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A stereological method is described for estimating the distribution of grain-boundary types in poly-
crystalline materials on the basis of observations from a single planar section. The grain-boundary
distribution is expressed in terms of five macroscopically observable parameters that include: three
parameters that describe the lattice misorientation across the boundary and two parameters that describe
the orientation of the grain-boundary plane normal. The grain-boundary distribution is derived from
measurements of grain orientations and the orientations of the lines formed where grain boundaries
intersect the plane of observation. Tests of the method on simulated observations illustrate that the
distribution of boundaries in a material with cubic symmetry can be reliably determined with about
10º of resolution from the analysis of 5 ! 104 or more line segments. Furthermore, grain-boundary
distributions directly observed from serial sections of a SrTiO3 polycrystal are compared to those
resulting from the stereological analysis of a single plane. The comparison shows that the stereological
method provides a reasonable estimate of the measured distribution. The differences between the
directly observed grain-boundary distribution and that derived from the stereological analysis are
consistent with the results from the simulation.

I. INTRODUCTION

INTERFACES between grains or phases in three-
dimensional microstructures are typically observed as line
segments on planar sections. While X-ray diffraction micro-
scopy[1] and serial sectioning[2] are capable of providing com-
plete three-dimensional characterization, each technique poses
experimental challenges that have, at least until now, pre-
vented their widespread application. In a previous article, a
technique that used observations from a planar section to
determine the average three-dimensional habits of fully
faceted crystals embedded in a second phase was described.[3]

This method, adapted from established stereological meth-
ods,[4,5] enables a statistical description of crystal habits to
be determined from geometric information in conventional
micrographs, along with the crystal orientation data obtained
from electron back-scattered diffraction patterns (EBSPs) in
a scanning electron microscope.[6] The purpose of this arti-
cle is to demonstrate that the method developed for fully
faceted crystals can be expanded to the more complex prob-
lem of extracting a continuous distribution of grain-boundary
planes, specified by area fraction, from a single planar sec-
tion through a single-phase polycrystalline material.

The grain-boundary distribution, "(#g,n), is defined as
the relative frequency of occurrence of a grain boundary

with a misorientation, #g, and boundary plane normal, n,
in units of multiples of a random distribution (MRD). Each
grain boundary therefore has five parameters, three that
describe the misorientation and two that describe the bound-
ary plane normal. Observations in single section planes can
be used to specify four of the five parameters. The only
unknown parameter is the inclination angle between the
observation plane and the grain boundary plane. While this
angle cannot be determined from a single section plane, we
do know that the true boundary plane must be in the set of
planes whose normals are perpendicular to the observed
boundary line segment and trace out a great circle on a stereo-
graphic projection.

This information is used in our analysis in the following
way. We make observations of many crystal pairs that have
indistinguishable misorientations, but are oriented differently
with respect to the section plane. The observed line segment
associated with each of these bicrystals generates a set of
possible boundary planes. The probability that each set con-
tains the true boundary plane is one, and the probability that
any arbitrary plane is included in the set is less than one.
Therefore, after many observations of the same type of
bicrystal, true boundary planes make up a relatively larger
fraction of the accumulated data than the arbitrary planes,
and can therefore be identified as peaks in the distribution.
To quantify the areal distribution of the boundary planes,
the inhomogeneous background caused by the incorrect
planes in each set must be removed. Here, we use an approxi-
mate method, based on the assumption of random sampling,
to remove the incorrectly assigned lengths. After this correc-
tion, the ratios of the observed line lengths allows us to
specify the relative areas of each boundary type and, there-
fore, the five parameter distribution, "(#g,n).

In Section II, the details of the method for estimating
"(#g,n) from observations in a planar section are described.
The method is validated by tests on simulated data sets where
the true grain-boundary distribution is known, as well as an
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(a)

(b)

Fig. 1—(a) Observation of the sample in the laboratory reference frame.
The polygons are planar sections of grains in a polycrystalline material
with known orientations, gi. (b) Definition of the variables in the labora-
tory reference frame. The normal vectors to the possible bounding planes,

, trace out a circular arc.n¿i jk

experimental data set where the grain-boundary distribution
has been measured by direct observation. The generation
of these data sets is described in Section III. In Section IV,
the results of the stereological analysis are quantitatively
compared to the simulated data set and the experimental data
set. In Section V, we discuss possible applications of the
method, some inherent errors, and suggest potential improve-
ments. The article concludes with a summary.

II. METHOD

Consider a two-dimensional section through a polycrys-
talline material, where the grain-boundary traces, l!ij, and grain
orientations, gi, are known (Figure 1). Note that throughout
the manuscript, vectors and angles in the sample reference
frame are indicated by a prime and those in a crystallographic
reference frame are unprimed. Here, g is defined as a transfor-
mation (passive rotation) of an orthogonal coordinate sys-
tem, written as an orthogonal matrix (with determinant "
#1), that describes the transformation between the fixed sam-
ple coordinate system (e!i) and the crystal coordinate system.
Every observed grain-boundary trace l! is associated with
two grain orientations (gi and gj), which can be used to calcu-
late the lattice misorientation across the boundary ($gij) and
a radial angle (%!) in the plane of observation (Figure 1).
Although we do not know how the grain boundary is inclined
with respect to the observation plane, we do know that it
belongs to a set of planes that includes the surface trace and
obeys the condition l!ij · n!ijk " 0, where the vectors n!ijk are
unit normals to the planes. In other words, the true grain-
boundary plane must be in the zone of 1!ij. For each misorien-
tation, sets of n!ijk are accumulated and weighted according
to the length of the observed boundary trace, |l!ij|.

A discrete set of grain-boundary types covering the range
of macroscopic parameters is used as an approximation of the
continuous distribution &($g,n). Every possible observed

plane, nijk, is added to a cell in this discrete data structure,
and therefore, we refer to it as an accumulator array. The mis-
orientation is specified by three Eulerian angles (%1, ', %2)
and the boundary plane by two spherical angles, ( and %, in
a crystallographic coordinate system. The domain of misorien-
tations was parameterized by %1, cos', and %2, and the
spherical angles were parameterized by cos( and %. This parti-
cular parameterization was used because it yields cells of
equal volume when the parameters are equally partitioned. In
this article, we consider only materials with cubic symmetry.
Because crystal symmetries give rise to numerous indistin-
guishable misorientations, this allows us to limit the range of
the boundary parameters.[7] For computational ease, we have
defined the accumulator over a range of zero to )/2, 1, )/2,
and ) for the boundary parameters %1, cos', %2, and %,
respectively; cos( is in the range of *1 to 1. For a material
with cubic symmetry, this volume of the boundary space con-
tains 36 symmetrically equivalent asymmetric domains, which
are domains that contain a complete and unique set of physi-
cally distinct grain boundaries. For the work described here,
we have partitioned the range of misorientation parameters
(%1, cos', %2) into nine equal cells and the range of boundary
plane parameters (%, cos() into 18 equal cells. Thus, the resolu-
tion of the discretization is approximately 10 deg.

The accumulator is filled according to the following pro-
cedure. First, for each observed line segment, the adjacent
orientations, g1 and g2, are used to calculate the misorienta-
tion, ∆g " g1g2

T. Next, each plane in the set n!ijk is param-
eterized by two spherical angles, %!ij and (!k. The in-plane
angle, %!ij, is characteristic of all planes in a set arising from
a single observed line segment lij. The values of the azimuthal
angle, (!k, are in the range *)/2 + ( + )/2 and take B -
discrete values. The range for each vector type is (1/B) cos(,
and we have most frequently used B " 90, although the
results were insensitive to the choice of B, for B , 15. The
normal vector in the sample reference frame, n!ijk, parame-
terized by %!ij and (!k, is then rotated to the crystal reference
using the nontransposed orientation, n " g1 n!. The values
of $g and n identify the cell in the accumulator to which
the length of an observed boundary trace is added. Note that
crystal symmetries lead to numerous values of $g that rep-
resent indistinguishable bicrystals. Each of these equivalent
representations is considered and added to the accumulator.
This includes the equivalency of expressing the grain-
boundary plane normal in terms of one crystal or the other.
In other words, for each observation, equivalent representa-
tions expressed in terms of both crystals are added to the
accumulator. The procedures used to determine the symmet-
rical equivalents are described in detail elsewhere.[8] This
entire procedure was repeated for the B possibilities of (!
for each line segment, and then for all line segments in the
data set.

Recall that the probability that each set of plane normals,
n!ijk, contains the true boundary plane is one, and the prob-
ability that an arbitrary incorrect plane is included is less than
one. Therefore, after many observations, the cells in the
accumulator corresponding to true boundary planes will have
values that are larger than those corresponding to incorrectly
assigned planes. Ideally, we would like to know the fractional
length of line segments crossing each plane, since this is equal
to the fractional area of each plane.[9] However, it is clear
that too much length has been added to the accumulator.
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Furthermore, it is obvious that the error is not uniformly dis-
tributed. For example, consider observations of line segments
arising from grain boundaries with the same misorientation.
The domain of possible discrete boundary plane orientations
in the crystal reference frame at a fixed misorientation forms
a D ! D matrix, where D is the number of divisions of the
accumulator in the range of "1 # cos$ # 1 and 0 # % # &;
here, D was chosen to be 18. If there is a peak in the real
distribution of grain-boundary planes, then orientations very
close to this pole will have more incorrectly assigned length
than others. This is because these neighboring cells have a
greater probability of being in the zone of the peak orientation
than an orientation further away. Conversely, orientations
far from the maximum are less likely to share a zone with the
most highly populated orientation and will accumulate less
incorrectly assigned length. This can be quantified in the fol-
lowing way. In the ith boundary plane cell for a particular
misorientation, there is an observed length, lio. This is the sum
of the length correctly assigned to this cell (li

c) and the length
that was correct in some other cell, j, but was assigned to i
because i and j were both in the zone of the observed trace.
Therefore, the total length is

[1]

where 'ij is a weighting factor that describes the fraction
of great circles whose true plane is j, but also pass through i
because they are in the same zone. The factor 'ij is largest
when i and j are neighboring cells and decreases to a constant
as the angular separation between i and j increases. This
suggests a method for determining an approximate solution.
First, we will estimate the average value of the incorrectly
assigned length that originated from distant (nonnearest
neighbor) cells and subtract this from the ith cell. Second,
we approximate the incorrectly assigned length that originated
in nearest neighbor cells and subtract this quantity. These
two quantities will be an approximation for the sum on the
right-hand side (RHS) of Eq. [1]. In the following para-
graphs, we describe the approximate solution and the assump-
tions required. The validity of the assumptions are left for the
discussion in Section V.

The average value of the incorrectly assigned length from
distant cells can be calculated by making the approximation
that the correctly assigned length in the jth cell (lj

c) is equal
to the average correct length in each box ((lc) * lc/D2).
Note that this approximation is only correct if the bound-
ary planes are randomly distributed. With this approxima-
tion, we now have

[2]

where the term on the RHS is the average incorrect length
assigned to each cell. Note that for any length of line added
to the accumulator, the ideal probability of a correct assign-
ment is 1/D and the ideal probability of an incorrect assign-
ment is (D " 1)/D. In fact, because the domain of possible
plane normals is discretized using an equal area scheme,
there is not a one-to-one mapping between cells in the lab-
oratory frame and the crystal frame, and this alters these
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probabilities. Nevertheless, we will assume these probabilities
to be acceptable. Therefore, the average of the incorrect
length assigned to a given cell can also be written in the
following way:

[3]

Finally, since the ratio of (lo) to (lc) is D,

[4]

The quantity in Eq. [3] is the correction from all of the cells.
However, some fraction of this, which we will define as Z,
comes from the nearest neighbor cells. Because we intend
to account for this contribution separately, it should be sub-
tracted from the total. With this final consideration, the con-
tribution from distant cells is

[5]

where NN is the number of near neighbor cells. We can now
rewrite an approximation for Eq. [1] as

[6]

Note that if the distribution is smooth and continuous, and
D is large enough, then the correct length in the ith cell
should be approximately equal to the correct length in
the adjacent (jth) cell. Using this substitution and taking the
sum over the neighboring values of 'ij to be Z(D " 1), from
Eq. [4], Eq. [6] can be rewritten in the following way:

[7]

Rearranging, we reach the following expression:

[8]

Taking Z to be the fraction of concentric circles around
the point of interest that falls within an angular range of
&/2, then Z * 2/D. Therefore, using Eq. [8], we can
estimate the correct length for each boundary plane cell
at any given misorientation. Once the correction has been
applied at each misorientation, the area, estimated by the
total lengths, in each cell is normalized such that the
average value is one. Thus, because the cells are of equal
volume, the cell values now represent MRD, where the
MRD of a given cell is the ratio of area observed to the
area expected if the distribution of boundaries was com-
pletely random. For any specified grain-boundary type,
the MRD value is determined by averaging the MRD
values of the corresponding 36 symmetrically equivalent
cells within the accumulator.

li
c *

li
o + (Z " 1)

(D " 1)
D

!lo"

1 + Z (D " 1)

li
c ! li

o + (Z " 1)
(D " 1)

D
!lo" " Z (D " 1)li

c

li
c ! li

o + (Z " 1)
(D " 1)

D
!lo" " a

NN

j*1
vij lj

c

a  
D2

j*NN+1
vij!l

c" * (1 " Z )
(D " 1)

D
!lo"

a
D2

j*1
vij * (D " 1)

a
D2

j*1
vij!l

c" *
(D " 1)

D
!lo"

06-03-112A-Symp.qxd  12/29/04  9:46 PM  Page 1983



1984—VOLUME 35A, JULY 2004 METALLURGICAL AND MATERIALS TRANSACTIONS A

*PHILIPS is a trademark of Philips Electronic Instruments, Mahwah, NJ.

III. TRIAL DATA SETS

A. Simulated Data

The best way to validate the method is to use grain-boundary
line segments where the actual grain-boundary planes are
known. Thus, we have created simulated data sets consisting
of grain boundaries generated according to a target distribu-
tion. Because we have generated all five parameters, the result
we should obtain, !("g,n), is known from the start. Each of
these boundaries is then randomly orientated with respect to
a virtual observation plane. The trial data is then limited to
only the line segments along which the boundaries intersect
the observation plane and the orientations of the adjacent
grains. To these data, we then apply the stereological procedure
to recover an estimate of !("g,n).

To generate the trial grain-boundary geometries, we use
a hypothetical distribution that is representative of those
observed in actual polycrystals. Previously, MgO was the
only material in which the complete five parameter grain-
boundary distribution had been measured.[8] The overwhelm-
ing trend in the MgO distribution was a strong preference
for boundaries with a #100$ type boundary plane. Thus,
we have incorporated a preference for a particular boundary
plane type at all fixed misorientations into the simulated
data. We use a hypothetical function with maxima in !("g,n)
for boundaries with #111$ type boundary planes at all fixed
misorientations. To specify the function, we start with the
same discrete model for !("g,n) as used for the accumulator
described in Section II. To assign a frequency value, F, to
each cell in the five-parameter space, we calculate %111,
defined as the minimum angle between the boundary plane
normal (taken at the center of the cell) and a #111$ direc-
tion. We then assign the frequency in the following way:

[9]

where A, B, and C were set to 10, 15, and 1, respectively.
Thus, grain boundaries with plane normals near #111$ will
have larger assigned frequencies than those away from
#111$. After a value is assigned to each cell, it is normal-
ized so that the sum of the values in all of the cells is equal
to one. Thus, the value assigned to each cell represents the
probability with which grain boundaries in the cell occur.

Random grain boundaries were generated by selecting ran-
dom misorientations, represented by a set of three Euler angles
(&1, ', &2). To ensure that all possible misorientations are
selected with equal probability, values of &1 and &2 were
selected randomly in the range of 0 to (/2 and a value of cos'
was selected in the range 0 to 1. Random boundary plane nor-
mals were generated in an analogous manner. The boundary
is added to the appropriate cell based on a conditional proba-
bility: if a randomly generated number between zero and one
is less than the frequency assigned to the cell, the boundary
is accepted. Otherwise, the boundary is discarded. This process
is repeated until the desired number of grain boundaries have
been accepted and included in the simulated data set.

To randomly orient each boundary with respect to a virtual
sample reference frame, a random orientation, g1, is generated
for one of the grains adjacent to the boundary. Note that
with g1, "g, and n fixed, g2 and n), the direction of the bound-
ary plane normal in the sample reference frame, are also fixed.

F * A exp a+au111

B
b2b , C

The boundary trace, l), is assumed to have unit length and
its components on the virtual observation plane are

, and l)3 * 0.
Finally, only the orientations of the adjacent grains and the
boundary trace direction are recorded and this corresponds
to a single simulated observation. After this process is repeated
for each boundary, we are left with a simulated data set that
mimics one that can be generated experimentally. To test the
influence of the number of line segments on the performance
of the stereological procedure, simulated data sets consisting
of 1 - 104, 5 - 104, 1 - 105, and 2.5 - 105 grain boundaries
were generated. In each case, the stereologically derived grain-
boundary distribution was compared to the known values
of !("g,n).

B. Experimental Data

In a previous article,[8] we described a technique that com-
bines conventional microscopy and automated EBSP collec-
tion with serial sectioning to characterize the three-dimensional
geometry and crystallography of a large number of contiguous
crystallites in a polycrystalline material. Information from par-
allel section planes through the microstructure is used to specify
the structure of the interface network, and ultimately, !("g,n).
Here, we have used this procedure, with minor changes, to
characterize a volume of material within a SrTiO3 polycrys-
tal. The grain-boundary distribution will be analyzed and
described in detail in a forthcoming article. Here, the observa-
tions are compared to the results of a stereological analysis of
the same data. A synopsis of the experimental procedure is
provided in the remainder of this section.

The SrTiO3 polycrystal used in this study was made by
uniaxial compression of 99 pct pure SrTiO3 powder (Aldrich
Chemical Company, Inc., Milwaukee, WI).[10] The sample
was heated in vacuum (25 mm Hg) at 800 °C for 25 hours.
In a reconditioned airflow, the temperature was then increased
at 3 °C/min until is reached 1350 °C, and it was then annealed
for 10 hours. To enlarge the grains, the sample was heated
in air at 1650 °C for 20 hours. To reveal the positions of the
grain boundaries, the polished sample was thermally etched
at 1400 °C for 6 minutes in air. The grain-boundary config-
urations were determined with a combination of optical
images and EBSPs acquired at regular intervals on the sample
surface. We started by collecting slightly overlapping grids
of optical images on a planar section of the material. Here,
five grids consisting of 6 - 6 images with a pixel-to-pixel
resolution of 0.9 .m were collected using an optical micro-
scope. The total area was approximately 0.4 cm2. After a thin
carbon coating was applied to eliminate charging, the sample
was placed in a PHILIPS* XL40 field emission gun (FEG)

l¿1 * +n¿2 /1(n¿21 , n¿22 ), l¿2 * n¿1/1(n¿21 , n¿22 )

scanning electron microscope (SEM) and EBSPs were col-
lected at intervals of 20 .m over the same areas on the sam-
ple surface covered by the optical images. The EBSPs were
indexed with TexSEM Laboratories, Inc. (Draper, UT),
Orientation Imaging Microscopy (OIM) software version
3.03, which resulted in a set of Euler angles (&1, ', &2) relat-
ing the sample reference frame to the crystal reference frame
at each probe point. After scanning was completed, 5.2 /
0.3 .m of material was removed using an automatic polisher
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(a)

(b)

Fig. 2—(a) and (b) The estimated distribution of grain-boundary plane nor-
mals based on 5 ! 104 simulated boundaries with a misorientation of 5 deg
about [100]. For comparison, the actual distributions of plane normals is
shown in (b). The populations, represented as MRD, are plotted in stereo-
graphic projection, with the [010], [110], and [111] directions marked with
a circled “",” and a circled “!,” and an open circle, respectively.

(Logitech PM5, Glasgow, Scotland). The same areas on the
sample surface were then located on the new layer and the
entire process was repeated. The EBSP data indicated that
the sample had no significant grain orientation texture.

The information from the optical images and the EBSP maps
were combined to form high-resolution orientation maps from
two parallel section planes. First, to accurately specify the crys-
tallite geometry, we manually digitized the grain boundaries
in each optical image using a program that allows the opera-
tor to trace the boundaries with a computer mouse. This process
resulted in binary images of the grain-boundary skeleton. Next,
we combined the 36 binary images from each 6 ! 6 scan area
using the positions provided by the optical microscope stage
coordinates, creating large image montages of the grain-
boundary skeleton in each area. The final step was to combine
the image montages with the orientation data. For each grain,
identified by contiguous pixels not associated with a grain
boundary, an orientation was assigned manually by visually
matching the grain with its corresponding EBSPs. More than
5000 distinct grains were identified in this way. At this stage,
the information required for input into the stereological analysis
could be extracted from the orientation maps. Every fourth
pixel along a boundary served as an end point for a boundary
line segment. Note that the resolution limit of the segmenta-
tion scheme is about 4 #m (4 pixels • 0.9 #m/pixel). Any non-
linearity in the boundary geometry below the resolution limit
is ignored. Thus, any tendency for a boundary to form facets
below this limit will be neglected. Although there were approxi-
mately 1 ! 105 of these segments, many of these are
indistinguishable observations, formed when a linear segment
is partitioned into smaller segments. We estimate that the
1 ! 105 segments characterized actually consisted of only
about 3 ! 104 distinguishable segments broken down into
smaller elements.

For a comparison, we can use the three-dimensional infor-
mation from the experiment to extract the true distribution of
boundaries. The initial step is to align the parallel sections so
that they are fixed in a single reference frame. This was accom-
plished using a transformation that maximizes the area of
overlap between positions in adjacent layers having the same
orientation. Next, parts of single grains on both planar sec-
tions were identified by comparing the spatial overlap of grains
with similar orientations. Common grain boundaries on the
two layers were then identified and used to create a meshed
interfacial surface. Again, we considered every fourth pixel on
the boundaries, except now they served as the vertex of one
of the 1 ! 105 triangular elements of the mesh. Here, each ele-
ment represents an observed grain-boundary plane segment
for which the misorientation and boundary plane are known.
These segments allowed us to specify the true distribution of
boundaries in the sample volume using the previously described
discrete model for $(%g,n).

IV. RESULTS

We first consider the analysis of the simulated data sets. To
examine the five dimensional $(%g,n), we choose a fixed %g
in the three-dimensional misorientation space, described here
in terms of an axis-angle pair, and then plot $(n) on a stere-
ographic projection. For example, Figure 2 compares the stere-
ologically determined distribution of boundary plane normals

(a) to the actual distribution (b) for a fixed misorientation of
5 deg about [100]. In this plot, the misorientation axis is in
the plane of the paper, in the [100] direction. Both plots have
peaks for plane orientations at &111' and minima along the
zone of pure tilt boundaries (these are the boundaries with nor-
mals perpendicular to the misorientation axis that lie along the
great circle that goes through [010], [001], and [0

–
10]). Figure 3

shows the distribution recovered from 5 ! 104 observations at
three additional points in the high-angle region of misorienta-
tion space. The projections in Figures 3(a) through (c) show
the plane distributions for 15, 30, and 45 deg about [100], with
the actual distributions in Figure 3(d) through (f). In each case,
the plane distributions estimated with our algorithm are visually
similar to the actual underlying distributions.
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Fig. 3—The distribution of grain-boundary plane normals, recovered using our method on a data set consisting of 5 ! 104 simulated boundaries, for bound-
aries with misorientations of (a) 15 deg, (b) 30 deg, and (c) 45 deg about [100]. For comparison, the actual distributions of plane normals in the simulated
data set for the respective misorientations are shown in (d ) through (f ). The populations, represented as MRD, are plotted in stereographic projection, with
the [010], [110], and [111] directions marked with a circled “",” a circled “!,” and an open circle, respectively.

Although the similarity of the actual and estimated distri-
butions is obvious, the plots in Figures 2 and 3 represent only
a small fraction of the entire five-dimensional grain-boundary
space. Therefore, we have defined a quantity to represent the
error, #, which is the absolute value of the difference between
the estimated and actual distribution at a given cell of the
five-parameter space. By examining the distributions of this
error, we can assess the overall performance of the method.
The distribution of error for the case of 5 ! 104 simulated
grain boundaries is shown in Figure 4 as the finely dashed
line. We find that the errors have a maximum at zero MRD
of about 27 pct of all boundary types. In other words, zero
MRD is the most frequent difference between the observed
and actual boundary distributions. The error then decreases
steadily along the abscissa, approaching zero at about 1.00
MRD. Further, we have determined that 95 pct of the errors
fall between zero and about 0.60 MRD. Considering the fact
that the trends in the stereologically derived distribution mimic
those in the real distribution, we consider this level of error
to be acceptable.

Tests on the other simulated data sets yielded predictable
results. The distribution of errors for the data sets consisting
of 1 ! 104, 1 ! 105, and 2.5 ! 105 are also shown in Fig-
ure 4. From the plot, we see that as the number of boundaries
in the data set increases, the peak in the distribution at zero
MRD markedly increases and the rate of decrease along
the abscissa increases, i.e., the width of the distribution con-
tracts. We have determined that 95 pct of the errors are con-
tained within the range of zero and approximately 1.1, 0.48,

and 0.36 MRD for data sets consisting of 1 ! 104, 1 ! 105

and 2.5 ! 105 simulated grain boundaries, respectively. Based
on the figure, we observe that with only 1 ! 104 observations,
there are significant errors ($0.50 MRD) in a large fraction
of the cells. However, as more observations are added, the
fraction of cells with large errors quickly goes to zero. In
fact, the errors associated with the method do not change
substantially after about 5 ! 104 observations.

The analysis was also applied to the experimental measure-
ments of SrTiO3. The plot in Figure 5(a) shows the boundary

Fig. 4—The distribution of the differences (absolute value) between the
recovered and actual grain-boundary distributions from data sets consisting
of 1 ! 104, 5 ! 104, 1 ! 105, and 2.5 ! 105 simulated boundaries.
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Fig. 5—The distribution of grain-boundary plane normals in SrTiO3, recovered using our method, for boundaries with misorientations of (a) 15, (b) 30,
and (c) 45 deg about [100]. (d) through (f) The distributions of plane normals observed in the serial sectioning experiment for the respective misori-
entations, shown for comparison. The populations, represented as MRD, are plotted in stereographic projection, with the [010], [110], and [111] direc-
tions marked with a circled “!,” a circled “",” and an open circle, respectively.

plane distribution for a 15 deg rotation about [100] that was
estimated based on the section plane data only. We observe
a strong preference for #100$ type boundary planes at that
particular misorientation. For comparison, the boundary plane
distribution at the same misorientation determined by direct
measurements of the grain-boundary network is given in
Figure 5(d), which shows a similar preference for #100$
type planes. Additional plane distributions at misorientations
corresponding to rotations of 30 and 45 deg about [100]
are also shown in Figure 5. Although there are varying levels
of consistency, these also show good agreement between the
distribution estimated using our method and distribution
determined with direct microstructural measurements. We
again have the problem that it is unrealistic to visually exam-
ine the entire boundary space. Thus, we turn to quantifying
the distribution of errors between the two boundary distribu-
tions, and we find that 95 pct of the errors are less than
0.81 MRD. This level of error is consistent with analyses
of simulated data sets containing roughly the same number
of observations.

V. DISCUSSION

The results presented in Section IV demonstrate that
%(&g,n) can be determined from observations of a single
planar section. The accuracy the grain-boundary distributions
determined in this way depends on the number of observa-
tions considered. The results presented here show that rea-
sonably accurate estimates of %(&g,n) for materials with

cubic symmetry can be obtained using 5 " 104 or more
observed boundary traces. While this represents a large quan-
tity of microscopic data, it is now possible to collect such
information in an automated fashion using orientation imag-
ing microscopy.[6]

The only comparable experimental measurements of
%(&g,n) were made by analyzing parallel serial section planes
produced by polishing.[8] The method presented here provides
some unique advantages over serial sectioning. First, data
from only a single planar section are needed and this reduces
the time spent collecting data. Furthermore, there are
unavoidable errors when the geometry of the interfacial net-
work is interpolated from data on parallel planes. Interfacial
surfaces are approximated as planes and when a grain termi-
nates within the removed section, connectivity is lost. Also,
while the section planes are on average parallel, local fluctua-
tions lead to geometric errors. Finally, the resolution of the
sectioning process is usually far less than the microscopy,
so that the errors associated with geometric measurements
perpendicular to the section planes are at least an order of
magnitude larger than errors parallel to the section plane.[8]

The geometric measurements used for the stereological analy-
sis do not have the uncertainty added by the out-of-plane
measurements.

Although the method described here can be used to extract
boundary distributions with relative ease compared to other
available experimental techniques, there are inherent errors.
For example, errors arise because of the discrete nature of
the approach. This source of error was described in detail
in a previous article.[3] We also used an approximation to
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determine the total length of line incorrectly added to each
cell in the accumulator. The values of !ij in Eq. [1] decrease
continuously in cells further and further from the boundary
of interest. This continuous behavior was approximated as
a step function with one term for nearest neighbor cells
and another for all cells further removed. If we consider a
maximum in the distribution, the incorrect line length from
the near neighbor cells will be overestimated, while the incor-
rect line length from non-near neighbor cells is an under-
estimate. Also, for a minimum in the distribution, just the
opposite occurs, where the incorrect length from the near
neighbors is an underestimate and the contribution from
the non-near neighbors is an overestimate. Thus, there is a
partial cancellation of errors. Further, the magnitude of the
errors is expected to increase with the magnitude of the
anisotropy in the distribution. In other words, as the magni-
tude of the extrema in the distribution increases, the magni-
tude of the errors associated with approximating the continous
behavior of !ij as a step function, along with the correspond-
ing errors in the incorrect line length estimation, will also
increase. For example, although we have not tested a random
distribution, we expect that the error between the recovered
and actual distributions in such a case would be quite small.
In fact, for a completely random distribution, the values in
the accumulator will be identical in each cell. Thus, the cor-
rection factor, and therefore, the final calculated frequency
would also be the same in every cell. For a given level of
discretization, it is possible to determine all of the weight
factors, !ij; it is then possible to solve the system of linear
equations described by Eq. [1] for the correct line lengths
in each cell, . While the approximation described here
appears satisfactory, we are currently attempting to determine
the weighting factors more exactly to see if this leads to a
significant reduction in error.

Errors in the recovered grain-boundary distribution can
also occur due to texture of the grain orientations. The tech-
nique described here is based on the assumption of random
sampling of each grain-boundary type. In other words, we
assume that regardless of the frequency of a specific bound-
ary type, boundaries of that type are randomly orientated
within the polycrystal. This is not the case for all polycrys-
talline materials. In materials with preferred grain orienta-
tions, we observe many copies of the same sections, instead
of random sections, from each type of bicrystal. This biases
the accumulation of line segment observations toward the
texture axis. Research currently underway is aimed at quan-
tifying and correcting for this effect. Initial tests have shown
that the performance of the method is not significantly
affected if at least 60 pct of the grains in the microstructure
are randomly distributed. In the case of a heavily textured
polycrystal, the method will not work with observations from
a single section plane. However, observations obtained from
multiple randomly orientated section planes through the tex-
tured polycrystal would provide random sections from each
grain-boundary type. While the process of making oblique
sections adds complexity to the procedure, it is still less chal-
lenging than calibrated serial sectioning.

There are several differences between the stereological
procedure described here and that previously used to deter-
mine the habits of embedded crystals. First, it should be noted
that far fewer observations are needed to determine crystal
habits, since the domain of possible bounding planes is two-

li
c

dimensional rather than five-dimensional. Habits can be accu-
rately determined based on that the approximately 102 obser-
vations. The second difference is that the crystals were
assumed to be fully faceted. As long as there is a limited
number of well-defined facets, the origin of each observed
line segment can be assigned with reasonable confidence and
area ratios can therefore be measured. In the present article,
we have applied an approximate procedure to eliminate incor-
rectly assigned planes from the data set. By applying the new
procedure to embedded crystals, even habits that include
smoothly curving planes can be measured.

It is known that many grain-boundary sensitive proper-
ties, such as stress corrosion cracking, [11] electrical activ-
ity,[12] and creep behavior,[13] are strongly influenced by
the types of grain boundaries in a polycrystalline material
and the way that they are connected. One application for the
stereological method described here is to measure "(#g,n)
so that the performance of polycrystalline materials can be
correlated to their grain-boundary distribution. Measurements
of "(#g,n) can also be used to study microstructural evo-
lution. By quantifying the evolution of the population, it
should be possible to gain some insight into the relative
velocities of the different boundary types. Finally, the method
presented could be used to determine the crystallographic
distribution of any type of randomly distributed interface.

VI. SUMMARY

We have developed a method to estimate five-parameter
grain-boundary distributions in polycrystals from a single
observation plane. The method has been tested in two ways.
First, simulated data sets based on known boundary
distributions were analyzed. We found that, assuming cubic
symmetry, the true grain-boundary distribution could be accu-
rately estimated based on 5 $ 104 or more observations.
Second, grain-boundary distributions determined from a stereo-
logical analysis of a single plane of observations from a SrTiO3
polycrystal compared favorably to the distributions derived
from the analysis of serial sections in the same sample. Thus,
we conclude that the method described here provides a rea-
sonable estimation of the boundary distribution using observa-
tions from a single planar section. The method should be
valuable for the study of microstructural evolution and the
relationships between microstructure and grain-boundary sensi-
tive properties.
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