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! Abstract It has recently become possible to measure the anisotropic distribution
of interfaces in polycrystals and composites. Because classical theories for grain growth
and coarsening assume isotropic interface properties, they are incapable of explaining
how these distributions arise. The purpose of this paper is to review the results of recent
experiments, simulations, and theories that document the effects of anisotropy on the
capillarity-driven evolution of granular systems. The results suggest that meaningful
predictions of evolving microstructural characteristics can be made using models that
incorporate the anisotropy of the interfacial energy and mobility.

INTRODUCTION

When a polycrystalline compact is heated at a temperature that is an appreciable
fraction of its melting point, the sizes of the individual crystals change in such a
way that the average grain size increases. This process is driven by a reduction
in the total interfacial energy that occurs as the total interfacial area decreases.
Because mass is conserved, some grains get smaller and disappear whereas others
grow larger. In single-phase crystalline materials, where the grains are in intimate
contact, this phenomenon is referred to as grain growth. When this process occurs
in the midst of a distinct intervening phase that separates the crystals, it is usu-
ally referred to as coarsening. Because grain growth and coarsening are similar
processes motivated by the same driving force, the two terms are frequently inter-
changed. In fact, without assigning a limiting value for the fractional volume of
the intervening phase, a distinct classification may not be possible and, in many
circumstances, the two processes may occur simultaneously. However, it should be
recognized that distinct mechanisms are at work. In grain growth, the fundamental
process is transferring an atom across a boundary from one grain to another. In
coarsening, it is the dissolution of material from one crystal, its transport through
the intervening phase, and precipitation onto another crystal that underpins the
process.
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There is an extensive literature on grain growth and coarsening that goes
back more than 50 years and several reviews are available (1–3). One of the basic
assumptions of the classical work is that the interface energies are isotropic. How-
ever, recent experiments and simulations have shown that anisotropy can have
important consequences, particularly on the distribution of interface types. Fur-
thermore, by classifying interfaces in a microstructure according to their crystal-
lography, new metrics can be established to serve as a quantitative basis for un-
derstanding the relationship between the processing, structure, and properties of a
material. In other words, accounting for anisotropy in growth processes not only
has the potential to make more accurate predictions of polycrystalline structure, it
also offers a way to characterize structural differences that have measurable influ-
ences on properties. Therefore, this review focuses on the influence of anisotropy
on coarsening and grain growth and is constructed in the following way. The next
section provides a summary of phenomenological observations of growth kinet-
ics and size distributions. Classical theories and simulations of grain growth and
coarsening are summarized in the third section. In the fourth section, the influence
of anisotropic grain boundary and surface properties are discussed and in the fifth
section, the impact of singular interfaces on growth is described. The final section
identifies unanswered questions and likely trends for future research.

BRIEF ASSESSMENT OF EXPERIMENTALLY
OBSERVED PHENOMENA

In a system of growing crystals, experimental observations consistently show that
at a sufficiently high temperature, the average grain size increases with time until
it approaches the sample size. For samples with anisotropic shapes, such as wires,
films, or foils, the smallest dimension is the relevant size. The present discussion is
limited to growth in three-dimensional systems where capillary forces dominate.
Under these conditions, the time dependence of the average radius, 〈r〉, is

〈r〉 − 〈r0〉 = (Kt)n, 1.

where K is a positive constant, 〈r0〉 is the initial average radius, and n is a value less
than or equal to 1/2 (4–7). The upper limit of 1/2 occurs for ideal conditions where
the boundary velocity scales linearly with the capillary driving force. Smaller
exponents are more frequently reported, and these results can be explained if
there is a more complex driving force-velocity relationship determined by the
presence of impurities (8, 9), pores, or second-phase precipitates (10). For the case
of diffusion-limited coarsening, the exponent is 1/3 (11). Although it has been
convincingly demonstrated that in a sample of sufficient purity, grain growth at
high temperature follows a kinetic law where n = 1/2, it should be recognized
that this is an exceptional case and values of n less than 1/2 are more typical (12).

Experimental observations also indicate that the rate of growth is inversely
proportional to the size of the crystals (7):
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d〈r〉
dt

= K
〈r〉 . 2.

Note that integration of Equation 2 gives Equation 1 with an exponent of 1/2.
Because boundaries have been observed to move toward their centers of curvature,
and the boundary velocity has been observed to be linearly dependent on the
curvature, this phenomenon can be explained in terms of the capillary driving
force, γ κ , where γ is the energy per unit area of the interface (assumed to be
isotropic) and κ is the interface curvature (7, 13–15). Assuming uniform curvature,
κ = 2r−1, the boundary velocity decreases as 〈r〉 increases and, therefore, the rate
of growth decreases with increasing average grain size.

In the late stages of grain growth and coarsening, it is believed that there is
a characteristic distribution of crystal sizes that remains constant even as the av-
erage radius increases. In other words, the distribution at two different times is
identical except for a change in the magnification. This is referred to statistical
self-similarity or scaling. Whereas there is some experimental evidence for this
assertion, it is difficult to demonstrate conclusively (16–18). As an example, grain
size distributions (determined from true three-dimensional data) from four studies
are compared in Figure 1a (19–22). The crystal size distributions are symmetric
on a semilog plot and are most frequently reported to be lognormal:

fL(ρ) = 1

(2π )1/2

1
βρ

exp[−(ln ρ − α)2/2β2], 3.

where ρ = r/〈r〉, 〈r〉 is the average grain size, and α and β are fitting parameters.
The lognormal distribution is shown in Figure 1c. Three reported distributions
resulting from coarsening are illustrated in Figure 1b (18, 23, 24). Note that the
first two distributions are similar, do not appear to be lognormal, and both result
from the coarsening of a solid within a solid. The third, which is much broader and
symmetric, results from coarsening in a liquid. It should also be noted that bimodal
distributions are frequently observed in anisotropic systems; this phenomenon
is usually referred to as abnormal growth. For example, during the coarsening
of BaTiO3, two distinct distributions of grains with average sizes in the ranges
of 1 µm and 100 µm have been observed to coexist (25). The exact forms of
these distributions and the kinetics of their evolution have not yet been studied in
detail.

Topological characteristics in systems of coarsening particles vary widely de-
pending on the volume fraction and characteristics of the intervening phase. For
example, the coarsening phase may be fully faceted or bounded by curved in-
terfaces, depending on the anisotropy of the interface energy. For grain growth
in single-phase systems, on the other hand, the topology is determined by the
simultaneous requirements that the grains fill all space while maintaining lo-
cal equilibrium at the interfacial junctions (26). Therefore, grains are approxi-
mately polygonal volumes whose faces have slight curvatures. When the number
of faces per grain is large enough, the interfacial equilibrium constraint forces
the faces to be concave so that the grain expands at the expense of its neighbors.
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The implication is that larger, growing grains have more faces than smaller shrink-
ing grains. This idea is supported by the observation that the average number of
faces increases with the average crystal size, as illustrated in Figure 2. Measure-
ments of the average number of faces per grain have yielded values between
12 and 14, whereas the average number of edges per faces is very close to
5 (19–22, 27).

Grain growth in nanostructured materials has been an active area of research
during the past decade (28–30). A review of these experimental results suggests
that for the most part, grain growth phenomena in the nanometer size range is
much the same as it is in the micrometer size range: growth follows the kinetics
of Equation 1 (29) and the crystal size distribution is roughly lognormal (31). Fur-
thermore, the same things that slow growth in microcrystalline specimens, such
as porosity and impurities, also retard the rates of grain growth in nanostructured
materials. One difference is that the onset of growth usually occurs at lower tem-
peratures. Furthermore, in at least some systems, anomalous kinetic behavior has
been reported. For grain sizes below 150 nm, a linear growth exponent (n = 1) was
observed in nanocrystalline Fe (32). Also, when growth data for microcrystalline
Fe is extrapolated to the nanometer size range, a grain growth rate is predicted
that is several orders of magnitude greater than what is actually observed (30).
This and similar observations have led to speculation that alloying elements can
stabilize nanocrystalline structures. Not only do they provide a drag force on the
boundary, but adsorption can reduce the grain boundary energy, which leads to a
diminished driving force for growth (33, 34).

In summary, experimental observations lead to the following conclusions about
grain growth and coarsening. As a sample is annealed, the grain size increases in

←
Figure 1 Equal area histograms for reduced grain sizes from experiment (a, b), theory
(c), and simulation (d ). In each case, the histograms are normalized to the same area
and plotted on the same domain to simplify the comparison. (a) Three- dimensional
grain size measurements of a relatively large number of grains (793 ≤ N ≤ 4966).
In each case, the linear dimension d is proportional to the cube root of the volume
and normalized by the average of this value, 〈d〉. Zhang et al. (19), 793 Fe grains
measured by serial sections. Döbrich et al. (20), 4966 grains of Al in Al-Sn by X-ray
microtomography. Hull (21), 941 grains of brass, separated by mercury infiltration.
Matsuura et al. (22), 1000 grains of 304 stainless steel separated by boundary corrosion.
(b) Grain size distributions in coarsening systems, from observations of planar sections.
Mahalingam et al. (23), Al 2.4w/o Li (Al3Li in Al-Li) after 168 h at 200◦C. Ardell
& Nicholson (18), Ni 6.71%Al (Ni3Al in Ni-Al) after 6 h at 775◦C. Kim (24):WC in
liquid Co. (c) Theoretical distributions. LSW (coarsening) (36), Hillert (grain growth
or coarsening by surface attachment limited kinetics) (46), Louat (grain growth) (47),
lognormal (Equation 3). (d ) Grain size distribution predicted from three-dimensional
simulation. Fuchizaki et al. (55), vertex dynamics model. Wegand et al. (56), vertex
dynamics model. Wakai et al. (57), surface evolver. Krill et al. (58), phase field model.
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Figure 2 The number of grain faces as a function of reduced grain size (21). For
each reduced grain size, the point represents the mean number of faces and the bars
represent plus and minus one standard deviation. The upper inset shows the percentage
of grains with different numbers of faces, and the lower inset shows a typical shape for
a polygonal grain (27). Black lines show edges on the front of the grain and gray lines
show edges on the back.

proportion to tn, where n is less than or equal to 1/2. Boundaries migrate toward
their centers of curvature at a rate that is linearly proportional to the curvature.
There is a characteristic distribution of crystal sizes that is constant with time in
the late stages of growth, which is frequently described as lognormal. However,
in numerous situations bimodal distributions are also observed. In cases where
the growth is unimodal, the maximum grain size is usually two to three times
the average. In dense polycrystals, the grains have on average 12 to 14 faces and
5 edges per face.

ASSESSMENT OF CLASSICAL THEORIES FOR GRAIN
GROWTH AND COARSENING

In coarsening systems, crystals grow (or shrink) by the addition (or removal)
of atoms that are transported to (or away from) the crystal by capillary-driven
diffusion. In the classical theory, it is assumed that if the coarsening crystals are
sufficiently far apart, then the intervening phase will serve as a reservoir at a fixed
chemical potential of µ∞ = 2γ/r∗, where r∗ is the radius of a crystal that neither
shrinks nor grows in contact with this reservoir (35, 36). The driving force for each
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crystal to grow or shrink is given by the free- energy difference between the atoms
on the surface of a crystal with size r and the reservoir:

'G = 2γ(

[
1
r∗ − 1

r

]
, 4.

where ( is the molecular volume. The growth rate (dr/dt) of a crystal is propor-
tional to this driving force and equal to either the rate of diffusion or the rate of
the surface attachment/detachment process. When the evolution of the system is
calculated, a kinetic law similar to Equation 1 is obtained where the exponent is
1/3 for diffusion-limited kinetics and 1/2 for surface attachment-limited kinet-
ics. The time independent part of the distribution of crystal sizes resulting from
diffusion-limited growth is (36)

fdiff(ρ) = ρ2
(

3
3 + ρ

)7/3
( 3/2

3/2 − ρ

)11/3

exp
[ −ρ

3/2 − ρ

]
. 5.

For the case of surface attachment-limited kinetics, the distribution is (36)

fsalk(ρ) = ρ

(
2

2 − ρ

)5

exp[−3ρ/(2 − ρ)]. 6.

Both distributions are plotted in Figure 1c. The classical coarsening theory was
originally formulated under the assumption that the coarsening crystals were so
far apart that their diffusion fields do not overlap. This occurs as the crystal vol-
ume fraction approaches zero. Real systems have finite volume fractions of the
coarsening phase and several modifications have been made to the original theory
to account for this (36–39). The corrections do not influence the growth exponent,
but they do lead to broader and more symmetric particle size distributions that are
a closer approximation to the experiment.

The elementary process during grain growth is the change in the position of a
grain boundary as volume is transferred from one grain to another. The theories to
account for this process fall into two broad classes: those rooted in topology and
those rooted in stochastic behavior. The fundamental premise of the topological
models is the von Neumann-Mullins (40) rule for growth in two-dimensional
systems. As long as the grain boundary energies are isotropic, then the dihedral
angles where three grain boundaries meet must all be 120◦. Therefore, grains with
more than six sides have concave boundaries and will grow and grains with fewer
than six sides will have convex boundaries and shrink. This leads to the so-called
N-6 rule for grain growth in two dimensions:

dA
dt

= Mγ
π

3
(N − 6), 7.

where M is the boundary mobility, A is the grain area, and N is the number of
sides. Theorists have sought a similar rule for three-dimensional growth (41, 42,
45). Assuming that the number of faces in three dimensions is analogous to the
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number of sides in two dimensions, expressions have been produced that yield a
zero growth rate when the number of faces is between 13 and 14. However, the
complication is that there is no three-dimensional polyhedron that simultaneously
fills space and satisfies the interfacial equilibrium constraints at the junctions.
The assumed existence of such a critical polyhedron, and the correlation between
size and number of faces (see Figure 2), led Hillert (46) to propose that there
is a characteristic grain size above which all grains grow and below which all
grains shrink. On this basis, he proposed a driving force in analogy to Equation 4
and developed a model that yields a parabolic growth law and the crystal size
distribution, as illustrated in Figure 1c:

fH(ρ) = (2e)3 3ρ

(2 − ρ)5
exp[−6/(2 − ρ)]. 8.

This distribution is identical (except for a scale factor) to that resulting from
coarsening with surface attachment-limited kinetics (see Equation 6). It is less
symmetric than the observed grain sized distributions in Figure 1a and predicts a
much smaller maximum grain size.

Stochastic theories of grain growth assume grain sizes change randomly (47),
i.e., crystals execute a random walk through the space of sizes. More elaborate
theories combine a random term with a curvature-driven term that biases the ran-
dom walk so that larger grains are more likely to grow and smaller grains are more
likely to shrink (48–51). Depending on the exact formulation of the model, growth
exponents varying from 1/4 to 1/2 arise, and the distribution of crystal sizes is
usually given by the Rayleigh distribution, shown in Figure 1c.

fR(ρ) = αρ

β
exp[−ρ2/4β]. 9.

Although it is plausible that the motions of all boundaries, when averaged over
a long time, behave randomly, these models are counterintuitive because exper-
imental observations illustrate that individual boundaries move in a predictable
way toward their centers of curvature. Furthermore, the purely stochastic model
has been criticized because it does not conserve volume (49, 50, 51a), and it has
been argued that in combined models, random fluctuations in size are incompatible
with the condition for continuity in self-similar growth (52).

It must be noted that observed crystal size distributions do not (in general)
match well with the theoretical predictions (see Figure 1). However, it has been
pointed out that the Hillert distribution is predicated on the basis of an assumed
linear relationship between the grain size and the average number of faces. If this
distribution has modest nonlinearities (as appears to be the case in Figure 2), the
crystal size distribution has been shown to be quite different (53).

Three-dimensional grain growth simulations are expected to produce a more
realistic account of the process, and numerous results have been published in recent
years. Calculations based on the Monte Carlo Potts model (54), vertex tracking
(55, 56), boundary tracking (57), phase field (58), and gradient-weighted moving
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finite elements (59) have been used to simulate the structure and evolution of
grain boundary networks in three-dimensional systems. Until very recently, the
simulations have used only isotropic grain boundary properties. The grain size
distributions resulting from these models are illustrated in Figure 1d. Note that
whereas the distributions are all similar, they are also distinct from the experimental
distributions. All exhibit the shape characteristic of the theoretical distributions
(Figure 1c).

For the theories described above, it is assumed that boundary motion is the
limiting step in growth. More recently, however, several theories have emerged
for growth limited by other factors. One is the vacancy drag model (60–62). Grain
boundaries have an excess volume per area on the order of 0.02 nm. As grain
growth occurs and interfacial area is eliminated, the excess volume must also be
eliminated, presumably in the form of vacancies. If the diffusion of vacancies
through the bulk is the rate limiting step, then linear (n = 1) growth kinetics
are expected. The possibility that vacancy elimination is rate limiting is expected
only at nanometer scale grain sizes and might explain the nonclassical kinetics
observed in nanocrystalline Fe (32). A second possibility is that the motion of triple
junctions becomes rate limiting (60). The usual assumption is that in equilibrium,
the resolved force on the moving triple junction is zero. However, if the triple
junction has a low intrinsic mobility, or if its motion is limited by impurities,
then there is a net retarding force on the moving junction that will make the
dihedral angles differ from the equilibrium value. Because of these changes in the
dihedral angles, there is no unique topological class that divides growing grains
from shrinking grains in two dimensions. This influence of the triple junctions will
be greatest at the smallest grain sizes (2, 63). It has also been shown that at very
small grain sizes, the random characteristics of atomic motion may influence grain
growth (64). For the smallest grain sizes, stochastic atomic jumps determine the
kinetics of grain growth and an exponent of 1/4 is predicted, with a transition of
1/2 by the time the grains reach an average size of 20 nm.

INTERFACE ANISOTROPY

One of the assumptions underpinning all of the theories described in the previous
section is that the interface properties are isotropic. Whereas the surface energies
of metals near their melting points might be reasonably approximated as being
isotropic, it is well known that the surface energies of many ceramics (65, 66)
and the grain boundary energies and mobilities of almost all materials vary with
the character of the interface (67, 68). The grain boundary character distribution,
λ('g, n), can be defined as the relative areas of distinguishable grain boundaries
characterized by their lattice misorientation ('g) and boundary plane orientation
(n). Because the misorientation depends on three independent parameters, and
the boundary inclination on two, the domain of grain boundary types is five-
dimensional, and the number of distinguishable grain boundaries is large (69).
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Figure 3 The distribution of grain boundary planes averaged over all misorientations
for (a) MgO (70) and (b) Al (74). In the case of MgO, {100} planes are preferred; in
the case of Al, the preference is for {111} planes. The data are shown in stereographic
projection along [001], which is in the center of each projection. The [110] direction is
marked with a square in each projection. The units are multiples of a random distribution
(MRD).

The grain boundary character distribution can be thought of as a metric by which
the structure of a polycrystal can be quantified.

Recent measurements of the grain boundary character distribution in a di-
verse range of ceramics and metals, including MgO (70), SrTiO3 (71), TiO2 (72),
MgAl2O4 (73), Al (74), Fe-1%Si (75), have led to three important conclusions.
(a) The first is that the distribution of grain boundary planes is anisotropic (see
Figure 3). (b) Second, the preferred habit planes for grains within polycrystals
correspond to the same low-energy, low-index planes that dominate the external
growth forms and equilibrium shapes of isolated crystals of the same phase (72).
This finding amounts to a paradigm shift in our understanding of grain boundaries,
which has been dominated for decades by consideration of crystal lattice orienta-
tion relationships instead of the grain surface relationships that have been found to
be more influential. Furthermore, a correlation has been identified between the sum
of the surface free energies that make up the boundaries and the grain boundary
energy, γ ('g, n) (71, 76). This finding, derived from observations in a wide range
of materials, provides an extremely useful simplifying principle: Knowledge of
the surface energy anisotropy, which depends on only two parameters, is sufficient
for predicting the grain boundary energy. (c) The third important finding is that
the grain boundary character distribution is correlated to grain boundary energies,
γ ('g, n) (76, 77). This is illustrated in Figure 4, which shows that low-energy
boundaries occur more frequently in the distribution than high-energy boundaries.

Whereas it is now clear that anisotropic boundary properties influence the grain
boundary character distribution, it is not yet clear how the distribution forms dur-
ing growth. One particularly striking example of the importance of anisotropy to
growth was described in a recent attempt to deterministically predict the evolution
of a specific grain boundary network (78). The grain boundary network structure of
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Figure 4 The logarithm of the grain boundary population (λ) as a function of the
grain boundary energy (γgb). The mean is represented by the point; the bars indi-
cate one standard deviation. Panel (a) is based on experimental observation (76)
and panel (b) results from three-dimensional grain growth simulations with isotropic
properties (77).

a columnar Al sample was mapped using orientation imaging microscopy over an
area consisting of more than 5000 grains. The sample was then annealed to allow
the microstructure to evolve, and the orientation mapping was repeated. The initial
grain structure was then used as the starting configuration for a curvature-driven
grain growth simulation. Simulations were performed assuming isotropic grain
boundary properties in one case and anisotropic properties in other cases. The
simulations based on measured anisotropic properties reproduced the observed
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microstructural evolution much better than the isotropic properties. The implica-
tions of this experiment are clear: To realistically predict how a microstructure will
evolve, it is necessary to include the correct properties of individual boundaries.

Although this example demonstrates the importance of anisotropy in influencing
the movement of specific boundaries, it is perhaps more important to understand the
effect of anisotropy on statistically averaged properties of the microstructure that
are more accessible to experiment. Mullins (79) showed that as long as the crystal
size distribution maintains statistical self-similarity during growth and the interface
energy is differentiable at all orientations, then the anisotropy of the interface
energy does not influence the normal kinetic laws for coarsening and grain growth.
Furthermore, a one-dimensional capillary grain growth model demonstrated that
for anisotropic boundary properties, a statistically similar particle size distribution
is obtained and the distribution is different from that which results from uniform
boundary properties (80). Two-dimensional coarsening models have also indicated
that the crystal size distribution is influenced by interface energy anisotropy (81,
82). These results reproduced Mullins’ predictions that anisotropy does not affect
growth kinetics, but it does weakly influence the distribution of crystal sizes.
Recent experimental studies of shape evolution during coarsening have shown a
trend toward a greater population of low-index surfaces as growth proceeds. For
SrTiO3 coarsening in a TiO2-rich eutectic liquid and PMN/PT coarsening in a
PbO-rich liquid, it was observed that crystals with approximately isotropic initial
shapes evolve to more polygonal forms bounded by low-energy surfaces (83, 84).

Experimentally, it is not usually possible to separate the comparative influence
of the interface energy and mobility on the development of the interface character.
However, simulations are capable to doing this. A number of two-dimensional sim-
ulations of capillary-driven grain growth indicate that the grain boundary energy
plays a pivotal role in determining the grain boundary character distribution. Holm
et al. (85) showed that the steady-state misorientation distributions in anisotropic
systems vary with the assumed boundary energy anisotropy, which depend only
on the lattice misorientation. The anisotropy of the mobility was not an impor-
tant factor in this simulation. Grain boundaries with low energy were enhanced
in the population when the data were weighted by length. However, the number
densities of the boundaries were not changed by the energy anisotropy. In this
case, it was concluded that the lower energy boundaries lengthened to achieve
local equilibrium configurations at the grain boundary triple junctions. Simula-
tions by Upmanyu et al. (86) used more complex forms of the energy and mobility
anisotropy derived from molecular dynamics simulations, but with a simplified
(one angular parameter) model for the grain misorientation. The results were sim-
ilar to those of Holm et al. (85): A steady-state distribution of misorientations
developed that was inversely related to the assumed grain boundary energy and
relatively unaffected by the grain boundary mobility.

In both of the simulations described above, the energy of the grain boundary
depended on only the lattice misorientation and not on the orientation of the in-
terface. Kinderlehrer et al. (87) used a two-dimensional simulation to examine
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the effects of both lattice misorientation and boundary plane inclination on the
distribution. When the grain boundary energy depends on only the lattice misori-
entation, the population and energy are related by the Boltzman distribution. This
is reminiscent of the results in Figure 4, which shows that the logarithm of the
population decreases linearly with grain boundary energy. When the grain bound-
ary energy also depends on the orientation of the interface plane, the distribution
appears to depend on both the energies and the gradients in the energies. Note
that the orientation dependence of the energy and population that results from the
model (Figure 5a) is similar to the trends in the observed values (Figure 5b). This

Figure 5 (a) Comparison of a simulated grain boundary character distribution and the
assumed energy anisotropy as a function of the boundary normal (87). (b) Comparison
of measured grain boundary energies (squares) and the observed population distribution
(circles) for *5 tilt boundaries in MgO (76). The quantities are plotted in 5◦ intervals
as a function of θ010, the angle between [010] and the grain boundary normal. Note that
in both cases, the population reaches a maximum at the positions where the gradient
changes from being steeply negative to approximately zero.
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sensitivity to the gradient of the energy is likely the source of the distribution in
the populations at each energy value in Figure 4. As in the other simulations, it
was found that the mobility has a subordinate effect on the distribution.

During microstructural evolution, the distribution changes most significantly
when a boundary is annihilated in a neighbor switching or grain collapse event. It
is known that as a grain loses sides, it is the shortest boundary that is lost first. If
length is inversely correlated to energy, as suggested by Holm et al. (85), then we
see that higher-energy boundaries are preferentially annihilated, and low-energy
boundaries will form a greater portion of the population, as illustrated in Figures 4
and 5. Simultaneously, there are new boundaries being created, but as long as there
is little texture, these should simply add a random component to the population.
The abrupt creation and annihilation of boundaries means that triple junctions must
adjust to accommodate these changes. If the energy depends on only misorienta-
tion, then the boundary plane can rotate without changing energy. However, when
boundary plane anisotropy is included, these adjustments in position will occur in
proportion to the torque (the differential of energy with respect to orientation) on
the plane; this explains why the population is also affected by the gradients in the
energy (see Figure 5).

The reorientation events that change the boundary character without changing
the lattice misorientation are most likely to occur at the triple junctions, where
boundaries are free to rotate to achieve a balance of the interfacial tensions and
torques. When a simulation was run with anisotropic grain boundary energies, but
also with the boundary condition that all triple-junction dihedral angles be 2π/3
(the condition for isotropy), the grain boundary character distribution remained
isotropic. From this result, it can be concluded that it is local adjustments at
the triple junctions that lead to the anisotropy in the steady-state grain boundary
character distribution.

The first simulations of anisotropic grain growth in three dimensions, using
boundary properties that depend on all five crystallographic parameters and a sta-
tistically significant number of grain boundaries, have recently been completed.
Using Grain3D, Gruber et al. (77) measured the evolution of the grain boundary
character distribution as a function of time. In the initial state, there were more
than 41,000 grains, and the grain boundary character distribution was completely
isotropic. During the course of the simulated growth, approximately 30% of the to-
tal interfacial area and 75% of all the grains were eliminated. However, as illustrated
in Figure 6, the distribution of interface planes reaches a steady state relatively
quickly. In Figure 7, the distribution of grain boundary planes that develops from
the initially random distribution, averaged over all misorientations, is compared
with the assumed energy anisotropy. The approximate inverse relationship between
energy and population evident in Figure 4 and 5 is also obvious here. Note that the
distribution in Figure 7a is a statistically self-similar steady state that remains con-
stant even as the network continues to evolve by normal growth. This is analogous
to the self-similar grain size distributions predicted by the classical growth models.

Whereas mobility anisotropies do not appear to affect the grain boundary
character distribution in materials with random orientation distributions, recent
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Figure 6 Simulated changes in the grain boundary character distribution with time
(77). In the initial distribution, all boundaries occurred with the same frequency. As the
number of grains is reduced by grain growth, the maxima and minima of the distribution
(see Figure 7) reach steady-state values.

three-dimensional Monte-Carlo simulations of grain growth in a deformed and
textured matrix suggest that mobility anisotropy can influence the development of
grain orientation texture and, therefore, the grain boundary character distribution
(88). In the initial condition, the model polycrystal was assigned a conventional
rolling texture normally associated with an fcc metal deformed in plane strain; it

Figure 7 (a) The simulated distribution of grain boundary planes averaged over all
misorientations, after the distribution has reached a steady state (time = 10 in Figure 6)
(77). (b) The assumed variation of the grain boundary energy as a function of grain
boundary plane orientation, provided as input for the simulation. The reference frames
for the projections are the same as in Figure 3.
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was also “seeded” with a small volume fraction of grains with the cube texture,
{001} 〈100〉. Mobility anisotropies with peaks for boundaries with a 40◦ misorien-
tation about [111] were assigned to reflect experimentally measured anisotropies
(89). The simulations showed that the greater the mobility of the 40◦/〈111〉 bound-
ary, the greater the volume fraction of material with cube texture in the resulting
microstructure. From this it was concluded that the presence of a peak in the mo-
bility centered on the 40◦ about 〈111〉 boundary type leads to the growth of the
cube texture component.

To summarize, the steady-state kinetics of growth processes are not expected
to be influenced by interface anisotropy; the grain size distribution is weakly in-
fluenced by anisotropy, and the interface character distribution is significantly
influenced. Experiments and simulations suggest that steady-state interface char-
acter distributions are obtained during growth and, for the case of grain boundaries,
the distribution is related to both the energy and the gradients of the energy with
respect to the interface orientation. Boundary mobilities have little influence on
the interface character distribution in randomly oriented systems but apparently do
influence the development of the grain boundary character distribution in systems
that have some texture in the initial state. In comparison with the distribution of
grain sizes, the interface character distribution is a superior metric for differentiat-
ing microstructures and is expected, therefore, to provide a clearer link to materials
properties.

INFLUENCE OF SINGULAR INTERFACES ON
GROWTH PHENOMENA

Classical grain growth and coarsening theories assume isotropic interface energies
and that all interfaces move by the same mechanism. However, it has been recog-
nized for many decades that the mechanisms by which interfaces move depend to
some extent on the interface structure. On atomically rough surfaces (assumed in
classical theories), atoms can be added or removed from kink sites, and the rate of
growth is generally limited by the rate at which reactants reach (or attach to) the
surface. Singular or nonrough surfaces, which correspond to cusps in the plot of the
surface energy as a function of orientation, advance or retreat via the lateral motion
of steps that add or subtract atomic layers (90). If the singular surface has no steps
or step sources (such as screw dislocations or twin plane reentrant edges), its mo-
tion is then limited by the rate of two-dimensional nucleation. One characteristic
of materials exhibiting abnormal growth phenomena is that their microstructures
contain a mixture of curved (rough) and flat (singular) interfaces. Therefore, it is
reasonable to assume that the rates at which these interfaces move are controlled
by different mechanisms. The important point here is that if these two mechanisms
occur at very different rates, then it is possible to imagine how bimodal grain size
distributions arise in some materials. This point has been the subject of numerous
recent studies and is described further in the remainder of this section.
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We begin with a consideration of how nucleation on a singular interface affects
the coarsening of crystals bounded by singular interfaces. To simplify the situation,
we begin with a collection of cube-shaped crystals with surface energy γ and a
distribution of edge lengths, L. The crystals are dispersed in an intervening phase
and the chemical potential of the material dissolved in that phase is µ∞ = 2γ/r∗.
Therefore, there is a crystal size L∗ = 2r∗ that is in equilibrium with the intervening
phase. We can now consider the energy involved in transferring material from the
intervening phase to the surface of the crystal. To do this, we place a square nucleus
of area s2 and height a on the flat facet, where the chemical potential is zero. The
energy for this transfer is

ε(s) = 4asγ − as2 2γ

r∗ 10.

for 0 ≤ s ≤ L. In Equation 10, the first term on the right hand side is the energy of
the perimeter of the nucleus and the second term is the change in the free energy on
moving a volume of material (as2) from the intervening phase to the flat surface.
Equation 10 shows that the energy change on adding a complete layer (s = L)
to a crystal with size L = 2r∗ is zero, as expected; however, before the layer
is completed, the crystal must pass through a relatively higher energy state that
contains a partial layer. By differentiation, we see that the maximum occurs at
s = r∗ and that the barrier to addition is ε+ = 2aγ r∗, where 0 < r∗ < L. It is
interesting to note that the barrier for adding layers is independent of the size of
the growing crystal and mainly governed by r∗, which is a measure of the average
size of crystals in the system.

To remove material from the crystal and dissolve it in the intervening phase,
the change in energy is

ε(s) = 4asγ − 4aLγ + (aL2 − as2)
2γ

r∗ . 11.

In the expression above, the first two terms on the right hand side represent the
energy difference between a complete layer and a partial layer; this is ≤0 for all
valid values of s. The final term on the right hand side is the energy increase
associated with moving a volume of material from the flat surface to the reser-
voir. The maximum of Equation 11 is at s = r∗ and the barrier to removing a
layer, ε−, is

ε− = 2aγ

[
r∗ + L

(
L
r∗ − 2

)]
, 12.

where r∗ is between L/2 and L. Note that for a crystal of size L = 2r∗, ε+ = ε− =
2aγ r∗, as expected for the equilibrium case. For smaller crystals, the barrier de-
creases (see Figure 8) and vanishes completely for crystals with r∗ = L. More
generalized forms of these barriers have been derived previously, but the simpli-
fied forms given above are acceptable for the present purposes and do not lead to
different conclusions (91).
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Figure 8 Plot of the nucleation energy barrier for crystals of different sizes
in contact with a reservoir with a chemical potential 2γ/r∗.

It is first important to compare the size of these barriers with the available ther-
mal energy and the potential energy supplied by capillarity. The most important
barrier is the one for the growth of crystals with sizes L ≥ 2r∗ (this is the largest
barrier). Even though small crystals can shrink without a barrier, the constraint of
mass conservation will restrict their ability to do so if the barrier for growth is too
large. In a typical situation that might be realized in the laboratory, we can take a to
be 2 × 10−10 m, γ to be 1 J/m2, and r∗ to be 500 nm. To a first approximation, the
choice of r∗ is set to the average size of the crystals in the coarsening compact, and
500 nm is taken as a lower limit for most practical cases; this leads to a barrier to
growth of 2 × 10−16 J. The relevant energies for comparison are the energy change
resulting from capillarity-driven growth (taken to be 2γ a3/r∗ = 3 × 10−23 J)
and the available thermal energy (kT = 2 × 10−20 J at 1500◦C). Although these
calculations are admittedly approximate, several things are clear. First, because
the barrier energy for growth on micron-sized crystals is more than 106 times the
capillary driving force, we can be certain that capillarity cannot drive nucleation.
In fact, for all cases where the grain size is larger than a few nm, if nucleation
occurs, it must be driven by thermal fluctuations. The second point is that even
thermal fluctuations are unlikely to drive nucleation on large crystals. According to
the estimates above, the nucleation energy barrier is 104 kT. It has been estimated
that barriers greater than 40 kT are not overcome in reasonable time periods (92). It
should be noted that the step edge energy is usually thought to be a fraction of the
surface energy, so the barrier height given above is probably overestimated. How-
ever, the nucleus perimeter energy would have to be reduced by a factor of 100, to
0.01 J/m2 before the barrier would be reduced to 40 kT. Since this is considered un-
likely, the size of the barrier energy and the extremely small driving force implies
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that singular interfaces without defects should never advance outward during
coarsening (93).

For comparison, we should also consider the conditions under which two-
dimensional nucleation can be expected to occur and has been observed experi-
mentally. The theory for two-dimensional nucleation shows that the nucleation rate
decreases exponentially as the ratio of the driving force to the available thermal
energy decreases and as the ratio of the perimeter energy to the available thermal
energy increases (94). In accordance with the theory, two-dimensional nucleation
has been observed in cases where driving forces comparable to the thermal energy
are provided by supersaturated liquids or vapors, or by cooling a melt below the
crystallization temperature. For example, growth by two-dimensional nucleation
has been reported during the solidification of liquid Ga, where the driving force
is supplied by the latent heat of crystallization, which is greater than the available
thermal energy (95, 96). In this case, it is also relevant to note that solid-liquid
interface energy is very low (in the range of 0.04 to 0.07 J/m2) and that the nucleus
perimeter energy was determined to be in the range of 0.01 to 0.02 J/m2. So, in ad-
dition to a high driving force, the nucleation energy barrier is significantly reduced
by the low interfacial energy. The transition from dislocation controlled growth to
two-dimensional nucleation controlled growth has been observed during the vapor
deposition of NaCl (97). It was reported that the transition to two-dimensional
nucleation occurs when the driving force exceeds 0.09 eV at 347◦C. At this point,
the driving force is approximately twice the thermal energy. In summary, two-
dimensional nucleation has been observed in the past when the driving force is
relatively large and comparable to the available thermal energy. In contrast, the
capillary driving forces that arise during the coarsening of micron-sized crystals
are only a small fraction of the thermal energy.

Several authors have argued that the growth mechanisms associated with sin-
gular interfaces can be used to explain abnormal growth phenomena. Through the
analysis of microstructural data from many different systems, Yoon and coworkers
(98) have noted that abnormal growth phenomena occur when singular interfaces
are present in the system and that systems with fully rough interfaces grow nor-
mally. Their explanation is that abnormal growth is attributed to the step migration
growth mechanisms of singular surfaces. Two different mechanisms have been
invoked. The first, articulated in Reference 99 and citations therein, is that some
grains can become large enough that the capillary driving force is higher than
the critical value for the onset of nucleation, and this leads to abnormal growth.
However, on the basis of the numerical estimates made in the paragraph above,
this explanation is not viable. One reason is that under typical experimental con-
ditions, the energies associated with thermal fluctuations are much larger than the
capillarity driving force so that nucleation will be driven by thermal fluctuations
or not at all. Another reason that the explanation is not viable is that all grow-
ing crystals are subject to the same barrier (ε+ = 2aγ r∗) so that the size of the
growing crystal is simply not a relevant factor; if two-dimensional nucleation by
thermal fluctuations is possible on one growing crystal then it will occur on all
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growing crystals exposed to the same mean field chemical potential. The second
possible mechanism is that step-producing structural defects, expected to occur in
a subset of the crystals, allow the defective population to grow without a barrier
and thus the average size of this subset becomes much larger than the more per-
fect crystals. It seems clear that having two distinct populations growing at very
different rates is a plausible explanation for abnormal growth. However, a subset
of large crystals growing by capillarity driven two-dimensional nucleation is not
plausible.

The defect-controlled coarsening mechanism has been studied in detail and
numerical simulations based on this model have demonstrated its feasibility (91).
In the case where the growth of mixed populations is modeled (some crystals are
limited by the barrier and others are assumed to have defects), bimodal populations
are observed where the defect-containing subset of crystals grows much faster than
the others, as illustrated in Figure 9. Note that because the smallest crystals in the
slow population are able to shrink without a barrier (see Equation 12), they sustain
the growth of the minority population of defective crystals.

The nucleation-limited coarsening model makes a number of predictions that
can be compared with those of experiments. The first is that abnormal growth
should be transient. In other words, at some point the defective (fast growing)
grains have completely consumed the ideal (slow growing) population; because
none of the remaining population has an advantage, growth should then proceed
normally. The second is that during the period of bimodal growth, the number
density of the large grains should remain constant, whereas the number of small
grains should decrease. Although detailed measurements of the evolution of the
grain size distribution are not yet available, some reports in the literature are
consistent with this model (25).

The dislocation density in large SrTiO3 seed crystals has been correlated with
the rate at which they grow into a polycrystalline compact (100). Although there
were only two observations, the seed with a higher dislocation density had a higher
growth rate. Orientation imaging microscopy data suggest that all abnormal grains
in PMN/PT have a twin (a boundary with a 60◦ rotation about 〈111〉). Twins are
not found in the smaller matrix grains (101, 102), and these observations have
been used to suggest that the reentrant twin plane edge provides a nucleation site
with a greatly reduced barrier that allows the twinned crystals to grow much faster
than the untwinned crystals. However, it should be noted that by observing only
the final state, it is not possible to determine if the twin caused the grain to become
large or if twins arise naturally in all grains when they become large. It can be
reasoned that any grain that grows large enough will have encountered grains
of many other orientations. In a random orientation distribution, approximately
1 in 50 misorientations will be close to the twin relationship (103). Thus, if a
grain grows so that it has encountered many more than 50 differently oriented
grains, it is likely that a twin will be formed, and this may be the reason that all
large grains have twins. The independence of twinning and high growth rates was
demonstrated in a recent paper where it was shown that there is no measurable
difference in the growth rates of twinned and untwinned seeds (104). Since these
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Figure 9 Simulated crystal size distribution for the defect-free crystals (dashed line)
and the crystals with a persistent step source (solid line) coarsening in the same system:
(a) after 1 arbitrary unit of time, (b) after 8, (c) after 11. The crystals with the step
source grow without a barrier (91).
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seeds were relatively large, it is likely that they all contained screw dislocations
that could act as persistent step sources.

Whereas the habit plane of the twin in PMN/PT is incoherent, BaTiO3 forms
straight coherent twins on {111} planes. When BaTiO3 compacts are seeded with
twinned grains, the twinned seeds outgrew the untwinned seeds, suggesting that a
reentrant twin plane edge nucleation mechanism promotes abnormal growth (105).
This is also suggested by observations of BaTiO3 coarsened at temperatures in the
range of 1350◦C (where an intergranular liquid is expected to form), which showed
that twinned grains grow larger than others (106). Rehrig et al. (25) independently
measured the grain sizes of the large and small populations and showed that within
experimental error, the sizes of the small grains had stopped increasing, whereas
the large grains continued to increase in size. It should be noted that although the
ideal version of the nucleation limited coarsening theory suggests that the growth
of ideal (smaller) crystals should completely cease when they reach a size where
the nucleation energy barrier becomes insurmountable (and this size should be in
the nanometer size range), it does not account for finite volume fraction effects
and growth from coalescence that is expected even in the absence of nucleation.
In other words, there may be some growth by grain boundary migration, even in
the absence of coarsening.

Finally, it should also be recognized that mechanisms for abnormal growth
phenomena have also been proposed that have nothing to do with whether the
interface is singular or rough. MacLaren et al. (107) observe AGG in alumina where
the rapidly moving boundaries are clearly rough and have accumulated a disordered
layer of impurities. They argue that at particular compositions, the impurities
induce a structural transformation to a highly mobile boundary structure. It has
also been demonstrated by simulation that grain boundaries with high mobility
misorientations can be sustained if they grow into a highly textured matrix and
that this can lead to abnormal growth (108). On the basis of these observations, it
seems likely that a variety of possible explanations exist for abnormal growth in
different systems. However, in systems that are sufficiently anisotropic, evidence
pointing to the importance of the interface structure is accumulating.

CURRENT DIRECTIONS IN RESEARCH ON THE
EFFECTS OF ANISOTROPY ON GROWTH

Now that it is possible to measure the anisotropy of the grain boundary character
distribution, there are a number of questions that can be asked. First, does the grain
boundary character distribution actually reach a statistically self-similar state, as
indicated by simulation (77)? If so, in what way is it connected to the statistically
self- similar grain size distribution? To answer these questions experimentally, the
evolution of the distribution will have to be measured at different points in time.
Assuming that a steady-state distribution does exist, it should be predictable by
simulations using the grain boundary properties as input. It may also be possible
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to develop an anisotropic theory for grain growth, in analogy to the classical
grain growth theories, that allows the grain boundary character distribution to be
predicted on the basis of anisotropic boundary properties. With such a theory,
it might also be possible to work the inverse problem and determine the grain
boundary properties from the experimentally observed grain boundary character
distribution.

Assuming that the steady-state grain boundary character distribution is, in fact,
a “fingerprint” of the microstructure, then it is sensible to ask how it is related
to materials properties. If there is a direct correlation between certain materials
properties and a predictable grain boundary character distribution, knowledge of
this link should provide a path toward designing microstructures with predictable
properties. In this case, it seems certain that research into the mechanisms of
normal and abnormal growth phenomena will continue. The availability of three-
dimensional anisotropic growth models will greatly aid this research because it will
be possible to independently explore the influence of the grain boundary energy
and mobility on the development of the grain boundary character distribution
(77). It will also be possible to study the topology of the grain boundary network
and the influence of initial orientation texture on the microstructures produced by
growth. The recent emergence of new experimental tools will also advance this
research by making it possible to collect the statistical data required to verify or
refute hypothetical mechanisms for growth processes (69). For example, although
abnormal growth remains a puzzle, with the proper data it should be possible to
quantitatively assess the predictions of theories such as the one for nucleation
limited coarsening described above.
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