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The distribution of internal interfaces in
polycrystals

Recent advances both in experimental instrumentation and
computing power have made it possible to interrogate the
distribution of internal interfaces in polycrystals and the
three dimensional structure of the grain boundary network
with an unprecedented level of detail. The purpose of this
paper is to review techniques that can be used to study the
mesoscopic crystallographic structure of grain boundary
networks and to summarize current findings. Recent studies
have shown that grain surfaces within dense polycrystals fa-
vor the same low energy planes that are found on equili-
brium crystal shapes and growth forms of crystals in contact
with another phase. In the materials for which comprehen-
sive data exists, the distribution of grain boundaries is inver-
sely correlated to the sum of the energies of the surfaces of
the grains on either side of the boundary.

Keywords: Grain boundaries; Surface energy; Grain
boundary energy; Polycrystals

1. Introduction

Dense polycrystalline materials consist of irregularly
shaped, approximately polygonal, single crystals joined at
internal interfaces referred to as grain boundaries. The in-
ternal structure of a polycrystal is most frequently charac-
terized by observing planar sections in which the grain
boundary planes appear as lines. Therefore, knowledge of
the three-dimensional shapes of grains and the connectivity

of the interfacial network is limited. During the last decade,
however, there have been significant advances both in ex-
perimental instrumentation and computing power. Because
it is now possible to collect and analyze large quantities of
observations in an automated fashion and to model struc-
tures of increasing complexity, studies of the three-dimen-
sional structure of interfacial networks have begun to flour-
ish. The purpose of this paper is to review what is known
about the structure of internal interfaces in polycrystals
and to put recent results in the context of more historical
studies. The scope will be confined to the macroscopic and
crystallographic structure of interfaces, and will concen-
trate on single phase materials. In the next section, the ob-
servable macroscopic characteristics of grain boundaries in
polycrystals are defined. Methods used to study the struc-
ture of three dimensional interfacial networks are then out-
lined in Section 3, and this is followed by a summary of re-
cent findings in Section 4. In the final section, the most
important points are reviewed and several interesting direc-
tions for future research are identified.

2. Observable characteristics of the interfacial
network

2.1. Grain boundary degrees of freedom

To distinguish one type of grain boundary from another, the
values of five independent parameters must be specified [1].
Throughout the majority of this review, three parameters
will be used to describe the lattice misorientation (Dg)
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across the boundary and two parameters will be used to de-
scribe the interface normal (n). The parameters needed to
specify the distribution of internal grain surfaces are de-
scribed in Section 2.2. This distribution is a function of the
two parameters associated with n. In Section 2.3, the distri-
bution of internal grain surfaces will be considered as a
function of the lattice misorientation. This is a five param-
eter function that is referred to as the grain boundary char-
acter distribution.

2.2. The distribution of internal grain surfaces, k(n)

To define the distribution of internal grain surfaces, we be-
gin by considering a volume of material with a constant or-
ientation, enclosed by curved surfaces that meet along lines
where there is an abrupt change in the surface normal, as il-
lustrated in Fig. 1a [2]. If the curvature of the surfaces be-
tween grains is approximated by a set of triangular tangent
planes with a fixed surface orientation, then a grain can be
defined as a polyhedral volume of material with constant
orientation. Referring to Fig. 1b and c, the vertices of these
triangular tangent planes have coordinates (xk, yk, zk). These
coordinates are measured in the sample reference frame,
which is relative to the external surfaces of the polycrystal
or, more generally, the microscope stage. For the jth facet
on the ith grain, we can define the vectors rij1, directed from
x1, y1, z1 to x2, y2, z2 and rij2 directed from x1, y1, z1 to
x3, y3, z3. Therefore, the normal to this tangent plane is:

n0ij ¼
rij1 " rij2
rij1 " rij2
!

!

!

!

ð1Þ

where n’ij is a unit vector in the sample reference frame.

To specify crystallographic orientations, we use three
Eulerian angles, u1, U, and u2. These angles describe a ser-
ies of three rotations that transform the sample reference
axes into alignment with the crystal axes. This transforma-
tion is denoted by g(u1, U, u2), a 3 · 3 matrix that can be
used to convert vectors observed in the sample reference
frame to the crystal reference frame, nij =gn’ij [3]. In this
process, it is important to recognize crystal symmetries. If
there are M symmetry operators in the crystal system, then
for each observed n’ij there are M indistinguishable vectors
in the crystal reference frame that are given by nij = Cmgn’ij,
where the Cm are the M symmetry operators. We can then
define k(n), the distribution of internal grain surfaces, as
the area of all internal surfaces with orientation n, normal-
ized by the average area per orientation. If the distribution
were random, k would be constant for all values of n. Varia-
tions in k indicate a preference for certain grain surfaces.

To measure k(n), it is convenient to partition the domain
of possible grain surface normals into discrete cells. For
centrosymmetric crystals, two spherical angles (h and u) in
the range between 0 and p/2 and 0 and 2p, respectively, re-
produce the domain of possible grain surface normals. So
that each cell has the same area on the surface of a unit
sphere, the domain of n is parameterized by cos h and u,
as illustrated in Fig. 2. If there are D cells for every p/2 ra-
dians, then there will be a total of D · 4D cells, each with
the size D cos h = 1/D and Du = 2p/4D. This equal area
parameterization is useful because every cell has the same
probability of being populated by a random internal grain
surface orientation, n. As the internal surfaces in a poly-
crystal are characterized, the area of each observed triangle
is added to cells in the domain of k(n)M/2 times (the factor
of 2 arises because the crystal is assumed to have a center of
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Fig. 1. (a) Schematic shape of a single grain
from a dense polycrystal drawn after ref. [2].
(b) Representation of a three grain junction
within a polycrystal. The view is exploded so
that the internal interfaces can be seen. The ex-
ternal surfaces are shaded and the internal sur-
faces are triangulated. The jth triangular facet
on the ith grain is shaded and an enlarged view
of this facet is shown in (c).

Fig. 2. The parameterization of k(Dg, n) into
(a) two boundary plane orientation parameters
and (b) three lattice misorientation parameters.
(a) Definition of the spherical angles used to
parameterize n. The range of n is partitioned
so that all of the cells have the same width in
u and cos h and the same area on the surface
of the hemisphere. In the misorientaiton space,
there are D3 cells and for each of these cells,
there is a hemisphere of boundary plane nor-
mals with 4D2 cells.



symmetry and only the upper hemisphere of surface orien-
tation space is considered). At the end, the area in each cell
can be divided by the average area per cell to produce re-
sults in units of multiples of a random distribution (MRD).
If the distribution of internal grain surfaces were random,
then the value in each cell would be unity. Values greater
than unity occur when the total area associated with a
specific type of internal surface is larger than would be ex-
pected in a random distribution; values less than unity are
associated with internal surfaces whose total areas are less
than expected in a random distribution. As an example, a
plot of k(n) for MgO is illustrated in Fig. 3 [4]. In this case,
we see that internal surfaces with the {100} orientation are
observed more than twice as frequently as expected in a
random distribution and those with {111} orientation are
observed less frequently.

2.3. The grain boundary character distribution, k(Dg, n)

Because each triangular segment is the interface between
two misoriented grains, it will be considered twice in the
measurement of k(n): once when associated with the crystal
orientation on one side of the interface (g1) and again when
associated with the crystal orientation on the other side (g2).
In other words, the distribution of internal grain surfaces is
measured independently of the boundary misorientation.
Since we know the crystal orientations on either side of the
boundary, we can calculate the misorientation, Dg = g1g2

T,
and measure the quantity we refer to as the grain boundary
character distribution function, k(Dg, n). While the distribu-
tion of internal grain surfaces, k(n), has the same symmetry
as the crystal, k(Dg, n) depends on five independent param-
eters and the symmetry is more complex. Here we apply the
bicrystal symmetry originally defined by Morawiec [5].
The misorientation must be calculated with respect to both
grains:

Dg ¼ Cp1g1 Cp2g2
" #T and ð2aÞ

Dg ¼ Cp2g2 Cp1g1
" #T ð2bÞ

For crystals with a center of symmetry, this leads to 2P2

equivalent misorientations, where P =M/2 is the number
of proper symmetry operators. For each indistiguishable
Dg, we calculate the plane normal in the crystal reference
frame (nij) using the measured planar normal in the sample
frame (nij’ ) and the non-transposed gi. In other words,
when Dg is calculated using Eq. 2a, nij = Cp1g1n’ij, and
when Dg is calculated using Eq. 2b, nij = Cp2g2n’ij. Finally,
we note that it is arbitrary whether the grain boundary nor-
mal points into the first or second crystal. This adds an ad-
ditional factor of two to the number of symmetrically
equivalent boundaries so that 2 · 2 · P2 symmetrically
equivalent grain boundaries are generated from a single
triangular interface segment.

As with k(n), it is convenient to represent k(Dg, n) as a fi-
nite set of discrete grain boundary types. The three Eulerian
angles (u1, U, u2) used to specify Dg can be parameterized
by u1, cos(U), and u2; n can be parameterized using the
same spherical angle convention used for k(n) (see Section
2.2). The choice of the size of the domain depends on the
crystal symmetry. In the complete domain, the five angular
parameters, u1, U, u2, h, and u range from 0 to 2p, p, 2p,
p, and 2p, respectively. For materials with cubic or tetrago-
nal symmetry, it is sufficient to use a sub-domain in which
the misorientation parameters range from zero to p/2, 1,
and p/2 for u1, cos(U), and u2 respectively. This sub-do-
main is 1/64th of the entire range of possibilities and is a
convenient choice because it is the smallest volume that
contains an integer number of fundamental zones and can
still be partitioned in a simple way. For the cubic system,
there are 2304 (= 2 · 2 · 242) general equivalent grain
boundaries for every observed triangular segment and 36
(= 2304/64) of these are in the sub-domain. So, each obser-
vation is represented by 36 indistinguishable symmetrically
equivalent boundaries. In the tetragonal system, there are
256 (= 2 · 2 · 82) general equivalent grain boundaries for
every observed triangular segment and 4 (= 256/64) of these
are in the sub-domain. The choice of parameters allows the
sub-domain to be partitioned into cells of equal volume
when the parameters are equally partitioned. In this case,
there are D3 cells with Du1 = Du2 = p/2D and D cos U =
1/D. The cells in Euler space can be visualized as a three
dimensional rectangular parallelepiped, as illustrated in
Fig. 2b. Using the previously described discretization for
n, there are also 4D2 boundary plane normals for each cell
in the misorientation domain.

2.4. The number of distinguishable grain boundary types

Because our discrete representation of k(Dg, n) is five-di-
mensional, the number of different boundary types in-
creases dramatically as the cell size is decreased. Here we
estimate how the number of distinguishable boundary types
varies with the resolution of the five angular parameters.
Although the parameterization of the complete domain de-
scribed above is nonuniform and leads to singularities, we
can estimate the number of different boundaries in the fol-
lowing way. If each of these parameters can be resolved
with accuracy, D, then the number of different boundaries
is found by dividing the total volume (8p5) by the volume
of one resolved boundary, D5. Crystal symmetry makes
many of these boundaries indistinguishable, so the total
must be divided by the number of symmetrically equivalent
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Fig. 3. A plot of k(n), the distribution of internal interfaces, in MgO.
The distribution is plotted in stereographic projection, and the (100),
(110), and (111) poles are marked with a “+”, “–”, and triangle, re-
spectively [4].



bicrystals. Therefore, the total number of distinguishable
boundaries will be:

N ¼ 8p5

4P2D5 ð3Þ

This expression is approximate, because the spacing of the
cells is not commensurate with the spacing of the funda-
mental zones within the sub-domain. This creates some de-
generacy in the cells crossing the edges where multiple fun-
damental zones meet. To correct for this effect, a term
should be subtracted from Eq. (3 that scales approximately
with 1/D3. Since D < 1, 1/D5 >> 1/D3, and the effect on N
is not significant as long as D is small. The number of dis-
tinguishable grain boundaries given by Eq. 3 is plotted as a
function of D in Fig. 4 for cubic, tetragonal, and hexagonal
crystals.

Since the number of distinguishable grain boundaries is
strongly sensitive to the angular resolution, the relevant
range for D should be considered. Based on studies of grain
boundary properties, such as the excess free energy per
area, there are significant variations over angular ranges as
small as 10" [6]. On the other hand, it is currently not rou-
tine to measure n with an accuracy better than 5". There-
fore, we take the range of D between 5" and 10" as the rele-
vant range. The graph in Fig. 4 shows that the number of
distinguishable boundary types is very large in this range.
For example, at a resolution of 10", there are approximately

6.5 · 103 distinct boundaries in the cubic system. If the re-
solution is increased to 5", there are 2 · 105 distinguishable
boundaries. The important point is that if k(Dg, n) is to be
reliably measured, the number of observed grain bound-
aries must be larger than the number of distinguishable
boundary types.

2.5. Representation of the grain boundary character
distribution

There are a number of potential ways of parameterizing and
displaying the five-dimensional grain boundary distribu-
tion. By separating the three misorientation parameters
(Dg) and the two interface plane parameters (n), the distri-
bution of grain boundary planes at each misorientation can
be plotted on a stereographic projection, which is a familiar
crystallographic tool. Among the potential ways of repre-
senting the misorientation, which have been described by
Frank [7], the axis-angle convention is probably the most
familiar. All bicrystals have a common axis that has the
same direction in the reference frame of both crystals. Rota-
tions about this axis, [uvw], take the two crystals from the
coincident configuration at x = 0 to misoriented configura-
tions of x about [uvw]. So, for any axis-angle combination,
a distribution of grain boundary planes can be plotted as il-
lustrated in Fig. 5, which shows the distribution of grain
boundary planes in MgO for boundaries misoriented by
45" around [110]. The data in (a) are plotted in projection
along the [001] direction [4]. In this case, the misorientation
axis lies in the plane; pure twist boundaries are those with
planes parallel to the common axis and pure tilt boundaries
are those with planes perpendicular to the common axis.
Both are marked on the Figure. Using this method, each
point in the misorientation space must be examined individ-
ually.

Each method for parameterizing the five-dimensional
space of grain boundary types has certain strengths and
weaknesses. For example, a weakness of the Euler angle
parameterization is that at small misorientation angles, all
of the axes converge towards a point and are no longer dis-
criminated. If the resolution is 10", then all interfaces with
x = 5" will come from the same set of equivalent cells in
Euler space, regardless of [uvw]. Alternate schemes can
eliminate this particular problem, but creates other difficul-
ties. Therefore, it is important to select the parameterization
scheme that is most suited to the question at hand. One al-
ternate representation that has found application is the so-
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Fig. 4. Approximate number of distinguishable grain boundaries as a
function of the resolution (D) with which the parameters are measured.

Fig. 5. The distribution of grain boundary
planes in MgO for boundaries with a 45" mis-
orientation about [110], plotted in stereo-
graphic projection (a) along [001] and (b)
along [110]. In (a), the misorientation axis is
in the plane of the paper (at the position of the
“–”) and in (b) it is perpendicular [4]. In (a)
the zone of tilt boundaries is labeled with a t
and the (100), (110), and (111) poles are
marked with a “+”, “–”, and triangle, respec-
tively. In (b) the tilts are in the plane and the
symmetric tilts are labeled st.



called interface plane scheme, where each grain boundary
is characterized by the vectors normal to the surfaces of
the two grains on either side of the boundary (n1 and n2),
and a twist angle, x [8]. Referring back to Fig. 1, this is a
natural way to characterize the interface, since the grain
boundary can always be thought of as two joined surfaces.

Experimental observation of k(n1, n2, x) and visualiza-
tion are again aided by discretization of the five dimen-
sional space. In the cubic system, all vectors n1 can be re-
presented in a single standard stereographic triangle.
Takashima et al. [9] selected 12 discrete poles in the
(100)– (110)– (111) triangle (see Fig. 6a). Two triangles
are required for the representation of n2, so the (100)–
(101)– (111) triangle and two additional poles were added,
as illustrated in Fig. 6b. To examine k(n1, n2, x), a pole is
selected for n1 and n2 and k is plotted as a function of x in
the range from 0 to 2p. Using this discretization, there are
81 distinct combinations of n1 and n2. Figure 6b shows the
frequency of observed (111)||(111) twist boundaries in a
Fe–Mn–Cu alloy [10]. The minimum misorientation is
also plotted to illustrate that the population peaks as the po-
sitions of the coherent twin (in the axis-angle space, this is
60" around [111]) and for low angle grain boundaries.

2.6. Bicrystal symmetries

The data in Figs. 5 and 6 suggests that the distribution of
grain boundary planes at a fixed misorientation can have
some symmetry and that it is not always necessary to con-
sider the entire range of parameters. However, this happens
only in special cases where axes with symmetry elements
from each of the two crystals are parallel. For the case of a
general bicrystal, the unique zone of boundary planes for a
general fixed misorientation is a hemisphere (0 £ h < p/2,
0 < u < 2p) [5]. The special cases occur when rotational
symmetry elements in the two crystals are parallel; in these

cases, the bicrystal has additional symmetry that results
from combining the rotational symmetries with operations
that relate positions in the two crystals without regard for
the crystal of origin [11, 12]. If n-fold rotational axes of
symmetry in both crystals are parallel, and the crystal is
centrosymmetric, then the range of unique planes is re-
duced such that 0 = w = p/n, where w is defined as the azi-
muthal angle about the axis of symmetry originating at a
symmetric tilt boundary (the polar angle g, away from the
direction of the symmetry axis, remains in the range of
0 £ g £ p/2).

This extra symmetry is apparent in Fig. 5, which shows
the grain boundary plane distribution for bicrystals with a
45" rotation about [110]. Here the crystals share the [110]
axis which has 2/m symmetry. The fact that exchanging
the crystals on either side of the boundary produces an in-
distinguishable bicrystal leads to extra symmetry and, in
this case, all bicrystals with a common [110] axis have a
point symmetry of at least mmm. For example, at the 45"
rotation about [110] shown in Fig. 5, there are two mirrors
crossing in the plane of projection that result from the inter-
change of the crystals and this makes the point symmetry
mmm. The symmetry is not always obvious in the [001]
projection, so Fig. 5b shows the same data projected along
the [110] axis. It should be noted that while the numerical
data has the ideal mmm symmetry, the contouring routine
used to plot the data introduces some small deviations from
ideality that can be detected in careful inspections of the
stereograms in this paper. The !33 symmetry of the [111] axis
means that bicrystals misorientated about this direction
have at least !33m symmetry; for 60" rotations about this axis,
the symmetry is 6/m. It is interesting to note that at some
special points, the bicrystals can have noncrystallographic
point symmetries. For example, all bicrystals in the cubic
system with [100] misorientation axes have at least
4/mmm point symmetry, but for the 45" rotation, k(n) has
a point symmetry of 8/m, as illustrated in Fig. 7. It should
be emphasized that these special symmetries arise only for
misorientations where compatible rotational symmetry axes
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Fig. 6. Discrete poles for k(n1, n2, x). (a) range of orientations for n2
(b) range of orientations for n2. (c) Grain boundary distribution in
MRD for (111)||(111) boundaries as a function of the twist angle [9].
Because of the discretization of x, the population does not have the
ideal symmetry for [111] misorientations.

Fig. 7. The distribution of grain boundary planes in MgO for bound-
aries with a 45" misorientation about [100], plotted in stereographic
projection. The distribution of interface normals has 8/m point symme-
try. The [100] rotation axis is in the plane of the paper and marked by
the circle with “+”.



from both crystals are parallel. For the cubic case, this oc-
curs only for <100>, <110>, and <111> misorientations
and when <100>||<110>.

3. Experimental methods for measuring the
distributions of internal interfaces in polycrystals

3.1. Direct observation of grain shape

The direct, optical observation of three-dimensional grain
shapes in polycrystals is usually not possible. If the material
is transparent, and a section smaller than the grain size is
viewed in transmission, then it is possible to visualize the
inclination of the grain boundaries. However, for thicker
and opaque samples, light absorption and scattering be-
come limiting factors. To get around the problem of direct
observation, foams (soap films) have long been studied as
analogs to polycrystals [13–16]. The property that a soap
film network has in common with the grain boundary net-
work is that the interfaces adopt configurations driven by
the balance of surface tensions. For the case of foams, the
film boundaries must all meet at triple lines with 120" dihe-
dral angles and the triple lines must all meet at quadrajunc-
tions with 109.5" dihedral angles; these configurations bal-
ance the surface tensions and are in local mechanical
equilibrium. Since there is no regular polyhedron with pla-
nar sides that simultaneously meets these criterion and fills
space, the bubbles must change shape and have curved
boundaries supported by pressure differences. One other in-
teresting polycrystal analog is lead shot, which has been
compressed to a minimum volume to form polyhedral
bodies that can then be separated and analyzed [17].

While bubbles in foams and grains in polycrystals are to-
pologically analogous, there are two critical differences.
The first is that the capillary pressure that drives grain
boundary motion is not analogous to the gas pressure within
a bubble [18]. Rapid motion of gas within a bubble makes it
impossible to sustain internal pressure differences and the
uniform pressure will lead to a constant mean curvature on
the boundaries of the bubble. Rapid transport of the crystal-
line solid is not possible and, as a result, the capillary pres-
sure is not expected to be uniform and can be determined
by local conditions. Therefore, the shapes of crystalline
grains are not expected to be bounded by surfaces with a
uniform curvature. The second important difference is that
while the interface energy per unit area of the soap film is
isotropic, this is not so in the crystal. In general, the energy
per unit grain boundary area (c) in the polycrystal is a func-
tion of the five macroscopic parameters: c(Dg, n). The con-
dition for local equilibrium at the interface are now given
by the Herring equation [19]:

X

i

cit̂ti þ
@ci
@bi

n̂ni ¼ 0 ð4Þ

where b is the right-handed angle of rotation about the triple
line direction, measured from a reference direction and the
other terms are defined in Fig. 8. This equilibrium condition
permits a wide range of dihedral angles that are expected to
deviate significantly from 120". Furthermore, grain sur-
faces will adjust to increase the area of low energy bound-
ary orientations while decreasing the area of higher energy
boundary orientations. For these reasons, it is necessary to

study the interfaces of actual crystalline grains, rather than
soap bubbles.

In several systems, intact grains can be separated from
the polycrystal and examined individually. When a b-brass
casting is placed in a warm solution of dilute nitric acid,
and mercurous nitrate is added, a film of mercury forms on
the surfaces and this allows the grains to be separated
[20–22]. It is also possible to separate the grains in a fine
b-brass casting by crushing at about 400 "C, when it is brit-
tle [23]. The grains of a stainless steel have been separated
by selective grain boundary corrosion [24] and the grains
in aluminum can be separated from the polycrystal by infil-
tration of liquid gallium [25]. The most complete study of
separated b-brass grains was completed by Hull [22], who
examined 941 separated whole grains. So far, these direct
observations of separated grains have provided information
only on the shapes of grains, not the crystallographic orien-
tations of the internal surfaces.

3.2. Optical measurements using thin sections

As mentioned earlier, light microscopy can be used to meas-
ure grain shapes in thin samples that transmit light. By
viewing a crystal in transmitted light through crossed polar-
izers with a lambda plate inserted, regions of constant
orientation in the microstructure appear with constant inter-
ference colors so that individual grains in the microstruc-
ture can be distinguished on the basis of their color. The col-
or of a grain depends on the thickness of the sample, the
material's birefringence, and the orientation of the optical
axis. Unfortunately, there is no unique relationship between
color and orientation, so many observations must be made
with the sample in different orientations with respect to the
polarized light. This is accomplished on a universal stage,
which allows the specimen to be tilted and rotated. By ob-
serving the colors at many different orientations, it is possi-
ble to determine the orientation of the optical axis. This
technique was developed by geologists and is applied pri-
marily to minerals that have relatively large grain sizes and
are transparent in thin sections. Samples must be ground to
a thickness a few tens of microns and polished on both
sides. The image analysis that is needed to determine the
crystal orientations from these micrographs has been auto-
mated and the technique is referred to as computer inte-
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Fig. 8. Schematic illustration of a triple junction where three grain
boundaries meet.



grated polarization microscopy, or CIP [26]. By tilting the
specimen so that each triple junction is aligned parallel to
the viewing direction, it is also possible to accurately meas-
ure the directions of the grain boundary planes. Therefore,
polarized light microscopy can be used to determine all five
macroscopically observable grain boundary parameters.

3.3. X-ray methods

The opacity of many specimens can be overcome by using
transmission X-ray imaging. In the simplest mode, grain
boundaries in transmission x-ray microradiographs can be
visualized if they are marked with a denser material that ab-
sorbs x-rays more strongly than the grains. In its original
application, two stereoscopic microradiographs of a 1 mm
thick plate of an Al–Sn alloy were recorded so that the
grains could be visualized in three-dimensions [27]. In this
case, the Sn wets the Al grain boundaries to provide the ne-
cessary contrast. More recently, a full three-dimensional to-
mographic reconstruction of an Al–Sn alloy has been made
on the basis of 625 microradiographic projections [28]. One
advantage of microradiography is that it makes it possible
to study kinetic processes within the solid [29].

While microradiographic techniques have allowed the
shapes of grains in contact with liquid Sn to be measured,
they do not provide information on grain orientations and,
therefore, do not allow the measurement of k(Dg, n). Two
closely related techniques, three-dimensional x-ray diffrac-
tion (3DXRD) microscopy and the differential aperture x-
ray microscope (DAXM), promise to overcome this limita-
tion. The 3DXRDM transmits monochromatic high energy
synchrotron radiation through the specimen and records dif-
fracted spots on parallel planar detectors [30–33]. The
grain orientation is determined from the angles of the dif-
fracted beams, the shape of the grain section is determined
from the shape of the diffracted spot, and the position of
the grain within the sample is determined by extrapolating
the beam path from the positions where it intersects the de-
tectors. The DAXM is a polychromic Laue transmission
technique [34]. Depth resolution is obtained by recording
Laue patterns on a planar detector as a knife-edge aperture
(in practice, a Pt wire) is moved across the sample. Contrast
changes are then used to infer the positions of grains within
the bulk of the sample. The spatial resolutions of 3DXRDM
and DAXM are in the range of a few microns so they are
limited to fairly coarse grained materials. These techniques
have the potential to monitor kinetic processes, since they
are able to nondestructively measure k(Dg, n) at different
times in the process. However, the emergence of these tech-
niques has been so recent that they have not yet been widely
applied.

3.4. Transmission electron microscopy

Transmission electron microscopy (TEM) is well suited to
measuring all five macroscopic grain boundary parameters.
Selected area diffraction patterns allow the grain orienta-
tions on either side of the boundary to be determined and
because images are projections though the specimen, the
boundary inclination can also be measured. While TEM is
widely used to characterize grain boundaries, one limitation
is that samples must be thinned to electron transparency
and, therefore, the total area that can be analyzed is rather

small. This makes the study of large grained materials in-
convenient. TEM is most easily applied to specimens where
the grain size is large compared to the sample thickness and
small compared to the lateral dimensions of the electron
transparent region.

In the past, the large number of distinct grain boundary
types (see Fig. 4) has made it difficult to survey a signifi-
cant number of boundaries by TEM. Recently, however,
automated procedures for mapping orientations in the
TEM have been developed. One technique records electron
diffraction patterns at a set of fixed coordinates, indexes
the patterns, and then creates an orientation map based on
these data [35]. A second technique is to record many dark
field images of the same area using a wide range of beam
conditions. Each pixel is then analyzed to find the beam
conditions that brought it into the diffraction condition and
this set of diffraction vectors is used to determine the orien-
tation [36]. These techniques promise to significantly in-
crease the resolution of orientation mapping.

3.5. Serial sectioning

The three dimensional interfacial network can be comple-
tely reconstructed on the basis of data from planar sections,
a procedure usually referred to as serial sectioning. On a
single section plane, we see the lines of intersection be-
tween the surface and interfacial network (for example, the
upper plane in Fig. 8). If a small amount of material can be
removed by polishing or milling (Dh in Fig. 8), and the sec-
ond section plane is imaged, then the boundary planes can
be interpolated from the first layer to the second. If the pro-
cedure is repeated multiple times, the entire three-dimen-
sional microstructure can be reconstructed. There are sev-
eral obvious requirements and limitations for this process.
The first is that the amount of material removed between
the section planes must be small in comparison to grain
size. The second is that it must be possible to align and posi-
tion the images of each section plane in three-dimensional
space. Finally, the line segments that come from the same
interface, but appear on different sections, must be identi-
fied and connected. A sample of the grain boundary traces
in two parallel serial sections is illustrated in Fig. 9 [4].
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Fig. 9. A superposition of the grain boundary traces from adjacent
layers in the microstructure of MgO. The vertical separation is about
5 lm [4].



To determine k(Dg, n), it is also necessary to measure the
crystal orientations. This can be accomplished using elec-
tron back scattered diffraction (EBSD) mapping [37]. In a
scanning electron microscope (SEM), the sample is in-
clined with respect to the beam so that a backscattered dif-
fraction pattern can be captured on a planar detector. The
pattern can be indexed to determine the local orientation of
the crystal at the position where the beam is diffracted. By
sequentially positioning the beam at a set of predefined po-
sitions on the surface, an orientation map can be generated.
We note that in this orientation map, four of the five meas-
urements required to determine k(Dg, n) are specified.

Conventional polishing and milling machines, as well as
focused ion beams, have been used to remove thin sections
[4, 38–43]. Calibrated serial sectioning using a conven-
tional polishing [4, 38, 39] or milling machines [40–41]
can remove layers with thicknesses on the order of a few
microns while the focused ion beam can remove layers with
nanometer-scale thicknesses [42, 43]. Alignment of the sec-
tions is usually accomplished using fiducial marks, and the
most common are intentionally induced marks from a Vick-
ers hardness indenter [44]. Since the indenter tip leaves
marks of known shape, both the alignment of the layers
and the vertical position can be determined. If the grains
do not have a shape anisotropy, then alignment of large
areas can be accomplished using the grains [4] or triple
junctions [45] as the fiducial marks. In this procedure, the
relative position of each layer is determined by assuming
that the positions of the microstructural features (the centers
of grains or triple junctions) are randomly distributed about
the sample normal.

3.6. Stereological measurment of k(Dg, n)

The analysis of data from a single section plane can be used
to derive certain average properties of the interfacial net-
work, but not the actual three-dimensional network config-
uration. For example, if one wants to measure k(Dg, n), the
information in a single section plane can be used to specify
four of the five parameters. The only unknown parameter
is the angle between the observation plane and the grain
boundary plane. While there is no way to determine this ab-
solutely from the data on a single plane, it is possible to
combine many observations from sections of indistinguish-
able bicrystals to specify the probability that it is a certain
plane. The method for deriving k(Dg, n) from stereological
measurements is an extension of the stereology for bound-
ary planes in the sample reference frame originally de-
scribed by Hilliard [46] and Adams [47]. To measure
k(Dg, n), the analysis must be conducted in the misorienta-
tion reference frame described in Section 2.3 [5]. This ana-
lysis has been conducted to recover k(n) for a single misor-
ientation [48] and at all misorientations [49]. Finally, the
boundary stereology can also be used to measure k(n) for
crystals of one phase embedded in another [50]. Here, we
outline a discrete analysis [49].

As a starting point, the five parameter grain boundary
space is discretized as described in Section 2.3. The five di-
mensional matrix of different grain boundary types is re-
ferred to as an accumulator. The vector l’ij is defined as the
trace where the jth triangular boundary tangent plane on
the ith grain meets the surface, as illustrated in Fig. 1. While
each l’ij can be associated with a specific misorientation in

the five parameter space, nij is not well defined. However,
it must be true that the actual grain boundary plane belongs
to a set of planes that includes the surface trace and obeys
the condition l’ij · n’ijk = 0, where the vectors n’ijk are a set of
D unit normals to the possible grain boundary planes.
Therefore, each observed trace generates a set of D vectors
perpendicular to possible boundary planes that can be trans-
formed to the crystal reference frame. With knowledge of
the misorientation, the vectors nijk specify D cells in the ac-
cumulator to which |lij| is added so that the observations are
weighted by line length. In other words, the length of each
observed trace is added to the accumulator D times. In the
end, we would like to know the fractional length of line seg-
ments crossing each plane, since this is equal to the frac-
tional area of each plane [51].

If there are N observations of traces from indistinguish-
able bicrystals, then we can be certain that for this misorien-
tation, the accumulator contains N correct boundary normal
orientations and N(D–1) incorrect assignments. To get the
line length crossing each boundary type, we have to remove
the incorrect assignments from the accumulator. To do this,
it must be realized that the incorrect assignments are not
distributed randomly. If there is a peak in the real distribu-
tion of grain boundary planes, then orientations very close
to this pole will have more incorrectly assigned length than
others. This is because these neighboring cells have a great-
er probability of being in the zone of the peak orientation
than an orientation further away. Conversely, orientations
far from the maximum are less likely to share a zone with
the most highly populated orientation and will accumulate
less incorrectly assigned length. We can describe this inho-
mogeneous distribution in the following way. In the pth

boundary plane cell for a particular misorientation, there is
an observed length, lp

0. This is the sum of the length cor-
rectly assigned to this cell (lp

c) and the length that was cor-
rect in some other cell, q, but was assigned to p because p
and q were both in the zone of the observed trace. There-
fore, the total length is:

l0p ¼ lcp þ
X

D2

q¼1;q 6¼p

xpqlcq ð5Þ

where xpq is a weighting factor that describes the fraction
of great circles whose true plane is q, but also pass through
p because they are in the same zone. The factor xpq is lar-
gest when p and q are neighboring cells and decreases to a
constant as the angular separation between p and q in-
creases. This suggests a method for determining an approx-
imate solution. First, the average value of the incorrectly as-
signed length that originated from distant (non-nearest
neighbor) cells can be estimated and subtracted from the
pth cell. Second, the incorrectly assigned length that origi-
nated in nearest neighbor cells can be estimated and sub-
tracted from this quantity. By making a number of approxi-
mations for the sum on the RHS of Eq. 5, one can arrive at
the following expression for the correct line length [49]:

lcp ¼
l0p þ ðZ & 1Þ ðD& 1Þ

D
loh i

1þ ZðD& 1Þ ð6Þ

where Z = 2/D and <l0> is the average value of l0. When the
method is tested against model data sets and data recovered
from serial sectioning, satisfactory agreement is obtained
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(see Fig. 10). The agreement between the stereologically
recovered distribution and the true distribution is a function
of the number of observations. If k(Dg, n) is partitioned into
10" cells and 104 grain boundary traces are used, then there
are errors of greater than 0.5 MRD (multiples of a random
distribution) in a large fraction of the cells (see Fig. 11).
However, if 2.5 · 105 boundaries are measured, then less
than 1% of the cells have an error this large [49].

While information on the local connectivity is not re-
trieved, the stereological analysis has several advantages
for the measurement of k(Dg, n). The first is that it is not
subject to the errors associated with alignment of the
images. The second is that the entire process can be auto-
mated. Orientation data can be collected by EBSD map-
ping, and the grain boundary line segments can then be ex-
tracted and used for the analysis. The main disadvantage is
the time required to measure a sufficient number of grain
boundaries. However, as the speeds of modern EBSD map-
ping systems increase, this becomes less of a factor. Cur-
rently, this is the simplest way to measure k(Dg, n).

3.7. Computer modeling

Computer modeling has the potential to make a substantial
contribution to the study of grain boundary networks. In
the past, computational speed limited most simulations to
two dimensions. In the last few years, however, calculations
based on the Monte Carlo Potts model [52], vertex tracking
[53, 54], boundary tracking [55, 56], phase field [57], and
gradient-weighted moving finite elements [58] have been
used to simulate the structure and evolution of grain bound-

ary networks in three-dimensional systems. To date, the
simulations have used only isotropic or highly simplified
models for the anisotropic grain boundary properties. How-
ever, models using five parameter descriptions of grain
boundary properties are expected in the near future. The
number of distinct grain boundary types (see Fig. 4) means
that these simulations must include a large number of grains
and it is this aspect that presents the most significant chal-
lenge to computing resources.

4. Observed distributions of internal interfaces

4.1. Observed grain shape

The polyhedron that comes closest to filling space with the
minimum surface area and meeting the interfacial energy
constraints is the tetrakaidecahedron. This 14-sided polyhe-
dron has six faces with four edges and eight faces with six
edges and is shown in Fig. 12 [59]. To make this shape meet
the surface tension constraints, some curvature must be in-
troduced in the faces with six edges and this will lead to cur-
vature driven boundary motion. Since Matske’s [14] obser-
vations of 600 bubbles with a uniform size showed that the
average number of faces per bubble, <F>, is 13.7 and that
the average number of edges per grain, <E>, is 5.1, the tet-
rakaidecahedron seems to be a reasonable approximate
model for the average bubble. However, in a polycrystal,
there is actually a distribution of grain sizes and shapes; lar-
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Fig. 10. The distribution of grain boundary
plane normals in SrTiO3 for boundaries with a
misorientation 45" about [100]. The stereo-
gram in (a) is derived stereologically and the
one in (b) is derived from serial sections. The
populations, represented as multiples of a ran-
dom distribution (MRD), are plotted in stereo-
graphic projection, with the [100], [110], and
[111] directions marked with a “+”, a “–”,
and a triangle, respectively [49].

Fig. 11. The distribution of the differences, d (absolute value), be-
tween the recovered and actual grain boundary distributions from data
sets consisting of 1 · 104, 5· 104, 1· 105, and 2.5 · 105 simulated
boundaries [49]. Fig. 12. Packing of tetrakaidecahedron.



ger grains have more faces and smaller ones have fewer. In
two studies of systems of bubbles with mixed sizes (poly-
dispersed), <E> has been determined to be 5.1 and <F>
has been measured to be 13.3 and 13.4 [15, 16]. In three-di-
mensional simulations of polycrystals with isotropic
boundary properties using the phase field [57], boundary
tracking [55, 56], Monte Carlo [60] and vertex [54] models,
<F> is cited to be between 13.3 and 13.8 and <E> to be be-
tween 5.01 and 5.07. A smaller value of <F> obtained from
an early Monte Carlo model (12.85) has been attributed to
an artifact in the model that permitted nonphysical grain
coalescence events [52, 57]. In summary, therefore, the
average topological parameters extracted from experiments
and simulations of three-dimensional polydispersed foams
(analogous to polycrystals with isotropic interfacial proper-
ties) are remarkably consistent.

Experimental results from real polycrystals are less
consistent and are different from those of foams. Based
on the analysis of 100 grains in an Al–Sn alloy observed
by stereoscopic microradiography, <F> = 12.48 and
<E> = 5.02 [27]. Hull’s [23] more extensive data set on
b-brass showed that a histogram of grain diameters has a
log normal distribution. Within this distribution, the smal-
lest grains had an average of 8 faces per grain and the lar-
gest had 40. For grains in the most highly populated size
fraction, the average number of faces per grain was 11.8.
The average number of edges per side varied less dramati-
cally with grain size, increasing from four to six from the
smallest to largest grains. Faces with five edges have the
highest frequency and the average number of edges per face
is 4.92. For 72 grains of Fe, <F> has been reported to be
13.42 and <E> = 5.1 [60]. For approximately 1000 grains
in a stainless steel, <F> has been cited to be 14 [24]. Thus,
if one compares the results from crystalline grains with
those from soap bubbles, we can say that in both cases the
average number of edges per face is close to five, but that
the number of faces on the average grain is less consistent.
This inconsistency is evidence that crystalline anisotropy
affects topology.

In multiphased materials, shapes can be much more com-
plex. For example, an analysis of cementite precipitates in
Fe 1.3 wt.% C 13.4 wt.% Mn showed that grain boundary
precipitates exhibited a dendritic structure within the plane
of the boundary and that precipitates growing into the grain
are thin in one direction and have both lath and plate
morphologies [38]. The complex structure of Sn dendrites
in solidified Pb–Sn alloys has also been determined by se-
rial sectioning and this has allowed local measurements of
both the mean and Gaussian curvatures [40]. It was found
that the dendritic structures were well approximated by
contiguous cylindrical objects and that 51% of the internal
surface was saddle-shaped. By measuring the orientation
of the crystals, it is possible to derive average shape infor-
mation stereologically. For example, this technique has re-
cently been used to measure the habit of WC crystals in a
WC/Co composite [61]. The Co forms 30% volume frac-
tion of the material and is liquid at the processing tempera-
ture. The WC crystals are fully faceted trigonal prisms
bounded on top and bottom by {0001} basal facets and on
the sides by three {10–10} prismatic facets. Although the
internal atomic structure of WC is hexagonal, the crystals
have trigonal habits because of the material's polar surface
chemistry.

4.2. Observed distribution of internal grain surfaces, k(n)

There has been a tendency for experimental studies to con-
centrate on the misorientation of grain boundaries rather
than the grain boundary plane. Nevertheless, there are nu-
merous qualitative observations that indicate the preference
for various materials to favor the formation of grain bound-
aries on specific planes; we begin by reviewing some exam-
ples. Nonmetallic compounds are typically more anisotrop-
ic than metals and flat, low index grain boundary planes
are usually more obvious. For example, polarized light mi-
croscopy studies showed that grain boundary planes in
polycrystalline aggregates of amphibole, biotite, and pyrox-
ene (all silicate minerals) are usually configured so that one
of the adjacent grains is terminated by a low index facet
[62–64]. TEM observations have shown that symmetric tilt
grain boundaries in NiO [65] and SrTiO3 [66] favor asym-
metric configurations where one of the two crystals is ter-
minated on a {100} plane. The preference for certain grain
boundary planes in ceramics is especially clear in cases
where the grains grow abnormally large and/or there is an
intergranular liquid phase present at the processing tem-
perature. Flat asymmetric grain boundaries with {111} hab-
it planes are observed in titania-excess BaTiO3 [67] and
facets with {100} orientations are revealed by PMN/PT
grains growing in a PbO2 rich intergranular liquid [68, 69].
In some ranges of temperature and composition, grain
boundaries in Al2O3 also show a tendency to favor certain
low index planes [70, 71].

Some investigations have revealed that grain boundaries
in metals also prefer low index planes. For example, tilt
boundaries in gold show a preference for densely packed
low index planes such as {100}, {111}, {112} and {110}
[72, 73]. For [100] tilt boundaries in !-Fe, {110} planes
are observed to be special so that asymmetric tilt bound-
aries with one crystal terminated by {110} are favored over
symmetric configurations [74]. A tendency for certain high
index boundary planes has also been cited. For example,
{113}||{335} and {117}||{551} boundaries have been re-
ported to be common in Cu [75] and Al [76, 77], respec-
tively. However, it should be noted that these boundaries
are the incoherent components of low index twin bound-
aries and might be necessary to meet topological require-
ments. It has been hypothesized that certain boundary
planes are preferred because these geometries place a rela-
tively high fraction of the sites on the surface of one crystal
in coincidence with those on the surface of the adjacent
crystal. However, based on their analysis of [100] and
[110] tilt boundaries in Au, Goodhew et al. [72] concluded
that planar coincidence does not provide a satisfactory ex-
planation for the preference for certain planes.

Recently, more comprehensive measurements of k(n)
have been reported for MgO [4], SrTiO3 [78], MgAl2O4,
TiO2, and Al [79]. The result for MgO has already been
shown in Fig. 3 and the results for the other materials are
given in Fig. 13. The tendency for grain boundaries in
MgO to form on {100} planes is thought to be related to
its surface energy anisotropy, c(n). The favored planes,
{100}, have the lowest surface energy and those that occur
with the lowest frequency, {111}, have the highest surface
energy [80, 81]. The distribution of grain boundary planes
in SrTiO3 is also well correlated to the surface energy
anisotropy (see Fig. 13a). The most common grain bound-
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ary plane, {100}, is also the lowest energy surface plane
[82–84].

For the case of MgAl2O4, the data show that internal
{111} planes occur with more than twice the frequency of
{100} planes (see Fig. 13b). While the surface energy ani-
sotropy has not yet been measured for this material, the
boundary plane preference agrees with the habits of free
surfaces of naturally occurring spinels, which are typically
dominated by {111} planes [85]. The most frequently ob-
served twin and cleavage plane in spinel is also (111). Sur-
face energy calculations, on the other hand, have yielded
ambiguous results [86, 87]. Early calculations concluded
that the (111) plane has the lowest energy [86], while more
recent calculations indicate a minimum at the (100) orienta-
tion [87]. Even so, the habits of the grains in the polycrystal
are consistent with the habits of spinel crystals observed in
natural settings.

Tetragonal TiO2 (rutile) crystals display {110}, {100},
{101}, and {111} facets. The cleavage planes are {110}
and {100} and twins are found on {101} planes [88]. Cal-
culations identify the minimum energy surface as (110),
while the (100) and (101) surfaces have higher energies
[89]. The internal surfaces of the rutile polycrystal show
the same trend (see Fig. 13c): {110} planes are the most
abundant, followed by {100}, {111}, and {101}. It is note-
worthy that the minimum of the distribution in this tetrago-
nal material occurs at the (001) orientation, consistent with
its absence on growth habits and the theoretical result that
it has the highest energy [89].

The cohesive forces in MgO, SrTiO3, MgAl2O4, and
TiO2 are dominated by long range electrostatic interactions.
Aluminum was examined as an example of a crystalline
material with short range cohesive interactions. Here, inter-
nal {111} planes are preferred. The (111) surface has the
highest coordination number of any plane in this structure
and observations of microscopic cavities in aluminum sug-
gest that this is the plane of minimum energy [90]. In all of

the cases that have been examined, there seems to be a clear
connection between the energies of the free surfaces and the
planes that bound the internal interfaces. This relationship
is also reflected in the magnitude of the deviation from ran-
dom in the distributions of internal surfaces. The maximum
and minimum values of k(n) for Al (see Fig. 13d), which is
thought to have the smallest surface energy anisotropy of
the materials studied, deviate less from random than the
other materials. Thus, the overall conclusion that can be
drawn from these observations is that the habit of a phase
in contact with itself in a dense polycrystal (but misor-
iented) is not substantially different from its habit when in
contact with a gas or liquid phase.

While there appears to be a clear connection between
c(n) and k(n), it should be remembered that while c(n) is
an equilibrium quantity, k(n) is the result of grain growth,
which is a kinetic process. Therefore, the observed average
grain habits should be thought of as growth forms rather
than equilibrium shapes. So, while it would not be appropri-
ate to assume an exact inverse correlation between the ob-
served distribution of planes and the surface energy aniso-
tropy, we should also recognize that the slow growing
faces found on crystal habits typically correspond to low
energy surfaces and, in this way, we can explain the ten-
dency for certain low energy planes to be preferred on grain
shapes.

Although the peaks in k(n) show that grains in polycrys-
tals display preferred habit planes, the topology of the net-
work demands the simultaneous presence of non-habit
planes. For example, since the average number of faces on
a grain (12–14) is greater than the multiplicity of the habit
planes, and these planes have some curvature, it is neces-
sary to introduce non-habit planes in the interfacial net-
work. Furthermore, if there is a low index plane on one side
of the boundary, then the plane on the other side is deter-
mined by the lattice misorientation and for an arbitrary mis-
orientation, the adjoining surface is most likely to be a non-
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Fig. 13. The distribution of grain boundary
planes averaged over all misorientations for
(a) SrTiO3, (b) MgAl2O4, (c) TiO2, (d) Al.
The data are shown in stereographic projection
along [001], which is in the center of each pro-
jection. The [110] direction is marked with a
square in each projection. In (c), the directions
normal to the {101} surfaces are marked with
white diamonds and the directions normal to
the {111} surfaces are marked with white cir-
cles [79].



habit plane. Because of these geometric constraints, it
would be incorrect to think of the polycrystal as a collection
of self-similar shapes.

4.3. Observed grain boundary character distribution,
k(Dg, n)

When the microstructure is viewed at a collection of indivi-
dual grains, as described above, the grain-to-grain relation-
ships are ignored. In fact, the lattice misorientation is the
most frequently used parameter to characterize grain
boundaries. It has been common practice to separately dis-
tinguish low misorientation angle (x < 15") boundaries
from high misorientation angle boundaries and special
boundaries. Special boundaries are those with a special co-
incidence relationship, where a certain fraction of the sites
in the adjacent lattices are in coincidence. The special
boundaries are named by the inverse of the number of coin-
cident sites. For example, the R3 misorientation in a cubic
crystal is a 60" rotation around [111] and leads to a config-
uration in which every third lattice site is coincident. Higher
R numbers signify a decreasing concentration of coincident
sites. The lattice coincidence is most likely to have physical
significance only when it occurs in the boundary plane.
Thus, while CSL boundaries are usually characterized only
by Dg, the condition of high coincidence is more restrictive;
for a specific CSL misorientation, high atomic coincidence
at the interface occurs only at a few specific values of n
[91].

There are numerous examples in which the low R CSL
boundaries appear to be special in their population and
properties. For example, polycrystals with high fractions
of these boundaries have been shown to have properties that
are superior to materials with more random grain boundary
networks [92, 93]. In most cases, the fraction of special
boundaries is evaluated based only on misorientation mea-
surements. Therefore, it is not clear what fraction of the
low sigma CSL boundaries are on planes of high coherency.

Recent measurements of the distribution of grain boundary
planes for R3 boundaries have shown that while most are
(111)||(111) 60" twist boundaries (the so-called coherent
twin), there is also a measurable population of incoherent
boundaries [94, 95]. The role of these incoherent bound-
aries in determining the properties of the material has not
yet been clarified.

In experiments where the interface plane is controlled or
measured, the influence of lattice coincidence on the
energy, c(Dg, n), is more clear. Grain boundary dihedral an-
gles at thermal grooves or triple junctions are widely used
to evaluate relative boundary energies and have shown that
in some cases low R CSL boundaries have relatively low en-
ergies if the planes have high coherency [96–105]. For ex-
ample, Kimura et al. [102] and Dhalenne et al. [100, 101]
demonstrated that in MgO and NiO, respectively, <110>
symmetric tilt boundaries with a high degree of coincidence
had relatively low energies. However, this is true only for
interface normals with a high degree of planar coincidence.
Rotations of 70.53" and 109.47" about [110] are both R3
misorientations; however, a high degree of coincidence in
the intergranular region occurs only for symmetric {111}
boundary planes. This configuration is realized by a sym-
metric 70.53" rotation, but not for the symmetric 109.47"
rotation. In the case of MgO, the energy of 109.47" R3 rota-
tion was approximately 40% higher than the 70.53" R3 ro-
tation [102]. The effect is even larger in the case of NiO,
where the energy of the 109.47" R3 rotation is 300% higher
than the 70.53" R3 rotation [100, 101]. Therefore, we can
surmise that the boundary plane has a significant influence
on the energy and that any special properties that might be
associated with the CSL also vary with n. Further evidence
for the relatively low energies of grain boundaries with high
coincidence interface planes comes from the observation
that spherical metal crystals on flat surfaces rotate to posi-
tions of high coincidence [106–107] and that aggregates
of MgO smoke have extraordinarily high fractions of low
R CSL twist configurations [108]. Finally, it should be
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Fig. 14. (a) Schematic sequence of tilt bicrys-
tals with increasing misorientation about the
[100] axis. If the black crystal maintains its in-
terface plane on [001], then the interface plane
of the gray crystal must tilt away from [001] by
the misorientation angle. (b) The position of
the normals of the black and gray crystal on a
stereogram, where [001] now points out of the
plane and is in the center of the stereogram.
(c) The populations for [100] tilt grain bound-
aries in MgO, plotted on a [100] stereogram,
at 5" 15", 25", and 35". The zone of tilt bound-
aries is the vertical great circle in the center of
each stereogram. At 35", two separate grain
boundary normal peaks are resolved [4].



noted that there are also observations showing that some
low R CSL boundaries (boundaries with high coincidence)
do not have reduced energies [96–98, 100].

Until recently, most grain boundary studies have concen-
trated on small segments of the five dimensional space with
highly symmetric boundaries that can have a high concen-
tration of coincident sites in the interface. It is now possible
to make more comprehensive measurements of k(Dg, n)
using the techniques described in Section 3 [4,78,109].
The results have shown that at specific misorientations, the
anisotropy in the distribution of grain boundary normals is
large in comparison to the distribution of internal grain sur-
faces (k(n)).

One interesting aspect of the grain boundary normal
distributions at fixed misorientations is that because grain
surfaces favor certain low index orientations, asymmetric
boundaries must also be favored. As long as there is a low
index plane on one side of the boundary, then the plane on
the other side is determined by the lattice misorientation; if
the misorientations are distributed randomly, the surface of
the adjoining grain is not likely to be another low index
plane. For example, Fig. 14 illustrates how the distribution
of grain boundary planes changes with misorientation angle
for MgO boundaries with [100] misorientation axes [4]. At
each misorientation angle, a peak in the distribution occurs
at a {100} type plane. While these are the only peaks in
the distribution at relatively low angles (5" and 15"), the
distribution broadens at higher angles (25") and eventually
multiple peaks emerge (35"). These changes are easy to un-
derstand if one considers the strong preference for {100}
type planes and the geometric constraints associated with
creating a bicrystal. For {100} twist boundaries, both crys-
tals can be terminated by a {100} plane. Thus, we notice
that the distribution of grain boundary planes around the
twist positions (see Fig. 14) do not change significantly
with misorientation angle. However, for pure tilt bound-
aries, if one of the terminating planes is fixed at {100}, the
complementary plane in the adjoining crystal must have a
different index. Therefore, we see that along the zone of

pure tilt boundaries, the population varies systematically.
If one crystal is terminated by (001), then the complemen-
tary crystal must be terminated by a (0k1) plane inclined
by the misorientation angle from (001). Thus, the peak at
(001) spreads along the zone of the tilt boundaries as the
misorientation angle increases and, at 35", forms a separate
peak inclined from (001) by this same angle.

The tendency to form grain boundaries with low index
planes can be compared to the tendency to form low R CSL
boundaries with high planar coincidence. Figure 15 shows
the population and energy of pure tilt R5 boundaries in
MgO [110]. The boundaries that correspond to the highest
population and the lowest energy are asymmetric tilt
boundaries of the type {100}||{430}. At the positions of
the coherent, high coincidence symmetric tilts, {120}||
{120}, the population reaches a minimum and the energy
reaches a maximum. This indicates that asymmetric bound-
aries with {100} planes are favored over the more sym-
metric high coincidence boundaries. This is consistent with
TEM observations of symmetric R5 tilt bicrystals in NiO
[65]. The other symmetric boundary in this tilt system,
which has only partial coincidence, is the {310}||{310}
configuration. This boundary has an energy similar to the
asymmetric {100}||{430} configuration, but occurs at a
minimum in the population.

Similar results were found in SrTiO3 [78]. The distribu-
tions of grain boundary planes at the four lowest R CSL
misorientations are illustrated in Fig. 16. In each case, the
interfaces of highest planar coincident site density are the
pure twist boundary (plane normal and misorientation axis
parallel) and the symmetric tilt boundaries (when the misor-
ientation axis is in the boundary plane and the surfaces on
either side of the boundary are the same) that are marked
on the stereograms. For the R3, we see a maximum in the
vicinity of the pure twist boundary formed by two (111)
planes rotated by 60". In the results from SrTiO3, this is also
the only example of where a boundary formed by two high
energy surface planes is a local maximum in the population.
This probably occurs because of the remarkably high coher-
ency across this special boundary. Note that minima are
found at the positions of the {211}-type symmetric tilt
boundaries, which have next highest concentration of coin-
cident sites in the interface plane.

For the R5, R7, and R9 boundaries, on the other hand, the
peaks are instead correlated with boundaries that have
planes near {100} and the complements to these surfaces;
there are no distinct maxima at the planes of high coinci-
dence. One apparent exception is the (100)||(100) twist
boundary at the R5 position. However, this maximum oc-
curs at all [100] misorientations and is better explained by
the presence of the two low energy planes than by the coin-
cidence condition [78]. In the interpretation of these data, it
should be noted that because misorientation space has been
discretized in approximately 10" increments, the plots in
Fig. 16 average the distribution of grain boundary planes
at each CSL misorientation with those of neighboring mis-
orientations within a 10" window. Thus, if there are cusps
in the distribution at the CSL misorientations, the true po-
pulation will be diluted by the coarse discretization. The ef-
fect is that extreme values move closer to the average. Thus,
while the discretization may cause us to underestimate the
actual values at the extreme positions in the distribution, it
doesn't alter the basic conclusion that for misorientations
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Fig. 15. Comparison of the reconstructed energies (squares) and the
observed population distribution (circles) for R5 tilt boundaries in
MgO. The quantities are plotted in 5" intervals as a function of the an-
gle between the boundary plane normal and (010)||ð04!33Þ. For refer-
ence, the location of the symmetric tilts, both the {310} and {210}
types, as well as the asymmetric boundaries terminated by {100}
planes are indicated [110]. h010 is the angle between [010] and the sur-
face normal.



other than R1 and R3, the coherent boundary planes that do
not have the {100} orientation are local minima in the po-
pulation.

Assuming that this preference for certain grain boundary
planes is a reflection of the boundary's properties, then this
is a potentially valuable avenue for controlling the proper-
ties of materials that depend on the grain boundary network.
So-called grain boundary engineering efforts currently at-
tempt to improve the properties of materials by increasing
the fraction of low R CSL boundaries with coherent planes
[92, 93]. Recall that CSL boundaries with high planar coin-
cidence occur at only selected points in the five parameter
space. Low index planes, on the other hand, can be realized
for boundaries of any misorientation. Therefore, there are
many more of these boundaries than the special CSL
boundaries. The influence of these special planes on proper-
ties is not yet known.

It is also now apparent that there is a connection between
the grain boundary population, k(Dg, n), and the energy
c(Dg, n). It has long been assumed that there is an inverse
correlation between the two quantities. In the case of
MgO, the relative grain boundary energy, c(Dg, n), has been
determined by analyzing the dihedral angles of the triple
junctions [109, 110]. As illustrated in Fig. 17, there is, in
fact, a strong correlation between the grain boundary en-
ergy and the population. Boundaries with high relative en-
ergy are observed less frequently than boundaries with a
low relative energy.

As noted in the Section 4.2, there is also an apparent cor-
relation between the surface energies and the population
and this implies a correlation between the free surface en-
ergy, c(n), and grain boundary energy, c(Dg, n) [78, 79,
109, 110]. This is not too surprising, since both quantities
reflect the local disruption in bonding at the interface. If
we imagine creating a grain boundary by first creating the
two free surfaces and then joining them, we can say that
the boundary energy is the sum of the two surface energies,
minus a binding energy that results from the interactions of
the atoms on either side of the interface [111]. As a first or-
der approximation, we can take the binding energy to be
constant and use the sum of the two surface energies that
make up the boundary as hypothetical grain boundary en-
ergy. The data in Fig. 18 and 19 illustrate that the sum of
the two surface energies is correlated to the grain boundary
population; the most abundant boundaries in SrTiO3 are
those that are composed of relatively low energy surfaces
[78].

The observed correlation between the grain boundary and
surface energies indicates that either the binding energy is
somehow related to the surface energy, or that it is more or
less constant. Theoretical estimates have shown that the
magnitude of the binding energy increases with the average
interplanar spacing of the two surfaces adjoining the bound-
ary [112–114]. Since the lowest energy surface planes are
those that break the fewest bonds, and these correspond to

MK_mk_2004_04_17934 – 9.3.04/druckhaus

G. S. Rohrer et al.: The distribution of internal interfaces in polycrystals

14 Z. Metallkd. 95 (2004) 4

BBasic

Fig. 16. Observed grain boundary plane nor-
mal distributions for (a) R3 (60"/[111]), (b)
R5 (37"/[100]), (c) R7 (38"/[111]), and (d) R9
(39"/[110]) misorientations. In each plot, the
squares mark the position of the symmetric
tilts and the circles the positions of the pure
twist boundaries. (a) twist: (111), tilt: ð!2211Þ,
ð!11!112Þ, andð1!221Þ (b) twist: (100) and ð!1100Þ tilt:
(031), (012), ð0!113Þ, and ð0!221Þ (c) twist: (111),
tilt: ð!3321Þ, ð!22!113Þ and ð1!332Þ (d) twist (110)
and ð!11!110Þ, tilt ð!2221Þ and ð1!114Þ. The reference
frame is the same as in Figs. 7, 10, and 14c
[78].

Fig. 17. Normalized values of the grain boundary population as a func-
tion of the reconstructed grain boundary energy. The average of all nor-
malized values within a range of 0.032 a. u. is represented by the point;
the bars indicate one standard deviation above and below the mean
[109].



the densest planes that also have the largest interplanar spac-
ing, we can assume that the surface energies vary inversely
with the interplanar spacing. So, for a boundary comprised
of two low index surfaces, the two surface energies are rela-
tively low and the binding energy is maximized, an effect
that leads to a minimum in grain boundary energy for this
configuration. Conversely, two high index, high energy sur-
faces will have a smaller binding energy and represent a
maximum in the grain boundary energy. In fact, for high in-
dex surfaces with small interplanar spacings, the binding en-
ergy is nearly constant. This is because of the incommensu-
rate structure in the interface plane. Boundary atoms in such
interfaces experience a wide range of possible atomic config-
urations. As long as the details of the atomic relaxations in a

specific boundary are as widely varied along the aperiodic
structure as they are from boundary to boundary, they aver-
age to about the same value. Thus, because the binding en-
ergy changes systematically with d-spacing and is relatively
constant for high index surfaces, the surface energies provide
a good measure of the density of unsatisfied bonds in the in-
terface and, therefore, the grain boundary energy.

Finally, we should note that there are special cases where
strong variations in the interface coincidence will lead to
significant increases in the binding energy that may not fol-
low the same trend as the surface energies. For example,
low angle boundaries are better visualized as periodic dislo-
cation arrays and in these cases, the surface energy is not
expected to provide a good model for the grain boundary
energy. An analysis of low angle grain boundaries in MgO
[110] showed that conventional theories [115, 116] provide
a satisfactory explanation for the observations. Another ex-
ample is the coherent twin in SrTiO3. Every atom in the
(111)||(111) 60" boundary is in a coincident position, so
the fact that the (111) plane has a relatively high surface en-
ergy is compensated by an unusually large binding energy.
As illustrated in Fig. 16a, the boundary still has a relatively
high population and, presumably, a low energy.

To close this section, we note that the most appealing fea-
ture of the correlation between surface energy, grain bound-
ary energy, and population is that the surface energy is only
a two parameter function and, in comparison to the five
parameter grain boundary energy, is more easily measured.
Therefore, if the correlation between these quantities
proves to be a general trend in polycrystalline materials,
then it has the potential to greatly accelerate our under-
standing of grain boundary anisotropy.
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Fig. 18. The average value of the k for SrTiO3 plotted as a function of
the sum of the two surface energies. The circle represents the average
population for all boundaries within a range of 0.012 a. u.; the bars in-
dicate one standard deviation above and below the mean [78].

Fig. 19. The observed distribution of grain boundary plane normals for boundaries with misorientations of (a) 20", (b) 30", and (c) 40" around the
[100] axis. The misorientation axis lies horizontally in the plane of the paper at the position of the [100] pole (indicated by the +). For comparison,
the hypothetical grain boundary energies based on the sum of the two surface energies (d– f) at the same fixed misorientations are also shown [78].



4.4. Origins of interface distributions

It seems natural to assume that the anisotropy in k(Dg, n) is
related the anisotropy of the grain boundary properties.
However, the mechanisms at work are not clear at this time.
The inverse correlation between energy and population in
well-annealed polycrystals implies that as grain growth pro-
ceeds, higher energy boundaries are eliminated preferen-
tially so that lower energy boundaries persist and dominate
the population. However, the idea that the grain boundary
population is refining toward a lower energy can be mis-
leading, since no grain boundaries are likely to persist
throughout the entire grain growth process; whenever a
grain disappears, new boundaries appear. For example, as
the grain size increases from 1 lm to 100 lm, only 1 in
106 grains survive and the probability that any boundary be-
tween two crystals in the initial configuration survives this
process is extraordinarily small. The inverse correlation of
the population and energy might also be explained as a ki-
netic phenomenon. Therefore, the time that any given grain
boundary exists in microstructure is, on average, equal to
the time it takes to move through a neighboring grain of
average size. High mobility boundaries move through
neighbors in a shorter time interval and are, therefore, anni-
hilated more rapidly than low mobility boundaries. Assum-
ing energy and mobility to be correlated, then, at any instant
in time, there should be more low energy (mobility) bound-
aries than high energy (mobility) boundaries.

The relative effects of energy and mobility have been ex-
plored in recent two dimensional grain growth simulations
[117, 118]. Holm et al. [117] used simulations to show that
during growth, the population of grain boundaries with rela-
tively low energies increases and the population of high en-
ergy boundaries decreases. During the simulation, the
boundary distribution rapidly reaches a steady state and this
state is not influenced by the anisotropy of the boundary
mobility. Similar phenomena were reported by Upmanyu
et al. [118], who also argued that grain boundary energy is
the dominant anisotropy in two-dimensional systems.
These results were best explained by a model that increases
the length of low energy boundaries and reduces the length
of high energy boundaries to satisfy the interfacial equili-
brium requirement at the triple points. We refer to this as
the equilibrium boundary repositioning process. Note that
this process does not affect the number density of the differ-
ent types of boundaries, it simply makes low energy bound-
aries longer and high energy boundaries shorter. This pre-
diction can be experimentally tested.

While the grain boundary distribution is measured as a
per unit area population, it is also possible to examine the
number density of the boundaries. In other words, the
boundaries can be counted by type, without normalizing
by the length or area of each particular segment. When ana-
lyzed in this way, we find that the number density of bound-
aries is always less anisotropic than the area normalized
distribution; this indicates that the most commonly ob-
served boundaries have larger average areas, as predicted
by the model for the equilibrium boundary repositioning
process. However, the remaining anisotropy is significant
(approximately 2/3 of the total). In other words, not only
are low energy boundaries larger on average than high en-
ergy boundaries, but there are more of them. The increased
number density of low energy boundaries suggests that

there is at least one additional mechanism at work. One pos-
sibility is that the grain boundary energy and mobility are
related, so that higher energy boundaries have higher velo-
cities. If so, the faster boundaries move through neigh-
boring grains at a higher rate and undergo more frequent
annihilation. This can lead to an enhancement in the popu-
lation of low energy boundaries with respect to higher en-
ergy boundaries.

5. Conclusions and open questions.

5.1. The structures of grain boundary networks

The coupling of automated EBSD mapping with serial sec-
tioning and new stereological procedures has made it possi-
ble to collect statistically significant samples of the distri-
bution of grain boundaries in dense polycrystals. Three-
dimensional X-ray diffraction microscopy and three-di-
mensional computer simulations have the potential to pro-
vide important kinetic information, but these capabilities
are only emerging now. Grains are volumes of constant or-
ientation with approximately planar faces that meet at
edges where there is an abrupt change in orientation. The
distribution of grain diameters is approximately log normal
and in this distribution, the average grain has 12 to 14 faces
and 5.1 edges per face. The crystallographic distribution of
the internal grain surfaces, k(n), is coupled to the surface
energy anisotropy, c(n). Surfaces with low energy are the
most likely to terminate internal grain surfaces. The results
suggest that the habit of a phase in contact with itself in a
dense polycrystal (but misoriented) is not substantially dif-
ferent from its habit when in contact with a gas or liquid
phase.

In two systems that have received the most detailed scru-
tiny (MgO and SrTiO3) the five parameter grain boundary
character distribution, k(Dg, n), is inversely correlated to
sum of the energies of the surfaces that make up the bound-
ary. In both cases, the system favors asymmetric boundaries
in which one of the surfaces adjacent to the boundary is a
low energy and low index surface. In both cases, the distri-
bution is more sensitive to the boundary plane orientation
than it is to the misorientation. With the exception of R1
and R3 coherent twins, there was no obvious preference
for high coincidence boundaries. Instead, the boundaries
that should be considered special with respect to their popu-
lation are those terminated by low index grain boundary
planes, which occur at every misorientation.

5.2. Challenges for the future

There are still many aspects of grain boundary networks
that are not understood and many opportunities for contin-
ued research. First, there are challenges in the areas of an-
gular and spatial resolution. The most comprehensive meas-
urements of k(Dg, n) have been made at a resolution of 10".
As mentioned before, it is therefore reasonable to expect
that sharp features in the distribution have been under-
estimated and it is possible that some features are missed al-
together. Increasing the resolution from 10" to 5" is a matter
of collecting 25 times as much data. This will become easier
as the speed of EBSD mapping increases. To increase be-
yond this point, it will be necessary to carefully consider
the accuracy of both the orientation measurements and the
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beam positioning within the microscope. The current meas-
urements are also somewhat limited in their spatial resolu-
tion. The grains must be significantly larger than the SEM
spot size, but small enough that there are enough grains in
the sample. It is easy to imagine that when the automated
mapping in the TEM is more routine and combined with
FIB, it will be possible to measure k(Dg, n) in grains with
nano-scale dimensions. This is a particularly interesting
avenue for research, since there is some evidence that grain
boundaries in nanoscale materials behave differently than
those with microscale dimensions.

The current measurements also suggest that there is a
mechanistic link between grain boundary properties, such
as energy and mobility, and the grain boundary distribution,
k(Dg, n). If this is so, then it should be possible, for exam-
ple, to determine c(Dg, n) from measurements of k(Dg, n).
However, to solve this problem, it will first be necessary to
understand the mechanisms relating the grain boundary
properties to the population and this is where mesoscopic
computer simulations of grain growth in three-dimensions,
with boundary properties that depend on all five para-
meters, are expected to have an important impact.

The role of low index planes in the macroscopic proper-
ties of materials is another interesting area for continued re-
search. Efforts in the area of grain boundary engineering
have strived to increase the concentration of low R CSL
boundaries in polycrystals, because this was observed to
lead to a variety of improved properties. In this process,
the role of the grain boundary plane has not yet been clari-
fied. It should also be noted that the non-CSL boundaries,
which are usually ignored, also affect the bulk properties,
especially if so-called general boundaries terminated by
low index planes have special properties. Finally, the con-
nectivity of the boundaries and correlations between differ-
ent boundary types is likely to be important to at least some
properties, but this area has received very little attention.

This work was supported by the MRSEC program of the National
Science Foundation under Award Number DMR-0079996.
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