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The Influence of Singular Surfaces and Morphological Changes on Coarsening

When the interface energy between coarsening crystals and an intervening phase is

anisotropic, mechanisms that do not affect isotropic systems become important.  If there

are singular surfaces, then growth and dissolution must occur by the lateral motion of

steps, formed at a defect center or by two-dimensional nucleation.  Here, it is shown that

two-dimensional nucleation is not plausible under typical experimental conditions and

that persistent step creating defects are required for a singular surface to advance or

retract during coarsening.  The simultaneous presence of crystals with and without

defects leads to two populations that grow at very different rates and this provides an

explanation for abnormal coarsening.  The influence of extrinsic morphological changes

is also considered.  It is assumed that when relatively high energy, non-equilibrium

shapes in the starting materials evolve during coarsening to shapes increasingly bound by

lower energy surfaces, the mean surface energy is reduced.  Simulations show that under

these conditions, non-classical coarsening kinetics arise in which the rate constant

decreases linearly with the mean surface energy.
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1. Introduction

One of Professor Dr. Duk Yong Yoon’s important contributions to our field has

been the experimental demonstration that interface structure in general, and the

roughening transition in particular, influence microstructural evolution during grain

growth and coarsening [1-11].  Furthermore, he has also identified a robust link

connecting singular surfaces to abnormal coarsening and grain growth phenomena.

Based on this work, abnormal growth can be attributed to the step migration growth

mechanisms of singular surfaces [11].  The variations in interface structure studied by

Yoon are quite general and will occur in any system where the interface energy as a

function of the surface normal, g(n), contains one or more singularities.  In this paper, we

intend to honor Prof. Yoon by describing the results of coarsening simulations that

examine the effects of nucleation limited growth and of morphological variations that are

a direct consequences of interface energy anisotropy.

In the classical coarsening theory, the average crystal size 

† 

r  increases with time:

† 

r n
- r0

n
= Kt , (1)

where K is the positive growth rate constant, 

† 

r0  is the initial average radius, and n is a

constant greater than or equal to two that depends on the rate limiting step of the process

[12,13].  In either case, a statistically self similar distribution results where the maximum

crystal size is 1.5 times the average size (for diffusion limited coarsening) or 1.8 times

the average size (for surface attachment limited coarsening).  Although the original

derivation of this law assumes isotropic interface energies, Mullins [14] has shown that as
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long as the crystal size distributions maintains statistical self-similarity and the interface

energy is differentiable at all orientations, then the anisotropy of the interface energy does

not alter the kinetics described by Eq. 1. Furthermore, a one dimensional capillary-driven

growth model demonstrated that for anisotropic boundary properties, a statistically self

similar particle size distribution is obtained and that the distribution is different from that

which results from uniform boundary properties [15].  Two-dimensional coarsening

models have also indicated that the crystal size distribution is influenced by interface

energy anisotropy [16,17].  These results reproduced Mullins’ predictions that anisotropy

does not affect growth kinetics, but does weakly influence the distribution of crystal

sizes.

These results, referred to here as the classical theory of coarsening, stand in stark

contrast to what is actually observed in many ceramic systems.  For example, bimodal

grain size distributions are frequently reported in which some abnormal grains are more

than 100 times the size of the average of the majority population.  Furthermore, the

growth constant (K in Eq. 1) for the abnormal grains has been reported to be as much as

100 times that of the majority grains in the same material [18].  This phenomenon has

been used to grow single crystals of ceramics by annealing a seed crystal in contact with

a polycrystalline material and a lower melting intergranular liquid; the most well

documented case is that of Pb(Mg1/3Nb2/3)O3 – x PbTiO3 (PMN/PT) [19-21].  Kinetic data

suggests that there is a continuous reduction in the growth rate beyond that predicted by

Eq. 1, as if the growth constant, K, is decreasing by a factor of five from the initial to the

final stages of the process [22].  It has also been shown that the evolution of porosity does

not entirely explain the reduction in the growth rate [23].
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In this paper, we propose that both the bimodal distribution and the decreasing

growth rates can be explained by the presence of singular surfaces and non-equilibrium

morphologies.  These effects are not captured by the theories cited above because of the

assumptions on which the theories were developed.  First, if the surface energy is not

differentiable at all points, then there will be flat, singular surfaces that can only advance

or retreat by the lateral motion of steps.  In the absence of defects, these steps must be

created by nucleation.  If nucleation is slow or energetically not feasible, then those

crystals with persistent step sources (screw dislocations or twin plane reentrant edges) are

expected to grow at a much faster rate than those without and this can lead to a bimodal

grain size distribution.  Second, if the distribution of grain shapes evolves to

morphologies bounded by slower moving, lower energy interfaces, then we can expect

the driving force for growth to decrease and this is expected to lead to a continuous

reduction in the growth constant.  Recent observations support this idea.  Measurements

of the distribution of SrTiO3 surfaces, when coarsening in a TiO2-rich eutectic liquid, and

the distribution of PMN/PT surfaces, when coarsening in a PbO rich liquid, showed that

approximately isotropic initial shapes continuously evolve to more polygonal forms

bounded by low energy surfaces [22,24].  In the next section, the results of earlier

calculations [25] illustrating the effect that singular surfaces have on coarsening are

reviewed and, in section 3, new results are presented that illustrate how the evolution of

grain shapes affects coarsening.
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2. Nucleation limited coarsening theory

The theory for nucleation limited coarsening was originally described elsewhere

[25].  In the current paper, we review the underpinnings of the theory by deriving

simplified expressions for the barriers for growth and dissolution during coarsening and

then compare the predictions from numerical models to the results of some recent

experiments.  We begin with a consideration of how nucleation on a singular interface

affects the coarsening of crystals bounded by singular interfaces.  To simplify the

situation, we assume that we begin with a collection of cube shaped crystals with surface

energy g and a distribution of edge lengths, L.  The crystals are dispersed in an

intervening phase and the chemical potential of the material dissolved in that phase is m∞

= 2g/r*.  The system is assumed to be sufficiently dilute so that all crystals are

surrounded by the same mean field chemical potential, m∞.  Therefore, there is a crystal

size, L* = 2r*, that is in equilibrium with the intervening phase.  We can now consider

the energy involved in transferring material from the intervening phase to the surface of a

crystal.  To do this, we place a square nucleus of area s2 and height a on the flat facet,

where the chemical potential is zero.  The energy for this transfer is:

† 

e(s) = 4asg - as2 2g
r *

, (2)

for 0 £ s £ L.  In Eq. 2, the first term on the right hand side is the energy of the perimeter

of the nucleus and the second term is the change in the free energy on moving a volume

of material (as2) from the intervening phase to the flat surface.  Equation 2 shows that the

energy change on adding a complete layer (s = L) to a crystal with size L = 2r* is zero, as
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expected; however, before the layer is completed, the crystal must past through a

relatively higher energy state that contains a partial layer.  By differentiation, we see that

the maximum occurs at s = r* and that the barrier to addition is 

† 

e+ = 2agr * , where 0 < r*

< L.  It is important to note that the barrier for adding layers is independent of the size of

the growing crystal and governed entirely by r*, which is a measure of the average size of

the crystals in the system.

To remove material from the crystal and dissolve it in the intervening phase, the

change in energy is:

† 

e(s) = 4asg - 4aLg + (aL2 - as2 ) 2g
r *

(3)

In Eq. 3, the first two terms on the right hand side represent the energy difference

between a complete layer and a partial layer; this energy is £ 0 for all valid values of s.

The final term on the right hand side is the energy increase associated with moving a

volume of material from the flat surface to the reservoir.  It can be shown that the

maximum of Eq. 3 is at s = r* and the barrier to removing a layer, e-, is:

† 

e- = 2ag r * +L L
r *

- 2
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

È 

Î 
Í 

˘ 

˚ 
˙ (4)

where r* ≤ L ≤ 2r*.  Note that for a crystal of size L = 2r*, e+= e- = 2agr*, as expected for

the equilibrium case.  For smaller crystals, the barrier decreases (see Fig. 1) and vanishes

completely for crystals with L = r*.  A more generalized form of these barriers has been
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derived previously, but the simplified forms given above are acceptable for the present

purposes and do not lead to different conclusions [25].

It is first important to compare the size of these barriers to the available thermal

energy and the potential energy supplied by capillarity.  The most important barrier is the

one for the growth of crystals with sizes ≥ 2r* (this is the largest barrier).  Even though

small crystals can shrink without a barrier, the constraint of mass conservation will

restrict their ability to do so if the barrier for growth is too large.  In a typical situation

that might be realized in the laboratory, we can take a to be 2x10-10 m, g to be 1 J/m2, and

r* to be 500 nm.  To a first approximation, the choice of r* is set to the average size of

the crystals in the coarsening compact and 500 nm is taken as a lower limit for most

practical cases; this leads to a barrier to growth of 2x10-16 J.  The relevant energies for

comparison are the energy change resulting from capillarity driven growth (taken to be

2ga3/r* = 3x10-23 J) and the available thermal energy (kT = 2x10-20 J at 1500 °C).

Although these calculations are admittedly approximate, several things are clear.  First,

since the barrier energy for growth on micron sized crystals is more than 106 times the

capillary driving force, we can be certain that capillarity cannot drive nucleation.   In fact,

for all cases where the grain size is larger than a few nm, if nucleation occurs, it must be

driven by thermal fluctuations.  The second point is that even thermal fluctuations are

unlikely to drive nucleation on large crystals.  According to the estimates above, the

nucleation energy barrier is 104kT.  It has been estimated that barriers greater than 40kT

are not overcome in reasonable time periods [26].  It should be noted that the step edge

energy is usually thought to be a fraction of the surface energy, so the barrier height is

probably over estimated.  However, the nucleus perimeter energy would have to be
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reduced by a factor of 100, to 0.01 J/m2 before the barrier would be reduced to 40kT.

Since this is considered unlikely, the size of the barrier energy and the extremely small

driving force implies that singular interfaces without defects should never advance

outward during coarsening [27].

For comparison, we should also consider the conditions under which two

dimensional nucleation can be expected to occur and has been observed experimentally.

The theory for two-dimensional nucleation shows that the nucleation rate decreases

exponentially as the ratio of the driving force to the available thermal energy decreases

and as the ratio of the perimeter energy to the available thermal energy increases [28].  In

accordance with the theory, two-dimensional nucleation has been observed in cases

where driving forces comparable to the thermal energy are provided by supersaturated

liquids or vapors, or by cooling a melt below the crystallization temperature.  For

example, growth by two-dimensional nucleation has been reported during the

solidification of liquid Ga, where the driving force is supplied by the latent heat of

crystallization, which is greater than the available thermal energy [29,30].  In this case, it

is also relevant to note that solid-liquid interface energy is very low (in the range of 0.04

to 0.07 J/m2) and that the nucleus perimeter energy was determined to be in the range of

0.01 to 0.02 J/m2.  So, in addition to a high driving force, the nucleation energy barrier is

significantly reduced by the low interfacial energy.  Two-dimensional nuclei have also

been observed on barium nitrate surfaces by atomic force microscopy, and in this case it

was inferred that the nuclei formed during a period of very high supersaturation that

occurred when the crystal was removed from the growth solution [31].  During this

uncontrolled period of growth, it is difficult to estimate the driving force for
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crystallization.  The transition from dislocation controlled growth to two-dimensional

nucleation controlled growth has been observed during the vapor deposition of NaCl,

where it is possible to estimate that driving force [32].  It was reported that the transition

to two-dimensional nucleation occurs when the driving force exceeds 0.09 eV at 347 °C.

At this point, the driving force is approximately twice the thermal energy.  In summary,

two-dimensional nucleation has been observed in the past when the driving force is

relatively large and comparable to the available thermal energy.  In contrast, the capillary

driving forces that arise during the coarsening of micron-sized crystals are only a small

fraction of the thermal energy.

Several authors have argued that the growth mechanisms associated with singular

interfaces can be used to explain abnormal growth phenomena.  Through the analysis of

microstrutural data from many different systems, Yoon and co-workers [11] have noted

that abnormal growth phenomena occur when singular interfaces are present in the

system and that systems with fully rough interfaces grow normally.  Their explanation is

that abnormal growth is attributed to the step migration growth mechanisms of singular

surfaces.  Two different mechanisms have been invoked.  The first, articulated in Ref. 33

and citations therein, is that some grains can become large enough that the capillary

driving force is higher than the critical value for the onset of nucleation, and this leads to

abnormal growth.  However, based on the numerical estimates made in the paragraph

above, this explanation is not viable.  One reason is that under typical experimental

conditions, the energies associated with thermal fluctuations are much larger than the

capillarity driving force so that nucleation will be driven by thermal fluctuations or not at

all.  Another reason that the explanation is not viable is that all growing crystals are
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subject to the same barrier (e+ = 2agr*) so that the size of the growing crystal is simply

not a relevant factor; if two-dimensional nucleation is energetically possible on one

growing crystal then it will occur on all growing crystals exposed to the same mean field

chemical potential.  The second possible mechanism is that step producing structural

defects, expected to occur in a subset of the crystals, allow the defective population to

grow without a barrier and the average size of this subset becomes much larger than the

more perfect crystals.  It seems clear that having two distinct populations growing at very

different rates is a plausible explanation for abnormal growth.  However, a subset of large

crystals growing by capillarity driven two-dimensional nucleation is not plausible.

The defect controlled coarsening mechanism has been studied in detail and

numerical simulations based on this model have demonstrated its feasibility [25].  In the

case where the growth of mixed populations are modeled (some crystals are limited by

the barrier and others are assumed to have defects) bimodal populations are observed

where the defect containing subset of crystals grows much faster than the others, as

illustrated in Fig .2.  Note that because the smallest crystals in the slow population are

able to shrink without a barrier (see Eq. 4) they sustain the growth of the minority

population of defective crystals.

The nucleation limited coarsening model makes a number of predictions that can

be compared to experiment.  The first is that abnormal growth should be transient.  In

other words, at some point the defective (fast growing) grains have completely consumed

the ideal (slow growing) population; because none of the remaining population has an

advantage, growth should then proceed normally.  The second is that during the period of

bimodal growth, the number density of the large grains should remain constant while the
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number of small grains should decrease.  Although detailed measurements of the

evolution of the grain size distribution are not yet available, some reports in the literature

are consistent with this model [18].

The dislocation density in large SrTiO3 seed crystals has been correlated with the

rate at which they grow into a polycrystalline compact [34].  Although there were only

two observations, the seed with a higher dislocation density had a higher growth rate.

Orientation imaging microscopy data suggest that all abnormal grains in PMN/PT have a

twin (a boundary with a 60° rotation about <111>).  Twins are not found in the smaller

matrix grains [21, 35] and these observations have been used to suggest that the reentrant

twin plane edge provides a nucleation site with a greatly reduced barrier that allows the

twinned crystals to grow much faster than the untwined crystals.  However, it should be

noted that by only observing the final state, it is not possible to determine if the twin

caused the grain to become large or if twins arise naturally in all grains when they

become large.  It can be reasoned that any grain that grows large enough will have

encountered grains of many other orientations.  In a random orientation distribution,

approximately 1 in 50 misorientations will be close to the twin relationship [36].  Thus, if

a grain grows so that it has encounters many more than 50 differently oriented grains, it is

likely that a twin will be formed and this may be the reason that all large grains have

twins.  The independence of twinning and high growth rates was demonstrated in a recent

paper where it was shown that there is no measurable difference in the growth rates of

twinned and untwined seeds [37].  Since these seeds were relatively large, it is likely that

they contained screw dislocations that could act as persistent step sources.
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While the habit plane of the twin in PMN/PT is incoherent, BaTiO3 forms very

straight coherent twins on {111} planes.  When BaTiO3 compacts are seeded with twined

grains, the twined seed outgrew the untwined seeds, suggesting that a reentrant twin

plane edge nucleation mechanism promotes abnormal growth [38].  This is also

suggested by observations of BaTiO3 coarsened at temperatures in the range of 1350 °C

(where an intergranular liquid is expected to form), which showed that twinned grains

grow larger than others [39].  Rehrig et al. [18] independently measured the grain sizes of

the large and small populations and showed that within experimental error, the sizes of

the small grains had stopped growing while the large grains continued to increase in size.

It should be noted that while the ideal version of the nucleation limited coarsening theory

suggests that the growth of ideal (smaller) crystals should completely cease when they

reach a size where the nucleation energy barrier becomes insurmountable (and this size

should be in the nanometer size range), it does not account for finite volume fraction

effects and growth from coalescence that is expected even in the absence of nucleation.

In other words, there may be some growth by grain boundary migration, even in the

absence of coarsening.  For a rigorous comparison to the theory, it remains necessary to

evaluate the complete crystal size distribution and volume density as a function of time.

This work is currently being carried out in our laboratory.

3.  Effect of Morphological Variations

In this section, we first examine how a distribution of crystal morphologies

influences coarsening and then how a continuous change in the average morphology

influences coarsening.  The algorithm and physical parameters used for the numerical
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simulations presented in this paper are described in detail in a previous publication [25].

All of the results presented in this section were computed under the assumption that all of

the growing crystals have step producing defects that allow growth.  In other words, there

is no nucleation energy barrier to restrict growth.  This situation is expected to apply

either to the growth of a large seed (guaranteed to have screw dislocations by virtue of its

size) in a matrix of finer source material or to a collection of grains with persistent step

sources that survives after an initial transient of bimodal growth.  When this algorithm is

used to simulate coarsening with a constant surface energy for all of the crystals, it

produces an average grain size that increases as t1/3 and the time invariant crystal size

distribution predicted by the classical theory [12,13].

First, we consider morphological distributions that are likely to occur during the

coarsening of non-isotropic crystals.  It is reasonable to expect that because of differences

in the atomic mechanisms of growth and dissolution, not all crystals in a coarsening

system will have the same shape.  For example, we expect the shapes of the growing

crystals to be dominated by the slowest growing facet.  These same facets will shrink and

disappear from the dissolving crystals.  Since the slow growing facets are most frequently

the low energy facets, it is reasonable to expect that the average surface energy of the

growing crystals will be lower than that of the dissolving crystals and this will influence

the driving force for exchange of material with the intervening phase.  This was

simulated by assigning different average surface energies to different size classes

according to the following function:

† 

g(r) = g 0
1/ 2

1+ exp (r - r*) / w[ ]
+

1
2

È 

Î 
Í 

˘ 

˚ 
˙ (5)
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Where g0 is the mean surface energy of the smaller crystals, the mean energy of the larger

crystals is one half this value, and w is a measure of the width of the transition region

between the higher and lower energy and is measured in the same units as r.  The mean

surface energy (g) as a function of reduced radius is plotted in Fig. 3a for w = 2 ( a

narrow transition) and w = 5 (a broader transition).

The kinetic results are summarized in Fig. 4, where it is clear that the growth in

all of these systems follows classical, diffusion controlled (t1/3) kinetics.  These results are

consistent with Mullins’ [14] prediction that a distribution of crystal shapes does not

affect the growth exponent.  According to the data in Fig. 4, the systems with distributed

surface energies grew more slowly than the system with a constant surface energy.  This

is not because the energies are distributed, but because the mean values of the energies of

these systems are 25 % lower than that of the system with a constant energy.

The crystal size distributions are plotted in Fig. 3b.  Each of these distributions

represents that same volume of material.  The distribution for the system with the

constant energy (the solid line) matches the classical result [12, 13].  The distributions for

the systems with distributed surface energies are both narrower.  However, the changes

are rather subtle and would be difficult to observe in a measured crystal size distribution.

Therefore, if a system of coarsening crystals possesses a range of crystal sizes and

shapes, the observable crystal size distribution is not significantly affected and the

kinetics are not changed at all; the existence of a range of crystal shapes can therefore be

ruled out as an explanation for non-classical coarsening.
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Next, we considered the influence of continuous changes in morphology.

Although this is an extrinsic phenomenon that results from sample history, it is probably

unavoidable in most practical situations and it is therefore useful to understand the

ramifications.  When materials are prepared for a coarsening experiment, it is standard

practice to grind or mill the starting powders.  As result, the initial shapes are expected to

be more or less equiaxed.  As growth occurs, the particles will be increasingly bounded

by slow growing facets.  Indeed, the extent of these processes have been reported in two

recent studies [22, 24].  Based on these observations, we assume that the crystals will

evolve to more energy minimizing shapes, thus resulting in a steady decrease in the mean

surface energy per area.  Therefore, we consider here the coarsening of crystals that all

have the same energy at any point in time, but whose mean surface energy per area is

decreasing linearly with the reduced grain size, r = r/r*.  Two cases are considered.  In

the first, it is assumed that the mean surface energy decreases by 10 % while the reduced

grain size increases by a factor of 10.  In the second, it is assumed that the surface energy

decreases by 50 % in the same size interval.

The crystal size distributions resulting from these simulations, when normalized

by volume, all reproduced the classical results and are not shown [12, 13].  Therefore, we

can conclude that morphological changes will not affect the distribution of crystal sizes.

On the other hand, the kinetics are affected.  The cube of the average grain size is plotted

as a function of time in Fig. 5a.  The slopes of these lines give the growth constants (K in

Eq. 1) for each system.  After an initial transient, the system with the constant energy

(black line) has a constant slope, indicating that K is constant, as expected for classical

kinetics.  The systems with the changing surface energy have a continuously decreasing
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growth constant.  The growth constant was calculated at each point in time by the finite

difference method and the results are depicted in Fig. 5b.  From this result, we see that

the growth constant decreases by the same amount as the surface energy over the same

time interval.  This is because the capillary driving force is reduced in proportion to the

surface energy.  It should be noted that in a real system, the decrease in the mean surface

area is not expected to be linear with the average grain size.  Instead, we expect a rapid

decrease in the initial stages of heating, followed by more subtle changes later in the

process.  However, this does not alter the conclusion that the overall decrease in the

driving force reduces K.  This phenomenon provides a plausible explanation for the

unexplained reduction in growth rate observed in the PMN/PT system [22].

4. Summary and Conclusions

The energy requirements for two-dimensional nucleation on a singular surface are

compared to the potential energy supplied by capillarity and available thermal energy

under typical experimental conditions.  Based on this comparison, it is not plausible for

capillary driving forces to drive two dimensional nucleation during coarsening.  The

simultaneous presence of crystals with and without defects leads to two populations that

grow at very different rates and this provides an explanation for abnormal coarsening.

Simulations show that extrinsic changes in the average surface energy lead to non-

classical coarsening kinetics and a decreasing coarsening rate constant.  The decrease in

the rate constant scales linearly with the decrease in the surface energy and the crystal

size distribution is unchanged.
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Figure Captions

Figure 1.  Plot of the nucleation energy barrier for crystals of different sizes in contact

with a reservoir with a chemical potential 2g/r*.

Figure 2.  Simulated crystal size distribution for the defect free crystals (dashed line) and

the crystals with a persistent step source (solid line) coarsening in the same system.  (a)

after 1 arbitrary unit of time, (b) after 8, (c) after 11.  The crystals with the step source

grow without a barrier.

Figure 3. (a) Plot of the mean surface energy as a function of reduced crystal size for the

cases of a constant energy (solid black line), energy varying according to Eq. 5 with w =

5 (dashed black line), energy varying according to Eq. 5 with w = 2 (dashed gray line).

(b) Resulting crystal size distributions for the cases described above.

Figure 4. Plot of the cube of the grain size as a function of time for the cases of a constant

energy (solid black line), energy varying according to Eq. 5 with w = 5 (dashed black

line), energy varying according to Eq. 5 with w = 2 (dashed gray line).  These last two

lines overlap.
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Figure 5. (a) Plot of the cube of the grain size as a function of time for the cases of a

constant energy (solid black line), energy decreasing by 50 % over the simulation interval

(dashed black line), energy decreasing by 10 % over the simulation interval (dashed gray

line). (b) The instantaneous growth constant for the three simulations described above.
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