system
energy.[20] The system energy (objective function) com-
bines penalties for ellipsoid overlap and for gaps. First, a
random subset is chosen roughly equal to the domain
volume (Figure 1(a)) using an adjusted volume calculated
with MC integration. This algorithm estimates the filled
volume using MC integration.[2] MC integration com-
putes an estimate of a multidimensional integral:

I ¼
Z

v
f !xð Þd!x ½4&

where !x ¼ x1; . . . xnf g and V is a n-dimensional hyper-
cube (n = 3 for 3-D). The estimate of Eq. [4] is

I ¼ V
1

N

XN

i¼1

f !xið Þ $ V fh i ½5&

where N the sample size and !x1; . . . ; !xN are N random
points in V. fh i is the sample mean of the integrand.[21]

The more ellipsoid centers that fall within the ellipsoid
of interest, the smaller its volume estimate. This allows
a large enough subset to remain (with adequate disper-
sion) to attempt to pack the simulation volume with
simulated annealing: an ‘‘initial screening’’ of ellipsoid
fitness. The result is a more representative estimated
filled volume of each ellipsoid.[3] The system energy is

Table I. A Progression of Truncation Thresholds of a Log-Normal cdf with Corresponding Percent of Distribution Truncated,
Likelihood of Selection of the Threshold, and the Largest Ellipsoid that Could be Sampled Under the Enforced Truncation

Truncation ln(…)
Pct Log-Normal
Distribution 1 in …

Largest Ellipsoid Sphere
Equivalent Radius

1.20 5.50 9 10–9 1.82 9 108 20
1.18 2.79 9 10–7 3.59 9 106 18
1.16 9.17 9 10–6 109,107 16
1.14 1.92 9 10–4 5203 14
1.12 2.52 9 10–3 396 12
1.10 2.04 9 10–2 49 10

2812—VOLUME 43A, AUGUST 2012 METALLURGICAL AND MATERIALS TRANSACTIONS A



determined using the overlap and gaps between the
ellipsoids

a ¼ $x
1$ 1

f2
1$ E2

f2

& '
½6&

In Eq. [6], a is the overlap cost (energy), x is an
overlap encouragement factor, f is a zero overlap
penalty, and E is an ellipsoid function that compares
an ellipsoid to a given point (Eq. [7]). For all instanti-
ations, x = 1.0 and f = 0.95 (empirically chosen). This
energy (Eq. [6]) is minimized through transformations
(add, subtract, swap, and jog) on the collection of
ellipsoids. If the transaction decreases the system energy,
it is always accepted. If it increases the energy, then its
acceptance is determined by how far along the annealing
schedule the procedure is. As the anneal progresses, the
criteria become more stringent[2] as the effective tem-
perature is decreased. The result is illustrated in
Figure 1(b).

E ¼ i$ x

a

& '2

þ j$ y

b

& '2

þ k$ z

c

& '2

½7&

F. Cellular Automaton

The simulated anneal algorithm generates an optimal
set of ellipsoids, but regions remain that either contain
multiple ellipsoids or are unoccupied. A CA densifies
the structure.[2] The collection of ‘‘active’’ ellipsoids is
placed on a discrete 3-D grid. The ellipsoid centroids
are used as nucleation sites, with the larger ellipsoids
being ‘‘nucleated’’ first. The ellipsoids are allowed to
grow until they impinge and fill space (Figure 2).[2,3]

The time increment is chosen so as to obtain an
increase in radius of each grain of approximately one
voxel.

G. Postprocessing

Three different postgeneration schemes are presented
subsequently. The goal in postprocessing is to eliminate
any unrealistic byproducts of the generation process and
possibly to prepare the voxelized structure for surface
meshing. Note that some aspects of the degree to which
a synthetic microstructure resembles an experimentally
observed one have yet to be quantified.

Fig. 1—(a) Overfilled simulation domain. (b) ‘‘Active’’ ellipsoids chosen through the simulated anneal algorithm.[19]

Fig. 2—(a) Ellipsoids growing through the cellular automaton (b) resulting dense polycrystalline structure.[19]
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A minimum grain size threshold can be set in
postprocessing. If a structure has millions of voxels,
then it is reasonable to exclude grains consisting of only
a few voxels (maybe larger, depending on circum-
stances). Setting a minimum size causes the algorithm
to scan through the grains and merge any smaller grains
with which it shares most of its grain boundary area.
Setting a threshold is useful when trying to produce a
synthetic microstructure from a measured structure
because the minimum grain size is easily matched in
this fashion.

Grains can also be merged that have fewer NN grains
than a given valuewith theirmajorityNN.This is effective
for identifying and removing true ‘‘island’’ grains with
only one NN. Note that apparent surface ‘‘island’’ grains
frequently remain but have subsurface NN. This erosion
process has also proved essential for preventing ‘‘dan-
gling’’ voxels that lead to poorly formed surface meshes
and that subsequently hinder volumetric meshing.

The grains have been constrained to grow as ellip-
soids, which is what many of them resemble. Because
each grain grows outward a constant rate, there is no
opportunity for force balance to be established at triple
lines and the dihedral angles to approach equilibrium as
expected for annealed polycrystals. Applying (isotropic)
MC grain growth ‘‘relaxes’’ the grain boundary net-
works that the CA produces. In the MC Potts model,[22]

space is discretized on a simple cubic lattice (as also used
in the CA) with each point belonging to a particular
grain. Only points whose neighbors have different states
increase the energy.[23,24] The structure is evolved by
allowing each voxel to change or flip its grain ID if the
change decreases the system energy or by comparison
with a Boltzmann factor for an energy increase. A
random number sequence governs which voxel attempts
to flip. The algorithm results effectively in motion by
curvature of the grain boundaries. This results in larger
grains growing bigger at the expense of reduction in and
consumption of smaller grains. MC coarsening is also
effective in eliminating ‘‘island’’ grains. Anisotropy of
grain shape is lost quickly with the MC Potts Model,
however, so each voxel is typically given only 50 to 100
opportunities to flip. The effects of postprocessing are
discussed in Section VII.

III. TWIN INSERTION

In face-centered-cubic metals in general and certainly
the IN100 presented in this article, annealing twins are
an important feature of the structure. Twinning events
are one of the most important aspects of grain boundary
engineering because they enhance the fraction of special
boundaries. After the microstructure geometry has been
defined by one of the microstructure generation methods
described in Section II, the twin insertion algorithm
takes the voxel structure and adds additional grains to
simulate the annealing twins. The twin insertion algo-
rithm assumes that twin grains always section the parent
grain completely and that the parent grain resides on
either side of the inserted twin or that the twin does not
reside on the edge of the parent grain. The actual twin

morphologies are admittedly more complex than this.
Insertion of twins into the digital microstructures helps
produce digital structures that are more representative
of the experimentally observed microstructures that
contain annealing twins.
Prior to inserting annealing twins into the specified

microstructure, the frequency of R3 clusters must be
characterized. A R3 cluster is a set of grains in which
each shares a R3 boundary with at least one other grain
in the cluster. Because the R3 misorientation is used to
detect such clusters, no distinction is made between
coherent and incoherent twins. Given the R3 cluster
distribution (referred to as the target or preexisting R3
cluster distribution), the algorithm synthesizes annealing
twins in the structure such that the final R3 cluster
distribution matches the target distribution. To specify
the target R3 distribution, the relative frequency by
cluster size is converted to a list of R3 cluster sizes,
which are listed in order of decreasing size. At each
iteration step, the algorithm attempts only to match one
specified R3 cluster size by inserting annealing twins into
the grains and rotating the grain orientations to create
incoherent R3 grain boundaries. Therefore, the number
of iterations is related directly to the desired number of
target R3 clusters.
After the target R3 cluster size is specified, the

algorithm initiates the R3 clusters by using the preex-
isting R3 clusters. If the target cluster size is smaller than
the preexisting R3 cluster, then the grains in the
preexisting R3 cluster are used as the seed grains for
synthesizing twins and initiating the R3 cluster growth.
If no preexisting clusters satisfy the size criteria, then a
grain is chosen at random to initiate the R3 cluster.
Once the grain has been specified, twin insertion

begins by identifying all the voxel positions that belong
to the chosen grain and calculating the center of mass
and spherical equivalent radius of the grain. If the radius
of the grain is smaller than 5 voxels, the algorithm does
not attempt to insert twins into the grain. One of the
four variants of the h111i is chosen at random and the
corresponding grain orientation for the twin is calcu-
lated by rotating the orientation of the parent grain
60 deg about the same h111i variant that was chosen. A
fixed number of attempts is made (arbitrarily set to 40)
to insert up to six twins into the chosen grain by
identifying the orientation of the grain and calculating
the h111i (the variant that was chosen) boundary plane
for the grain in the sample reference frame. The
calculation of the h111i boundary plane to insert into
the grain is based on the parametric definition of a
plane, where a plane is a set of points that fulfill the
following conditions:

a x$ x0o
( )

þ b y$ y0o
( )

þ c z$ z0o
( )

<tolerance ½8a&

xo; yo; zoð Þ ¼ centroid of the grain ½8b&

x0o; y
0
o; z

0
o

( )
¼ xo; yo; zoð Þ þ D ( nð Þ ½8c&

where D is the distance between the plane and the
centroid of the grain, and the other definitions of the
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variables are based on Figure 3.[24] The tolerance in Eq.
[8a] determines the thickness of the grain and typically is
set as the minimum tolerance required by the grain with
an additional random value that ranges from 0.8 to 1.3.
The distance from the centroid of the grain (D) in Eq.
[8c] is also chosen at random to have a value that is in
the range of 0 to 5 voxels away from the spherical
equivalent radius of the grain. The choice of limiting the
maximum value for D to be 5 voxels smaller than the
grain radius is to avoid inserting twins on the edges of
the chosen grain. The D value is tracked as each twin is
inserted into the grain such that any subsequently added
twins are not allowed to appear within approximately
3 voxels from any previously inserted twins. This
ensures that, as more twins are added into the grain,
the twins will not intersect or overlap with one another.
The intersection of the twins is avoided to allow easier
tracking of the R3 clusters.

Once twin insertion completes on the specified
grain(s), all the neighbors of every grain included in
the current R3 cluster, with priority given to the
neighbors around the first and last grains in the cluster,
are tested as potential candidates for connecting to the
current cluster through an incoherent R3 grain bound-
ary. To be accepted into the R3 cluster, the potential

candidate must not cause the current R3 cluster to
exceed the target cluster size. If the potential grain
belongs to a preexisting R3 cluster or a R3 cluster that
was constructed during a previous iteration step, the
clusters are allowed to merge if the final cluster size does
not exceed the target cluster size. When two R3 clusters
need to be merged, the grain orientations of the smaller
sized cluster will be rotated such that the grain boundary
between the two clusters will be an incoherent R3
boundary. If the merged cluster was a preexisting cluster
or if the single potential grain is accepted, then
annealing twins are synthesized in the accepted grain(s).
All the boundaries surrounding the current cluster are
then analyzed to ensure that if any rotations performed
on the grain orientations generated new R3 boundary
relationships, the related grains are included in the
current cluster count. The procedure of finding potential
candidates to add to the cluster is then repeated until
either the current cluster size is larger or equal to the
current target cluster size or no grains can be added
further to the current cluster. The pseudo code for the
algorithm can be found in Appendix A.
An alternative to using R3 cluster sizes as the target

for twin synthesis is to use only the number of twins as
the target. When only a desired number of twins is
declared (as in the case of this study), the algorithm
chooses the grains randomly in the structure and
performs the same twin insertion method outlined
previously. Once twins are synthesized in a grain, the
grain is removed from the list of potential grains for
inserting the next set of twins.

A. Controlling Twin Width and Placement
of the Annealing Twin

The variables of tolerance and D found in Eq. [8a] and
Eq. [8c] allow the control of twin width and the location
of the annealing twin, respectively. Figure 4 shows the
increase in twin width or twin thickness as the tolerance
value is increased from 0.5 to 3.0. Because the method of
inserting the twins relies only on performing a dot
product between the voxel positions and the <111>
normal, no resolution concerns are associated with the

Fig. 3—Schematic showing the calculation of the equation of a
plane.

Fig. 4—Synthesized twin grain (red) with D = 0 and tolerance values of (a) 0.5, (b) 1.5, and (c) 3.0. (Color figure online).
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twin width. The only concern involved with choosing an
inappropriate tolerance value is that if the chosen parent
grain is small, then a large tolerance value may convert
the entire parent grain to a ‘‘twin’’ grain, whereas a
small tolerance value may result in creating a twin that
consists of a string of 5 voxels. Therefore, a reasonable
tolerance value is in the range of 0.5 to 2.

Figure 5 shows the various placements of the synthe-
sized twin (colored in red) as the distance from the
center of the grain D is changed. The green colored twin
in Figure 5 represents a twin that is inserted with
D = 0. From Figure 5, it is clear that the variable D is a
direct representation of the number of voxels to shift the
center of the twin grain from the center of the parent
grain. As can be observed in Figure 5(c), as the D value
approaches the radius of the parent grain, the twin grain
approaches the edges of the parent grain.

IV. NICKEL-BASED SUPERALLOY IN100

Nickel-based superalloys, like IN100, are used pre-
dominately in aircraft turbine engines because they have
high strength and creep resistance at increased temper-
atures.[18] It is forged, subsolvus heat-treated, and
produced by powder metallurgy processing. IN100 has
a fine grain size (~3 lm), which presents an advantage
for EBSD in allowing many grains to be counted on the
mesoscale; the length scale in between microscopic and
macroscopic. The grain size remains fine during pro-
cessing because of the existence of carbide particles that
are ignored for these purposes. The processing results in
two microconstituents for each grain, ~80 pct c-phase
matrix with ~20 pct c’-phase coherent precipitates. This
investigation will consider only one type of grain,[5] and
the multiphase nature of the microstructure is ignored.
IN100 exhibits a log-normal distribution, particularly in
the mean field. A random orientation is observed for
IN100, which is assumed here.[25,26]

Variation in the high-cycle fatigue (HCF) life of IN100
specimens depends on the presence of hot spots or regions
with increased local driving force for damage forma-
tion.[27,28] Fatigue damage formation in polycrystalline

materials is driven mainly by microstructural slip, which
is exacerbated by interacting microstructure attributes
like grains, phases, and voids.
Microstructurally small fatigue crack (MSFC) forma-

tion in polycrystalline superalloys has been linked to
voids and pores. However, as processing techniques
have improved, cracks are observed increasingly at
crystallographic planes along which slip has concen-
trated. In another nickel-based superalloy (René 88DT),
cracks were observed to form predominately in grains
much larger than the average size.[29,30] This finding
suggests the importance of extreme values (i.e., upper
tails) in generating RVEs for MSFCs. The SVEs of
IN100 have been generated using Voronoi tessellation
optimized by a simulated annealing algorithm.[31,32]

Przybyla and McDowell[18] investigated 200 SVEs of
IN100 for MSFCs at 923 K (650 "C) using crystal
plasticity constitutive relations. Higher order moments
of grain size were not matched in this study; thus a large
number of instantiations were required to converge to a
significant result. The GSD of IN100 is shown and
discussed in the Section VI.

V. GRAIN SIZE DISTRIBUTION ANALYSIS

The traditional presentation of grain size distributions
has used histograms with continuous functions overlaid
for comparison with analytical forms for theoretical
probability densities. Such histograms have been the
basis for the common conclusion that polycrystal grain
sizes are log-normally distributed. Probability plots are
useful, however, both for showing correlation of sample
distributions to theoretical distributions on a linearized
basis and for examination of tails. In probability plots,
the x-axis displays sample quantiles and the y-axis scales
percentiles of a theoretical distribution; a standard
normal distribution (N[0,1]: l = 0, r = 1) comparing
the logarithm of grain size. A sample set is identical to
N[0,1] if the plot follows the x = y line. If the data
follow some other straight line, then it is a linear
transformation of N[0,1]. If the probability plot is flatter
than x = y, then the distribution on the horizontal axis

Fig. 5—Synthesized twin grain (red) with tolerance = 1.0 and D values of (a) –5, (b) 10, and (c) 20. The green twin grain marks the location of
where the twin grain would be if D was set at 0.
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is more dispersed than the one on the vertical axis. The
arcs and ‘‘S’’-shapes indicate relative skewness in the
compared distributions. To interpret a probability plot,
e.g., if a data point falls on the 40th percentile of N[0,1],
then 40 pct of N[0,1] samplings will be smaller and
60 pct will be larger. If this same data point corresponds
to a sample value at the 50th percentile, then the data
point will be closer to the sample axis, meaning that the
sample data are larger than that which N[0,1] predicts
for the 50th percentile.[33]

VI. MATCHING GRAIN SIZE DISTRIBUTION
STATISTICS

The GSD mean field is defined in this context as the
grains that fall within ± 2 standard deviations from
the mean. These grains are controlled most readily by
the input log-normal mean and standard deviation
which generate each ellipsoid. Note that all the synthetic
microstructures are assumed equiaxed and thus reduce
the ellipsoid description to that of a sphere unless
otherwise indicated. All the synthetic structures have
dimensions 100 9 100 9 100 and thus have 1 million
voxels. The IN100 measured structure shown in Figure 6
has 5861 grains with dimensions 389 9 146 9 184
(~10 million voxels). The dimensions for the synthetic
microstructures are among the largest a serial imple-
mentation can handle given the relatively high input
statistical variability. Also, all the synthetic microstruc-
tures in this study have a random distribution of
crystallographic orientations, which is what is observed
for IN100.[25,26]

A. Grain Size Distribution Mean Field

For the case of IN100, the mean is calculated from the
measured grain size statistics. The IN100 statistics are
summarized in Table II. The mean sphere equivalent
radius for the measured IN100 structure is 5.35 lm,
which is the target used in the code set to match the
synthetic mean sphere equivalent radius with the IN100
mean sphere equivalent radius. In this study, 1 lm =
1 voxel.

1. Instantiation 1
The synthetic structure shown in Figure 7(a) has a

mean sphere equivalent radius of 5.22 voxels. The
resulting mean-matched synthetic microstructure proba-
bility plot is displayed in Figure 8(a). Notice that the
mean-matched synthetic microstructure crosses the mea-
sured IN100 data at approximately zero as expected.
Because Figure 8 displays the logarithm of the sphere
equivalent radius over the mean sphere equivalent radius,
i.e., normalized by the mean, the new mean becomes one,
equivalent to zero when transformed to logarithmic
values. Because no attempt is made tomatch higher order
statistics other than the mean in this instantiation, that is
the only correspondence observed between the synthetic
mean-matched and IN100 datasets.

2. Instantiation 2
To match the GSD standard deviation with the IN100

GSD standard deviation, the mean is enforced as in the
first instantiation and for the second instantiation, the
standard deviation is also enforced to generate the initial
set of ellipsoids, again according to a log-normal
distribution. As shown in Table II, the measured
IN100 sphere equivalent radius standard deviation is
2.62. The IN100 mean and standard deviation are used
as targets for the synthetic microstructure generator.
The second synthetic microstructure, with mean and

standard deviation matched, is shown in Figure 7(b).
Notice the variability in grain sizes that was introduced
going from the mean-matched only first instantiation
(Figure 7(a)). Also note the artificial grain boundaries
created by matching the standard deviation and also
the ‘‘island’’-type grains appearance. These items are
addressed in Section VII. The mean and standard
deviation-matched probability plot is shown in Figure 8(a).
The mean field grain data points now coincide with the
IN100 measured mean field grain data points. However,
the upper and lower tails do not correspond to
the IN100 GSD because the latter does not follow a
log-normal distribution. Of particular concern is the
upper tail because of its fatigue implications, but both
tails are addressed in the next section.

B. Grain Size Distribution Tails

The lower tail represents the limit of data collection.
A log-normal distribution can predict too many small
ellipsoids which results in too many small grains in the
synthetic microstructure. By enforcing a minimum

Fig. 6—Image of experimentally measured nickel-based superalloy
IN100.[2,6]

Table II. Grain Size Statistics for Measured and Synthetic
IN100

Sphere Equivalent
Radius Measured Synthetic

Mean 5.35 5.17
Standard deviation 2.62 2.60
Minimum 1.79 0.52
Maximum 19.4 16.1
r (Standard deviation
of log (normalized size))

0.49 0.49
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threshold, the small grains are removed to match the
limit of data collection. The algorithm proceeds by
merging grains smaller than the input threshold with
their majority nearest NN grain (Section II–G).

1. Instantiation 3
The probability plot of the third instantiation, with

mean, standard deviation, and minimum-matched GSD,
is displayed in Figure 8(a). Note that the lower tail now
corresponds more closely to that of the IN100 GSD; a
marked improvement was observed from the mean and
standard deviation-matched microstructure.

It is apparent that grains smaller than the measured
IN100 grains prevail in this third instantiation.
Although it is important to reproduce grain sizes in

the tails accurately, one would not expect the lower tail
grains be ‘‘bad actors’’ in fatigue cracking. Additionally,
the minimum threshold is effective in removing many
island-type grains that were present in the standard
deviation matched second instantiation.

2. Instantiation 4
Examining the probability plot of the inclusively

matched mean, standard deviation, minimum, and
maximum (size-truncated) synthetic structure in Figure 8(a)
compared with the nonmaximum matched synthetic
instantiation, the upper tail now more closely matches
the upper tail of the measured IN100 microstructure.
This is a significant result because these few data points
in the upper tail represent the largest grains in the

Fig. 7—Images of synthetic microstructures with grain size (a) mean matched; (b) mean and standard deviation matched; and (c) mean, standard
deviation, minimum, and maximum matched with twins inserted and cleaned.
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mum, and maximum matched synthetic microstructure; and (b) experimentally measured IN100 and mean, standard deviation, minimum, and
maximum matched with twins inserted and cleaned synthetic microstructure.
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volume element. These grains have been observed to be
the ‘‘bad actors’’ in fatigue cracking.

VII. MICROSTRUCTURE CLEANUP

The previous section described a series of progressive
improvements that results in the size statistics of a
synthetic microstructure being well matched to an
IN100 measured microstructure. Now, a collection of
additional processes is described that serve to clean up
the size statistically matched synthetic microstructure by
improving the overall grain shape while not significantly
perturbing the size distribution.

As shown by Figures 7(b) and 9(a), many grains bear
a strong resemblance to their simple geometric origin,
i.e., spheres. Although the grains of IN100 are assumed
equiaxed, by enforcing spheres, the final synthetic
microstructure results in artificial boundaries. To provide

more grain boundary ‘‘realism,’’ the semiaxes are
allowed to vary ± 20 pct randomly, resulting in a full
scalene ellipsoid description. These ellipsoids can now
overlap and impinge on one another with a greater
range of shape.
When dealing with spheres, the axis orientation

distribution function (ODF) was irrelevant. Since the
grain geometry is now an ellipsoid, by applying a
random axis ODF, the ellipsoids vary in their alignment
with the edges of the simulation domain and the final
structure exhibits more ‘‘realism.’’ This claim of improved
realism is acknowledged to be qualitative, and future
publications will address its quantification. The Potts
Model is employed in postprocessing to coarsen the
grains and ‘‘relax’’ the boundaries. Five MC steps were
performed on the volume element in Figure 7(c).
As mentioned previously, through the size statistic

and packing matching processes, ‘‘island’’-type grains
are introduced (Figure 9(b)). Many of these grains seem

Fig. 9—Close-up images of Fig. 7(b) depicting (a) artificial grain boundary curvature and (b) an ‘‘island’’-type grain.
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to have only one NN; however, they may have subsur-
face NN. In any case, they are undesirable because they
do not correspond to observed microstructures. Similar
to the minimum threshold, these low-NN grains are
‘‘eroded’’ by merging them with their majority NN
parent grain. A NN threshold of 7 was enforced for the
synthetic microstructure in Figure 7(c).

The nickel-based superalloy IN100 has a high density
of annealing twins. The final step consists of inserting
twins into the synthetic microstructure, which is detailed
in Section III.[34]

The final cleaned, mean field- and tail-matched GSD
probability plot is shown in Figure 8(b) compared with
the measured IN100. The matched statistics are dis-
played in Table II. The GSD from the uncleaned
synthetic microstructure is preserved through the clean-
up steps while vastly improving the grain shape,
comparing Figures 7(b) and (c).

VIII. SUMMARY

The log-normal distribution fits the synthetic and
IN100 sample grain size data very well close to the
mean. However, neither the upper nor the lower tails fit
well over multiple instantiations. Preprocessing and
postprocessing tools were therefore introduced to tailor
the tails of the GSD extracted from the synthetic
microstructure and to match them to experimental data
sets. Cleanup steps improve the grain shape and help
pass the ‘‘eye test.’’

Matching just the mean sphere equivalent radius does
not even result in a mean field SVE. Matching the mean
and standard deviation sphere equivalent radius does
result in a mean field SVE. This is the point where many
modelers have stopped their statistic matching efforts
and used hundreds of instantiations to converge to
a significant result.[18] However, the importance of
extreme values to crystallographic fatigue damage for-
mation is well documented,[18] thus motivating the need
for better control and quantification of the tails of

synthetic GSDs. Matching the minimum grain size
through a minimum threshold erosion technique repre-
sents matching the limit of data collection. This was
shown to affect the entirety of the lower tail and
permitted us to match the experimental microstructure
of interest. Matching the upper tail through log-normal
distribution truncation represents matching the largest
grain size in a microstructure, which represents the
common ‘‘bad actors’’ in fatigue cracking. Although this
technique only enforces a maximum, its affect is felt
throughout the whole upper tail because the resultant
resampling of the log-normal distorts the log-normal
distribution in such a way that results in it matching the
upper tail of our microstructure of interest. At this
point, a synthetic microstructure exists that matches the
available size statistics. Shape statistics are also impor-
tant in 3-D microstructures. The algorithm makes no
attempt to match or track grain shape throughout the
course of generation. Nevertheless certain tools used in
post-processing also serve to improve the final grain
shapes. The tools include a combination of MC Potts
model, NN threshold, randomizing ellipsoid semi-axis
alignments and length, and inserting twins correct for
‘‘island’’-type grains, artificial grain boundary curva-
ture, and microstructural features. These additional
steps are compatible with the constraints that were
applied to match the GSD over the available range of
grain size, resulting in a synthetic 3-D microstructure
that also passes the ‘‘eye test.’’
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