Recently developed techniques to measure the structure of interfacial networks in three dimensions have the potential to revolutionize our ability to control the microstructures of polycrystals and interface-dominated materials properties. This paper reviews recent findings from two- and three-dimensional orientation mapping studies. The observations confirm a strong inverse correlation between the relative energies of grain boundaries and the frequency with which they occur in microstructures. The observations also show that during microstructure evolution, relatively higher energy grain boundaries are more likely to be shrinking while lower energy interfaces are more likely to be growing. These processes can lead to a steady-state distribution of grain boundaries that is influenced as much by the relative grain-boundary energies as by the exact processing conditions. Recent findings and emerging opportunities for grain-boundary characterization are reviewed in the final section of the paper.

I. Introduction

The paper is an account of the Robert B. Sosman lecture that was presented by the author on October 28, 2009, at the 111th Annual Meeting of the American Ceramic Society in Pittsburgh, PA. This paper presents an overview of progress during the past ten years toward understanding the mesoscale structure of grain boundaries and the networks they form within polycrystals. The paper will concentrate on findings from my students and colleagues in the Materials Research Science and Engineering Center at Carnegie Mellon University, which was founded in 1996 to study the mesoscale structure of polycrystalline materials. Three previous reviews of this topic have summarized the early work and the present paper is intended to focus on more recent progress and opportunities for the future.1–3

From the time of Kingery’s5, seminal Sosman lecture in 1974 through today, grain boundaries have been a subject of interest to ceramic scientists.5,6 The reason for this interest is clear: the vast majority of the solid materials used in engineered systems are polycrystalline. In other words, they are comprised of many single crystals joined together by a three-dimensional internal network of grain boundaries. In many cases, the performance and integrity of a material are determined by the mesoscale structure of the grain-boundary network. In the present context, mesoscale refers to the structural scale between the atomic scale and the macroscopic and the principal characteristics of the mesoscale structure are the relative areas of different types of grain boundaries and the way that they are connected. When a local property such as corrosion resistance, electrical conductivity, or slip transmission depends on the grain-boundary type, then the associated macroscopic property of the polycrystal will be influenced or even dominated by the mesoscale structure.

The relative areas of different types of grain boundaries are described by the grain-boundary character distribution (GBCD). The grain-boundary type is specified by five parameters.7 As parameters for this distribution, we select a misorientation type by specifying an axis-angle combination, and then plot the relative areas of grain-boundary planes on a stereographic projection (see Panel A). Anisotropic grain-boundary properties, such as the energy or mobility, can be parameterized in exactly the same way. The details of the methods used to calculate these distributions are provided in a previous review.1

In the past, it was typical to characterize the GBCD using fewer than five parameters. For example, it is possible to classify boundaries by the disorientation angle (a single parameter description, illustrated in Panel A(a)) or the axis and angle of disorientation (a three parameter description, illustrated in Panel A(b)). The reason to use a classification scheme with a reduced number of parameters is that the five-parameter space of grain-boundary types is large; if the space is discretized in 103 intervals, then there are roughly 6 × 103 different grain boundaries for a material with cubic symmetry.1 The number of distinct boundaries increases rapidly for finer discretizations and crystals with reduced symmetry. So, until recently, the number of distinct grain-boundary types was large compared with the number of observations it was possible to make. However, this is no longer the case. The development of high-speed electron backscatter diffraction (EBSD) mapping of orientations has made it possible to characterize and classify 104 to 105 boundaries.9,10

It is reasonable to ask why one should go make the effort to measure all five crystallographic grain-boundary parameters. The reason is that both individual grain-boundary properties and macroscopic materials properties vary with all five parameters. For example, Matsunaga et al.11 have observed substantial variations in the creep rate of Σ7 grain boundaries in alumina (boundaries with a 38.2° misorientation about [0001]) that depend on the grain boundary plane. Data on the relative energies
of [110] symmetric tilt grain boundaries in MgO and NiO also show a large effect of the grain-boundary plane. In this tilt series, there are two $\Sigma 3$ grain boundaries: one at a tilt angle of 70.5° and another at 109.5°. The 70.5° tilt boundary is a coherent twin bounded by (111) planes. These boundaries have the identical lattice misorientation, but different grain-boundary planes. For the case of MgO, the energy of the 109.5° $\Sigma 3$ boundary is 40% higher than the 70.5° boundary. For the case of NiO, the energy of the 109.5° $\Sigma 3$ boundary is 300% higher than the 70.5° boundary. The grain-boundary plane orientation parameters can also affect macroscopic properties. Finite element calculations have shown that residual thermal stresses in anisotropic materials vary both with the distribution of misorientations and grain-boundary plane orientations.

II. The Emergence of New Techniques to Measure GB Distributions and Energies

Automated EBSD, which makes it possible to accumulate a map of orientations on a surface, has had a transformative effect on the study of grain boundaries in polycrystals (see Panel B).
Panel B. Description of orientation mapping by electron backscatter diffraction mapping.

EBSD is used to map orientations in polycrystalline samples.9,10 The experiment is conducted in an SEM with the sample titled at a large angle with respect to the beam (a). A digital camera captures a diffraction pattern (b) that is characteristics of the volume of material that interacted with the beam. The pattern is automatically indexed to specify the local orientation of the interaction volume. The beam is then moved a fixed distance and the process is repeated. After recording local orientations on a grid of points, an “inverse pole figure map” (c) can be plotted. The map shows the local orientations in the crystal reference frame with reference to the sample normal direction. The relationship between color and orientation are defined by the standard triangle below. This is a tetragonal sample.

Currently possible measure several hundred orientations per second, enabling the determination of the shapes and orientations of thousands of grains in a reasonable amount of time. In orientation maps such as that shown in Panel B, four of the five grain-boundary parameters can be specified: the lattice misorientation and the in plane component of the grain-boundary plane orientation. The most common way to make an absolute determination of the final component of the boundary plane orientation is remove a small amount of material (small compared with the grain size) and repeat the measurement; a process referred to as serial sectioning. Manual serial sectioning coupled with EBSD to determine grain-boundary plane crystallography is technically demanding and time consuming. As a result, there are relatively few examples in the literature.15–21

It is also possible to calculate the GBCD through the stereological analysis of two-dimensional orientation maps.22 Because this is much easier than serial sectioning, it has been more widely adopted.8,23–44 The main limitation of stereology is that, in its current form, it can not be applied to materials with significant orientation texture.

The experimental barriers imposed by serial sectioning have been significantly reduced by dual beam microscopes that contain both an electron beam for EBSD mapping, and a focused ion beam (FIB) for material removal.45–52 The sequence of ori-
Orientation mapping and removing thin layers can be fully automated so that data can be acquired without user intervention. This has enabled the collection of large three-dimensional images of materials from which statistical information can be derived. An example is illustrated in Fig. 1. The three-dimensional images can also be used as the input to simulations of materials response.

Grain-boundary energies can be evaluated from the geometries of surface triple junctions (grain-boundary thermal grooves) or internal grain-boundary triple junctions. The geometries of these junctions carry an imprint of the interfacial energies (see Panel C). A key assumption in the process of extracting energies from interfacial geometries is that the triple lines where three interfaces meet are in local thermodynamic equilibrium and that this equilibrium is described by the Herring equation. Surface observations, made using atomic force microscopy, sometimes ignore torques and do not account for grain-boundary inclination. However, by measuring a large number of grooves, it is possible to compare the mean value and width of the distributions. The three-dimensional data can also be used to extract relative grain-boundary energies without any assumptions. In this case, the equilibrium condition is

Panel C. Description of the condition for interfacial equilibrium at triple lines.

Interfacial junctions carry an “imprint” of the interfacial energies; the relationship between energy and geometry is described by the Herring equation, shown below. This is vector balance of forces tangential and normal to the interface. The tangential forces, shown in blue, amount to a three-way tug-of-war at the triple junction. If one interface has a higher energy, it will pull the triple line along its tangent, annihilating the high-energy interface and replacing it by the lower energy interfaces. The normal forces, shown in red and often referred to as torques, result from anisotropy. If the differential of the energy with respect to rotation angle β is large, there is a normal force to rotate the boundary in the direction that lowers the energy. For the junction to be in equilibrium, the six forces must balance. This equation can be applied to triple junctions or thermal grooves at surfaces.
III. Recent Findings about Grain Boundaries

One of the first significant findings in our studies of the mesoscale structure of polycrystals was that grain-boundary plane distributions are anisotropic.1,18,23 In other words, when the misorientation of the grain boundary is fixed, some grain-boundary plane orientations are more common than others. This is illustrated by the data in Fig. 2, which shows that in MgO, grain-boundary planes prefer (100) orientations.19,63 The preference for certain low-index grain boundary planes occurs in a wide range of metallic and ceramic materials. The anisotropy of the grain-boundary plane distribution arises early in the genesis of the microstructure and, at least on average, has been observed to be invariant with grain size.66 The results in Fig. 3 show the distribution of grain-boundary planes in SrTiO\textsubscript{3} at grain sizes between 3 and 23 \(\mu\)m; within the expected experimental uncertainty, they are indistinguishable.66

The grain-boundary plane distributions are found to exhibit an inverse correlation with grain-boundary energy distributions. In other words, low-energy boundaries make up a larger fraction of the distribution than higher energy boundaries. For the specific grain-boundary plane distributions shown in Figs. 2(a)–(c), a comparison with the relative energy distributions (Figs. 2(d)–(f)) shows that local maxima in the populations usually correlate with minima in the energy. The histograms in Fig. 4 illustrate that when all of the data are considered, the inverse correlation persists.15,25,63 It is noteworthy that the low-energy boundaries have larger average areas and occur more frequently than expected.19 The distributions are also sensitive to segregating impurities, as is illustrated by the comparison of the grain-boundary plane distributions for MgO with a variety of dopants (see Fig. 5).15 This is presumably because of the effect that the impurities have on the grain-boundary energy anisotropy.

The measurement of grain-boundary distributions over all possible types of grain boundaries has provided a new perspective on which types of grain boundaries are common and have low energies. When one considers all of the data together, it can be concluded that the well known coincident site lattice model63–69 is not a good predictor of grain-boundary energies.19,24,70 One reason for this is that the CSL model only specifies the lattice misorientation of the boundary and, as noted above, there can be significant variation in energy and population as a function of grain-boundary plane. For example, Fig. 6 shows the grain-boundary plane distributions for the four highest coincidence grain boundaries in SrTiO\textsubscript{3}.19 Note that the populations of these grain boundaries do not exhibit maxima larger than what are found at low coincidence boundaries. Furthermore, even if we compare the orientations that have high planar coincidence (the symmetric tilt and twist boundaries marked in the figure), there is still no indication that these boundaries are significant with respect to energy or population. There are occasions when boundaries of high coincidence do have high populations and low energies. An example is the coherent twin in fcc metals, which is also a \(\Sigma 3\) boundary. However, comparisons across all high coincidence boundaries for a variety of materials provide no support for the idea that high coincidence alone leads to reduced energy.19,24,70

On the other hand, the one thing that does correlate with the presence of low-energy, high population boundaries is the presence of low index, low-energy surfaces.19,23,63 As illustrated in

Fig. 2. Grain-boundary populations (a–c) and relative grain-boundary energies (d–f) for \(20^\circ\) misorientations about the [100] (a, d), [110] (b, e), and [111] (c, f) axes for polycrystalline Ca-doped MgO.18,63 The distributions are plotted on stereographic projections, with [001] normal to the plane of projection and [100] along the horizontal direction in the plane of projection. All of the stereograms in this paper use the same reference frame. In (a–c), the orientations of the pure twist grain boundaries are marked with a filled black circle. In (a and b), the tilt boundaries are along the line between the unfilled circles.

Fig. 3. Grain-boundary plane distributions for SrTiO\textsubscript{3} at different grain sizes. In this cases, the grain-boundary distributions are plotted without consideration of the misorientation.66 Average grain sizes are 2.82 \(\mu\)m (a), 12.1 \(\mu\)m (b), and 23.2 \(\mu\)m (c).
Fig. 7, the most commonly occurring grain-boundary plane orientations are correlated with low index, low-energy surface planes. In fact, rather than seeking high symmetry configurations, the boundaries tend to favor configurations in which at least one side of the interface can be terminated by a low index plane. The energy cost for making a grain boundary can be thought of as the energy to create the two surfaces on either side of the interface, minus the binding energy that is recovered by bringing the two surfaces together. The observation that the total grain-boundary energy is correlated to the surface energies suggests that surface energy anisotropies make more of a contribution to the total anisotropy than the binding energy. As a final note, it should be mentioned that while the statements above apply to grain boundaries with misorientation angles $\leq 10^\circ$, the same measurements indicate the energies of low misorientation angle grain boundaries are best described by the well-established dislocation model of Read and Shockley.

IV. Model for the Development of Anisotropic Distributions

The observations described above do not by themselves provide a mechanism for how anisotropic distributions develop. If we imagine ceramics made by compacting and sintering equiaxed...
particles, it seems reasonable to assume that at some initial stage of microstructure development, the distribution of grain-boundary types is isotropic. Therefore, in the absence of specialized processing routes that have been developed to disrupt isotropy,

\[\text{79,80} \]

how do the anisotropic distributions arise from initially isotropic distributions? Computer simulations of grain growth confirm that anisotropic distributions can arise from initially isotropic distributions, that the distributions are inversely related to the energy anisotropy, and that mobility anisotropy is ineffective in creating anisotropic distributions.

\[\text{81–84} \]

On the other hand, the simulations provide limited insight into the mechanism by which anisotropic distributions develop. While some grains are increasing in size during grain growth, the process of grain elimination occurs simultaneously. We hypothesized that higher energy boundaries, which on average have smaller areas, are preferentially eliminated from the distribution during grain growth. To test this idea, we correlated the energies of specific grain boundaries, estimated from measurements of their thermal grooves, with whether or not the boundary is increasing or decreasing in size.

\[\text{85} \]

The AFM image in Fig. 8(a) shows a plane section of a yttrium aluminum garnet polycrystal. The surface has been thermally etched to groove the grain boundaries. The curvature of an individual boundary indicates its direction of motion. Note that in a section plane, each boundary is connected to four other grain boundaries. In some cases, the curvatures of the four attached boundaries indicate that as they migrate toward their center of curvature, the central boundary is increasing in size and in other cases the curvatures indicate that the central boundary is decreasing in size. The third and more common case is that there is a mixture of curvatures and it is not possible to determine how the area of the boundary is changing. Dividing the measured grain-boundary dihedral angles into three groups based upon this criterion, and using them to estimate the relative grain boundary to surface energy ratio,

\[\text{56} \]

a clear trend emerges (see Fig. 8(b)). This result demonstrates that, as hypothesized, those boundaries decreasing in size have, on average, relative energies that are larger than those that are increasing in size. It was also observed that grain boundaries with higher average energies have smaller average areas.

\[\text{85} \]

A simple model for the evolution of the GBCD can be developed based upon this principle.

\[\text{86} \]

First, it should be recognized that there are only three processes that alter the number fractions of grain boundaries. The first is that two grains can grow together to create a new boundary. The second is that two grains can pull apart, annihilating a boundary and leaving a triple line between them. These two processes, which are identical except for the directions of the two grains, are illustrated in Fig. 9. The third process is the collapse of a four-sided grain. The first process is the only one that creates new boundaries and the second process is the principal grain boundary annihilation mechanism. Therefore, we construct an equation for the rate at which boundaries are created and annihilated based upon estimates of the rates of the first two processes.

We begin by dividing the types of boundaries into \(N \) categories and assume that there are \(n_i \) boundaries of the \(i \)-th type. The probability that a single event \(e \) changes \(n_i \) is the probability that a boundary of this type is created, minus the probability...
that a boundary of this type is eliminated. Under the assumption of random grain orientations (no texture), the probability that a particular type of grain boundary is created is the same as the probability of finding this boundary in a random distribution \(p_i \). Because higher energy boundaries have been observed to be more likely to be eliminated and have smaller areas, it was assumed that the probability of elimination was directly proportional to the energy \(e \) of that type and inversely proportional to the area \(a_i \) of the boundary, where the area is a function of the energy. With these considerations, the probability that a single event changes \(n_i \) can be expressed in the following way:

\[
\frac{\Delta n_i}{\Delta e} = \left(p_i - \frac{e_i n_i}{\sum_{i} e_i n_i} \right)
\]

Beginning with the assumption that the initial distribution is isotropic \(n_1 = 1 \) and that the energy is anisotropic, it is found that the grain-boundary distribution evolves to a steady state, anisotropic grain-boundary population distribution that is inversely related to the energy (see Fig. 10). These results are consistent with (but not identical to) the main observations of the experimental studies and suggest that the energy biased elimination of high-energy grain boundaries is a plausible mechanism for the development of anisotropic GBDCs. A more sophisticated model with the same underlying principles has recently been developed based on mesoscale simulations and the new model makes it possible to invert an observed population distribution to determine an energy distribution.\(^{87,88}\)

V. Emerging Opportunities for Grain-Boundary Characterization

Although considerable progress has been made in the last decade in measuring and understanding grain-boundary networks in polycrystals, there remains much we do not know and there are several emerging techniques and areas of inquiry that provide us with new opportunities. For example, computational homology tools make it possible to study grain-boundary connectivity, high-energy X-ray diffraction techniques make it possible to nondestructively map orientations, and computational techniques make it possible to calculate realistic grain-boundary properties and to model materials response. The distributions of interfaces in multiphase materials have not been examined to the extent that single-phase materials have been investigated and role of grain-boundary complexities in determining microstructure have not been fully explored. Each of these issues will be described briefly below.

(1) Grain-Boundary Connectivity

While studies of boundary distributions have been successful in defining which types of grain boundaries are present in a polycrystal, much less is known about how the boundaries are connected. There have been several attempts to classify boundary connectivity based upon types, twin clusters, and percolation metrics.\(^{99,104}\) The mathematical tools of topology have occasionally been used to quantify connectivity, but their applications have been limited.\(^{100,104}\) However, a recent paper by Wanner et al.\(^{105}\) takes a new approach and explores the topology of the mechanical response fields in simulated polycrystals. As part of this study, the authors used homology metrics to characterize the connectivity of grain boundaries in a simulated polycrystal with uniaxial symmetry. The requirement for such an analysis, not used in any of the previous studies, is knowledge of crystal orientations.

In two dimensions, there are two topological metrics that measure the number of independent pieces of the network (referred to as \(B_0 \)) and the number of closed loops (referred to as \(B_1 \)).\(^{105}\) In the context of plane sections of grain boundary networks, \(B_0 \) measures groups of grain boundaries not connected to the rest of the network and \(B_1 \) measures continuous, closed paths of grain boundaries or the number of grains. It has recently been proposed that the ratio of \(B_0 \) to \(B_1 \) or the inverse connectivity, is a suitable metric for network connectivity.\(^{106}\) The ratio varies with the subset of boundaries considered and its variation as a function of the disorientation angle threshold is characteristic of the type of microstructure, providing information beyond that available from relative area measurements. As an example, Fig. 11 compares two Ni microstructures (reference and grain-boundary engineered) after separating the \(\Sigma^3 \) and non-\(\Sigma^3 \) boundaries. The network of \(\Sigma^3 \) boundaries in the reference sample is clearly disconnected and this is reflected in an inverse connectivity that is \(>1 \). On the other hand, the network of non-\(\Sigma^3 \) boundaries (Fig. 5(b)) is relatively connected and this is reflected in an inverse connectivity that is \(<1 \) and smaller than the value for the \(\Sigma^3 \) network. The situation is reversed for the grain-boundary-engineered sample. In this case, the inverse connectivity is \(<1 \) for the \(\Sigma^3 \) boundaries. The inverse connectivity of the network of non-\(\Sigma^3 \) boundaries is 16 times larger, indicating that it is relatively disconnected compared with the network of \(\Sigma^3 \) boundaries. This suggests that the main impact of grain-boundary engineering is to decrease the connectivity of twin related boundaries while simultaneously decreasing the connectivity of random boundaries. To establish connections to materials properties, it is necessary to carry out this analysis in three dimensions.

(2) Orientation Mapping by X-Rays

The three-dimensional orientation maps described in Section II were obtained by combining serial sections of planar EBSD orientation maps to reconstruct a three-dimensional volume of...
material. This, as with manual serial sectioning, is a destructive technique and does not permit time dependent studies polycrystalline structure. There are, however, a number of emerging high-energy X-ray techniques that allow orientation maps to be determined from transmitted X-ray beams. This makes it possible to create a three-dimensional orientation map, subject the sample to external stimulus (mechanical, chemical, thermal, or electrical) and map the structure again. An example of an orientation map recorded by high-energy diffraction microscopy (HEDM) is shown in Fig. 12; multiple slices of this type can be used to reconstruct a three-dimensional volume. Transmission X-ray techniques have been used to study the shapes of recrystallizing grains, the paths followed by cracks that advance by stress corrosion cracking, and the evolution of grain shapes during grain growth in aluminum (R. M. Suter, personal communication, 2010). Compared with EBSD techniques, X-ray techniques have the significant advantage of being nondestructive and the disadvantages of lower resolution and more limited availability (because of the need for a synchrotron X-ray source).

(3) Computational Techniques for the Study of Grain-Boundary Networks

The role of computations in studies of grain boundaries and microstructures is rapidly expanding and will play an essential role in the advancement of microstructural science. In fact, the emerging discipline of Integrated Computational Materials Engineering relies on models that are reasonably accurate and able to describe complex, three-dimensional structures. Among the many encouraging examples, a recent comparison of grain-boundary energies determined from experimental observations and from atomistic calculations provided useful information on the reliability and limitations of both techniques. First, for cases where there were a sufficient number of experimental observations, there is reasonable agreement between the experiments and the measurements, as illustrated in Fig. 13. This agreement provides confidence in both the experimental and computational methods. Because the reliability of the experimental data depends upon the number of observations, the calculations presumably provide more reliable values for boundaries that are infrequently observed in the real samples. Conversely, the experiment provides reliable values for some commonly observed boundaries that are challenging to simulate because of the size of the repeat unit.

Image-based simulations of polycrystals is an emerging method for probing the links between structure and a material’s response. The most attractive feature of this technique is that by using real microstructures as the basis for the calculations, the results are subject to validation. Once the calculations have been validated by experiment, it is then possible to explore the properties of hypothetical structures that have not yet been produced. In the past, calculations were generally limited to two-dimensional cases, mainly because the vast majority of images were also two-dimensional. With three-dimensional data more readily available, simulations have also become three dimensional and this is essential to capture properties that depend upon the connectivity of microstructural features. Analysis of the relationship between stresses and microstructural features indicates that both high and low stress regions occur in close proximity to grain boundaries.

(4) Interface Distributions in Multiphase Materials

While progress in understanding the GBCD for single-phase materials has been recounted above, very little is known about
In a multiphase material, there is a GBCD for each crystalline phase, a phase boundary character distribution (PBCD) defining the relative areas of different types of boundaries between crystalline phases, and/or an interface plane distribution (IPD) for the case when a gaseous, liquid, or amorphous phase is present at the temperature where the composite is processed. The GBCD and PBCD have five independent crystallographic parameters and the IPD has two independent parameters. In all multiphased materials, there are at least two distinct distributions. While it is true that numerous solid-solid orientation relationships have been studied for specific cases, the statistical distribution of such interfaces in two-phase materials have been only very recently investigated.

An example of a GBCD and IPD for the Co-WC system is shown in Fig. 14. Figure 14(a) shows an AFM image of polygonal WC crystals in Co, terminated by singular surfaces. In the right hand side of the image, the WC-Co boundaries have been artificially colored blue and the WC-WC grain boundaries artificially colored red. The IPD for the WC-Co boundaries is plotted in Fig. 14(b), indicating that interface planes are mostly (0001) and (1010). This interface distribution changes with the Co volume fraction, as indicated by the change in the carbide aspect ratio in Fig. 14(c). Because there is no reason to suspect a change in the interfacial energies, there must be other factors that influence the distribution. In this case, the interface energies and the grain-boundary energies compete to achieve an ideal distribution and the final distribution of interfaces must result from a compromise; the principles governing this compromise are currently unclear.

(5) Complexions
The recent introduction of the concept of interface complexions, the subject of the most recent Sosman lecture by Harmer, has transformed our view of the relationships between grain-boundary structure, composition, and properties. Complexions can coexist in the same polycrystal and if one complexion has a much different grain-boundary mobility, a bimodal grain-size distribution results. Recent findings have illustrated that different complexions lead to distinct energy and grain-boundary plane distributions.
knowledge of interfacial energies. Namely, complexion transitions should be sought in systems where the solute strongly segregates to the boundary and where precipitates with coherent, low-energy interfaces do not form.

(6) Rarely Occurring Features in Microstructures
While it is now possible to specify the most commonly occurring constituents in distributions of microstructural features, much less is known about features far from the mean values. While knowledge of the features close to the mean is sufficient for determining average materials properties, such as elastic response or thermal conductivity, it is the rare features far from the mean that frequently trigger dramatic changes in the microstructure, often with life-limiting consequences for applications. For example, recent simulations have shown that the long-term capacity of a rechargeable Li-ion battery depends on the extremes of the grain-size distribution in the anode and cathode and that Li dendrite formation, which leads to unpredictable battery behavior, occurs on the smallest grains. Similarly, when the size distribution of grains that initiate fatigue cracks in a Ti alloy are compared with the overall size distribution, it is found that the initiating grains are larger than the mean. Understanding crack initiation is complex because the stresses in a polycrystal are heterogeneous and failure is nucleated at one of the points of high stress; the basis for the selection of the crack initiation point has not been established. The complexion transitions described above that result in a discontinuous change in the grain-boundary mobility are another example of a phenomenon dominated by rare features in the microstructure.

It has been difficult to study rarely occurring features because it has not been possible to characterize enough grains. In microstructure characterization, there is always a compromise between resolution and the number of grains that can be observed; this is summarized by the schematic in Fig. 15. Each field in the figure estimates the compromise between the number of grains that can be characterized, the resolution of the measurement, and the ability of the technique to be automated and scaled. Among the currently available methods, the most facile is EBSD-FIB mapping. However, the speed of the current implementation limits the field of view to the area surrounded by the blue line. If one also considers HEDM capabilities, the range of current possibilities is approximately shown by the black rectangle and number of grains relevant to many processes is out of reach. This problem could be overcome if a broad ion beam (BIB) milling system was used with EBSD, so that the entire surface was milled at the same time, instead of very small areas milled in a serial fashion. Another development possible for the future is to couple robotic metallography (RoboMet) with Laue diffraction. Finally, improved data collection and reconstruction protocols are envisioned for the HEDM that will increase output rates by more than a factor of 10 and
VI. Summary
In the last decade, we have rapidly learned about how grain boundaries in materials are distributed in the five-dimensional space of grain-boundary types. The distribution is inversely correlated to the grain-boundary energy and the grain-boundary energy is determined more by the surface energies of the adjoining planes than by coincidence of the lattice. These findings provoke new questions at a time when both experimental and computational capabilities are rapidly expanding. During the next decade, it is likely that we will learn much more about how grain boundaries are connected, how grain boundary networks influence macroscopic properties.

Acknowledgments
This work would not have been possible without the interdisciplinary collaborations fostered by the Materials Research Science and Engineering Center at Carnegie Mellon University. The findings I reviewed here resulted from interactions with mentors, colleagues, and students in the Center. While I cannot list them all, it is appropriate to cite the contributions of B. L. Adams, S. J. Dillon, M. P. Harmer, C. S. Kim, S. B. Lee, J. Li, H. M. Miller, W. W. Mullins, T. Sano, D. M. Saylor, A. D. Rollett, and P. Wynnblatt.

References
Gregory S. Rohrer is the W. W. Mullins Professor of Materials Science and Engineering, the head of the Materials Science and Engineering Department, and the Director of the NSF sponsored Materials Research Science and Engineering Center at Carnegie Mellon University. He received his bachelor’s degree in Physics from Franklin and Marshall College in 1984 and his Ph.D. in Materials Science and Engineering from the University of Pennsylvania in 1989. He has authored more than 170 publications and received the National Science Foundation Young Investigator Award (1994), the Roland B. Snow Award of the American Ceramic Society (1998), the Ross Coffin Purdy Award of the American Ceramic Society (2002), the Richard M. Fulrath Award of the American Ceramic Society (2004), and the Robert B. Sosman Award of the American Ceramic Society (2009). Rohrer gave the Lawley lecture at Drexel University in 2005, the Winchell Lecture at Purdue University in 2007, and was the G. E. Distinguished Lecture for MS&E, Rensselaer Polytechnic Institute in 2009. Rohrer is an Associate Editor of the Journal of the American Ceramic Society—Rohrer vol. 94, no. 3.