
ORIGINAL ARTICLE

Reconstruction and simplification of high-quality multiple-region
models from planar sections

R. H. Moore Æ G. S. Rohrer Æ S. Saigal

Received: 18 April 2007 / Accepted: 11 July 2008 / Published online: 10 December 2008

� Springer-Verlag London Limited 2008

Abstract This paper proposes an accurate and efficient

process that reconstructs, smoothes, and simplifies large-

scale, three-dimensional models with multiple regions from

serial sections. Models are reconstructed using a generally

classed marching tetrahedra method that is less complex

than the recent generally classed marching cubes algo-

rithms, yet still preserves interface conformability between

the regions in the model. Surfaces are smoothed using a

volume preserving Laplacian filter that also preserves the

region interfaces and topologies. Models are simplified

using an efficient and accurate quadric-based edge con-

traction scheme that maintains the interfaces between

regions and preserves the topology of the model. The edge

contraction process is constrained to produce surface

meshes that have high-quality facet shapes. The process

both reconstructs as well as simplifies these models on-the-

fly in one pass so that huge models may be processed

within limited computer memory. The process does not

require the entire original model to fit in the memory at one

time. Example results of multiple-region models from the

fields of materials science and medicine are presented.

Keywords Reconstruction � Simplification � Decimation �
Smoothing � Surface meshes

1 Introduction

Computational models are used in many fields to estimate

the performance of materials, structures, and systems.

Often the data that forms the basis of three-dimensional

(3D) models originates from a series of 2D images or

readings called planar sections. The process of stitching

these 2D serial sections together into a 3D model is called

reconstruction. Many real-life models contain multiple

separate regions, such as organs, tissue, and bone for

medical applications; silt, rock, and clay for geological

applications; and separate grains of the same material for

polycrystalline materials for materials science applications.

Multiple-region reconstructions present three specific

challenges. First, reconstructions of multiple-region models

must construct internal interfaces between the regions in

addition to the external bounding surfaces. Most of the

common reconstruction techniques do not construct correct

interfaces between regions and, thereby, introduce unde-

sirable gaps between the regions. A second challenge to the

development of 3D models with multiple regions is the

high face count that often results from reconstructions,

since a large number of internal faces are needed to sepa-

rate the regions inside the model. Model simplification is

needed to reduce the face count to a size that is tractable on

target computers. Many simplification strategies require the

entire model to be in memory before simplification, which

is not a practical possibility for very large data sets. Fur-

thermore, most simplification schemes do not maintain the

model interface integrity and do not preserve the topology

of the model. Interface conformability and correct model

R. H. Moore (&)

Department of Civil and Environmental Engineering,

Carnegie Mellon University, Pittsburgh, PA 15213, USA

e-mail: CompSciEng@gmail.com

G. S. Rohrer

Department of Materials Science and Engineering,

Carnegie Mellon University, Pittsburgh, PA 15213, USA

e-mail: gr20@andrew.cmu.edu

S. Saigal

Department of Civil and Environmental Engineering,

New Jersey Institute of Technology, Newark, NJ 07102, USA

e-mail: Saigal@adm.njit.edu

123

Engineering with Computers (2009) 25:221–235

DOI 10.1007/s00366-008-0114-1

topology are crucial for accurate analyses. A third chal-

lenge is the rough shape that results from most

reconstruction methods. Many models have un-natural

stair-steps and jagged features that are not present in the

original data set. Few smoothing methods are able to

remove the stair-steps while preserving critical interfaces

and maintaining accurate region shapes.

This paper proposes an accurate and efficient process

that reconstructs large-scale, 3D models with multiple

regions from serial sections. The process both reconstructs

and simplifies these models on-the-fly in one pass so that

huge models may be processed within limited computer

memory. The process does not require that the entire ori-

ginal model be in memory at one time, but produces final

models that are small enough to fit in memory. The process

provides a powerful smoothing procedure that maintains

the model interfaces while removing the stair-steps and

artificially jagged features. Furthermore, the simplification

maintains the interfaces between regions, preserves the

topology of the model, and generates well-shaped surface

facets.

2 Background and related work

Recent advances in numerical methods and in computer

speeds have enabled not only the visualization of complex

3D domains, but also their modeling and analyses. In

building a model the integrity of the source of the input

data must be maintained. This section describes common

sources that are used to develop 3D models, reviews rele-

vant reconstruction tools, and provides a brief and critical

review of the available smoothing and simplification

approaches.

2.1 Data sources

Medical applications often use computed tomography (CT)

and magnetic resonance imaging (MRI) scans to evaluate

patients. The results are usually formatted as a series of

cross-sectional 2D images that are called serial sections.

The images are segmented into separate regions based in

part on the density values. Within materials science, most

microstructural characterizations use destructive serial

sectioning, where a material is consecutively polished (or

ground) and photographed (or scanned) through a number

of planar depths. Alkemper and Voorhees [1] presented a

semi-automated method to acquire and photograph 20

serial sections per hour. The method was applied to an Al–

Si alloy, where the material segmentation was straightfor-

ward, since the aluminum and silicon regions were

represented as bright and dark regions, respectively, in the

photographs. Segmentation of polycrystalline materials is

more complex, since the regions are not easily distin-

guished by their relative brightness. Vedula et al. [2] used

orientation imaging microscopy (OIM) to measure the

angular orientation for each of the grains in a serial section

and thereby distinguished the grains from one another.

Groeber et al. [3] used a dual-beam focused ion beam

machining system coupled with a scanning electron

microscope (FIB–SEM) to provide automated serial sec-

tioning with an OIM scan at each depth. A promising

nondestructive approach has been advanced recently to

measure 3D microstructures using X-rays [4]. This X-ray

technique is especially valuable for polycrystalline mate-

rials, since it detects the boundaries between grains and

measures the orientations of the grains. Within geophysics,

seismic surveys and borehole studies are used to gather the

data to reconstruct 3D terrain and sediment maps. These

surveys and studies are not always based on regular grids,

so reconstruction methods powerful enough to handle

unstructured domains are especially desired.

2.2 Reconstruction methods

Reconstruction is the process of stitching 2D images into a

3D model. For multiple-region reconstructions, the method

should construct 3D models without overlapping regions,

mismatched faces, and artificial gaps. This section reviews

relevant past efforts in light of these criteria.

Standard reconstruction tools process one material or

region at a time and are termed ‘‘binary classified,’’ where

separation surfaces are inserted between only two regions.

For 3D regular grids, the marching cubes (MC) [5] method

places separation surfaces at a predetermined density level

or around one region. For data pre-formatted by contours,

Boissonnat [6] and Boissonnat and Geiger [7] used Dela-

unay triangulation to reconstruct planar contours into 3D

models. However, all these contours were assumed to be for

the same region. Many models have more than one region of

interest and are called ‘‘generally classified.’’ Binary clas-

sified reconstruction tools are insufficient for reconstructing

generally classed models, where more than two distinct

regions may be present. Holes, gaps, and overlaps will occur

in most cases. That is, if one were to reconstruct each region

separately, the reconstructed objects would not fit together,

and the interfaces would not match. Thus, there is a need for

reconstruction methods that handle generally classified data.

Generally classed reconstructions have been proposed to

overcome many of the shortcomings of the original MC

method when applied to multiple-region models. To date,

these methods have had varying levels of success. Wallisch

[8] used an octree method to subdivide each voxel, but this

generalized MC method suffered from holes and incom-

plete surface coverage. Hege et al. [9] also extended the

MC to handle generally classed cells. Voxels with more

222 Engineering with Computers (2009) 25:221–235

123

than two values were subdivided into inner structures and

then processed in a way that ensures interface consistency.

When each vertex/corner of a voxel may have one of three

different values (or types), there are 6,561 cases to con-

sider, which contrasts to the 256 cases in the standard MC.

For four types of vertices, 65,536 possible configurations

exist. In general each of the eight nodes in a cube may be

different from the others, so the number of possible con-

figurations is 88. To keep the computational requirements

low, lookup tables were used for the standard MC cases

and for some of the common three-vertex cases. Subdivi-

sion was performed on any remaining cases that were not

covered by the stored cases. Overall, the implementation of

[9] is extremely complex. Ju et al. [10] presented a mul-

tiple-material reconstruction technique that handles

Hermite data and can be implemented in an octree form.

This method places new vertices at positions that are based

on minimizing a quadratic function, and these vertices are

not constrained to fall on the edges of the cubes. These

extra vertices are expected to fall near the intersection of

the separation surfaces, but the points could possibly fall

outside the cube and thereby generate models with inter-

secting faces. Ju and Udeshi [11] extended the work of Ju

et al. [10] and presented a method that prevents intersec-

tions, but was not extended to work with multiple

materials. Wu and Sullivan [12] presented a generally

classed MC procedure that handles multiple materials and

preserves interfaces. Each face of each voxel is examined

and divided consistently. The region inside each voxel is

then subdivided to match with the previously subdivided

faces. This method is far less complex than that of [9], but

it generates more right angle faces that contribute to the

jagged stair-step appearance.

Reconstruction of multiple-region models from

unstructured data sets was handled by Weinstein [13], who

developed a method to reconstruct 3D models from gener-

ally classed planar contours. After the serial sections were

aligned and contoured, the contours were extruded to vox-

els. The voxels were next subdivided into tetrahedrons

followed by the extraction of separating surfaces. The

resulting resolution is related to the resolution used to re-

grid the contours. It was noted that the contour point posi-

tions are not preserved, but converge towards the original

values as the grid is refined. Nielson and Franke [14]

developed a reconstruction approach based on dividing a

voxel into six tetrahedra and then generating separation

surfaces between regions. The division and surface gener-

ation were performed so that surfaces align with

neighboring regions to produce closed and solid regions.

Unlike the huge number of combinations of nodal values in

the generalized MC approach, a generalized tetrahedral

scheme has only five specific cases, so the coding com-

plexity is minimal. Another strong advantage of this

tetrahedra scheme is that the method can be applied to

arbitrary unstructured domains, such as a Delaunay tessel-

lation. A cubic input grid is not needed, so the method could

be applied, for example, to geophysical borehole studies.

Since the reconstructions often produce rough and jag-

ged models, smoothing is needed to remove the artificial

stair-steps. Since the reconstructions produce a high num-

ber of facets, simplification is needed to reduce the model

size to a more reasonable size. A few popular smoothing

and simplification approaches are described next.

2.3 Smoothing approaches

The specific requirements for an effective smoothing pro-

cess are that it must preserve the major features of the

model, retain an accurate shape, and maintain interfaces

and region topologies. This section discusses related work

in the area of model smoothing.

The simplest Laplacian filters move each vertex, v0i, to a

new position that is the average of adjacent vertices:

v0i ¼
1

n

Xn

j¼1

wjvj ð1Þ

where there are n adjacent vertices, and the local weights,

wj, are typically set to one. An alternate filter moves each

vertex to a new position that is related to its present

position and average position of adjacent vertices:

v0i ¼ vi þ
k
n

Xn

j¼1

ðvj � viÞ ð2Þ

where k is in the range (0 B k B 1).

For effective smoothing, several filter passes or itera-

tions are needed. These filters have undesirable features

that they round over corners and reduce the volume of

closed regions.

More advanced approaches have been proposed to pre-

serve features and are based on surface mesh features

beyond the adjacent vertices. Jones et al. [15] proposed a

feature-preserving method that operates in one pass that

they called a non-iterative feature-preserving mesh

smoothing (NIFPMS) method. The new position for each

vertex is based on projections of the tangent planes of each

facet in the model. The contribution from each face is

weighted by a Gaussian function that penalizes projections

that make drastic moves in vertex locations. A further

Gaussian weighting function minimizes the contributions of

faces that are far from the vertex under consideration. While

the NIFPMS method smoothes the models, no consideration

was presented for optimizing the quality of the shape of the

resulting faces or for handling multiple regions.

Improvements to the Laplacian filters have also been

proposed, where the weighting functions are selected based

Engineering with Computers (2009) 25:221–235 223

123

on optimizing the shapes of the triangles that are connected

to each vertex [16]. Well-shaped triangles are helpful for

subsequent finite element meshing, since the accuracy of a

finite element simulation is related to the shape of the

elements. Further optimizations are targeted towards

moving vertices to minimize the loss of volume of convex

regions. Taubin [17] presented a Gaussian filter that

roughly preserves the volume through bi-directional

smoothing. The relaxation factor, k, is alternated between

positive and negative values between successive smoothing

operations. Bade et al. [18] suggested that the positive

value of k be set within the range of 0.5–0.7, and the

negative value should be -1.02 times k.

Multiple-region models require special care in that the

interfaces between regions present certain challenges. One

basic approach is to smooth the faces that separate two

specific regions using only faces and vertices that fall on the

interface between these two regions. Wu and Sullivan [12]

smoothed similar faces using a Laplacian filter and

smoothed boundary line vertices using the two vertices that

are directly before and directly after the vertex when trav-

eling along a boundary line. While powerful, this method

will reduce the volume on the concave sides of shared faces.

The increased movement of regions also makes this

approach more susceptible to invalid facet intersections.

Kuprat et al. [19] presented a volume preserving smoothing

method that respects interfaces and junctions between three

regions. Their method both smoothes nodes and preserves

the volume nearly down to machine precision.

2.4 Simplification approaches

The specific requirements for an effective simplification

process are that it must handle multiple regions, preserve

topology, maintain interfaces, and possess high accuracy. It

must also not require that the entire original model fit in

memory, so it can execute on-the-fly. Since the method is

expected to process a large number of faces, the approach

must be efficient and have a high processing speed. This

section discusses related existing works in the area of

model simplification in light of these criteria.

2.4.1 On-the-fly approaches

Early simplification techniques required the entire model to

fit in the memory for two reasons. First, the techniques

search the model to remove the features that result in the

smallest change in shape. This comprehensive search

implies that the entire model is already known and in

memory. Second, when a feature is removed, the sur-

rounding regions need to be re-stitched together, so those

regions that are adjacent to a removed feature need to be

present.

Approaches that handle partial models recognize the

need to process meshes that are too large to fit in memory

in their entirety. Grabner [20] presented an on-the-fly

simplification technique that processed 2�-D models. This

method took special care of features at the input boundary

where faces were about to be read. The edge-dependency

graph data structure used in [20] does not apply to multi-

ple-region bodies, and the shortest-edge-length heuristic is

not as accurate as other metrics. Furthermore, this method

did not discuss topology preservation and was not applied

to 3D meshes. An alternate approach for huge meshes is an

out-of-core method. Lindstrom [21] presented an out-of-

core approach that was based on a vertex clustering

scheme. The model decimated faces and vertices at a very

high speed (100,000 faces/s in the year 2000) and used an

accurate quadric error metric to maintain the shape of the

models. (One common quadric error metric considers faces

that surround a vertex. When a vertex is relocated, the

quadric error metric is equal to the sum of the squared

distances between the new location of the vertex and the

planes formed by the original faces that surrounded this

point. If the squared distances are further scaled by the

squared areas of the original faces, then the quadric error

metric is related to a change in squared volume. Vertices

are relocated to minimize these measures. More details

may be found in Garland and Heckbert [22].)

Ju et al. [10] presented a method to reconstruct and

partially simplify models that was based on an octree

structure. Their approach simplified the mesh locally

within a cube to reduce the size of the overall results. Their

method preserved the topology of multiple-material mod-

els, but the placement of new vertices often resulted in

intersected surfaces. Ju and Udeshi [11] extended the

method of Ju et al. [10] to eliminate intersected facets, but

their extension did not handle multiple materials.

Lindstrom and Silva [23] extended this out-of-core

approach so that the simplified mesh did not need to fit in

memory, and extended the boundary surface treatment so

that features on the boundary of the leading-edge side

would be preserved. The vertex clustering approach used in

[21, 23] does not preserve the topology of models, since the

vertices are merged within a cell and the fine connectivity

is destroyed. Wu and Kobbelt [24] presented a stream

algorithm for massive meshes that used the quadric error

metric along with edge contraction to simplify a mesh.

Candidate edges were contracted based on a randomized

multiple-choice optimization, rather than sorting all avail-

able edges in a heap. This approach provided high speed

and low memory requirements.

Isenburg et al. [25] extended the approach of Wu and

Kobbelt [24] with a processing sequence paradigm. Only a

small portion of the mesh is in the core memory while the

much larger potion of the mesh resides on disk. The mesh

224 Engineering with Computers (2009) 25:221–235

123

is simplified as it streams through the in-core memory. The

streaming mesh concept is described in great depth in

[25–31].

To date, none of the streaming approaches preserve the

topology and interfaces for multiple-region models, since

the decimation methods employed were not designed for

topology preservation. Special care must be exercised to

preserve topology of even single-region bodies for edge

contraction and vertex clustering methods. However, the

topology and interface preserving algorithms could be used

along with streaming meshes for a powerful and efficient

process.

2.4.2 Speed and accuracy

A major goal of model simplification is to maintain the

accuracy of the shape within a reasonable processing time.

The different schemes often amount to finding the features

to remove, and in some cases, determining where to relo-

cate features during the removal. Vertex removal [32]

scans and removes vertices when the resulting shape error

is below a certain error tolerance. Since vertices are

removed, all simplified meshes have vertices that are a

subset of the original model. Wu and Sullivan [12]

extended the vertex removal method to handle multiple

regions while preserving interface conformability and

region topology. Vertices were classified as simple verti-

ces, in that they separated two regions, or edge vertices, in

that they fell along edges that divided three or more

regions. The method decimated the models until no more

vertices met the error criteria or when the target decimation

levels were reached. Vertex removal schemes are consid-

ered less accurate than more modern schemes for three

reasons. First, the error metric is not as advanced and

accurate as more modern metrics, such as the quadric error

metric of Garland and Heckbert [22]. Second, the vertices

are simply removed, rather than adjusting the location of

features in the model to minimize the shape error. Third,

most schemes do not pre-order the candidate vertices

according to error, so vertices having greater error may be

deleted before lower error vertices.

The quadric-based edge contraction procedure in [22] is

considered as the best trade-off between accuracy and

speed [33]. Two major aspects work to achieve this. First,

the quadric error metric provides an upper bound for the

more accurate Hausdorff error [33]. Also, the quadric error

metric is often scaled to produce physical measures of

error that are related to the square of the change in volume

when an edge is removed. When an edge is contracted, a

merged vertex is placed at a location that minimizes this

error. Second, the method uses a heap that contains edges

that are keyed with contraction cost. The lowest cost edges

are removed in sequence, so the simplification progresses

in terms of making the smallest changes in shape first.

Furthermore, heaps are very fast and have O(NlogN)

performance. Simplification envelopes [34] provide a

different approach to maintaining the shape of a model.

Two envelope surfaces are placed next to the original

surface. One envelope is a small distance inside the

original surface and the other envelope is a small distance

outside the original surface. Model simplification is con-

strained such that the final surface falls within these

bounding envelopes. This technique may provide the

highest level of accuracy for single-bodied objects, and it

preserves the topology of single bodies, but is very

complicated to code. No extension was offered for

multiple-region models. Moore [35] presented a technique

that preserves the topology and interface conformability

for multiple-region models, yet uses a quadric error

metric coupled with edge contraction to maintain the

accuracy of the model. Candidate edges are only con-

tracted if no topology change would result and if

interfaces remain conformable. (A conforming interface is

the shared interface region between two touching ele-

ments, where every pair of touching elements must share

the same three vertices of a single face, or share the same

two vertices of the same edge, or share one and the same

vertex.)

The approach of Moore [35] may be described within

the framework of boundary representation solid modeling

(B-Rep), where an Euler operator removes an edge and

maintains the topology of the modified model.

An alternate approach to model simplification was dis-

cussed by Dey et al. [36], where a link-test was applied to

each edge under consideration for removal. If the link-test

was passed, the edge removal would not alter the topology

of the model. Their discussion proved the correctness of the

link-test for single-region bodies and for bodies that had

extra edges or boundaries. Vivodtzev et al. [37] adapted the

link-test for multiple-region models and demonstrated that

the topology and interfaces were maintained during

simplification.

Tetrahedron mesh simplification was discussed by Cut-

ler et al. [38] as an alternate approach to the surface mesh

simplification. Multiple tetrahedron regions were simpli-

fied in their process.

This paper extends the approach of [35] to further

handle on-the-fly model simplifications that are coupled

directly to model input and reconstruction. The process is

accurate, fast, and can provide highly reduced models

that preserve topology and interfaces. Since an immediate

goal is to produce models suitable for finite element

meshing and modeling on workstation-class computers,

the models are reduced to a size that fits within in-core

memory, and the mesh face shapes are constructed to

have high quality.

Engineering with Computers (2009) 25:221–235 225

123

3 Multiple-region model reconstruction

and simplification

This section describes the proposed process for building

and simplifying large-scale models from serial sections.

The proposed reconstruction and decimation method starts

at one end of a model and repeatedly reads the input data

and simplifies the in-core model until the entire model is

processed. After each input reading step, the newly input

readings are reconstructed into a 3D surface model, the

data structures associated with the simplification method

are updated, and the in-core model is simplified until a

termination criterion is satisfied. The following sections

describe these steps in more detail. The strategy proposed

here is fast, efficient, memory conscious, and it preserves

topology and interface conformability.

3.1 Read in a strip

For our implementation, we assume that the input data is

pre-segmented in that each data point is numbered to rep-

resent a region. For input data sets arranged on a

rectangular grid, the process sequentially reads in one layer

of voxels, as shown in Fig. 1. The memory required to read

a strip of voxels is reduced when the model is oriented such

that face with the smallest number of voxels is the one that

is read. For example, if the x-dimension in Fig. 1 is very

large, then the y–z face would have fewer voxels than

either of the x–y and x–z faces.

3.2 Reconstruct using generally classed marching

tetrahedra

Region boundary faces are generated for each voxel in the

freshly read strips using the method of [14]. Each voxel in

the strip is first divided into six tetrahedra, as shown in

Fig. 2, which ensures that all faces of the tetrahedra align,

match, and conform with each other within the voxel and

also with the tetrahedra of the neighboring voxels. Each of

the six tetrahedra is then divided into separate regions,

based on the region numbers of its vertices. This dividing

surface scheme produces additional vertices both on the

surface of the voxel and internal within the voxel, as shown

in Fig. 3, for the case when only one vertex has a different

region number than the other three vertices that share a

common region number. Through the subdivision of a

voxel into tetrahedra, and the subsequent generation of

separation surfaces, the boundary surface model is

advanced as the strips are read.

The generally classed marching tetrahedra style method

proposed in [14] has a few advantages over other schemes.

First, the method is simpler than generally classed MC,

since each tetrahedron has only five different cases for

separation surfaces, including the trivial case when all

vertices are of the same region number and no separation

surfaces are generated. Second, topological ambiguities

associated with MC are avoided. Third, tetrahedron-based

reconstructions can be used on arbitrary unstructured

domains and do not require structured rectangular grids. A

disadvantage of the marching tetrahedra method is that the

subdivision of each voxel into six tetrahedra can result in a

larger number of vertices than the number produced using

generally classed MC. There is a tradeoff between the

x

y

z

Fig. 1 Reading new strips and voxels

Fig. 2 Voxel divided into six tetrahedra

226 Engineering with Computers (2009) 25:221–235

123

increased need for mesh simplification with the marching

tetrahedra method versus the complexity of the generally

classed MC methods. This disadvantage is not severe, since

we simplify the mesh after each strip of voxels is input, as

will be discussed in Sect. 3.5.

Generally classed reconstruction schemes must store

additional data to distinguish among the different regions.

All faces separate two regions or bound a single material,

and the one or two face numbers are stored along with the

face structure. Likewise, vertices may touch more than one

region, and for convenience, these region numbers are

stored along with the vertex structure.

3.3 Link points and faces to the global model

After the separation faces and vertices are formed locally

for a strip, these entities are added to the global model of

previously processed faces and vertices. The strip infor-

mation is transferred voxel by voxel, and each voxel shares

maximally only three faces with voxels that have already

been read and processed, as shown in Fig. 1. The expanded

voxel in Fig. 1 has adjacent voxels on the left, below, and

behind it. Since some of the newly created vertices fall on

the faces of the cubes, there may already exist matching

vertices in the global model, in which case the duplicates

are purged. New vertices are added to the global vertex list

either at the end or inside available memory spaces that are

vacated during a previous decimation step. In this way,

memory is reused and conserved, which reduces the

memory requirements of the processing system.

3.4 Update structures

The geometrical model primarily consists of vertices and

faces, but additional data structures are used to make the

process run more efficiently. In particular, each vertex has

associated lists or arrays that store the faces, edges,

neighbors, and error measures that touch or relate to the

vertex. These lists are updated after each strip is read.

Our implementation stores the vertices for the pres-

ently read strip and for the previous two strips that were

recently read and processed. The present strip contains

vertices that are on the leading edge of the model input,

and all the faces that touch these vertices are not yet

known. However, the vertices for the previous strip are

fully surrounded by faces (a condition called finalized in

[25]), so quadric error characterizations can be made for

these vertices. Furthermore, the quadric error for edges

between vertices of the previous two strips can be com-

puted, and the edges may be added to the edge heap,

since their vertices have already been finalized. Edges

that touch the leading-edge vertices cannot be fully

characterized, so they are examined after the next strip is

read.

3.5 Decimate when necessary

The previous step added faces and vertices to the model

description and edges to the edge heap. When the face

count threshold is exceeded, the mesh is decimated down

to or below this threshold. Moore [35] outlined an edge

contraction approach to decimate multiple-region bodies

that preserves the interfaces and topology. A few features

of the approach that apply to decimating on-the-fly are

reviewed here.

Decimation is performed by iteratively removing edges

until some termination condition is reached. For on-the-fly

implementations, the list of edges includes only the edges

in the model that have been read so far. The edge con-

traction scheme is similar to [22] where the candidate

edges are stored in a heap and sorted by the contraction

error cost. The lowest cost edges are removed and the

affected edges and heap are updated until termination.

Termination will occur if the scheme runs out of candidate

edges to delete, if the edge contraction error is too great, or

if the targeted face count is attained. When an edge is

contracted, the model is usually simplified by the removal

of three edges, two faces, and one vertex. In some situa-

tions, a different number of these items is removed. In all

cases, the memory that was occupied by these entities is

made available for subsequent model input. In this way,

memory is conserved/reused as efficiently as possible.

To preserve the topology and interface conformability of

the model, the decimation process must be more restrictive

than to simply remove the lowest cost edge. Each edge is

scrutinized in depth before contraction. The edge is con-

tracted if it passes this scrutiny or it is rejected and

removed from the edge candidate heap. The extra tests are

documented in [35] and are summarized as follows:

Fig. 3 Separation face that separates a tip of a tetrahedron

Engineering with Computers (2009) 25:221–235 227

123

1. Check to ensure that the edge contraction does not

cause triangles to fold over themselves.

2. Check that the edge contraction does not cause a

corner to pinch close and thereby produce zero-volume

slivers.

3. Reject the removal of an edge that joins two vertices

whose region numbers do not match. If the region

number list of one vertex is a subset of the region

numbers of the other vertex, then that edge may still

remain as a valid candidate for edge contraction.

4. Check for resulting changes in the model after an edge

is removed. If any edge results in having more than

two faces of the same material number, the edge is

rejected, and will not be contracted.

5. Ensure that the Euler–Poincaré characteristic does not

change during an edge contraction. This test will be

discussed in depth in the next section.

6. Ensure that the modified faces do not intersect or self-

intersect with other faces in the model.

In addition to the topology tests, the decimation process

also performs tests to maintain the quality of the shape of

the facets.

1. Reject contractions that produce at least one modified

face that has a quality, Q, that is below a pre-specified

threshold. Our process uses the scale-invariant quality

metric, Q, proposed by Shewchuk [39].

Q ¼ Face area

lminlmed lmin þ 4 rinj jð Þ½ �2=3
ð3Þ

where lmin and lmed are the smallest and middle triangle

edge lengths, respectively, and rin is the signed inra-

dius or the radius of the inscribed circle for this face.

An advantage of this quality metric is that it charac-

terizes the quality of an element used in finite element

analyses. The quality, Q, is near-zero for the poor

shapes and negative when the face area is negative.

Equilateral triangular faces have a quality of 0.26, right

isosceles triangles have a factor of 0.24, and isosceles

triangles that have an obtuse angle of 135� have a

factor of 0.16.

2. For edge contractions on flat surfaces, the quadric error

is zero for all merged-vertex positions that fall on the

flat face. The program computes the quality for all the

faces that are modified for this merged-vertex position.

If allowable, the program also computes the quality for

of each face that is modified for the case where the

merged-vertex position is taken as the average of its

surrounding vertices, as when a simple Laplacian filter

is used. If the quality, Q, of the poorest shaped facet is

above a minimum threshold quality, the process takes

the higher quality result of either the quadric position

or the Laplacian position.

These two tests maintain the quality of the model to

remain above a pre-specified minimum.

3.6 Preserving topology on-the-fly

It is essential to preserve the topology of every region in

the model while the model is simplified. However, for

on-the-fly simplifications, at any instant only a part of the

model has been read and reconstructed, and the final

topology is not yet known. Moore [35] scrutinized edge

contractions based on the constraint that the Euler

Characteristic must be invariant during simplification to

preserve the topology. The Euler Characteristic, X, is

given as

X ¼ 2 S� Gð Þ þ L ¼ V � E þ F ð4Þ

where V, E, F, and S are the number of vertices, edges,

faces, and solids or bodies, respectively; G is the genus, or

the number of through holes; and L is the number of inner

hole loops. Since V, E, and F for an object are fixed, X is

invariant as seen from (4).

Simplifications that reduce V, E, and F are performed in

such a way that X remains unchanged. For on-the-fly

models, the final complete Euler characteristic, X, is not yet

known, but some value exists after each strip is read. The

on-the-fly simplification maintains this temporary value of

the Euler characteristic, Xt, to be invariant only during the

simplification stage at each input step. Since the on-the-fly

process uses edge contraction to simplify models, and since

only edges away from the leading edge are considered, the

process will only simplify local regions where the local

topology is complete and known.

Conformance to the Euler–Poincaré law is a necessary

condition for the correctness of the topology of a closed

and solid model. However, the Euler–Poincaré Law is not a

sufficient condition. Insidious combinations of dangling

vertices, edges, and faces can combine together to satisfy

the Euler–Poincaré law. Therefore, the specification of the

topology of a model is further refined to include the fol-

lowing constraints: (a) all vertices must have at least three

edges, (b) all edges must have two, and only two, faces

with the same region number, (c) each edge has two ver-

tices, and (d) no two distinct vertices can occupy the same

spatial location. These constraints must continue to be

maintained as the model is simplified.

3.7 Refresh heap if necessary

If the decimation loop terminates because either the can-

didate error was too high or the edge heap has been

depleted of edges, then the heap is refreshed with com-

pletely updated information. All edges in the model that are

in memory are considered again for inclusion in the heap.

228 Engineering with Computers (2009) 25:221–235

123

The edge heap can be depleted of low error edges for a

number of reasons. The main reason is face flips, where a

contracted edge causes a face to invert or fold over itself.

The edge would be rejected in this case. However, after

nearby edges are contracted, it may be possible that this

previously rejected edge may now be a viable candidate.

For severe decimations, edges need to be reconsidered after

initial rejections. Some sample studies showed that 54% of

the edges were rejected from face flips, although this high

number includes edges that were rejected multiple times.

The need for reconsideration for edge contraction limits

the applicability of some past edge contraction codes for

severe decimation in one pass. Many edges may not be

available within a single pass. Multiple decimation passes

are often necessary to achieve low face counts. However,

in the present system, the model is input in one pass, but

the heap of candidate edges may be updated more than

once.

3.8 Postprocess results

After the model is decimated, the simplified model is

output to a disk file and is also checked for correctness. The

Euler–Poincaré law is used to ensure that all regions are

solid and closed. Further checks are made to ensure that the

model is correct and free of dangling vertices, faces, and

edges.

3.9 Comments on unstructured data

Unstructured data, such as bore-hole studies, produce data

at various locations that do not fall on a regular grid. A

Delaunay tessellation would be constructed from these data

points, and the tetrahedra could be sorted in one direction.

The marching tetrahedra method would be used to con-

struct separation surfaces for the tetrahedra. Only the

separation surfaces and boundary faces would be stored to

disk. The faces could be sorted in one direction if the prior

sort were omitted. Subsequent processing would read these

faces from the disk file until a certain face number

threshold is reached. The process would note when each

vertex is finalized and would update the quadric error and

heap for each edge that has two finalized vertices. The

process would then alternate between simplification and

face input until the entire model has been processed, as was

done with the planar section data.

4 Results

The reconstruction and simplification process proposed

above was applied to examples in the fields of materials

science and medicine. These analyses were performed on a

Dell Inspiron 8600 laptop computer with a 1.6 GHz cen-

trino processor, 1 GB of memory, and Windows XP

Professional. The source code was compiled as a console

application using Microsoft Visual C?? 6.0. The defaults

compiler settings were used, so the program was not

optimized for speed, and the application priority was not

adjusted within the Windows task manager. Thus, the

execution times are expected to be typical for common use,

rather than optimized for fastest performance.

4.1 Memory requirements

Memory studies on various models indicate that the data

structures of the process require about 165 bytes/face for a

memory conserving implementation and about 224 bytes/

face for standard double precision and 32-bit integers.

Since the process handles multiple regions, each face stores

the two integer region numbers that it divides, and each

vertex stores four region numbers that it may touch. Exact

memory predictions cannot be obtained, since the data

structures that track the neighbors, edges, and faces for

each vertex are not fixed in size. On average, for the

models reported here, however, each vertex keeps track of

about 6.25 faces, 6.15 edges, and 6.15 neighboring vertices.

These memory statistics are useful for estimating the

largest model size that may be processed in-core for a

given amount of computer memory, even though they may

vary from model to model.

4.2 Smoothing

Smoothing is necessary to remove the jagged stair-steps

found in many reconstructed models. The smoothing

method should also preserve the overall shape and impor-

tant features of the models. The performance results of

three filters are shown in Fig. 4 for a chamfered rectangular

solid. Note that repeated application of the simple Lapla-

cian filter evolves the model to a cigar shape with a

reduced volume. Repeated application of the volume pre-

serving Laplacian filter still maintains the overall shape,

but the edges are rounded. More iterations are needed to

evolve to the cigar shape, although the volume is pre-

served. The one-pass NIFPMS filter shows slight warping,

but the overall shape and sharp edges are retained.

The performance for smoothing pyramids with jagged

stair-steps is shown in Fig. 5 for a double-pyramid shaped

object, where the four center base edges are marked as

interface edges. The simple Laplacian filter reduces the

model to a flat square pancake. The volume preserving

Laplacian filter retained the overall shape and size, but the

edges were slightly rounded. The NIFPMS filter rounded

the overall shape, yet did not remove the stair-steps.

Engineering with Computers (2009) 25:221–235 229

123

To preserve the topology and interfaces between

regions, the volume preserving smoothing method of

Taubin [17] was modified as follows. Vertices are

smoothed using vertices that have similar region attributes.

Formally stated, a vertex, vi, that touches a set of regions,

Ri, is smoothed based only on neighboring vertices, vj,

where each vertex in vj has a set of regions, Rj, that are

equal to Ri or are a superset of Ri. In a similar manner, the

NIFPMS filter was applied separately to the surface facets

between pairs of grains. The lines that separate three or

more grains were smoothed separately using only neigh-

boring data along these same lines.

The smoothing performance was also applied to poly-

crystalline models, where one grain was displayed

individually, as shown in Fig. 6. Visually, the volume

preserving Laplacian removed the stair-steps more effec-

tively than the NIFPMS filter, although 100 passes were

required. As seen in Fig. 6, fewer passes showed significant

stair-steps. The NIFPMS filter also developed depressions

in the flatter sections of the grain, and undesirable spikes in

the upper right hand corner of Fig. 6d. The surfaces

between pairs of grains are typically regarded as smooth

and devoid of sharp features, so there is less need for the

feature-preserving strength of the NIFPMS filter for these

Fig. 4 Smoothing a chamfered

slab: a original, b Laplacian

filter, c volume preserving

Laplacian filter and d NIFPMS

filter

Fig. 5 Smoothing stair-steps on

a double-pyramid: a original,

b Laplacian filter, c volume

preserving Laplacian filter

and d NIFPMS filter

230 Engineering with Computers (2009) 25:221–235

123

regions. The lines between three or more regions remained

sharp and were preserved with both modified methods, as

seen in Fig. 6c, d. Given the simplicity of the volume

preserving Laplacian and its effectiveness, this filter was

chosen for the overall processing system.

4.3 Decimated face quality

Standard edge contraction decimation techniques move

vertices to maintain the shape of a model, but the resulting

facet shapes may be poor. An example of a decimated grain

is shown in Fig. 7 for when the face quality was not con-

sidered and also when quality factor of 0.1 and 0.16 were

specified. The triangular facets in Fig. 7b, c have increas-

ingly better shapes than the facets in Fig. 7a. We expect

that models that have high-quality faces will be easier to

mesh with high-quality tetrahedra.

4.4 Polycrystalline solid

The reconstruction and simplification process was applied

to a sample of polycrystalline magnesia. The data was

obtained from [40] and the sample contained 2,400 indi-

vidual grains. The data was available for five serial

sections, each on a 1,740 9 1,303 grid. Without model

simplification, the model had 25,722,389 faces and

12,443,888 vertices. If this model were fully stored for in-

core simplification, it would require between 4.24 and

5.76 GB of memory. This model is within the reach of

large modern computers, as the input data is fairly small at

only five sections. The model size did exceed the memory

capacity of the processing computer used in this study, so

on-the-fly simplifications were necessary.

The polycrystalline model was decimated 90% to obtain

a face count of 2.5 million faces for the example shown in

Fig. 8. The execution time was 5,111 s. The average pro-

cessing rate is about 4,544 faces/s, which includes the time

required to read the data file and reconstruct the 3D surface

models. The model was checked for topology and interface

errors and passed.

4.5 Heap performance

The significant number of co-planar surface faces shown in

Fig. 8 can cause performance inefficiencies for the heap-

based data structure that is used to store edges. Purely

planar edge contractions have zero-error for the quadric

error metric, so the edge heap would be loaded with a

significant number of zero entries. On average, heaps have

O(NlogN) behavior and O(logN) access times when the

Fig. 6 Smoothing a grain

in a polycrystal: a original,

b 20 passes volume preserving

Laplacian filter, c 100 passes

volume preserving Laplacian

filter and d NIFPMS filter

Engineering with Computers (2009) 25:221–235 231

123

data are irregular or random. When a long string of iden-

tical data is input, the heap insertion costs approach O(N).

Thus, the cost to build a full heap would be closer to O(N2)

for a long string of identical inputs. To illustrate this effect

more clearly, consider a flat rectangular slab of a single

region. Most of the edges have zero contraction error. As

shown in Fig. 9, the decimation time for small N is of the

order O(N1.4) and worse than order O(N2) for larger N. In a

similar manner, MC and marching tetrahedra-based

reconstruction algorithms may produce a significant num-

ber of discrete nonzero error values that represent common

combinations of output faces. The heap-based performance

is again expected to decline in this case.

Edge contractions on all zero-error edges could be

performed before adding them to the heap. The coding in

this case, however, becomes more complex and the other

nonzero plateaus would not be handled by this approach.

One novel solution to this inefficiency is to perturb each

edge contraction error by an insignificant amount, say up to

1.0e-7. A random number generator adds a small error to

each computer error so that the heap will see different

values for each entry. The error caused by this addition is

smaller than the smallest expected nonzero difference in

edge contraction error. As shown in Fig. 9, the addition of

the random perturbation error brought the algorithm back

to the optimal O(NlogN) behavior. The highest face count

example in Fig. 9 ran nearly 6.5 times faster when the

random error was added. More significantly, for the poly-

crystalline magnesia example shown in Fig. 8, the addition

of the random perturbation reduced the processing time by

nearly 20% (4,119 s). Unless otherwise noted, the random

error perturbation was performed for all the results reported

here.

4.6 MRI medical example

The reconstruction/simplification process was applied to a

phantom head model available in [41] that was based on

MRI data. This pre-segmented model has 128 serial slices,

each of size 256 9 256. The reconstructed model would

have had initial 6,691,110 faces, but was reconstructed on-

the-fly and simplified to 2 million faces in 944 s. A dif-

ferent complete reconstruction/simplification process

produced a model with 1,670,000 faces in 942 s. The

Fig. 7 Surface mesh facet shapes for three specified quality levels: a Q = 0.0 (no restriction), b Q = 0.1, c Q = 0.16

Fig. 8 Reconstructed and simplified model of polycrystalline

magnesia

0

0.5

1

1.5

2

2.5

3

3.5

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6

log(Number of Edges)

lo
g

(P
ro

ce
ss

in
g

 T
im

e
(s

ec
)

Slope = 1.0323

Slope = 1.4393

Slope > 2

Fig. 9 The addition of a small random edge contraction error

enhances process performance

232 Engineering with Computers (2009) 25:221–235

123

nearly equal processing times demonstrate that the process

balances between the time required to maintain the heap

data structure and the time required to delete edges. In any

case, the original model was about 50% too large to fit in

memory and had to be processed on-the-fly.

Although all 61 regions were reconstructed and simpli-

fied together by the process, for simplicity, only the brain,

spinal cord, cerebellum, medulla oblongata, and pons are

shown in Fig. 10. The brain and cerebellum in Fig. 10 were

visualized as semitransparent light gray and dark gray,

respectively, to indicate that the regions fit together. A

stronger visual test for interface conformability test is to

plot the un-matched faces. Only the faces on the outside of

the head were displayed in our results, since internal faces

were properly matched, demonstrating the validity of the

present approach.

4.7 Small-size performance

The performance of the proposed reconstruction/simplifi-

cation system was further examined through a set of

analyses on a small subset of the polycrystalline solid data.

The processing system was applied to five serial sections

of a subset of the polycrystalline example from Fig. 8.

Small regions of respective sizes 50� 50; 50� 100; 50�
200; 50� 300; . . .; 50� 1; 000 were individually recon-

structed and simplified. A nearly linear performance of the

algorithm as shown in Fig. 11 was observed. The total

model processing times for decimating down to 10% of the

initial model sizes are shown by the higher curve, and the

decimation times alone are shown by the lower curve in

Fig. 11. For these small models, the entire models were

loaded into memory before decimating. The nearly linear

performance shown in Fig. 11 indicates that the processing

system is efficient and functions at no worse than

O(NlogN).

The aggressiveness of the decimation level employed

affects the processing time, as shown in Fig. 12. The same

models were used as shown in Fig. 11, but various levels of

decimation were considered in obtaining the results. The

on-the-fly decimation processes more quickly than the

approaches that read the entire model before simplification.

Of course, this latter option is only available for models

small enough to fit into memory. An interesting effect is

that there is little difference between the 10, 25, and 50%

decimation times for these on-the-fly examples. Even

though the more aggressive decimations remove more

faces, the heap construction and maintenance costs are

lower, since the heaps are smaller. For less efficient data

structures, or possibly for heaps that do not add the random

error quantity, the more aggressive decimation models

actually run faster than the models that retain the majority

of their faces. There are limits to this trend, however, as

will be discussed in the next section.

4.8 Limits on decimations

The effect of decimation level on processing time is seen

more clearly in Fig. 13 for a single model of size

50 9 1,000. The overall processing times follow the

expected trend that greater decimations require greater

processing time. For this particular example, at levels of

aggressiveness determined by percentage remaining,

beyond 45% the processing time levels off until the model

reaches a simplification level of about 12% where most

remaining edges cannot be contracted. For model sizes

Fig. 10 Reconstructed head showing five connected regions

0

20

40

60

80

100

120

0 100 200 300 400 500 600

Number of Faces (thousands)

T
im

e
(s

ec
)

Total Processing
(4774 faces/sec)

Decimation
(7831 faces/sec)

Fig. 11 Processing performance for various size models

Engineering with Computers (2009) 25:221–235 233

123

below 12%, the process may spend more time performing

computationally expensive tests on the remaining edges to

ensure that the topology and interface conformability are

preserved. This drop in performance would not be seen

with most single-body regions that are allowed to evolve to

a single tetrahedron. However, high-genus single-body

models would see performance drops at extremely high

levels of decimations.

5 Concluding remarks

This paper presents a process to reconstruct, smooth, and

simplify multiple-region models on-the-fly. The method

can be used to process models that initially are too large to

fit inside the in-core memory of a computer. The quality of

each facet in the mesh is constrained to exceed a pre-

specified threshold. The method preserves the topology and

interface conformance for all the regions and produces

models that are suitable for further computational analysis,

such as for finite element analyses.

Models are reconstructed using a generally classed

marching tetrahedra method that is less complex than the

recent generally classed MC algorithms, yet preserves

interface conformability between the regions in the model.

Model simplification through the use of quadric-based edge

contraction is computationally efficient and produces

accurate models. With the un-optimized code written for

this study, the method processes files at average rates of

above 4,500 faces/s. The performance was enhanced from

20 to 650% through the addition of a very small random

error to the conventional quadric-based edge contraction

error. This small error prevents long sequences of identical

entries in the edge heap and brings the heap performance

back to O(NlogN) performance levels.

The results indicate that the on-the-fly performance is

faster than the performance of simplifying after the entire

model is in memory, since the heap maintenance times are

reduced. There is a tradeoff in that aggressive decimation

has shorter heap maintenance costs, but requires more

computations to delete the greater number of edges. Even

so, the timing differences between decimation levels of 12

and 50% are small for the examples reported here.

The model simplification performance degrades at

highly severe level of decimations, since many computa-

tionally expensive tests are performed to find the small

number of valid remaining edges to remove. These

expensive tests are necessary to preserve the interfaces

between regions and to maintain the region topologies.

This drop in performance would not be seen with most

single-body regions that are allowed to evolve to a single

tetrahedron. However, high-genus single-body models

would see performance drops at extremely high levels of

decimations.

Multiple decimation passes are needed to simplify a

model down to low percentages, since many edges are

initially rejected to prevent faces from folding back over a

model. Alternately, rejected edges should be reconsidered

later when they may not cause local folding. On-the-fly

processing can still be performed in one pass while

allowing multiple decimation cycles by reading the model

in one pass and by repeating the decimation loop whenever

necessary.

A volume preserving Laplacian smoothing method that

respects interfaces was applied to the model to remove

stair-steps and jagged edges.

Acknowledgments The authors would like to acknowledge Dr. A.

D. Rollett for his many constructive comments for improving this

paper. The authors would also like to thank Dr. David Saylor and

Mr. Suk-Bin Lee for providing the segmented and aligned serial

section data.

0

20

40

60

80

100

120

0 100 200 300 400 500 600

Number of Faces (thousands)

T
o

ta
lP

ro
ce

ss
in

g
T

im
e

(s
ec

)

12%
25%
50%
12% All-in-core

Fig. 12 Processing time versus decimation aggressiveness

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100

% Faces Remaining

T
o

ta
lP

ro
ce

ss
in

g
T

im
e

(s
ec

)

Fig. 13 Processing efficiency degrades for severely decimated

models

234 Engineering with Computers (2009) 25:221–235

123

References

1. Alkemper J, Voorhees PW (2001) Quantitative serial sectioning

analysis. J Microsc 201(Pt 3):388–394

2. Vedula VR, Glass SJ, Saylor DM, Rohrer GS, Carter WC, Langer

SA (2001) Residual stress predictions in polycrystalline alumina.

J Am Ceram Soc 84:2947–2954

3. Groeber MA, Haley BK, Uchic MD, Dimiduk DM, Ghosh S

(2006) 3D reconstruction and characterization of polycrystalline

microstructures using a FIB-SEM system. Mater Charact

57(4–5):259–273

4. Poulsen HF, Nielsen SF, Lauridsen EM, Schmidt S, Suter RM,

Lienert U, Margulies L, Lorentzen T, Jensen DJ (2001) Three-

dimensional maps of grain boundaries and the stress state of

individual grains in polycrystals and powders. J Appl Cryst

34:751–756

5. Lorenson W, Cline H (1987) Marching cubes: a high resolution

3D surface construction algorithm (Proceedings of SIGGRAPH

‘87). Comp Graph 21(4):163–169

6. Boissonnat JD (1988) Shape reconstruction from planar cross

sections. Comput Vis Graph Image Process 44(1):1–29

7. Boissonnat JD, Geiger B (1992) Three dimensional reconstruc-

tion of complex shapes based on the Delaunay triangulation.

Technical report no. 1697, INRIA, France

8. Wallisch B (2000) Internet-based visualization of basin bound-

aries for three-dimensional dynamical systems. The 4th Central

European seminar on computer graphics in 2000. (http://www.

cg.tuwien.ac.at/*wallisch/da/)

9. Hege H-C, Seebaß M, Stalling D, Zöckler M (1997) A general-

ized marching cubes algorithm based on non-binary

classifications. Technical report SC-97-05, Konrad-Zuse-Zentrum

für Informationstechnik (ZIB)

10. Ju T, Losasso F, Schaefer S, Warren J (2002) Dual contouring of

hermite data. ACM Trans Graph 21(3):339–346. ISSN 0730-

0301 (Proceedings of ACM SIGGRAPH 2002)

11. Ju T, Udeshi T (2006) Intersection-free contouring on an octree

grid. In: Proceedings of Pacific graphics

12. Wu Z, Sullivan, JM Jr (2003) Multiple material marching cubes

algorithm. Int J Numer Methods Eng 58(2):189–207

13. Weinstein D (2000) Scanline surfacing: building separating sur-

faces from planar contours. In: IEEE Visualization 2000, pp 283–

289

14. Nielson GM, Franke R (1997) Computing the separating surface

for segmented data. In: Proceedings of the 8th conference on

visualization ‘97, Phoenix, AZ

15. Jones TR, Durand F, Desbrun M (2003) Non-iterative, feature-

preserving mesh smoothing. In: ACM transactions on graph-

ics, pp 943–949

16. Nealen A, Igarashi T, Sorkine O, Alexa M (2006) Laplacian mesh

optimization. Computer graphics and interactive techniques in

Australasia and South East Asia. In: Proceedings of the 4th

international conference on computer graphics and interactive

techniques in Australasia and Southeast Asia, Kuala Lumpur,

Malaysia, pp 381–389. ISBN:1-59593-564-9

17. Taubin G (1995) A signal processing approach to fair surface

design. In: Computer graphics proceedings, pp 351–358

18. Bade R, Haase J, Preim B (2006) comparison of fundamental

mesh smoothing algorithms for medical surface models. In:

Simulation and Visualization 2006, Magdeburg

19. Kuprat A, Khamayseh A, George D, Larkey L (2001) Volume

conserving smoothing for piecewise linear curves, surfaces, and

triple lines. J Comput Phys 172:99–118

20. Grabner M (2002) On-the-fly greedy mesh simplification for 2

1/2-D regular grid data acquisition systems. Vision with nontra-

ditional sensors. In: Leberl F, Fraundorfer F (eds) Proceedings of

26th workshop of the Austrian Association for Pattern Recogni-

tion, vol 160. Austrian Computer Society, Graz

21. Lindstrom P (2000) Out-of-core simplification of large polygonal

models. In: Proceedings of SIGGRAPH 2000, pp 259–262

22. Garland M, Heckbert P (1997) Surface simplification using

quadric error metrics. In: SIGGRAPH 97 conference proceed-

ings. Annual conference series, ACM SIGGRAPH. Addison-

Wesley, Reading

23. Lindstrom P, Silva CT (2001) A memory insensitive technique

for large model simplification. In: Proceedings of the conference

on visualization ’01. IEEE Computer Society, New York, pp

121–126

24. Wu J, Kobbelt L (2003) A stream algorithm for the decimation of

massive meshes. In: Graphics interface ‘03 conference proceed-

ings, pp 185–192

25. Isenburg M, Lindstrom P, Gumhold S, Snoeyink J (2003) Large

mesh simplification using processing sequences. In: Proceedings

of visualization ’03, pp 465–472

26. Isenburg M, Lindstrom P (2005) Streaming meshes. In: Pro-

ceedings of visualization ’05, pp 231–238

27. Mascarenhas A, Isenburg M, Pascucci V, Snoeyink J (2004)

Encoding volumetric grids for streaming isosurface extraction.

In: Proceedings of 3DPVT’04, pp 665–672

28. Isenburg M, Lindstrom P, Snoeyink J (2005) Streaming com-

pression of triangle meshes. In: Proceedings of 3rd symposium on

geometry processing, pp 111–118

29. Vo H, Callahan S, Lindstrom P, Pascucci V, Silva C (2005)

Streaming simplification of tetrahedral meshes. LLNL technical

report UCRL-CONF-208710

30. Isenburg M, Lindstrom P, Gumhold S, Shewchuk J (2006)

Streaming compression of tetrahedral volume meshes. In: Pro-

ceedings of graphics interface 2006, pp 115–121

31. Isenburg M, Gumhold S (2003) Out-of-core compression for

gigantic polygon meshes. In: Proceedings of SIGGRAPH’03,

pp 935–942

32. Schroeder W, Zarge J, Lorensen W (1992) Decimation of triangle

meshes (Proceedings of SIGGRAPH ’92). Comput Graph 25(3)

33. Guthe M, Borodin P, Klein R (2005) Fast and accurate Hausdorff

distance calculation between meshes. J WSCG 13. ISSN:1213–

6964

34. Cohen J, Varshney A, Manocha D, Turk G, Weber H, Agarwal P,

Brooks FP Jr, Wright W (1996) Simplification envelopes. In:

Proceedings of ACM SIGGRAPH’96, pp 119–128

35. Moore RH (2007) PhD Dissertation, Carnegie Mellon University,

Pittsburgh

36. Dey TK, Edelsbrunner H, Guha S, Nekhayev DV (1999)

Topology preserving edge contraction. Publ Inst Math (Beograd)

(N.S.) 66:23–45

37. Vivodtzev F, Bonneau GP, Letexier P (2005) Topology pre-

serving simplification of 2D non-manifold meshes with

embedded structures. Vis Comput 21(8)

38. Cutler B, Dorsey J, McMillan L (2004) Simplication and

Improvement of tetrahedral models for simulation. In: Scopigno R,

Zorin D (eds) Eurographics symposium on geometry processing

39. Shewchuk J (2002) What is a good linear element? Interpolation,

conditioning, and quality measures. In: Eleventh international

meshing roundtable Sandia National Laboratories, Ithaca, NY,

pp 115–126

40. Saylor DM, Morawiec A, Rohrer GS (2003) Distribution of grain

boundaries in magnesia as a function of five macroscopic

parameters. Acta Mater 51:3663–3674

41. Zubal IG, Harrell CR, Smith EO, Rattner Z, Gindi GR, Hoffer PB

(1994) Computerized three-dimensional segmented human anat-

omy. Med Phys 21(2):299–302

Engineering with Computers (2009) 25:221–235 235

123

http://www.cg.tuwien.ac.at/~wallisch/da/
http://www.cg.tuwien.ac.at/~wallisch/da/

	Reconstruction and simplification of high-quality multiple-region models from planar sections
	Abstract
	Introduction
	Background and related work
	Data sources
	Reconstruction methods
	Smoothing approaches
	Simplification approaches
	On-the-fly approaches
	Speed and accuracy

	Multiple-region model reconstruction �and simplification
	Read in a strip
	Reconstruct using generally classed marching tetrahedra
	Link points and faces to the global model
	Update structures
	Decimate when necessary
	Preserving topology on-the-fly
	Refresh heap if necessary
	Postprocess results
	Comments on unstructured data

	Results
	Memory requirements
	Smoothing
	Decimated face quality
	Polycrystalline solid
	Heap performance
	MRI medical example
	Small-size performance
	Limits on decimations

	Concluding remarks
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

