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Abstract
The viscoplastic deformation of polycrystals under uniaxial loading is
investigated to determine the relationship between hot spots in stress and their
location in relation to the microstructure. A 3D full-field formulation based
on fast Fourier transforms for the prediction of the viscoplastic deformation
of poly-crystals is used with rate-sensitive crystal plasticity. Two measured
polycrystalline structures are used to instantiate the simulations, as well as a
fully periodic synthetic polycrystal adapted from a simulation of grain growth.
Application of (Euclidean) distance maps shows that hot spots in stress tend
to occur close to grain boundaries. It is also found that low stress regions lie
close to boundaries. The radial distribution function of the hot spots indicates
clustering. Despite the lack of texture in the polycrystals, the hot spots are
strongly concentrated in 〈1 1 0〉 orientations, which can account for the observed
clustering. All three microstructures yield similar results despite significant
differences in topology.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The objective of this paper is to investigate the characteristics of local concentrations of high
stress under plastic deformation in ductile single-phase polycrystals. The motivation for the
investigation is to learn more about events leading up to the nucleation of damage such as voids
in ductile fracture. The hypothesis is that the polycrystalline structure is effectively a composite
structure in which each grain affects the deformation of its neighbors and perhaps beyond. It is
thus a mesoscale investigation between the scale of individual dislocations and their interactions
and the scale of components and stress (or strain) concentration in the engineering sense. We
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focus on characterizing hot spots in the stress field, or, more precisely, local fluctuations
above the mean stress. One potential application is in stress-based approaches to damage
initiation and growth. Other approaches to damage initiation have been explored, generally
at the statistical level (as opposed to the detailed examination of full-field solutions as in this
work), e.g. the dissipation-based approaches of Przybyla and McDowell [1] and Charkaluk
and Constantinescu [2]. Accordingly, we explore a stress-based approach primarily to develop
the tools required to understand hot spots in detail. Since full-field solutions are calculated
on a regular grid, it seemed important to avoid dealing with the behavior at individual points.
Therefore, a threshold is applied to the stress field and the clusters of high stress points in
the upper 10% or less of the distribution are used for analysis. Several questions are posed
concerning the sizes, spatial arrangements and crystal orientations in the high stress clusters.
For examining spatial relationships with microstructural features, (Euclidean) distance maps,
e.g. [3], proved useful, for quantifying proximity of hot spots to boundaries, etc. Note that in
some circumstances the strain(rate) fields may be more important. In a previous paper on high
volume fraction composites [4], for example, it was found that the strain-rate field exhibited
the greatest sensitivity to microstructure.

2. Review

Previous work on microstructurally resolved plasticity has addressed a number of issues similar
to those examined here. Barbe et al [5] found that, whereas the global response is insensitive
to mesh refinement, the amplitude of local variations in stress increases slowly with increasing
mesh refinement. Diard et al [6] performed finite element simulations on polycrystals with
properties for hexagonal metals. Although they determined that more than 400 integration
points were sufficient to resolve intragranular gradients in stress and strain, they did not arrive
at any definite conclusions about the influence of grain boundaries. Kanit et al [7] examined
the differences arising from using a mesh conformed to the grain structure, i.e. with relatively
smooth grain boundaries, versus a voxel-based mesh, i.e. with stair-stepped boundaries. They
found only minor differences between the two cases in the local field values. They also
noted that great care must be used in determining how large a volume may be regarded as
representative, in the sense of demonstrating converged values for properties such as modulus.
The dispersion in modulus of thermal conductivity converges significantly more slowly (with
numbers of realizations) than the mean values, not surprisingly. In general, the available
results of microstructurally resolved simulations show that in single-phase polycrystals, at
least, substantial intragranular gradients in stress and strain exist although the grain structure is
always apparent in the stress and strain fields. Lewis et al [8] used anisotropic elasticity FEM for
a 3D microstructure of a commercial stainless steel Al6XN, and investigated correlations of the
hot spot (von Mises equivalent stress) distribution, distance to the nearest grain boundary, grain
boundary character and imposed loading condition using various visualization and analytical
techniques. No clear correlations were found. The spatial distribution of hot spots and its
relation to microstructural features vary by imposed loading conditions.

3. Approach and methods

3.1. Technical approach

The approach is to obtain full-field solutions for stress and strain rate using a three-dimensional
discrete fast Fourier transform (FFT)-based viscoplastic model that uses an image of the
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microstructure of interest as its input. This model has been pioneered by Suquet and
collaborators [9–11] and further developed by Lebensohn [12] and collaborators [13–15] for
the specific case of viscoplastic polycrystals. The scope of the investigation is limited in
this case to uniaxial tensile deformation of randomly oriented polycrystals. A single strain
step is applied such that no texture evolution is considered. Two different microstructures
are considered in detail with the motivation of investigating sensitivity to grain shape; a third
measured microstructure was investigated in less detail. The first was a synthetic microstructure
with 426 grains that was obtained from an isotropic Monte Carlo model of grain growth,
see [16] for example. This microstructure had equiaxed grains with the size distribution
characteristic of such simulations, which means that the spread in size is slightly narrower
than typically observed in experiments. The microstructure was discretized on a regular grid,
{xd}, with size 128 × 128 × 128. Exactly the same grid was used in the grain growth and
FFT models and the periodic nature of the prior grain growth simulation was carried over
in the microstructure to the FFT model. The second microstructure is derived from serial
sections taken through a sample of an IN100 nickel alloy. The processing of the serial sections
to produce the 3D image has been described elsewhere [17]. From the original image with
dimensions 389 × 146 × 184 (voxels), a subset with dimensions 1283 was extracted for use in
the FFT model. This measured microstructure is, of course, not periodic, which, by contrast to
the synthetic microstructure, means that there is a mismatch between grains across the edges
of the cell. As we shall see, however, this does not appear to lead to exceptional behavior at the
edges of the simulation cell. Orientations for the synthetic microstructure were drawn from a
list that represents a uniform (or ‘random’) orientation distribution or texture. In the measured
microstructure, the texture was found to be random, which is reasonable in light of the powder-
based fabrication of the material. Finally, a third experimentally derived microstructure, from
a serial sectioning experiment on pure nickel, was used to verify the generality of the results.
This microstructure was discretized on a grid of size 256 × 256 × 32 in conformance with
the available data set. In all the calculations, the critical resolved shear stress was set at one
and so the stress values are on an arbitrary scale; an average strain rate of one was imposed
on the polycrystal as a whole. {1 1 1}〈1 1 0〉 slip appropriate to fcc metals was used in all
calculations.

3.2. FFT method

The FFT-based formulation for viscoplastic polycrystals used in this work for property
simulation requires periodic unit cells and provides a solution of the governing differential
equations for stress equilibrium and compatibility. The microstructure is discretized on a
regular grid {xd}, which in turn determines a corresponding grid of the same dimensions in
Fourier space {ξ d}. An average strain rate Ėij is imposed on the unit cell and the response to
this mechanical boundary condition, in terms of stress and strain-rate fields, is determined. The
use of such regular grid means that the resolution, in relation to the microstructural features
such as grain size, is limited by the gridpoint spacing.

The FFT-based formulation has been described in detail in several previous publications
[9–15], (in particular, the specialization to viscoplastic polycrystals can be found in [12–15]).
Therefore we provide only the essentials of the method and readers are referred to the previous
publications for further details.

The viscoplastic FFT-based algorithm computes a compatible strain-rate field, associated
with a kinematically admissible velocity field that minimizes the average work rate and satisfies
at every point the constitutive relation with an equilibrated stress field. This constitutive relation
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is given by the well-known crystal plasticity rate-sensitive equation:

ε̇(xd) = γ̇o

Ns∑

k=1

ms(xd)

( |ms(xd) : σ ′(xd)|
τ s

o(x
d)

)n

× sgn (ms(xd) : σ ′(xd)), (1)

where the sum runs over all Ns slip systems, τ s
o and ms(xd) are the threshold resolved shear

stress and the symmetric Schmid tensor associated with slip or twinning system (s), ε̇(xd) and
σ ′(xd) are the strain-rate and (deviatoric) stress tensors evaluated at the gridpoints, γ̇ s is the
local shear-rate on slip system (s), γ̇o is a normalization factor and n is the rate-sensitivity
exponent.

The FFT-based method relies on the fact that the local mechanical response of a periodic
nonlinear heterogeneous medium can be calculated as a convolution integral between Green’s
function of a linear reference homogeneous medium and a polarization field, which collects
both the heterogeneity and the nonlinearity of the actual constitutive response. Since
convolution integrals transform to a simple product in Fourier space, the FFT algorithm serves
to transform the Green function and the polarization field into Fourier space and, in turn, to get
the mechanical fields by back-transforming the product of these two quantities into real space.
Given that the polarization that we seek depends precisely on the a priori unknown mechanical
fields, an iterative scheme is implemented to obtain, upon convergence, a compatible strain-
rate field and an equilibrated stress field. Because of the strong mechanical contrast associated
with the viscoplastic constitutive relation (equation (1)), the actual iterative procedure used in
the simulations presented here employs the augmented Lagrangians algorithm [10, 11]. This
more involved methodology (compared with ‘basic’ FFT scheme of Moulinec and Suquet [9])
updates both an equilibrated stress field and a compatible strain-rate field, along with two
auxiliary stress and strain-rate fields (related to each other by the constitutive relation, equation
(1)). The simultaneous convergence of (a) the equilibrated and auxiliary stress fields and (b) the
compatible and auxiliary strain-rate fields, guarantees that the resulting fields simultaneously
fulfill equilibrium and compatibility, respectively (see [11, 15]) for details).

4. Results

As mentioned previously, the result of the calculation is a pair of fields for the stress and
strain-rate tensors. Since the calculation is performed for only the deviatoric parts of stress
and strain rate, each grid point has a five-component tensor associated with it for each field. In
what follows, only the von Mises equivalent stress and strain rate (as scalar quantities) are used
for visualization and analysis and are referred to as ‘stress’ and ‘strain rate’ without further
qualification. Figure 1 shows (a) the stress and (b) strain rate on the exterior surfaces of the
synthetic microstructure. Variations in stress and strain rate appear to be associated with the
grain structure with a few grains being either low or high in stress or strain rate. The histograms
for (c) stress and (d) strain rate are approximately normal in shape although there are definite
cut-offs at both the lower and upper ends of the distributions that are related approximately to
the minimum and maximum Taylor factors [18].

Figure 2 shows (a) the stress and (b) strain rate on the exterior surfaces of the measured
microstructure in the nickel alloy. Variations in stress and strain rate are again associated with
the grain structure although in this case the grain structure is less clear in the stress map and
hot spots are evident in the strain-rate map. The histogram for (c) stress has two peaks and the
histogram for (d) strain rate, while approximately normal, has a long upper tail, consistent with
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Figure 1. (a) Stress field (von Mises equivalent stress) on the surface of the simulation volume for
the synthetic polycrystal. The color spectrum indicates stress level from high (red) to low (blue);
(b) Strain field (von Mises equivalent strain); (c) histogram of stresses; (d) histogram of strain rate.

the appearance of hot spots. Moulinec and Suquet [19] noted that such extended tails in the
histograms of strain rate indicate strain localization. The difference between the single-peak
stress histogram for the synthetic microstructure and the less regular histogram with two peaks
for the measured microstructure provides the first indication that microstructure can indeed
affect the viscoplastic response.

To determine whether or not the application of periodic boundary conditions introduced
significant error for the calculations with the (non-periodic) measured microstructure, a plot
of average stress on each plane across the simulation volume of the measured polycrystal
is shown in figure 3(a). More specifically, each of the points labeled ‘X’ corresponds to the
average stress for layers x1 = 1, 2, . . . 128, and similarly for ‘Y’ and ‘Z’. The lack of an excess
or deficit in stress at the edges of the volume (i.e. xi = 1 or 128) suggests that high (or low)
stresses are not introduced by the discontinuity in the microstructure, combined with periodic
boundary conditions. More specifically, the existence of a plane in each of the three directions
across which the grain structure is incompatible might have introduced locally high (or low)
stresses but such excess hardness in response is not apparent. The companion figure 3(b)
shows a cut across the stress field for the measured microstructure and again does not reveal
any indications of exceptional behavior near the edges of the simulation cell. This was also
discussed for 2D simulations by Lebensohn et al [20].
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Figure 2. Stress (von Mises equivalent stress) on the surface of the simulation volume for the
measured nickel alloy polycrystal. The color spectrum indicates stress level from high (red) to
low (blue), via white. (b) Strain field (von Mises equivalent strain); (c) histogram of stresses ;
(d) histogram of strain rate. Note the multiple peaks in the stress histogram and the long upper tail
in the strain-rate histogram.

4.1. Thresholding

Hot spots were identified by taking super-level sets, X+, of the von Mises equivalent stress,
σvM, in the sense that only points, x, with values of this field greater than a chosen threshold
value, σthresh, are included in the various analyses:

X+ = X+(σthresh) = {x ∈ &|σvM(x) > σthresh}. (2)

The sizes of the high stress clusters were binned, based on the spherical equivalent radius of
each cluster normalized by the average value and excluding clusters with less than two points.
The cumulative probability was plotted against the logarithm of the relative size, figure 4. Use
of probability paper to make a normal probability plot [21] allows one to test for a (log)normal
distribution based on the linearity of the plot. Threshold values in stress were chosen for each
microstructure so as to select the upper 5% of voxels (VX+/V& = 0.05). The size distributions
of hot spots are found to be close to log-normal, based on the straightness of the plot, figure 4.
Thus the size distributions of the hot spots are quite similar to those observed for the underlying
grain structure, given that grain size distributions are commonly found to follow a log-normal
distribution [22]. The plots start at substantial fraction because of the presence of many small
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Figure 3. (a) Plot of the average stress for each layer of voxels in the measured microstructure,
taking sections normal to each of the three grid axes. (b) Cut through the simulation volume
showing the von Mises stress. Neither figure exhibits exceptional behavior at or near the edge of
the simulation domain.
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Figure 4. Cumulative probability function for the logarithm of high stress cluster size for a stress
threshold that retains 5% of the volume, plotted as probability plot. The straightness of the line
indicates that the distribution is close to log-normal, except for the lower tail of the distribution.

clusters in the data sets. This is one of many indications that much larger systems need to be
simulated and analyzed in order to obtain statistically meaningful results.

4.2. Stress within hot spots

Figure 5(a) shows a plot of the average stress within the thresholded region (〈σX+〉) as a function
of the log of the volume fraction (VX+/V&) for a simulation of uniaxial tension parallel to
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Figure 5. (a) Semi-log plot of average stress in high stress clusters, normalized by the average
stress for a simulation of uniaxial tension parallel to Z in the synthetic polycrystal, versus the
volume fraction. The volume fraction of the high stress clusters decreases as the threshold stress
increases; (b) the same plot for the measured IN100 polycrystal. Note that the stress, as a fraction of
the average stress, has to asymptote to the maximum stress in the volume. Nevertheless, there is a
finite slope even at small volume fractions, which means that no intercept can be reliably measured.

the Z-axis for the synthetic microstructure. The result indicates a roughly semi-logarithmic
relationship over a wide range of volume fraction. Nevertheless, the data exhibit curvature over
the entire range and, as the volume fraction approaches zero at the left edge, it is not clear that
an intercept value can be reliably inferred. Such an asymptote (in stress) might allow a more
definite conclusion to be drawn about the relationship between the peak stress and the average
stress. Figure 5(b) for the measured IN100 microstructure (also uniaxial tension parallel to Z)

shows a similarly nonlinear relationship. The different (randomly oriented) microstructures
yield rather similar responses under the same simple loading conditions. Neither result shows
a simple trend.

4.3. Radial distribution function

Figure 6 shows a radial distribution function (RDF) based on the distances between the centers
of gravity of the grains in the synthetic polycrystal. The advantage of computing the RDF on
a periodic structure obtained from a Monte Carlo grain growth simulation is that no special
precautions are required to limit the range of vector lengths considered to lie entirely within
the simulation volume. The value of the RDF is zero for small separations and then rises as
smallest grain size is reached. The peak is found close to the average grain diameter with a
subsequent minimum. Variations in the RDF at larger separations appear to be just noise. The
result strongly resembles that of atoms in a liquid, which seems reasonable since grains are
only weakly correlated with their neighbors. Large grains, for example, tend to have smaller
than average nearest neighbors [23]. As far as the authors are aware, this is the first time that
such a result has been presented for grains in a three-dimensional polycrystal.

Figure 7 shows that the RDFs calculated for the thresholded structures at volume fractions
of VX+/V& = 2.5% (points) and 5% (thin line) rise sharply at much smaller separation distances
than for the grain centers (heavy line). This indicates that the hot spots tend to be clustered
together. Later we note that hot spots are concentrated in certain texture components, which
is consistent with this finding of clustering.
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Figure 6. Plot of the RDF for the centers of grains in synthetic polycrystals generated by Monte
Carlo simulation of grain growth. Two different grain sizes from different stages in the grain growth
process are shown; the circles with line correspond to the synthetic microstructure on which stress–
strain computations were performed and the crosses correspond to a structure with about 5000
grains. Note how the RDF is zero up to about 0.5 of the mean grain radius, 〈R〉, rises rapidly to a
peak at about 1.75 〈R〉 and then falls to the random value after a shallow minimum at 2.5 〈R〉. The
two different grain sizes yield very similar results.

4.4. Distance maps

In order to quantify the spatial relationship between high stress regions and the microstructural
features such as grain boundaries, triple lines and quadruple points, a Euclidean distance map
(see, e.g. [3]) for each feature was computed for each microstructure. That is to say, for each
point, the distance to the closest grain boundary, triple line or quadruple point was computed
and stored. To compute such (minimum) distances, it is necessary to classify each voxel based
on its neighborhood as being adjacent to a boundary, a triple line, a quadruple point or bulk.
Bulk voxels are completely surrounded by voxels of the same orientation; boundary voxels
have one or more neighbors with only one different orientation; triple line voxels are adjacent
to two different orientations and quadruple points have three unlike neighbors. Since some of
the grains are small in terms of the number of voxels across the grain, each non-bulk voxel
was treated as belonging to its smallest rank and all others above it. Expressed more simply,
a quadruple point also serves as a triple line point and as a boundary point; a triple line point
also serves as a boundary point whereas a point with only two unlike neighbors serves as only
a boundary point. This ensures that a reasonable ordering of the three distances is always
obtained with the grain boundary distance smallest and the quadruple point distance largest.
Figure 8 shows examples of distance maps for (a) grain boundaries, (b) triple lines or (c)
quadruple points in the synthetic polycrystal.

To analyze the relationship between stress and microstructure, the binning of points by
stress is then repeated and the distance values for each feature type are averaged for the points
in each bin in the stress histogram. Figure 9(a) shows the resulting plot of average distance to
(a) boundaries, (b) triple lines or (c) quadruple points for the synthetic polycrystal as a function
of stress level for the synthetic microstructure. Each point represents the averaged distance,
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Figure 7. The RDFs for the centers of high stress clusters in the synthetic polycrystal are plotted
for two different choices of threshold stress that yield volume fractions of 2.5% (solidus) and 5%
(thin line). Also plotted is the RDF for the grain centers of the synthetic polycrystal (heavy line
with open circles), which rises to a maximum a little below the average grain diameter. The RDF
for the clusters rises sharply at a smaller separation, indicating that they are clustered compared
with the grain centers.

Figure 8. Distance maps for the synthetic microstructure for (a) the distance to the nearest grain
boundary (units of voxels), (b) the distance to the nearest triple line and (c) the distance to the
nearest quadruple point. In all three maps, the distances are normalized by the global average value
in the structure (to match the normalized distances used in figure 9). The maps emphasize the
largest grains in the structure.

normalized by the global average distance, to the nearest feature for points over a certain range
of stress, normalized by the global average stress. For grid points with stresses close to the
average, the averaged distances are also close to the average values. As the stress increases,
the averaged distance decreases, which means, in simple terms, that the highest stress points
lie close to microstructural features, as one might expect. It is also the case, however, that
points with low stresses also lie close to boundaries, triple lines and quadruple points. This
perhaps suggests that not only do grain boundaries give rise to stress concentrations but that
shielding can also occur. Figure 9(b) shows the equivalent result for the measured polycrystal
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Figure 9. (a) Plot of the average distances for the three different microstructural features in each
stress class. Data taken from a calculation of uniaxial tension parallel to the Z-axis in the synthetic
microstructure. (b) Plot of the average distances for the three different microstructural features in
each stress class. Data taken from a calculation of uniaxial tension parallel to the Z-axis in the
measured microstructure of IN100.

and the trends are the same. There are slight differences between the two figures, such as the
more pronounced peak in all three values above the average stress. Such variations may offer
a signature of the differences between different types of microstructure. The variation in the
quadruple point distance is less regular but this may be a consequence of the smaller grain size.

4.5. Preferred orientation

Given that the polycrystals modeled both have a random (uniform) texture, one might expect
that orientation should play little role in the hot spots, if they are only associated with
geometrical features such as grain boundaries. In order to quantify any link, the texture of
the retained volume was computed for each threshold stress value. Since the deformation was
uniaxial tension, an inverse pole figure on the tension axis is sufficient to quantify the texture.
Figure 10 plots the intensity in the 〈1 0 0〉 (red), 〈1 1 0〉 (green) and 〈1 1 1〉 (blue) corners of
the unit triangle versus the volume fraction in the high stress clusters in the measured IN100
microstructure for uniaxial tension on the Z-axis, with inverse pole figures for selected points
to show the overall texture. The basic result is that, as the stress threshold is raised and the
volume fraction of the (high stress) clusters decreases, so the texture becomes increasingly
concentrated in the 〈1 1 0〉 corner of the unit triangle. At lower threshold levels (and larger
volume fractions), the 〈1 1 1〉 component is dominant, however. It is clear, therefore, that
there is a link between the presence of a hot spot and the orientation of the material at that
location. Similar results were obtained for uniaxial tension parallel to X and Y in the measured
polycrystal and in the synthetic polycrystal.

5. Discussion

5.1. Size distribution

The size distribution of the high stress clusters is interesting for the fact that it is so
similar to the approximately log-normal distribution observed for the grains in polycrystalline
microstructures. This suggests that it may be interesting to look for correlations between
cluster size and the size of the containing grain.
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Figure 10. Plot of the intensity in the 1 0 0, 1 1 0 and 1 1 1 corners of the inverse pole figure for
the high stress clusters versus volume fraction, calculated as a function of the stress threshold. For
selected points, complete inverse pole figures are the inset to show the development of the 1 1 0
fiber texture. Note that the intensity in the 1 1 1 corner rises more rapidly at first with decreasing
volume fraction than that in the 1 1 0 corner but then decays away. Data taken from a calculation
of uniaxial tension parallel to the Z-axis in the measured microstructure of IN100.

5.2. Hot spot clustering

The result that the RDF for grains is similar to that of amorphous solids is analogous to the
Bernal [24] model of atomic structure in liquids. The RDF is widely used in studies of particle
packing, e.g. [25], and there is further obvious analogy here. The first peak in the RDF for
packed particles, however, typically occurs at one particle (average) diameter, whereas the
first peak in the grain center RDF occurs at less than the average grain diameter. Space filling
grains can, self-evidently, pack closer together than particles. By contrast, the hot spots are
significantly clustered when compared with the grain centers. This result is consistent with
the finding that the hot spots tend to be concentrated in the 〈1 1 0〉 texture component. This
point will be discussed further below.

5.3. Effect of boundaries

Grain boundaries are locations where the crystal orientation changes from one grain to the
next, so it is to be expected that the hot spots in stress lie close to boundaries. The Taylor
theory of polycrystal deformation is a useful first approximation that says that compatibility
for large strains dominates over stress equilibrium; this in turn means that there is, in general,
a different multi-axial stress state in each grain in order that multiple slip can occur and the
imposed strain be accommodated. At a grain boundary, however, there must be some gradient
in stress since neighboring grains have different multiple slip stress states. The result that
the trends are similar for both triple lines and quad points to first order is also reasonable
because these locations are also where incompatibility in the plastic response is significant.
It was somewhat counterintuitive, however, to find that low stress points also lie close to the
microstructural features of interest. However, the maps of stress show a number of examples
where a high stress grain lies next to a low stress grain. This suggests that the microstructural
features can shield certain regions to a certain extent. The possibility of different (neighboring)
grains having different load-carrying capacities was discussed by Qidwai et al [26].
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Figure 11. Pure nickel polycrystal sampled by serial sectioning; each grain is colored using a
typical inverse pole figure scheme such that red indicates a 1 0 0 plane, green 1 1 0 and blue 1 1 1.

5.4. Crystal plasticity

The strong correlation of high stress points with specific orientations is less surprising than it
might at first sight appear. The 〈1 1 0〉 corner is a high Taylor factor orientation, meaning that
this is where the ratio between the magnitude of the applied stress and the critical resolved
shear stress is at a maximum. However, the 〈1 1 1〉 corner has the same maximum Taylor factor
(for uniaxial tension) as the 〈1 1 0〉 corner, with a shallow minimum about halfway in between.
At moderate stress threshold levels, both the 〈1 1 1〉 and 〈1 1 0〉 corners are emphasized in the
hot spots, as shown by figure 10. It is only at the highest stress levels that the 〈1 1 0〉 corner
is strongly selected. As discussed by Hosford [27], the difference between single slip and
multiple slip in uniaxial flow reaches its maximum in the 1 1 0 corner of the unit triangle. In
the 1 1 1 corner, by contrast, the reciprocal Schmid factor and the Taylor factor as equal, as
is also the case in the 1 0 0 corner. This suggests that there is some link between the conflict
between single and multiple slip and the occurrence of high stresses in a grain. A previous
analysis of intra-grain misorientation development in copper [15] found that the most rapid
misorientation development occurred for orientations close to the 〈1 1 0〉 corner. This was
linked to Dillamore’s deformation band development [28, 29] and the ambiguity of orientation
change for grains that can rotate towards either the 〈1 1 1〉 or the 〈1 0 0〉 corner.

5.5. Pure nickel case

A reasonable question is to ask whether the characteristics of the mechanical response of the
measured microstructure are specific to that particular sample. Accordingly, we extracted a
subset of a similar material, i.e. pure nickel, from a different serial sectioning experiment [30]
and performed a similar computation on it. The geometry of the volume characterized,
figure 11, was thin and broad, with dimensions 416 × 374 × 30, from which a subset for
the simulation grid was extracted with dimensions 256 × 256 × 32. The offset from the edges
of the measured volume was 50 voxels in the x and y dimensions and a buffer layer, two
layers thick, was added to the z dimension to obtain a cell with power-of-two dimensions. The
simulation volume contained 709 grains ranging in size from twenty to 89 232 voxels; grains
smaller than twenty voxels were merged with the neighboring grain with the largest contact
area with the small grain. The deformation applied was a single strain step of 2% uniaxial
tension in the X (sample 1) direction.
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Figure 12. (a) Stress (von Mises equivalent stress) on the surface of the simulation volume for the
measured pure nickel polycrystal. The color spectrum indicates stress level from high (red) to low
(blue), via white. The size of the simulation domain was 256 × 256 × 32. (b) Strain rate.
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Figure 13. Plot of the average distances for the three different microstructural features in each
stress class for the pure nickel microstructure.

Figure 12 shows both (a) the stress and (b) the strain-rate fields on the surface. Just as
with the previous simulations, the grain structure is partially apparent in the stress field. The
variation in stress within the high stress (thresholded) regions followed a similar trend to that
seen in the nickel alloy case.

Figure 13 shows that the variation in average distance for each of the three microstructural
features follows similar trends as seen previously, i.e. that stresses at both the high and low end
of the spectrum are located close to grain boundaries, triple lines and quadruple points. There
is an upturn in the distance measures for stresses between 1.2 and 1.35 times the mean stress,
which is more similar to the IN100 measured microstructure than the synthetic microstructure,
which trends downwards from a peak at about 0.9〈σvM〉. The synthetic microstructure has
equiaxed grains, especially by comparison with the two measured microstructures which both
have a high density of annealing twins. In both cases the fraction of '3 boundaries is about
30% by area. In the latter case, however, the measured volume only extends a fraction of the
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grain size in the Z-direction, which means that the grain shapes are not representative of the
polycrystal as a whole.

6. Conclusions

Hot spots (in stress), identified by thresholding by stress value, have characteristics that conform
to expectations to a certain degree. Use of the distance function quantified statistically the
fact that they lie near to microstructural defects such as boundaries, triple lines and quad
points. Many of their characteristics are, however, rather similar to the microstructure itself.
The hot spot spacings and size distributions are not far different from the grains themselves.
The RDF of the grain centers and the cluster centers was examined for the first time. This
comparison showed that the RDF of the grain centers is liquid-like and that the hot spots are
clustered relative to the grain center spacings. Several additional interesting characteristics
were identified. One unexpected result was that low stress points also lie close to defects,
suggesting that hot spots in dissipation rate and strain rate should also be investigated. Also,
hot spots, developed in an otherwise random texture, have a texture whose strength is inversely
related to the threshold level. The texture corresponds to one of the maxima in Taylor factor
as a function of orientation in uniaxial tension, namely the 1 1 0 orientation, but the other
maximum, 1 1 1, is only associated with hot spots at low values of the threshold stress.
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