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Abstract

Recent experimental and computational studies have produced two large grain boundary energy data sets for Ni. Using these results, we
perform the first large-scale comparison between measured and computed grain boundary energies. While the overall correlation between
experimental and computed energies is minimal, there is excellent agreement for the data in which we have themost confidence, particularly
the experimentally prevalent R3 and R9 boundary types. Other CSL boundaries are infrequently observed in the experimental system and
show little correlation with computed boundary energies. Because they do not depend on observation frequency, computed grain boundary
energies aremore reliable than the experimental energies for low population boundary types. Conversely, experiments can characterize high
population boundaries that are not included in the computational study. Together the experimental and computational data provide a com-
prehensive catalog of grain boundary energies in Ni that can be used with confidence by microstructural scientists.
! 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Grain boundary free energy provides the driving force
for grain growth in polycrystalline materials, and as Cyril
Smith recognized over 60 years ago, variations in grain
boundary energy alter the kinetics and morphology of
microstructural evolution [1]. Because of its importance,
many investigators have attempted to survey grain bound-
ary energies using various experimental techniques [2–16],
but their data sets were limited due to the difficulty of mea-
suring accurate interfacial energies in a bulk solid. Compu-
tational models have also been applied, c.f. reviews in Refs.
[17–21], but computational restrictions limit data sets pri-
marily to high symmetry boundaries.

Two recent studies have changed this situation.
Researchers at Carnegie Mellon University (CMU) [22]
and Sandia National Laboratories (SNL) [23] have utilized
new, high-throughput methods to measure energy for large

ensembles of grain boundaries. Taken together, these stud-
ies increase our database of grain boundary energy mea-
surements by orders of magnitude.

The CMU and SNL studies differ in approach – exper-
imental versus computational – and also in sources of
uncertainty and error. In this paper, we will compare the
CMU and SNL data sets for grain boundary energy in
Ni. Our goal is to perform the first large-scale comparison
between measured and computed grain boundary energies,
in order to develop a comprehensive, validated, well-char-
acterized database of grain boundary energies in Ni that
can be used with confidence by microstructural scientists.

2. Method

2.1. Experimental grain boundary energy measurements

2.1.1. Methodology
An experimental method for measuring a large number

of relative grain boundary energies in a polycrystalline
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microstructure has previously been described in detail [24]
and applied to MgO [25] and Ni [22] polycrystals. This
method presumes that all grain triple junctions are in equi-
librium so that each satisfies the Herring condition [26] (i.e.
balance of surface tensions and torques). If that is the case,
then each triple junction may be characterized by an equa-
tion with four (vector) unknowns: three capillarity vectors
and the triple junction line vector [27,28]. Since the triple
junction line vector may be measured directly, we are left
with N equations (one for each triple junction) and 3N
unknowns (one for each grain boundary).

In order to solve this system of linear equations, we
must decrease the number of unknowns. To do this, we
make the assumption, first articulated by Brandon [29],
that grain boundaries that are close in crystallographic
space are similar in energy. Thus, we can group boundaries
in energetic bins. Presuming all boundaries in a given bin
have the same energy, we reduce the 3N unknowns suffi-
ciently to permit solution of the system of equations using
an iterative optimization procedure [24]. The result is a set
of capillary vectors that can be transformed into grain
boundary energies if the grain boundary tangent and nor-
mal vectors are known. Because boundary energy is
derived from triple junction geometry, the measurement
yields boundary energies that are relative to one another,
not absolute magnitudes.

Applying this method requires characterizing a large
number of equilibrated triple junctions in three spatial
dimensions and five crystallographic dimensions. While
this would have been prohibitively difficult even a decade
ago, new automated techniques now make it tractable.
Four of the five macroscopic variables of grain boundary
crystallography can be measured efficiently using EBSD
and the fifth boundary orientation parameter, which also
gives the triple junction geometry, can be observed using
serial sectioning and reconstruction techniques. The syn-
thesis of these two methods has yielded large data sets of
fully characterized grain boundary ensembles that were
analyzed to give the grain boundary character distribution
(GBCD) and relative grain boundary energy distribution
(GBED) in MgO [25,30] and Ni [22].

2.1.2. Sources of error and uncertainty
To compare these data with other studies, it is important

to be aware of sources of non-systematic error (uncer-
tainty) and systematic error (bias). If triple junctions are
not in equilibrium, then the Herring condition will not be
fulfilled, and calculated energies will be inaccurate for all
boundary types. We ensure equilibrium by a careful anneal
schedule. Non-systematic errors also arise during the grain
boundary reconstruction process, as well described in Ref.
[30]; again, these errors should not vary with boundary
type but should provide uniform error bars.

The requirement that grain boundaries be binned into
groups provides a source of systematic error. Because
low-energy cusps are very localized in crystallographic
space, low-energy boundaries are inevitably binned with

nearby, higher energy boundaries; thus, the experimental
measurement method cannot resolve cusps and overesti-
mates the energies of low-energy boundaries. Adjusting
the bin width alters, but cannot eliminate, this error
because a finite bin width is necessary for the energy calcu-
lation to converge.

Finally, the energy measurements are not uniformly dis-
tributed among each grain boundary bin. For example, in
the Ni specimen a single boundary type, the coherent twin,
makes up almost 30% of the boundaries observed, and the
R9 tilt boundary type contributes almost 10%. On the other
hand, about 15% of the boundary bins contain fewer than
five energy measurements. This nonuniform sampling has
two effects. First, calculated energies will be less accurate
for less prevalent boundary types simply due to poorer sta-
tistics. Second, in the optimization algorithm used to calcu-
late energy, there will be a preference to optimize variables
that occur often and thus affect many of the N equations at
the expense of variables that affect few equations. The
result is that the error increases (perhaps more than pre-
dicted by statistical analysis) as the observation frequency
decreases.

While these errors are difficult to quantify individually
or collectively, it is certainly reasonable to expect error bars
on the order of 10%, with larger error bars for less fre-
quently observed boundaries.

2.2. Computational method

2.2.1. Methodology
The computational method for constructing a large

catalog of grain boundaries and measuring their energy
has been described in detail elsewhere [23]. To avoid bias
towards particular boundary types, the method examines
all planar boundaries that can be constructed within a
periodic cell of a specified maximum size. Having deter-
mined which pairs of grain orientations can fit inside
the simulation cell, we construct a multiplicity of bound-
ary structures for each orientation pair. We first translate
one crystal relative to the other by several offset vectors.
For each of the resulting structures, we place the bound-
ary plane at each non-equivalent position. For each of
these structures, we remove any overlapping atoms using
several different criteria. Finally, we use molecular statics
to minimize the T = 0 K free energy (i.e. the enthalpy) of
each distinct structure. For typical boundaries we mini-
mize several hundred to several thousand configurations;
the lowest energy structure is presumed the equilibrium
structure.

The material model for these calculations is an embed-
ded atom method (EAM) empirical interatomic potential
function [31], parameterized to represent Ni [32]. This par-
ticular potential function predicts the stable and unstable
stacking fault energies quite accurately, which suggests that
it is reasonable to use to examine planar defects such as
grain boundaries.
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2.2.2. Sources of error
Errors in calculated energies can arise from the bound-

ary construction or minimization processes. While the
boundary construction algorithm produces a large number
of candidate structures for each grain orientation pair,
there is no guarantee that the global minimum energy
structure is among them. However, most boundaries evince
a large number of nearly degenerate, nearly minimum
energy configurations without evidence of low-energy out-
liers. This suggests that most minimum energy structures
are at least reasonable approximations to the true
minimum.

Because the boundaries are constructed in a relatively
small periodic box, high symmetry boundaries (which often
have low energy) are over-represented in the sampling;
while this does not induce error in the energy calculations
themselves, it does bias the grain boundary distributions
toward high symmetry boundaries.

The molecular statics energy minimization calculates the
excess enthalpy, rather than the free energy, of the bound-
aries. It is known that entropic contributions cause the
boundary free energy to decrease with temperature by
about a factor of three, from 0 K to near the melting tem-
perature [33–35]. It has been presumed that this decrease is
similar for most boundaries, and recent studies support this
viewpoint, suggesting that free energy scales with the elastic
constants up to about 0.75 of the melting temperature [36].
If most boundaries vary with temperature in a similar man-
ner, then the measured enthalpies can be interpreted as rel-
ative (but not absolute) free energy values. However, there
is the potential that some boundaries do not scale like their
peers, perhaps due to structural transformations. The free
energy of such boundaries might be poorly represented
by their enthalpies. We have no way to determine which,
if any, boundaries are so affected.

Finally, as with all empirical atomistic simulations,
errors can arise from the physical model for atomic interac-
tions, i.e. the EAM interatomic potential function. Differ-
ent potential functions for the same material can give
substantially different property values, depending on which
parameters were used to fit the function. For calculating
grain boundary energies, we select a potential well suited
to planar defects. This potential was fit to the stacking fault
energy and low-index surface energies and yields values of
127 mJ m!2 for the stacking fault energy and low-index
surface energies ranging from 1950 to 2375 mJ m!2. These
compare well with the experimental values of 125 mJ m!2

for the stacking fault and an average surface energy of
2280 mJ m!2 [37]. Because the atomic environment differs
from a stacking fault or low-index surface more in a high
energy grain boundary than in a low-energy boundary,
we might expect the error to increase with boundary
energy. While the error in the computed grain boundary
energies is difficult to quantify in the absence of high fidel-
ity boundary energy data, typical error bars of 10% seem
reasonable, with the caveat that the error may not be con-
stant in boundary energy.

2.3. Comparing experimental and computational data

The experimental data set for polycrystalline Ni grain
boundaries is described in Ref. [22]; 37,000 triple junctions
were analyzed to provide approximately 105 grain bound-
ary free energy measurements. The grain boundaries were
discretized into equal volume bins that span approximately
8.2" of all five angular parameters such that there are
17,894 discrete grain boundary types. The parameteriza-
tion and equal volume binning procedure, which account
for all symmetries and multiplicities of the crystal system,
are described in Ref. [38]. Computational results indicate
that the energies of boundaries within about 10" of each
other are well correlated [23], so the 8.2" bin size is reason-
able. It is worth noting that the experimental data set
includes both the distribution of grain boundary types in
crystallographic space (i.e. the GBCD) and the extracted
energy distribution (i.e. the GBED). The GBCD, which is
measured directly, is considered to be more accurate than
the GBED, which is a derived quantity.

The computational data set for Ni bicrystal boundaries
is described in Refs. [23] and is publicly available as online
supplemental material to that paper; 388 distinct grain
boundaries were constructed and characterized. To com-
pare these boundaries to the experimental data, we extract
the rotation angle and axis and boundary plane for each
and apply all possible face-centered cubic (fcc) symmetry
operators. For each equivalent boundary, we identify the
appropriate grain boundary type (i.e. bin) in the experi-
mental system and read the energy. The average energy
for all the equivalent boundaries is taken as the relevant
experimental energy, to be compared to the calculated
value.

3. Results and discussion

3.1. All boundaries

Fig. 1a compares the experimental and calculated grain
boundary energy for all 388 boundaries in the computa-
tional data set. Taken in aggregate, the calculated and mea-
sured energies show little correlation (unweighted
correlation coefficient RU = +0.18) and the linear curve
fit is unconvincing. For both sets, the lowest energy bound-
ary is the coherent twin (60"/[1 1 1], pure twist) and, in gen-
eral, boundaries with higher measured energies have higher
calculated energies. However, the distribution is broad and
there are a significant number of outliers.

A challenge to interpreting this data arises from the
unknown error bars. As discussed above, we expect the
uncertainty in the experimental grain boundary energies
to increase as the observation frequency decreases. The
boundary population per bin, P, varies widely in the exper-
imental data set, from 0.12 to 4500 times the population we
would expect in a purely random system (termed multiples
of a random distribution, MRD). If we weight the experi-
mental energy measurements by P, we obtain a linear fit
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to the calculated energies with a much higher correlation
coefficient (weighted correlation coefficient RW = +0.92),
as shown in Fig. 1b. The curve fit is intuitively more pleas-
ing and fits the low-energy boundaries, where we expect the
most accurate data, especially well. Thus, the correlation
between experimental and calculated grain boundary
energy is very strong for the data in which we have the
most confidence.

It is interesting to observe that the boundaries form
three distinct and separate clusters in population space,
as shown in Fig. 1b. The high population bins, with
P > 60 MRD, each contain 300 or more measurements,
and the curve fit is heavily weighted toward these boundary
types; this group includes only the R3 boundaries. The mid-
population bins, with 4 < P < 20, contain 20 or more mea-

surements per bin and include only R9 boundaries. Intrigu-
ingly, they seem to suggest a different linear fit between
experiment and simulation; the implications will be dis-
cussed below. The low population bins, with P < 2.5, con-
tain fewer than 16 measurements each, and most of these
bins contain fewer than five measurements. We would
not expect the data quality to be high for these sparse bins,
and indeed, there is substantial scatter about the linear fit.

Because high-energy boundaries are preferentially elim-
inated during grain growth (c.f. Refs. [39–41]), we expect
that low-energy boundary bins will be more populated than
high-energy bins in the experimental data. Fig. 1b confirms
this trend, although there are outliers.

3.2. R3. and R9 boundaries

Coherent and incoherent R3 boundaries are the most
frequently observed in the experimental system, comprising
almost 40% of the total grain boundary length. Because of
their high symmetry, they are also well represented in the
computational data, where 41 of the 388 simulated bound-
aries are of R3 type. Fig. 2a shows experimental and com-
puted energies for R3 boundaries; as these were the most
strongly weighted data in the overall fit, they unsurpris-
ingly show even stronger correlation when considered sep-
arately (RU = 0.71, RW = 0.95). There are two apparent
outliers, a (10 2 2)/(1 1 1) and an (8 1 1)/(5 4 4) boundary,
circled in Fig. 2a. However, neither boundary corresponds
to a local minimum in the relative boundary area distribu-
tion, as would be expected for a high-energy boundary.
Combined with the fact that they are not consistent with
the calculated energies, we consider these data question-
able. With the two outliers excluded, the correlation
improves slightly (RU = 0.80, RW = 0.98).

In polycrystals with many R3 boundaries, there is a
tendency for R3 boundaries to form R3–R3–R9 triple
junctions (c.f. Ref. [42]), which was confirmed in this sys-
tem [22]. R9 boundaries are the second most prevalent
boundaries in the experimental data set, and 23 of the
388 simulated boundaries are R9 type. However, the
computational boundary set included only four of the
most experimentally prevalent R9 boundaries, the low-
energy R9 tilt boundaries. Fig. 2b shows the experimental
and computed energies for R9 boundaries. There is a
modest correlation (RU = 0.43, RW = 0.48), which we
would expect to improve if additional highly populated
R9 boundary types observed in experiments were
included in the comparison.

In twinned or grain boundary engineered materials, the
R3 and R9 boundaries often form a network of boundaries
and triple junctions that is relatively distinct from the high
angle boundary network [42]. This implies that the triple
junction equilibrium equations, which are minimized to
calculate energy, may be divided into two disjoint types:
R3–R3–R9 triple junctions and other boundary junctions.
The two groups have quite different computational charac-
teristics, and it is possible that the optimization algorithm

Fig. 1. The relationship between experimental and calculated grain bound-
ary energy in Ni. (a) An unweighted linear fit to all the data (solid line) shows
little correlation and is not a good representation of the data. (b) A linear fit
weighted by boundary population,P, showsmuch higher correlation and is a
better representation of the data. Note that the data fall into three population
groups: P > 60 (red diamonds), 4 < P < 20 (blue squares), and P < 2 (green
circles).
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optimizes each separately, assigning different relative ener-
gies to each set. This possibility requires further study.

3.3. Other boundaries

Other CSL boundary types, including R5, R7, R11 and
R15, are well represented among the simulated boundaries.
However, few of the simulated CSL boundaries are
observed in the experimental data set at even the random
frequency (i.e. P < 1 MRD for nearly all boundary types).
As expected for low population boundaries, we see at best
modest correlation between the experimental and computa-
tional energies for these boundaries. Furthermore, the
slopes of the linear fits vary widely with boundary type,
indicating that the correlation between data sets does not

arise from proportionality between experimental and calcu-
lated energy.

It is interesting to consider how many additional exper-
imental measurements would be required to resolve the
energies of infrequently observed boundaries. Observation
frequencies of high population boundaries are about two
orders of magnitude higher than low population bound-
aries. Thus, to achieve confidence in low population
boundary energies comparable to that of high population
boundary energies would require about 102 times more
measurements than in the current data set. In this Ni sys-
tem, that implies about 4 " 106 triple junction characteriza-
tions, which is currently an intractable size. In other
materials, different boundary populations may require dif-
ferent system sizes. For example, because Al polycrystals
lack the R3 and R9 boundary subnetwork seen in Ni, the
boundary population distribution may be more uniform
in Al, permitting smaller experimental system sizes.

Because the computed energies are not dependent on an
observation frequency, their validity should not vary with
population. (Although since many low population bound-
aries are of high energy, systematic errors in energy might
be operative, as discussed above.) Furthermore, the good
correlation between experimental and computed energies
for high population boundaries at all observed energies
suggests that the computed energies are physically realistic
and representative. Thus, our conclusion is that the com-
puted grain boundary energies may be more reliable than
the experimental energies for low population boundary
types and can be used to approximate energies of bound-
aries that are experimentally inaccessible.

On the other hand, the experimental studies indicate
that certain commonly simulated boundaries are not pres-
ent in significant numbers in real microstructures and can-
not be considered typical boundaries. For example, a
number of computational studies have used the R5 sym-
metric tilt boundary as a model high angle boundary (c.f.
Refs. [43–45]). The GBCD data for Ni indicate that this
boundary is rarely observed, with a population P < 0.4
MRD. Likewise, some frequently observed boundaries,
such as most of the R9 tilt boundaries, were not included
in the computational boundary catalog. Clearly, experi-
ments can guide computational boundary selection to
ensure that relevant and important boundary types are
examined.

3.4. Boundary population correlations

While the grain boundary energy distribution is
extracted from the grain boundary character distribution
along with other geometric measurements, the GBCD is
measured directly and has fewer sources for error. Both
experimental [22,25] and computational [39,40] studies
have indicated that the population of grain boundaries in
a polycrystal is inversely proportional to their energies,
or the GBCD scales with the reciprocal of the GBED.
Because the GBCD is a potentially more reliable experi-

Fig. 2. The relationship between experimental and calculated grain
boundary energy for CSL grain boundaries in Ni. (a) R3 boundaries
show a strong correlation between experimental and calculated energy.
The two circled points are outliers in the experimental energy distribution
that do no correspond to minima in the experimental population
distribution, so are considered questionable. (b) R9 boundaries show a
weaker correlation between experimental and calculated energy.
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mental measure, it is possible that the computed GBED
correlates more strongly with the experimental GBCD than
with the experimental GBED.

Fig. 3 compares the experimental GBCD with the com-
putational GBED. Note that because boundary popula-
tions vary over a wide range, the GBCD is plotted as
ln(P). The three population groups described above are
indicated in the figure; they are clearly distinct groups.
Although a linear fit to the complete data set shows modest
correlation (RU = 0.45), the actual line is placed between
the high P and low P boundary clusters and bears little
resemblance to the data set. However, the linear fit to the
high P R3 boundary data gives a good fit and a much
higher unweighted correlation coefficient (RU = 0.96) than
observed in the GBED comparison. (Note that in these fits,
we do not weight by population, since population is the
dependent variable.) In addition, the outliers that were
present in the GBED data are absent here, again indicating
that those energy measurements are spurious. The R9 fit is
also improved relative to the GBED comparison, with
RU = 0.69. For low P boundaries, the GBCD data corre-
late with computed energy more strongly than the experi-
mental GBED do, but the correlation is still poor
(RU = 0.24), re-emphasizing the dependence of data qual-
ity on observation frequency.

Overall, the experimental GBCD data provide a better
correlation to the computed GBED. Since the GBCD is
more straightforward to characterize experimentally than
the GBED, it offers a more accessible metric for compari-
son to computed boundary energies. However, the
improved correlation cannot compensate for the lack of
observation data in low P boundary bins. For those

boundaries, the computed energy remains more reliable
than the experimental data.

4. Conclusions

Recent independent experimental and computational
studies have produced two large sets of grain boundary
energy data for Ni [22,23]. The data were obtained by dif-
ferent approaches with distinct sources of error and uncer-
tainty. The experimental data set contains a large number
of relative grain boundary free energies binned into
17,894 boundary types. The computational data set
includes only 388 boundaries, and the enthalpy of each
boundary is characterized individually. Our comparisons
between the experimental and computed boundary energies
suggest several conclusions:

1. The unweighted correlation between experimental and
computed grain boundary energies is minimal.

2. There is a strong correlation between the experimental
and calculated energies when the fit is weighted by the
experimental observation frequency. Because the quality
of the experimental data scales with the observation fre-
quency, we conclude that there is excellent agreement
between experiment and computation for the data in
which we have the most confidence.

3. For R3 boundary types, which are the most frequently
observed boundaries in the experimental polycrystal,
the correlation between experiment and computation is
even stronger.

4. The next most populous boundaries, the R9 boundaries,
show a modest correlation between experiment and
computation. Other CSL boundaries are infrequently
observed in the experimental system and show little cor-
relation with computed boundary energies.

5. Boundary population can be used to determine the
experimental system size required to achieve a desired
accuracy in energy measurements. Different materials
systems will require different system sizes.

6. Because they do not depend on observation frequency,
computed grain boundary energies may be more reliable
than the experimental energies for low population
boundary types and can be used to approximate the
energies of boundaries that are experimentally
inaccessible.

7. The computational data set excludes some frequently
observed boundaries and includes some infrequently
observed boundaries. Experiments should guide future
computational studies to ensure that relevant and
important boundary types are examined.

8. The grain boundary character distribution, which can be
measured more easily than the energy distribution, offers
a strong inverse correlation to computed grain bound-
ary energies and can be used in place of the grain bound-
ary energy distribution in comparisons with computed
energies.

Fig. 3. The relationship between experimental GBCD and calculated
GBED in Ni. For high population R3 and mid-population R9 boundaries,
the inverse correlation between GBCD and GBED (solid lines) is stronger
than the direct correlation between experimental and calculated GBEDs.
However, the low population boundaries remain poorly correlated, due to
high experimental uncertainty.
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Overall, the experimental and computational results val-
idate each other for boundaries that are appropriately rep-
resented in both data sets. By understanding the limitations
of each method, we can combine experimental and compu-
tational data to achieve a more comprehensive catalog of
grain boundary energies in Ni that can be used with confi-
dence by microstructural scientists.

Acknowledgements

Sandia is a multi-program laboratory operated by San-
dia Corporation, a Lockheed Martin Company, for the US
Department of Energy’s National Nuclear Security Admin-
istration under contract DE-AC0494AL85000. We
acknowledge support from the Department of Energy, Of-
fice of Basic Energy Sciences both through the core pro-
gram and through the Computational Materials Science
Network program. The work at CMU was primarily sup-
ported by the MRSEC program of the National Science
Foundation under Award Number DMR-0520425.

References

[1] Smith CS. Grain shapes and other metallurgical applications of
topology. In: Metal interfaces. Cleveland (OH): ASM; 1952. p.
65–108.

[2] Read WT, Shockley W. Phys Rev 1950;78:275–89.
[3] Hasson G, Boos J-Y, Herbeuval I, Biscondi M, Goux C. Surf Sci

1972;31:115–37.
[4] Barmak K, Kim J, Kim K-S, Archibald WE, Rohrer GS, Rollett AD,

et al. Scripta Mater 2006;54:1059–63.
[5] Gjostein NA, Rhines FN. Acta Metall 1959;7:319–30.
[6] Hasson GC, Goux C. Scripta Metall 1971;5:889–94.
[7] McLean M. J Mater Sci 1973;8:571–6.
[8] Chan SW, Balluffi RW. Acta Metall 1985;33:1113–9.
[9] Chan SW, Balluffi RW. Acta Metall 1986;34:2191–9.
[10] Schmelzle R, Muschik T, Gust W, Predel B. Scripta Metall Mater

1991;25:1981–6.
[11] Wolf U, Ernst F, Muschik T, Finnis MW, Fischmeister HF. Philos

Mag A – Phys Condens Matter Struct Defects Mech Prop
1992;66:991–1016.

[12] Miura H, Kato M, Mori T. J Mater Sci Lett 1994;13:46–8.

[13] Straumal BB, Polyakov SA, Bischoff E, Gust W, Mittemeijer EJ.
Interf Sci 2001;9:287–92.

[14] Skidmore T, Buchheit RG, Juhas MC. Scripta Mater 2004;50:873–7.
[15] Amouyal Y, Rabkin E, Mishin Y. Acta Mater 2005;53:3795–805.
[16] Amouyal Y, Rabkin E. Acta Mater 2007;55:6681–9.
[17] Sutton AP. Int Met Rev 1984;29:377–402.
[18] Sutton AP, Balluffi RW. Acta Metall 1987;35:2177–201.
[19] Sutton AP, Vitek V. Philos Trans Roy Soc Lond Ser A, Math Phys

Sci 1983;309:55–68.
[20] Wang G-J, Vitek V. Acta Metall 1986;34:951–60.
[21] Wolf D, Merkle KL. Correlation between the structure and energy of

grain boundaries in metals. In: Wolf D, Yip S, editors. Materials
interfaces: atomic-level structure and properties. London: Chapman-
Hall; 1992. p. 87–150.

[22] Li J, Dillon SJ, Rohrer GS. Acta Mater 2009;57:4304–11.
[23] Olmsted D, Foiles SM, Holm EA. Acta Mater 2009;57:3694–703.
[24] Morawiec A. Acta Mater 2000;48:3525–32.
[25] Saylor DM, Morawiec A, Rohrer GS. Acta Mater 2003;51:3675–86.
[26] Herring C. The use of classical macroscopic concepts in surface

energy problems. In: Gomer R, Smith CS, editors. Structure and
properties of solid surfaces. Chicago: The University of Chicago
Press; 1952. p. 5–81.

[27] Cahn JW, Hoffman DW. Acta Metall 1974;22:1205–14.
[28] Hoffman DW, Cahn JW. Surf Sci 1972;31:368.
[29] Brandon DG. Acta Metall 1966;14:1479–84.
[30] Saylor DM, Morawiec A, Rohrer GS. Acta Mater 2003;51:3663–74.
[31] Daw MS, Foiles S, Baskes MI. Mater Sci Rep 1993;9:251–310.
[32] Foiles SM, Hoyt JJ. Acta Mater 2006;54:3351–7.
[33] Foiles SM. Phys Rev B 1994;49:14930–8.
[34] Broughton JQ, Gilmer GH. J Phys Chem 1987;91:6347–59.
[35] Broughton JQ, Gilmer GH. Modell Simulat Mater Sci Eng

1998;6:393–404.
[36] Foiles SM. Scripta Mater 2010;62:231–4.
[37] Hirth JP, Lothe J. Theory of dislocations. 2nd ed. New York: John

Wiley & Sons; 1982.
[38] Rohrer GS, Saylor DM, Dasher BE, Adams BL, Rollett AD,

Wynblatt P. Z Matallkunde 2004;95:197–214.
[39] Holm EA, Hassold GN, Miodownik MA. Acta Mater

2001;49:2981–91.
[40] Upmanyu M, Hassold GN, Kazaryan A, Holm EA, Wang Y, Patton

B, et al. Interf Sci 2002;10:201–16.
[41] Dillon SJ, Rohrer GS. Acta Mater 2009;57:1–7.
[42] Randle V. Mater Sci Technol 2010;26:253–61.
[43] Sorensen MR, Mishin Y, Voter AF. Phys Rev B 2000;62:3658–73.
[44] Campbell GH, Plitzko JM, King WE, Foiles SM, Kisielowski C,

Duscher GJM. Interf Sci 2004;12:165–74.
[45] Zhang H, Srolovitz DJ. Acta Mater 2006;54:623–33.

G.S. Rohrer et al. / Acta Materialia 58 (2010) 5063–5069 5069


	Comparing calculated and measured grain boundary energies in nickel
	Introduction
	Method
	Experimental grain boundary energy measurements
	Methodology
	Sources of error and uncertainty

	Computational method
	Methodology
	Sources of error

	Comparing experimental and computational data

	Results and discussion
	All boundaries
	Σ3. and Σ9 boundaries
	Other boundaries
	Boundary population correlations

	Conclusions
	Acknowledgements
	References


