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It has recently been hypothesized that transient bimodal grain
size distributions can arise from unimodal distributions during
coarsening if the continued growth of a majority fraction of the
crystals is arrested by the energy barrier to nucleate new layers.
To test this hypothesis experimentally, SrTiO3 has been coars-
ened in a titania-rich liquid at 15001C. Measurements of the
grain size distribution as a function of time show a transient bi-
modal distribution that consists of a constant number of larger
grains growing many times faster than a decreasing number of
much smaller grains. The observations are consistent with the
nucleation-limited coarsening theory, which provides a plausible
explanation for the development of transient bimodal grain size
distributions in systems of crystals bounded by singular surfaces.

I. Introduction

THE origin of transient bimodal grain size distributions (fre-
quently referred to as abnormal grain growth) that appear

during the coarsening of crystals in the presence of a liquid
phase has been the subject of a considerable debate. The clas-
sical theories for diffusion-limited coarsening,1,2 surface attach-
ment-limited coarsening,2 and ledge migration-limited
coarsening3 all produce relatively narrow, steady-state, uni-
modal grain size distributions. Although the classical theories
assume a zero volume fraction for the coarsening phase and an
isotropic surface energy, relaxing these constraints does not
allow the development of a bimodal grain size distribution.4–11

However, it has recently been hypothesized that if coarsening is
limited by the nucleation of new terraces on singular surfaces,
then conditions exist where a transient bimodal grain size dis-
tribution can develop.12–14 Numerical simulations have been
used to verify this idea, which will be referred to as the nucle-
ation-limiting coarsening theory.14 The purpose of this paper is
to test experimentally the predictions of this theory and numer-
ical simulations based on the theory.

The nucleation-limited coarsening theory is based on the idea
that a singular crystal surface can only advance or retract by the
lateral motion of steps. In the absence of a persistent source of
these steps (such as a screw dislocation), a terrace must be nu-
cleated and there will be an energy barrier for this process. The
nucleation energy barrier has also been cited as influencing the
initial stages of sintering.15,16 The presence of a barrier during
coarsening is consistent with the conventional theory for the
growth of crystals from a vapor, a solution, or from a super-
cooled melt.17 The principal difference between the aforemen-

tioned growth processes and coarsening is the magnitude of the
driving force. The curvature differences that drive coarsening
are very small in comparison with the volumetric free energy
differences (difference between the material in the precursor
phase and the crystal phase) that drive crystal growth processes
from a vapor, melt, or solution. In coarsening, the barrier for
nucleation depends on the size of the crystal and whether it is
growing or dissolving. If the ensemble of coarsening crystals
is characterized by the dimension r�, the size of a crystal that
neither shrinks nor grows, one finds that the nucleation energy
barrier for adding layers to growing crystals (crystals with sizes
greater than r�) is constant, the barrier for removing layers from
shrinking crystals with sizes less than r�/2 is 0, and intermediate
barriers for removing layers are found for crystals with sizes
between r�/2 and r�.14 When estimates of the nucleation energy
barrier are compared with the available thermal energy and ca-
pillary driving forces, one concludes that micrometer-sized crys-
tals without step-producing defects are unable to grow.13–16,18–20

This conclusion leads to a situation where two distinct popula-
tions of crystals can grow at very different rates: a population
containing step sources such as screw dislocations that can grow
to large sizes (using the material from the small crystals that
dissolve without a barrier), and a population of crystals without
step sources that are unable to grow because the nucleation of
new layers is kinetically limited. This situation leads to a tran-
sient bimodal distribution of grain sizes.

There are four specific predictions from the nucleation-limit-
ed coarsening theory that are subject to experimental validation.
The first is that the bimodal distribution is transient. In other
words, it arises from an initially unimodal distribution that is
disrupted when the growth of crystals without step-producing
defects is arrested by the nucleation energy barrier. The crystals
with step-producing defects continue to grow until all of the
smaller and more perfect crystals are dissolved, at which point
the distribution becomes unimodal again and consists only of
crystals with step-producing defects. The second prediction is
that during the period when the distribution is bimodal, there is
a constant number density of the larger crystals. In other words,
only those crystals with step-producing defects grow and there
should be an approximately constant number of these grains.
During the same period, the number of the smaller grains should
decrease, because they dissolve to feed the growth of the larger
crystals. Finally, in the ideal case, the maximum size of the small
grains should be constant, as the nucleation energy barrier pre-
vents their growth. However, the constancy of the maximum
size assumes that the grains are completely dispersed and that no
other growth mechanisms can operate. In practice, crystals will
always impinge either because of gravity-driven sedimentation
or because their volume fraction exceeds the percolation thresh-
old. It has previously been shown that when faceted crystals
contact at their faces, the nucleation barrier is eliminated and
they coalesce.15,16,21 Therefore, the impinging crystals can also
grow by the migration of the grain boundaries (to avoid confu-
sion, we will refer to growth by motion of boundaries as grain
growth and growth by dissolution and precipitation as coarsen-
ing). However, this rate is expected to be slow in comparison
with grain growth in a single-phase dense polycrystal with fully
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contiguous grains. Therefore, the fourth prediction is more real-
istically modified to say that the maximum size of the smaller
subset of the population should increase slowly at a rate deter-
mined by the grain contiguity.

There is already a considerable body of published observations
that support the nucleation-limited coarsening theory, and these
results have recently been reviewed.20 What is missing is a com-
prehensive body of data from a single system that matches the
assumptions of the theory as nearly as possible and reduces pos-
sible uncertainties. To fulfill these conditions, we have measured
the time evolution of the grain size distribution of SrTiO3 in a
titania-rich liquid at 15001C. We have previously reported on the
surface energy anisotropy of SrTiO3 in air and found that its (100)
surfaces are singular.22 We have also reported on the evolution of
the shapes of SrTiO3 crystals in a titania-rich liquid with the same
composition and at the same temperature used in the current ex-
periments and found that the crystals have a large proportion of
flat (100) facets.23 Therefore, this system meets the requirement
that bounding surfaces must move by the lateral motion of steps.
The coarsening crystals are, however, in contact with one another
so, in parallel with the coarsening process, grain growth will also
occur. To estimate the rate of this process, we use the grain
growth rate in a system with no added second phase as a reference
point and assume that in the two-phase system, the grain growth
rate will be diminished in proportion to the contiguity.

II. Experimental Procedure

Two-phase SrTiO3–TiO2 specimens were formulated so that at
the annealing temperature of 15001C, they would consist of a
mixture with 85% volume fraction solid SrTiO3 and 15% vol-
ume fraction of a titania-rich liquid.24 In this mixture, the liquid
was comprised of 33.3 mol% SrTiO3 and 66.7 mol% TiO2. To
realize this composition, SrTiO3 and TiO2 powders (99% pure)
were mixed and then milled with ethanol and 1 cm glass balls for
5 h. Inspection of the powders at this point by scanning electron
microscopy (SEM) showed agglomerates of roughly spherical
submicrometer-sized particles with no obvious flat surfaces.
After drying, the powder was mixed with a small amount of
polyethylene glycol binder and deionized water, and then uniax-
ially pressed to 11.7 MPa. The consolidated samples were then
degassed in vacuum at 8001C for 25 h before annealing in air at
15001C. The samples were ramped to 15001C at a rate of 51C/
min and then held at this temperature for times ranging from 0
to 50 h. The samples were then lapped with 3 mm alumina slurry
and polished with 0.02 mm colloidal silica slurry. Single-phase
SrTiO3 polycrystals were also created to determine grain growth
rates in a dense sample. These specimens were prepared by
methods identical to those described above, but using only
SrTiO3 powder. Before SEM imaging, each sample was lapped,
polished, and thermally grooved at 14001C for 6 min.

To determine the growth rate of crystals known to contain
dislocations, plate-shaped single crystals were embedded in
powder with the same composition as the two-phase sample.
After heating at 15001C for 5 h, the samples were sectioned
perpendicular to the plane of the plate. The original surface of
the seed is easily identified by a line of defects, and the amount
of growth was determined by measuring the distance that the
interface advanced from its original position. The polished sur-
faces of a plate from the same sample were etched in 50 vol%
HNO3–50 vol% deionized water to form pits at the surface/
dislocation intersection. By counting the pits, the disloca-
tion density was determined to be 5� 105 cm–2.

The grain size distributions in each sample were determined
from images obtained using a SEM (XL30 FEG, Phillips, Eind-
hoven, the Netherlands). To prevent charging, the samples were
coated with a thin layer of carbon. All SEM imaging was con-
ducted at a 01 stage tilt and a 20.0 kV accelerating voltage. Var-
ious magnifications were used to best image the microstructures.
For the 3-, 5-, and 10-h two-phase samples, there was a wide
distribution of grain sizes. To make sure the large and small

populations were both measured, images of the same areas were
recorded at two different magnifications. The linear intercept
method was used to calculate the grain size distributions. The
liquid-phase lengths along the test lines were subtracted before
dividing the number of grains counted along the lines. The mean
intercept lengths were stereologically corrected by a factor of 1.5
to yield grain diameters.25 For specimens where two magnifica-
tions were used, all grains below a fixed size (set differently for
each distribution) were determined from the high-magnification
images. When the grain size data were binned, the bin size was
decreased for the data obtained from the higher magnification
images. For the two-phase materials, at least 2138 grains were
measured in each sample and for the single-phase materials, at
least 1353 grains were measured in each sample.

The contiguity of the SrTiO3 crystals in the two-phase sam-
ples was determined from crystal orientation maps on planar
sections obtained using an electron-backscattered diffraction
(EBSD) mapping system (TexSEM Laboratories, Provo, UT)
integrated with a SEM (Model XL40 FEG, Phillips). Orienta-
tion maps were recorded at a 601 tilt with a 20 kV beam. The
step sizes for the orientation mapping were between 0.3 and 1.6
mm, depending on the grain size. The solidified liquid phase did
not produce EBSD patterns that could be indexed. In this case,
the OIM analysis software (TexSEM Laboratories Inc. version
3.03) assigns low values for the image quality and orientation
confidence index parameters. Using these parameters as a guide,
the unindexed points were assigned unique Euler angles (f15 0,
F5 0, and f25 0) so that these regions were easy to identify in
the later analysis. The orientation data were then processed to
remove spurious observations using a ‘‘grain dilation clean-up’’
in the OIM software. A single orientation was then assigned to
each SrTiO3 grain by averaging all of the orientations within a
single grain that were measured with a confidence index greater
than 0.2. The OIM analysis software was then used to extract all
boundary line segments. The segments arising from solid–liquid
boundaries were easily distinguished from those arising from
solid–solid boundaries because of the unique zero Euler angles
on one side of the boundary. With the lengths of the solid–solid
(Ls–s) and solid–liquid (Ls–l) interface traces measured in this
way, the contiguity can be calculated by the equation26,27

Contiguity ¼
P

2Ls2sP
2Ls2s þ Ls2l½ � (1)

III. Results

The images in Fig. 1 illustrate the microstructures of the two-
phase (Fig. 1(a)) and the single-phase (Fig. 1(b)) samples after
5 h of annealing. The grain size distributions derived from these
specimens are shown in Fig. 2. Note that the grain size distri-
bution shown in Fig. 2(a) has two distinct peaks, one at about
9 mm and one at 90 mm, while the one in Fig. 2(b) has a single
peak at about 40 mm. These are the characteristic features that
we use to determine whether a grain size distribution is bimodal
(Fig. 2(a)) or unimodal (Fig. 2(b)). In the single-phase sample,
the distribution was unimodal at all times and for the two-phase
sample, the distribution was bimodal after 0, 3, 5, and 10 h, but
unimodal at longer times. The grain size distributions for two-
phase samples heated for 3 and 50 h are compared in Fig. 3 to
illustrate the change from bimodal to unimodal. In the analysis
of the bimodal distributions that follows, the crystals associated
with the first peak will be referred to as the small crystals and
those crystals associated with the second peak as the large crys-
tals. Note that although the volume fraction peak associated
with the large crystals is always higher than the one associated
with the small crystals, the small crystals are far more numerous.

To determine the number of grains per unit volume (Nv), we
measured the average number per unit area in a planar section
(NA), and divided by the average diameter (d).28 The results for
the populations of grains associated with each peak in the dis-
tribution are shown in Fig. 4. The numbers of the large grains
(Fig. 4(a)) and the small grains (Fig. 4(b)) behave very differ-
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ently as a function of time. In the range of 0–5 h, the number of
the large grains is constant within experimental uncertainty. At
the same time, the number of small grains decreases rapidly. The
density of large grains decreases at 10 h. This is at the point
where few small grains remain and the large grains begin to im-
pinge on each other. When this occurs, the large grains also
begin to be eliminated. By 15 h, when the distribution is uni-
modal and no small grains remain, the number of large grains
also declines significantly as their average size continues to in-
crease.

The changes in the average sizes of the crystals during the
bimodal regime are shown in Fig. 5, which compares the mean
sizes of the grains in the single-phase sample with the mean sizes
of the large and small grains in the two-phase sample. The large
grains in the two-phase sample grow the fastest, the small grains
in the two-phase sample grow the slowest, and the grains in the

single-phase sample have an intermediate growth rate. As men-
tioned previously, the distributions in the single-phase and two-
phase sample are unimodal after 10 h. The average grain sizes
continue to increase, but a distinct population of small crystals
can no longer be distinguished in the two-phase sample. The
unimodal condition remained even at the longest time examined
(50 h).

An EBSD map of a section perpendicular to the plate of a
seeded sample with the (100) orientation is shown in Fig. 6. This
experiment was also carried out on samples with (111) orienta-
tions. However, because the (100)-oriented crystals grew the
least, the (100) sample was selected as representative of the pro-
cess that would limit the growth of an equiaxed, three-dimen-
sional (3D) crystal. The newly grown crystal has a columnar
structure with low-angle grain boundaries (less than 11 of
misorientation) between the columns. By averaging the amount

111

001 101

50 µm 50 µm

(b)(a)

Fig. 1. Inverse pole figure maps show the microstructures of the two-phase (a) and single-phase (b) samples after heating for 5 h at 15001C. In these
maps, the colors indicate the orientation according to the key shown in the unit triangle. The black regions are liquid phase or pores in (a) and pores
in (b).
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Fig. 2. Grain size distributions from the two-phase (a) and the single-phase (b) sample after heating for 5 h at 15001C. Bars ending with arrows are grain
sizes that have volume percentages between 3 and 7, or above 7.
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of growth at several places along the interface on two samples,
the growth during a 5-h period was determined to be 170 mm.
The (111)-oriented sample grew almost 300 mm under the same
conditions.

IV. Discussion

The observations of SrTiO3 coarsening in a titania-rich liquid
are consistent with the predictions of the nucleation-limited
coarsening theory. The first prediction is that during isothermal
heating, a bimodal distribution arises out of an initially uni-

modal distribution and, when the small crystals in the distribu-
tion are exhausted, the distribution becomes unimodal again.
The starting powders were thoroughly milled and microscopic
inspection indicated that the distribution of grain sizes was uni-
form. After heating the sample to 15001C and back to room
temperature, 10 mm grains could be found among grains whose
average size was less than 2 mm. In other words, the bimodal
distribution appeared in the very initial stages of growth. After
10 h, the distribution again becomes unimodal; the two types of
distributions are illustrated in Fig. 3. Thus, a transient bimodal
distribution is observed in this system.

The second prediction is that during the period where the bi-
modal distribution is present, there is a constant number of the
larger crystals. The observations in Fig. 4(a) are consistent with
this prediction. Note that in the first 5 h of annealing, the aver-
age sizes of the large grains increase from about 5 mm to about
20 mm. Because the number of these crystals remains constant,
the mass conservation requirement allows us to conclude that
the material for this growth arises entirely from the population
of smaller crystals. The decrease in the number of the large
crystals that is observed at 10 and 15 h indicates that at this
point, the material needed for continued growth must be derived
from the smallest of the large crystals. Because the large grains
impinge at this point, some of this growth will also occur by the
motion of grain boundaries. The third prediction is that the
number density of the smaller grains should decrease, because
they dissolve to feed the growth of the larger population. The
data in Fig. 4(b) are consistent with this prediction.

The fourth and final prediction is that the maximum size of
the small grains should be constant, as the nucleation energy
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Fig. 4. Number of large (a) and small (b) grains per unit volume in the
two-phase sample as a function of time after heating at 15001C. The
points represent the mean values of Nv, while the bars represent one
standard deviation above and below the mean, derived from the meas-
urements of the diameter.
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Fig. 3. Comparison of the grain size distributions from the two-phase sample after 3 h (a) and after 50 h (b) to illustrate the transient character of the
bimodal distribution.
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barrier prevents their growth by coarsening. However, as noted
in Section I, this can only be true in the case where the crystals
are not in contact with each other. Because it is impossible
to obtain this condition in the experiment, we expect some
growth by grain boundary migration.15,16,21 Further, because
of the reduced contiguity, this rate is expected to be less than
what would occur in a fully contiguous sample at the same tem-
perature. The grain growth expectation is verified by the data in
Fig. 5, which show that the small grains grow much more slowly
than the grains in a dense polycrystal.

It is possible to make an estimate of how fast the average
grain size of the small grains should increase if they grow only
by grain boundary migration. The growth law for the single-
phase system, determined by fitting to the measured mean grain
size, /rS, is:

rh i ¼ 15:7t0:33 (2)

where t is the time in hours and /rS is measured in micrometers.
The contiguity of the SrTiO3 crystals was determined to be 0.4.
Hence, grain boundaries comprise 40% of the total bounding
interface area. Assuming that 40% of a crystal’s bounding sur-
face area advances as a rate given by Eq. (2) and that this added
volume is then distributed uniformly over the entire crystal, new

radii can be calculated for each annealing time. This method of
estimating the rate of grain growth in a polycrystal with low
contiguity is admittedly approximate, but should provide an
upper limit for the rate at which grain boundary motion could
lead to an increase in the grain size. When the predicted growth
(blue triangles) and the observed growth (green squares) are
compared (see Fig. 7), we see that they are consistent. In other
words, the small amount of growth of the smaller crystals could
be explained by grain boundary motion in the absence of coars-
ening that is blocked by the nucleation energy barrier.

It is assumed that the grains that grow rapidly have screw
dislocations emerging on their surfaces so that the nucleation
energy barrier does not affect their growth. In the initially milled
powder, it is safe to assume that there is considerable disorder.
In the initial stages of heating, however, dislocations in these
submicrometer crystals are also likely to be driven to interfaces
by image forces and annihilated. If some grains retain disloca-
tions, then these can act as seeds for the growth of the large
grains in the population. This allows us to pose the question:
what is the minimum density of dislocations that would be re-
quired in the initial state to create the observed microstructure?
If we compare the relative number densities of the small and
large grains in the 0-h sample, we find that there are 30000 times
more small grains than large grains. So, assuming that at least
one cube-shaped grain with an edge length of about 1 mm has
three threading dislocations, and that the other similarly shaped
30 000 grains are perfect, the necessary dislocation density is
3 mm per 30 000 cubic micrometers or 104 cm�2. Note that this
estimate is a lower bound, not including the dislocations that do
not create effective step sources (for example, edge dislocations
with line directions perpendicular to the surface). By counting
etch pits, we have measured dislocation densities in SrTiO3 sin-
gle crystals to be as high as 5� 105 cm�2 and this is consistent
with our analysis of etch pit distributions in other work.29

Therefore, the minimum density of dislocations required to pro-
duce the observed microstructure by nucleation-limited coars-
ening is plausible. It is also worth pointing out that if crystals
containing the appropriate defects are too numerous, the bimo-
dal transient will occur very quickly and is not likely to be ob-
served. Only when the defects are relatively rare will the bimodal
distribution be sustained long enough to be observed.

The nucleation energy barrier will arrest the growth of the
defect-free crystals only if it is sufficiently larger than the avail-
able thermal energy and the capillary driving force. Assuming a
temperature of 15001C, a step height of 2 Å, and that the energy
of the step scales directly with the surface energy (assumed to be
0.1 J/m2), then the nucleation energy barrier is in the range of
103 kT.14 Assuming an average grain size of 0.5 mm, the energy
barrier is 105 times the mean field capillary driving force. Under
these conditions, nucleation is clearly not feasible.18,20 The only
parameter in doubt in this estimate is the energy of the step.
However, the step energy would have to be more than 20 times
lower than the assumed value (0.1 J/m2) for nucleation to occur
at a reasonable rate and this does not seem plausible. Impurities
are known to affect step energies strongly and it is possible that
they may reduce the step energy enough to allow nucleation.
However, if this was the case, then 2D growth should occur on
all grains rather than a small minority and it is therefore not
possible to explain the bimodal distribution. Similarly, if the
roughening temperature was exceeded and the barrier disap-
peared, growth would occur uniformly and the distribution
would be unimodal.

To test whether or not crystals known to have dislocations
grow at a rate similar to the large grains in these samples that are
assumed to contain dislocations, a macroscopic single-crystal
seed was embedded in a matrix of the same composition as the
rest of the two-phase samples and heated for 5 h. The interface
of this crystal advanced 170 mm. Etch pit studies confirmed that
the macroscopic seed contained dislocations. If a much smaller
grain also possessed the requisite dislocations, its bounding
surfaces should advance by a similar distance. A sample that
was treated in exactly the same way, but with no added seed,

12
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Fig. 6. Electron-backscattered diffraction inverse pole figure map
showing a transverse section through the deliberately seeded sample,
heated for 5 h at 15001C. The seed crystal is labeled 1 and the grown area
is labeled 2, with arrows indicating the direction of growth. The contrast
in the micrograph combines both orientation (color) and the quality of
the backscattered pattern used to measure the orientation (brightness).
Differences in the pattern quality allow small misorientations to be visu-
alized.
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was also examined. On a single section plane through this sam-
ple, a grain with an apparent diameter of 140 mm was observed.
Because the 3D shape of this crystal was not known, it is im-
possible to know the true diameter. However, the amount that
this crystal grew is comparable with the amount that the macro-
scopic seed grew, confirming the idea that a relatively small
crystal that is assumed to contain dislocations can grow just as
much as a much larger crystal known to have dislocations.

The observations compiled here are consistent with previous
reports in the literature. For example, Rehrig et al.30 have re-
ported a transient bimodal grain size distribution in BaTiO3

coarsening under conditions where an intergranular liquid is
expected. In this experiment, the largest BaTiO3 crystals grow
while those in the small population are practically stagnant be-
fore they disappear. In the present case, we have based our
analysis on complete grain size distribution data and added
measurements of the number density of the fastest-growing
grains. The nucleation-limited coarsening theory can also pro-
vide an explanation for the fact that 65 mol% Pb(Mg1/3Nb2/3)
O3–35 mol% PbTiO3 seeds added to a fine-grained matrix con-
taining a liquid phase grow many times faster than the matrix31:
the seeds, by virtue of their size, are guaranteed to have the step-
producing defects needed to eliminate the nucleation energy
barrier. The finer grains, on the other hand, are less likely to
have these defects and this may explain why the growth of these
grains stagnates at relatively small sizes.32,33

V. Conclusions

As a test of the nucleation-limited coarsening theory, the time
evolution of the grain size distribution has been measured for
SrTiO3 crystals coarsening in a titania-rich liquid. Initially, a
bimodal grain size distribution develops. During this period, a
constant number of large crystals grow at the expense of a di-
minishing population of small crystals. After the small crystals
are exhausted, the large crystals continue to coarsen and exhibit
a unimodal grain size distribution. The slow increase in the
average size of the small crystals that occurs before they are ex-
hausted can be explained by grain boundary migration. These
observations are consistent with the nucleation-limited coarsen-
ing theory, which provides a plausible explanation for the
development of transient bimodal grain size distributions in
systems of crystals bounded by singular surfaces.
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