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A method is described for reconstructing the habits of crystals
embedded in a second phase from observations of random planar
sections of known orientation. We have generated simulated
observations based on five assumed crystal habits and found that
it is possible to reconstruct the shape from 100-1000 planar
sections, depending on the relative area of each facet. Habit
planes comprising as little as 3% of the crystal’s area have been
detected and axial ratios accurately determined.

I. Introduction

WHEN three-dimensional crystals are embedded in an opaque
second phase, they are typically observed only in two-

dimensional planar sections. To make true three-dimensional
images of such crystals, one must resort either to tomography,1

which uses microscopic probes that penetrate the sample, or serial
sectioning.2 The former technique requires instrumentation that is
not widely available, whereas the latter is labor intensive and
limited in resolution. The purpose of this paper is to demonstrate
that average three-dimensional crystal habits can be determined by
combining the geometric information found in conventional mi-
crographs with crystal orientation data, which can be routinely
determined from electron backscattered diffraction patterns in a
scanning electron microscope.3 The method proposed is an adap-
tation of a procedure originally described by Adams4,5 to deter-
mine the distribution of grain-boundary plane orientations.

We consider here isolated crystalline inclusions dispersed in a
second phase. Although we assume that the crystals have a
consistent habit, they may vary in size. The required experimental
observations include numerous randomly distributed planar sec-
tions of the crystals and the orientation of each crystal with respect
to the plane of observation. In practice, these observations might
be obtained from a single section through a collection of randomly
oriented crystals or multiple randomly oriented sections through a
collection of crystals with some degree of texture. This problem is
relevant to the study of inclusions in two-phase microstructures and
composites. Therefore, we imagine a single two-dimensional section
through a composite microstructure that intersects many isolated and
randomly oriented crystals embedded in a second phase.

We begin by noting that the line segments bounding an
observed section of a crystal are formed by the intersection of the
crystal’s habit planes with the plane of observation. With knowl-
edge of the crystal’s orientation, the line segment can be trans-
formed to the crystal reference frame. Although we don’t know the

actual plane that created the observed line segment, we do know
that it belongs to the set of planes whose normals are perpendicular
to the segment. On a stereographic projection, these planes lie on
a great circle perpendicular to the line segment. If we observe
many segments from different crystals, we have a corresponding
number of sets of possible planes (each on a different great circle)
that might be responsible for the observations. The key to our
analysis is that correct habit planes are sampled with a high
probability; there is at least one habit plane in each set of possible
planes. Therefore, the great circles arising from each observed line
segment must intersect at the positions of habit planes. The
nonhabit planes, on the other hand, are far more numerous, and
therefore each nonhabit plane is observed less frequently than a
true habit plane. This basic idea allows a finite set of habit planes
to be identified. With this information, each observed line segment
can then be assigned a habit plane of origin, and, based on the total
length of the segments associated with each facet, the relative areas
of the habit planes can be estimated and the average shape defined.

II. Method

For simplicity, we assume that the crystals are fully faceted or
that they can be reasonably approximated as such. In this case, all
the observed two-dimensional sections of the crystals will be
polygons, as illustrated in Fig. 1(a). Consider the jth line segment
bounding the ith crystal section (l�ij). Although we do not know the
exact plane that leaves the trace on the plane of observation, we do
have two pieces of information that, after the observation of many
sections, allow us to deduce the most likely habit plane. First, we
know that the habit plane must belong to the set of planes that
include the surface trace and obey the condition l�ij�n̂ijk � 0, where
the vectors n̂ijk are unit normals to the planes. In other words, the
habit plane must be in the zone of l�ij. Second, we know that each
plane in the set n̂ijk will not be observed with the same probability.
The plane of observation intersects perpendicular planes with the
highest probability, and those inclined to the plane of observation
with a smaller probability. Taking �k to be the angle between ẑ and
n̂ijk (see Fig. 1(b)), the relative probability of intercepting a plane
whose normal is inclined by �k from the surface normal is sin�k.
We use this information in the following way: for every line
segment observed, we have a set of possible planes, n̂ijk, that
contains a correct habit plane together with a set of incorrect
planes. In other words, the probability of a true habit plane
orientation being found in each set n̂ijk is 1, whereas the proba-
bility of any given nonhabit plane being found in the same set is
�1. So, after many sets of planes n̂ijk are observed and trans-
formed into the crystal reference frame (weighted by the observed
line length, �lij�, and the probability of observation, sin �k), the
frequency with which the true habit planes are observed will
greatly exceed the frequency with which nonhabit planes are
observed. After identifying a finite list of habit planes, it is then
possible to reclassify the observations by habit plane of origin. The
ratios of the total line lengths crossing each facet then provide an
estimate of the relative areas of the habit planes.6
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This procedure is implemented using a set of discrete orienta-
tions in the sample and crystal reference frame. In the laboratory
frame, every observed line segment, l�ij, can be described by the
angle �, which is the in-plane angle between the x-axis and the
normal to the line segment (f�), as illustrated in Fig. 1(b). The unit
normal vector, n̂ijk, to every plane in the zone of l�ij, is described by
two angles, � and �k, where � is the same for all planes in the set.
The domain of the spherical angles � and �k is discretized in units
of � and cos �. This partitioning scheme creates discrete units of
equal area on the surface of a sphere. The in-plane angle, �, ranges
from 0 to � and the out of plane parameter (cos �k) ranges from �1
to 1. For the first line segment of each polygon, we find the discrete
value of � and add the quantity �l�ij� sin �k to each partition (�, cos �k)
that corresponds to a plane in the zone of the line segment. The
process is repeated for each line segment of the polygon.

Because all the line segments in a polygon belong to the same
crystal, the sets of planes can be transformed to the crystal
reference frame using the 3 � 3 matrix, g(�1,�,�2), where �1,�,
and �2 are the Euler angles and g is given as7

g	�1, �, �2


� � c�1c�2 � s�1s�2c� s�1c�2 � c�1s�2c� s�2s�
�c�1s�2 � s�1c�2c� �s�1s�2 � c�1c�2c� c�2s�

s�1s� �c�1s� c�
�

(1)

In Eq. (1), c and s represent cosine and sin, respectively. So, the
vectors n̂ijk can be transformed to the crystal reference frame, n̂�,
by

n̂�l � glm	�1, �, �2
n̂ijk
m (2)

where n̂�l are the components of the unit vector in the crystal
reference frame and n̂ijk

m are the components of the vector in the
laboratory reference frame. Note that throughout the paper, quan-
tities in the crystal reference frame are primed.

The domain of planes in the crystal reference frame is dis-
cretized in the same way as the laboratory reference frame. The
quantity in each partition (�, cos �k) is added to an equivalent
partition (��, cos ��) in the crystal reference frame, and all its
symmetric equivalents. The process is then repeated using the line
segments from all the other observed crystals. With all the sets of
planes derived from each observed line segment transformed to the
crystal reference frame, we can now define the quantity p�(n̂�) as

p� 	n̂�
 �
�i, j,k gin̂ijk�lij�sin �k�i, j,k �lij�sin �k

(3)

The function p�(n̂�) is the probability that a given length of line on
the perimeter of a random section plane falls on a plane with the
orientation n̂�. The normalization factor in the denominator is used
so that when p�(n̂�) is multiplied by the number of partitions, the
results are produced in multiples of a random distribution (MRD).
When this probability is plotted as a function of n̂�, maxima will
occur at the habit planes.

The maxima in p�(n̂�) allow the selection of a finite list of habit
planes that form a convex shape. To specify the exact shape, we
need to know the relative areas of each facet. To do this, we
calculate the total length of line that intersects each habit plane in
the following way. For each observed line segment in the crystal
reference, we compute a scalar product with the normal vector of
each possible habit plane. As long as the list of habit planes is
small, the scalar product will vanish for only one habit plane, and
this will unambiguously identify the plane that produced that
segment. This condition allows us to assign each line length to one
of the particular habit planes. In practice, the origin of those line
segments simultaneously perpendicular to more than one habit
plane will be ambiguous. Although several ways to assign these
lengths to the most probable plane can be imagined, we will simply
ignore these segments for now. After all the data has been
reclassified in this way, we have the total length of line per habit
plane. Because it is known that the total length of a set of randomly
distributed lines intersecting an area is proportional to that area, the
ratios of the line lengths associated with each habit plane is an
estimate of the relative surface areas.6

An alternative method for determining the exact shape is to
search either the accumulated data or the specimen itself for planar
sections that lie perpendicular to more than one distinguishable
habit plane. Specifically, one must search for section planes whose
normals are parallel to the cross product of two distinguishable
habit plane normals (this means the bounding planes are perpen-
dicular to the plane of observation). We shall refer to such
observation planes as special sections. Next, the special sections
can be sorted to find those that contain two parallel segments from
each of the habit planes. For example, consider the special section
plane labeled “S” in Fig. 1(c). In this case, the two distinguishable
habit planes are {100} and {001}, and the observed polygon
consists of line segments in (100), (001), and their parallel
complements, (1�00) and (001�). The ratio of the perpendicular
distances between complementary facets of the same type directly
gives the crystal’s axial ratio. Assuming multiple special sections
of the same type can be located, the results can be averaged and the
error estimated. By repeating this process for all pairs of facets on
the habit, it is possible to determine the shape.

III. Generating Trial Data Sets

To generate simulated data, one must begin by defining the
coordinates of the vertices of the assumed shape. One easy way to

Fig. 1. (a) Observation of the sample in the laboratory reference frame.
Polygons are random planar sections of crystals of known orientation. (b)
Definition of the variables in the laboratory reference frame. The normal
vectors to the possible bounding planes, n̂ijk, trace out a circular arc. (c)
Two possible random planes are illustrated and quantities in the crystal
reference frame are defined.
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accomplish this is to define the shapes in Wulffman8 and export
the shape as a Geomview9 geometry file. These files include a
listing of all the vertices of the polyhedron, which are also the
endpoints of the line segments defining the edges of the crystal.
We take random planar sections of this shape in the following way:
first, the vertex most distant from the center of the crystal is used
to define the radius (R) of an imaginary sphere that encloses the
crystal. We then select a random direction (n̂�) and point P along
this direction that falls within the sphere. This is accomplished by
choosing a set of random orientation parameters, based on the
Euler angles, �1, �, �2. To ensure that all possible orientations are
selected with equal probability in this inhomogeneous orientation
space, values of �1 and �2 are selected in the range of 0–2� and
a value of cos � is selected in a range of �1 to 1. The Euler angles
are then used to transform the surface normal in a laboratory
frame, [001], to a normal for a hypothetical section plane using the
following expressions derived from Eq. (2):

n�1 � sin �2 sin � (4a)

n�2 � cos �2 sin � (4b)

n�3 � cos � (4c)

In Eq. (4), n�i are the components of n̂� along the crystal axes. To
convert from Euler angles to the spherical angles in the crystal
reference frame, we note that �� � � and �� � �/2 � �2. The
distance, r, from the center of the crystal to the point P, is then
randomly selected such that 0 � r � R. These quantities, as
defined in Fig. 1(c), allow us to define a plane perpendicular to n̂�
at the point P. Every line segment that forms an edge of the
polyhedron is then tested for an intersection with the randomly
selected plane. When the plane intersects two segments bounding
the same habit plane, the points of intersection (Vi) define an
observed line segment on the plane of observation.

When all the line segments defining a given polygon in a
random plane are identified, they are transformed back to the
sample reference frame in the following way:

l�ij � gT l��ij (5)

In Eq. (5), gT is the transpose of the matrix in Eq. (1) (in this
case, g�1 � gT). A unit normal is determined for each line
segment, and the angle � is determined as the angle between each
segment’s normal and the x-axis. Now, we have a set of Euler
angles and the lengths and directions of line segments that make up
a random section plane. The process is repeated to accumulate the
trial data set, which can be analyzed according to the description
in Section II.

IV. Results

To test the method, we have generated test data for five crystal
habits. For all results presented here, we have partitioned each of
the orientation parameters into 60 parts. Therefore, the resolution
is �3°. We first consider a crystal with cubic symmetry, bounded
by {100} and {111} planes, as depicted schematically in Fig. 2(a).
Using this assumed shape, the function p�(n̂�) was calculated based
on 50, 100, 103, and 104 trial observations. The result for 100
planar sections is illustrated in Fig. 2(b), plotted in stereographic
projection along the [001] axis. We have found that it is easier to
visualize the results by examining oblique projections of three-
dimensional renderings of p�(n̂�), as illustrated in Fig. 3. In this
case, the heights of the features in the plots are proportional to the
value of p�(n̂�); the in-plane coordinates are identical to those used
in the stereographic projection in Fig. 2(b). In all four cases, the
{100} and {111} habit planes are easily identified by the local
maxima at these positions. Therefore, the habit for this particular
form could be determined from as few as 50 random observations.
The results were not significantly different in trials using a coarser
partitioning scheme (6°).

In Fig. 3, the peaks at the {100} positions are much larger than
those at the {111} positions because the {100} planes make up a

greater portion of the surface area on this particular shape.
However, it should be noted that the relative values of the maxima
in p�(n̂�) are not reliable quantitative indicators of the relative
surface area. For example, in this case, the ratio of the maximum
at {100} compared with that at {111} is �3.5. When one accounts
for the multiplicity difference, this would imply that the probabil-
ity of observing a line segment from a {100} plane is 2.62 times
that of observing a {111} plane. In fact, the surface area ratio is
8.72. One reason that the intensities are not correlated directly to
the areas is that there is a variable background of erroneously
assigned line segments. Partitions corresponding to true habit
planes will contain correct assignments along with several incor-
rect assignments. Partitions corresponding to nonhabit planes will
contain a variable number of incorrect assignments; the exact
number depends on the distribution of habit planes and the
proximity of a given partition to a habit plane. Other sources of
error in the function p�(n̂�) are described in Section V.

To determine the surface area ratio from our observations, we
must reclassify the observations and assign each of the line
segments to one of the two habit planes. The estimated area ratios
are given in Table I. Note that all estimated area ratios for this
shape (referenced as “c1”) are within 8% of the actual value.
Because this is based on the total area, the error in the area of any
particular facet is actually much smaller. This is illustrated by
examining the axial ratio, which we define as the ratio of the
perpendicular distances from the center of the crystal to two
distinguishable facets (l100/l111). For the shape in question, an 8%
error in the ratio of areas leads to an error in the axial ratio of

Fig. 2. (a) Schematic of the assumed habit (“c1”). Small triangular faces
are {111}. (b) Plot of the function p�(n̂�), in stereographic projection along
the [001] for the shape depicted in Fig. 2(a). In the plot, the darkness of the
shading corresponds to the magnitude of p�(n̂�). MRD values are in the
range of 0.5–6.6.
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�1%. For the purposes of reconstructing a crystal shape, we
consider this level of error to be acceptable.

Tests on other shapes gave similar results, which are summa-
rized in Fig. 4 and Table I. As expected, we find that as the number
of distinct facets increases, or area ratios increase, more observa-
tions are required to accurately determine relative areas. For
example, the two anisotropic shapes with orthorhombic symmetry
in Figs. 4(c) and (d) have one set of facets that are approximately
one-tenth and one-twentieth the area of the largest facet. For the
most anisotropic shape, referenced as “o2,” in which the {010}

surfaces comprise �3% of the entire surface area, the small peaks
at the {010} positions are apparent only when plotted on a
logarithmic scale. Furthermore, the value of p�(n̂�) at (010) is not
significantly larger than the amplitude of the background falling on
the great circles connecting the {100} positions. Finally, whereas
the shapes of the more isotropic crystals are determined from only
100 observations, 1000 observed section planes were required to
accurately determine the shape of the more anisotropic crystals.

To quantify the errors involved in this process, the relative areas
were determined in five separate trials with different sets of
randomly generated data. The results from the five trials were used
to calculate an average area ratio and a standard deviation. The
results are summarized in Table II. As expected, the standard
deviation is smaller as the number of observations increases.
Furthermore, the standard deviation increases with the anisotropy
of the shape.

V. Discussion

The results presented in Section IV verify that the method
described in this paper can be used to reconstruct the habits of
faceted crystals from random sections. Furthermore, the number
of observations required seems feasible from an experimental
point of view. In most cases, the observation of only 100 planar
sections should be sufficient. For very anisotropic shapes, as
many as 1000 observations might be required. However, this
number is well within the capability of conventional orientation
imaging microscopy.

Beyond experimental errors in the measurement of angles and
lengths, there are a number of errors inherent in the method that we
have described. It has already been mentioned that the relative
values of the local maxima of p�(n̂�) are not reliable indicators of
relative areas. This is primarily because the erroneously assigned
line segments are not distributed homogeneously. The probability
of an erroneous assignment in any given partition is a function of
the angular separation from a true habit plane. Although it is
possible to quantify this error and subtract a background from
p�(n̂�), we leave this calculation for a future paper and note that the
current solution provides reasonably accurate results.

The discretization of the domain of orientations also creates
errors in the function p�(n̂�). Each observed line segment corre-
sponds to sets of planes whose normals define a great circle on the
stereographic projection. However, because we have discretized �,
the great circle of possible habit planes will be rotated from its true
position to the center of the partition. Furthermore, the contribu-
tion from each line segment is added to every partition that the
great circle crosses, even though the centers of these partitions will
not necessarily lie on the great circle. Both of these factors cause
the maxima of p�(n̂�) to increase in breadth. In practice, it is
possible to refine the discretization so that the resulting errors are
much smaller than the experimental uncertainty.

Additional errors arise because we reduce the zone of possible
habit planes to a finite set of plane normals at discrete intervals.
Because the space of spherical angles is inhomogeneous, there is
not necessarily a one-to-one association between the partitions in
a zone in the laboratory reference frame and partitions in a zone in
the crystal frame. Therefore, contributions from distinct planes in

Fig. 3. Three-dimensional renderings of p�(n̂�) for the shape depicted in
Fig. 2(a). The function was calculated based on (a) 50 (MRD range of
0.5–7.0), (b) 100 (MRD range of 0.5–6.6), (c) 103 (MRD range of
0.7–6.6), and (d) 104 planar sections (MRD range of 0.7–6.6).

Table I. Geometric Data for Actual and Estimated Shapes

Axial ratio Actual area ratio

Estimated area ratio

50 obs. 102 obs. 103 obs. 104 obs.

c1 l100/l111 � 0.71 A100/A111 � 8.72 9.21 7.98 9.15 9.01
c2 l100/l111 � 0.86 A100/A111 � 1.8 1.75 1.89
c3 l110/l100 � 1 A110/A100 � 1.58 1.57 1.60

l111/l100 � 1 A111/A100 � 1 0.97 0.91
o1 l100/l010 � 0.105 A100/A010 � 9.5 12.0 10.0

l001/l010 � 0.210 A001/A010 � 4.75 6.30 5.10
o2 l100/l010 � 0.053 A100/A010 � 19 26.9 20.4

l001/l010 � 0.105 A001/A010 � 9.5 13.5 10.3

2802 Journal of the American Ceramic Society—Saylor and Rohrer Vol. 85, No. 11



the laboratory space, when transformed to the crystal space, might
be added to a single partition. For the same reason, partitions in the
crystal space that actually lie on the great circle of possible plane
normals may not receive any contributions from a set of planes
observed in the laboratory frame.

Our approach of reclassifying the data and assigning each line
segment to a habit plane makes our results insensitive to errors in
the relative values of p�(n̂�) that arise from a combination of the
factors described above. However, the method we use to assign the
origin of the line segments will also introduce some error. Because
we are ignoring line segments of questionable origin, we are not
sampling all configurations with equal probability. There are
several ways one might assign the ambiguous planes and reduce
the associated error. For example, the ambiguous lines could be
assigned to the habit plane most nearly perpendicular to the sample
surface. A two-step process is also possible, in which the ambig-
uous line segments are first excluded, and later assigned to habit

planes with a probability reflecting area fractions that result from
the initial calculation. Although these procedures seem unneces-
sary now, they might be required for habits that contain a greater
number of distinct facets.

We initially assumed that the crystals were completely faceted.
In practice, the habit might contain a combination of flat and
curved segments. The method described here can still be used to
determine the relative area of the facets and the axial ratios.
However, to determine the exact shape, it will be necessary to
know which orientations make up the continuously curved regions
and the distance from the center to each point along the curve. It
should be possible to obtain this information from the observation
of special section planes perpendicular to two distinguishable
facets, as described in Section II. An alternate solution is to correct
p�(n̂�) by subtracting the inhomogeneous background of erroneous
assignments so that it is quantitatively related to the relative area.

We have not yet considered how a dispersion of shapes would
affect the results. For example, we might expect a set of crystals
not in their equilibrium shape to display the same habit planes but
to have different axial ratios. In this case, the method described
could still be used to identify the habit planes, but the relative areas
would represent an average of the sampled crystals.

There are several potentially useful applications for this method.
One obvious application is to determine equilibrium crystal shapes
and, by application of the Wulff construction, the relative surface
energies. In a single-phase material, this can be accomplished by
using cavities or voids within a crystal, sometimes referred to as
negative crystals.10,11 In a typical sintered material, small pores
will be trapped within grains as boundaries migrate past them. If
annealed long enough, these pores will reach an equilibrium shape.
A polished plane through the bulk of such a ceramic will reveal
random sections of grains with different orientations and, there-
fore, random sections of pores. The method might also be used to
determine relative interface energies in two-phase materials. For
example, consider annealing small crystals in a high-volume
fraction of a liquid phase (where coarsening is suppressed by long
diffusion lengths). Observations of a random section plane through
the quenched solid can then be used to determine the crystal’s
equilibrium shape in the liquid. The method described here might
also be useful to determine average particle shapes and aspect
ratios in two-phase materials and composites, even when the
crystals are not strictly self-similar. Knowledge of an average
shape will make it possible to develop reliable three-dimensional
models as input for computer-based simulations.

VI. Summary

Observations of random planar sections of crystals can be used
to determine the habit and axial ratios. Our simulations show that
it is possible to reconstruct shapes containing three distinguishable
facets based on 100-1000 observations, depending on the anisot-
ropy of the crystal form. The method should be useful for
determining equilibrium shapes and relative interfacial energies.
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