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Abstract

A critical event model for the evolution of number- and area-weighted misorientation distribution functions (MDFs) during grain
growth is proposed. Predictions from the model are compared to number- and area-weighted MDFs measured in Monte Carlo simula-
tions with anisotropic interfacial properties and several initial orientation distributions, as well as a dense polycrystalline magnesia sam-
ple. The steady-state equation of our model appears to be a good fit to all data. The relation between the grain boundary energy and the
normalized average boundary area is discussed in the context of triple junction dynamics.
! 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

In a companion paper [1], hereafter referred to as Part I,
we examined misorientation texture development during
grain growth using Monte Carlo simulations as well as mis-
orientation measurements from polycrystalline magnesia.
It is clear from our results with random orientation texture
that both area- and number-weighted misorientation distri-
bution functions (MDFs) evolve to approximate steady
states that are measurably different from the initial random
state. We attempt to provide a quantitative explanation of
these observations in the current work. In what follows we
will discuss a new model for MDF evolution during grain
growth. This model expands upon ideas introduced by
the authors elsewhere [2], presenting a more rigorous deri-
vation by removing several nonphysical assumptions used
in the previous model.

Because the number of boundaries of any type changes
only by discrete topological events in the grain boundary
network, our model is based on the relative rates of such
critical events. We first discuss the kinds of permissible

topological events that can occur during grain growth
and then derive a rate equation for the change in number
of grain boundaries as a function of boundary type. In this
model we assume that the relative grain boundary area,
which has an approximately inverse relationship to bound-
ary energy, influences the probability of a grain boundary
being eliminated by topological events. Additionally, we
assume that the character of new grain boundaries gener-
ated by critical events depends on the orientation texture
of the microstructure. The combined result is a quantitative
relationship between grain boundary energy, orientation
texture, and the expected misorientation texture developed
during grain growth. Finally, we discuss how this relation
might be used to predict misorientation texture in real
materials, and also solve the inverse problem, i.e. determin-
ing grain boundary energy anisotropy using misorientation
texture data.

2. Model

In the following, we use the word “area” to describe the
usual measure of grain boundary size regardless of spatial
dimension. We will denote the area- and number-weighted
MDFs as fAðh; tÞ and fN ðh; tÞ, respectively. These are both
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assumed to be explicit functions of the boundary type,
parameterized by h, and time t. Many other quantities,
such as the area or number of boundaries, can be measured
for a particular boundary type or for the entire system. To
avoid introducing an excess of variables, we will always
write system total functions with only a time argument.
Thus the total area and number of grain boundaries in
the system will be given by AðtÞ and NðtÞ, while the total
area and number of boundaries of a particular type will
be Aðh; tÞ and Nðh; tÞ. Likewise, the average boundary area
in the system will be hAiðtÞ, and the average area for
boundary type h is hAiðh; tÞ. Note that the following rela-
tions hold, by definition:

hAiðtÞ ¼ AðtÞ
NðtÞ

ð1Þ

hAiðh; tÞ ¼ Aðh; tÞ
Nðh; tÞ

¼ fAðh; tÞAðtÞ
fN ðh; tÞNðtÞ

ð2Þ

The quotient hAiðh; tÞ=hAiðtÞ represents a dimensionless
average grain boundary area, and has an important role
in the current model. Because of this definition, the prob-
lem of predicting fAðh; tÞ and fNðh; tÞ can be reinterpreted
as a problem of predicting, for example, hAiðh; tÞ=hAiðtÞ
and fN ðh; tÞ. This is the approach taken here, motivated
by the fact that we will later approximate hAiðh; tÞ=hAiðtÞ
as an explicit function of the grain boundary energy.

We focus on describing MDF development in systems
with a large number of grains. By large we mean to say that
statements such as “the probability of a boundary of type h
being eliminated by grain collapse” are meaningful. We will
ignore the possibility of the MDF statistic ever being
affected by a small number of grain boundaries in the sys-
tem, or that the domain size or shape contributes in any
way to the average properties of the grain boundary net-
work. Of course the simulations presented here, as well
as any experimental study, are subject to such conditions.

2.1. Topological events during grain growth

Any change in the number of grain boundaries in a
microstructure is necessarily the result of topological
changes in the grain boundary network. We will base our
classification scheme of critical events on the work of For-
tes and Ferro [3], who have described the possible “unit
operations” that may occur during grain growth. These
topological events are those that preserve the correct valen-
cies of topological features found in a microstructure. Most
importantly, any conceivable change in the topological
structure of a grain boundary network can be represented
as a combination of such events.

In both two and three dimensions, these events will be
described as either collapse events or switching events. Col-
lapse events are associated with the collapse of entire grains
and occur when grains with three (two-dimensional, 2D) or
four (three-dimensional, 3D) faces shrink to a vertex.
Switching events involve grains switching topological clas-

ses (number of faces and edges) while remaining in the
microstructure. These events occur by edge switching
(2D), a face-to-edge switch (3D) or their inverses. Switch-
ing events occur in pairs and thus preserve the total number
of boundaries in two dimensions, but occur independently
in three dimensions. We will call the loss of a boundary by
switching elimination, while the introduction of a new
boundary in the microstructure will be called generation.

In what follows, the cumulative number of grain bound-
aries lost by grain collapse will be denoted NcðtÞ, and the
cumulative number eliminated or generated by switching
events will be denoted NeðtÞ and NgðtÞ, respectively. With-
out loss of generality, we set each to zero at t ¼ 0.

2.2. Critical event model

Using the above definitions, we can write an exact rela-
tion for the change in the number of boundaries of type h
during a time interval dt,

Nðh; t þ dtÞ % Nðh; tÞ ¼ pgðh; tÞ½Ngðt þ dtÞ % NgðtÞ'

% peðh; tÞ½Neðt þ dtÞ % NeðtÞ'
% pcðh; tÞ½Ncðt þ dtÞ % NcðtÞ' ð3Þ

Here, pgðh; tÞ; peðh; tÞ and pcðh; tÞ denote the probabilities
that each possible topological event involves a boundary of
type h. The bracketed terms on the right-hand side of Eq.
(3) are simply the total numbers of each critical event that
occur in this time interval. Dividing by dt and taking the
limit as the time interval approaches zero, we have the dif-
ferential equation

NðtÞ @fN ðh; tÞ
@t

þ fNðh; tÞ
@NðtÞ
@t

¼ pgðh; tÞ
@NgðtÞ
@t

% peðh; tÞ
@NeðtÞ
@t

% pcðh; tÞ
@NcðtÞ
@t

ð4Þ

We now define

agðtÞ ¼
@NgðtÞ
@NðtÞ

aeðtÞ ¼
@NeðtÞ
@NðtÞ

acðtÞ ¼
@NcðtÞ
@NðtÞ

ð5Þ

These functions express the relative rates of each critical
event type with respect to the change in the total number of
boundaries, and satisfy agðtÞ % aeðtÞ % acðtÞ ¼ 1. Within a
fixed time interval, the number of events of each type are
of the same magnitude. Measuring these rates from our
simulations, we find that each remains nearly constant,
i.e. the rate of each type of topological event scales with
the total number of grain boundaries and, similarly, the
grain size. For generality, we will continue to assume each
is time-dependent; their use here is merely intended to sim-
plify the notation. Substituting the definitions in the previ-
ous expression into Eq. (4), we have
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fN ðh; tÞ þ NðtÞ @fN ðh; tÞ
@NðtÞ ¼ agðtÞpgðh; tÞ % aeðtÞpeðh; tÞ

% acðtÞpcðh; tÞ ð6Þ

In the case that the number-weighted MDF reaches a
steady state, this reduces to

fN ðh; tÞ ¼ agðtÞpgðh; tÞ % aeðtÞpeðh; tÞ % acðtÞpcðh; tÞ ð7Þ

from which it is clear that the steady-state number-
weighted MDF depends on an equilibrium of critical event
rates.

Now it remains to determine an adequate form for each
probability function. Our first assumption, which is satis-
fied quite generally by our simulations, is simply

pgðh; tÞ ¼ f0ðh; tÞ ð8Þ

where f0ðh; tÞ is the texture-weighted misorientation distri-
bution function (TMDF), as defined in Section 4.4 of Part
I. This assumption implies that, when new boundaries are
generated, they appear between grains that have a relation-
ship given by the TMDF, but otherwise are not correlated.

Next we assume a functional form for the elimination
and collapse events. Both types of event can only eliminate
a boundary that already exists in the system. We therefore
expect that, when the number of a particular boundary
type h is N and the probability of elimination is P, if the
number is increased to cN then its probability of elimina-
tion is cP, i.e. peðh; tÞ and pcðh; tÞ should both be first-order
homogeneous in fN ðh; tÞ. We further assume that these
probabilities depend on the dimensionless average areas
hAiðh; tÞ=hAiðtÞ of boundary types. That the smallest
boundaries on a grain are the first to be eliminated by topo-
logical switching was postulated decades ago by Smith [5].
The probability of elimination therefore should decrease
with increasing average area. Likewise, if boundaries with
relatively large areas persist on a grain as it loses faces, they
should be the most likely to be eliminated by the grain col-
lapse events. The probability of their elimination by col-
lapse should then increase with increasing average area.

Because the observed values of the dimensionless aver-
age areas occur only within a small range of one, we
approximate each boundary elimination probability by a
series expansion in hAiðh; tÞ=hAiðtÞ about one. The proba-
bilities must be invariant with uniform scaling of the
domain size, and this is guaranteed by the use of dimen-
sionless quantities. For peðh; tÞ we take

peðh; tÞ ¼ fN ðh; tÞ
X1

i¼0

ae;i½hAiðh; tÞ=hAiðtÞ % 1'i ð9Þ

Note that, in isotropic grain growth and more generally,
when hAiðh; tÞ ¼ hAiðtÞ, the above should reduce to fN ðh; tÞ,
so that ae;0 ¼ 1. Similarly, for pcðh; tÞ we take

pcðh; tÞ ¼ fN ðh; tÞ
X1

i¼0

ac;i½hAiðh; tÞ=hAiðtÞ % 1'i ð10Þ

and, by the same reasoning, ac;0 ¼ 1.

2.3. Comparison of critical event model with simulation and
experiment

Now we apply our model to the special case of determin-
ing the steady-state number- and area-weighted MDFs.
After some algebraic manipulations, we have the first-order
approximation

fN ðh; tÞ ¼ f0ðh; tÞ uðtÞ þ vðtÞ hAiðh; tÞhAiðtÞ

! "%1

ð11Þ

where we have set

uðtÞ ¼ 1þ aeðtÞð1% ae;1Þ þ acðtÞð1% ac;1Þ
agðtÞ

ð12Þ

and

vðtÞ ¼ aeðtÞae;1 þ acðtÞac;1
agðtÞ

ð13Þ

To obtain the above expression, the power series for
both peðh; tÞ and pcðh; tÞ are truncated after terms of first
order. In our simulations we find that uðtÞ takes values
around 2, and vðtÞ of about %2=3, so that in much of the
applicable range of hAiðh; tÞ=hAiðtÞ the right-hand side of
Eq. (11) is linear in hAiðh; tÞ=hAiðtÞ. Thus, to first order,

fN ðh; tÞ ( f0ðh; tÞ
hAiðh; tÞ
hAiðtÞ ð14Þ

or, in multiples of a random distribution,

kNðh; tÞ (
hAiðh; tÞ
hAiðtÞ

ð15Þ

The appropriate proportionality constant for both equa-
tions can be determined by normalizing Eq. (14).

The local value of the number-weighted MDF is plotted
against the right-hand side of Eq. (14) in Fig. 1 for each 3D
simulation from Part I at 2000 MCS. As noted in Part I, a
steady state had been reached in all simulations between
500 and 1000 MCS. For both 3D and 2D simulations
(not shown here), the result is a scatter of points lying close
to the line f ðxÞ ¼ x. This result confirms the quite general
applicability of Eq. (14) in predicting the steady-state num-
ber-weighted MDF.
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Fig. 1. Scatter plot of the left- and right-hand sides of Eq. (14) for all 3D
Monte Carlo simulations with random orientation texture, 2000 MCS.
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We note that the initial microstructure in all simulations
satisfies Eq. (14) trivially, since we begin with an isotropi-
cally grown polycrystal and randomly assigned orienta-
tions; however, it is certainly possible to generate a
microstructure where the dimensionless average boundary
area and the grain boundary number fraction are not
related by Eq. (14). For example, starting with a micro-
structure that satisfies Eq. (14), we can perturb each
boundary in a way that perserves the number fraction
fN ðh; tÞ but increases or decreases hAiðh; tÞ=hAiðtÞ in an
arbitrary way. It then appears there is no geometric con-
straint that suggests Eq. (14) is satisfied a priori. We expect
that, in cases where it does not hold, the number-weighted
MDF transitions to the steady state according to Eq. (6).
However, in our simulations the critical event mechanism
appears to operate quickly enough to compensate for
changes in the average areas of grain boundaries, leading
to the steady-state equation being satisfied at all times.
Thus none of the Monte Carlo simulations performed in
Part I can be used to test the time dependent part of the
critical event model.

Using Eqs. (2) and (14), we can also compute the steady-
state area-weighted MDF as

fAðh; tÞ ( f0ðh; tÞ
hAiðh; tÞ
hAiðtÞ

! "2
ð16Þ

or, in multiples random,

kAðh; tÞ (
hAiðh; tÞ
hAiðtÞ

! "2
ð17Þ

Again, a suitable proportionality constant can be com-
puted by normalization of Eq. (16). We plot the area-
weighted MDF measured in each simulation against the
right-hand side of Eq. (16) in Fig. 2. Similar to the result
above, we have points lying about a straight line. While
the area-weighted MDF now depends on the square of
hAiðh; tÞ, deviations from this line are not significantly lar-
ger than those in Fig. 1. Although not shown here, we find
that Eq. (16) is approximately satisfied for all simulation
times, regardless of whether the area-weighted MDF has
reached a steady state.

It is possible that the steady-state equation is also satis-
fied in simulations with nonrandom orientation texture,
where f0ðh; tÞ changes with time. In fact, this appears to
happen quite generally, as shown in Fig. 3. Clearly, the crit-
ical event mechanism occurs on a shorter time scale than
the mechanisms controlling average boundary area
increases and orientation texture development.

We do not know whether the magnesia sample from
Part I has reached a steady-state MDF or orientation tex-
ture. However, the results above suggest that Eq. (14)
might apply in this case regardless. In fact, we find that
the relation is satisfied quite well, as shown in Fig. 4.

2.4. Boundary lengthening model

Aside from the TMDF, the essential input to the critical
event model presented above is the average area for each
boundary type. A quantitative model for average boundary
area has already been presented by Holm et al. [4]. This
model introduces the mechanism of boundary lengthening
at triple junctions, which has recently been justified experi-
mentally [6]. They consider a 2D geometry where the ends
of a grain boundary with energy cðhÞ meet in triple lines
with two other boundaries having energy cmax, the maxi-
mum grain boundary energy in the system, as shown in
Fig. 5. To begin, the boundaries are in an isotropic
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Fig. 2. Scatter plot of left- and right-hand sides of Eq. (16) for all 3D
Monte Carlo simulations, 2000 MCS.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.01 0.02 0.03 0.04 0.05 0.06

f N
(θ

)

f0(θ) <A>(θ)/<A>

isotropic
α = 4.20
α = 6.05
α = 9.45
α = 16.8

Fig. 3. Scatter plot of left- and right-hand sides of Eq. (14). 3D Monte
Carlo simulations with nonrandom orientation texture.
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Fig. 4. Scatter plot of left- and right-hand sides of Eq. (14) for polycrys-
talline magnesia.
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configuration, i.e. all boundaries have the same length L
and every dihedral angle is 120". Now we let the boundaries
relax until the equilibrium triple line geometry is obtained.
The boundary with energy cðhÞ now has length Lþ DLðhÞ.
Holm et al. used a linear approximation for the boundary
lengthening, i.e.

DL
L

¼ 1þ að1% cðhÞÞ ð18Þ

where a is a constant fitting parameter. Note that Eq. (18)
was derived under the condition that cmax ¼ 1. However,
we could easily compute the exact lengthening in such a
case as [2]

DL
L

¼ 1

2
1%

ffiffiffi
3

p

tan cos%1 cðhÞ
2cmax

" #

ð19Þ

This approach does not require a fitting parameter. In
both models, the boundary lengthening that occurs for this
particular geometry is assumed to be representative of the
average boundary lengthening throughout the system.
For two dimensions, the increase in boundary area should
be proportional to the boundary lengthening given by
either Eq. (18) or Eq. (19). Three-dimensional area changes
should follow the square of this relation.

Each boundary lengthening model predicts the general
trends of average boundary area with energy as measured
fromour simulations.Fig. 6 shows that the average boundary

area is a nonlinear function of energy in both two and three
dimensions, especially in the low-energy regime.Eq. (18) does
not accurately predict the average boundary areas in regions
where the data curves upward, e.g. for the lowest energy grain
boundaries, regardless of the chosen fitting parameter. We
find that the “exact” lengtheningmodel inEq. (19) is even less
accurate, and in fact exhibits curvature in the opposite
direction.

Several approximations used in the boundary lengthening
model may also contribute to its inaccuracy. First, the topo-
logical neighborhood of any grain boundary is certainly
more complex than that used, i.e. with every boundary
under consideration intersecting only boundaries of the sys-
tem average energy. A more accurate form of the model
might consider the boundary lengthening process of a given
boundary type in a number of neighborhoods with bound-
aries of various energies. Additionally, the three boundaries
meeting at a triple junction must satisfy the geometric con-
straint that DgABDgBC ¼ DgCA (or any permutation of
A; B, and C). For disorientation angles, this implies that
hAB 6 hBC þ hCA (for all permutations). In particular, two
low-angle grain boundaries meeting at a triple junction nec-
essarily meet with a third low-angle boundary, while triple
junctions with high-angle grain boundaries are not as con-
strained. This condition implies that, in general, low-angle
grain boundaries should not lengthen as much as the bound-
ary-lengthening model predicts. A more refined take on the
boundary-lengthening model might take this into account.

While there is qualitative agreement between the bound-
ary-lengthening model and our simulation results, it
appears to be quite difficult to derive an accurate quantita-
tive model to predict its resulting effect on a microstructure.
However, the relation between grain boundary energy and
average area is approximately one to one, and we can fit an
empirical formula to it. With a second-order polynomial fit

hAiðhÞ
hAi

¼ aþ b
c

cmax

þ c
c

cmax

$ %2

ð20Þ

we find for two dimensions a ¼ 2:345; b ¼ %1:592 and
c ¼ 0:2231, while for three dimensions a ¼ 3:610; b ¼
%4:369, and c ¼ 1:729. In particular, we can easily use Eq.
(20) to approximate any of the steady-stateMDFs from sim-
ulations with randomorientation texture, as shown in Fig. 7.
The accuracy of the result is very good, especially for low-an-
gle grain boundaries.

We note that, because each of these functions is invert-
ible within the domain of boundary energies, there is a pos-
sibility to use them in the context of deriving energy
functions from measured misorientation texture data. For
example, we consider the area- and number-weighted
MDFs from the polycrystalline magnesia sample from Part
I. Fig. 8 shows the results of a fit to cðhÞ using Eq. (20) with
the 3D fitting parameters. We see that the majority of the
points follow a Read–Shockley-type function with
h0 ¼ 15), as expected. Deviations occur in the low-angle
region, where the expected scarcity of low-angle bound-
aries leads to poor statistics. It must be noted that such a

Fig. 5. Schematic of grain boundary-lengthening process. A boundary
with energy cðhÞ intersects two boundaries with the maximum grain
boundary energy in an isotropic configuration. Boundary lengthening
occurs as the boundaries adjust to satisfy mechanical equilibrium at the
triple junction.
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Fig. 6. Scatter plot of grain boundary energy and average boundary area
for 3D Monte Carlo simulations. Lines indicate boundary lengthening
model predictions and polynomial fit.
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derivation is only approximate. In particular, we showed in
Part I that boundaries with the same energy may have dif-
ferent average areas, e.g. when the energy is a “step” func-
tion. Despite lacking a strict one-to-one correspondence,
the method described here should provide a reasonable
estimate for the main features of the energy function.

3. Summary

To describe the result of Part I, we have proposed a crit-
ical event model for the evolution of number- and area-
weighted misorientation distribution functions during
grain growth. This model demonstrates the explicit depen-
dence of misorientation texture on grain boundary energy
anisotropy and orientation texture through the texture-
weighted misorientation distribution function. Predictions
from the model are compared to area- and number-
weighted MDFs measured in Monte Carlo simulations
with random orientation texture and anisotropic interfacial
properties. The steady-state equation of our model appears
to be a good fit to all data, indicating that the critical event
mechanism works on a finer time scale than boundary
lengthening or orientation texture development.
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