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Abstract.  Crystals completely bounded by flat facets change shape, grow, or

shrink only through the lateral motion of steps across the facets.  If the crystal is
free of step producing defects such as screw dislocations, then such steps must be

created by a two dimensional nucleation process.  Here, we quantify the energy

barrier for the nucleation of steps during the morphological evolution and
coarsening of faceted crystals.  Our analysis indicates that for defect free, faceted

crystals larger than a few nanometers, the nucleation energy barrier will prevent
crystals from attaining their equilibrium shape.  Furthermore, this energy barrier

also limits the growth and dissolution of crystals during coarsening.

1. Introduction

The nucleation (free) energy barrier (NEB) present during the growth of a faceted
crystal is well known [1].  We have recently considered how the NEB influences

the morphological evolution of isolated, defect free crystals with equilibrium and

non-equilibrium shapes [2,3].  The principal results were that if the facets are
larger than a few nm, fluctuations around the equilibrium shape will not occur.

Furthermore, the NEB will prevent defect free crystals larger than a few nm from
evolving to their equilibrium shape [3].  In the present paper, we review these

calculations for the specific case of a crystal whose equilibrium shape is a cube.
We calculate the NEB for fluctuations about, and morphological changes toward,

the equilibrium shape.  Using the same approach, we then consider the role of the

NEB on the coarsening of faceted crystals by examining its influence on growth
and dissolution when the crystal can exchange matter with a reservoir at a fixed

chemical potential.



2. NEB for Intraparticle Transport on a Cube Shaped Crystal

We begin by considering an isolated crystal with its equilibrium cube shape, an
edge length of L, and a surface energy of σ.  We wish to calculate the NEB that

must be overcome to transport material from one facet to another.  As illustrated
in Fig. 1, material is removed from the top facet to form a square island with area

s2
2 on the side facet.  Since atoms will be removed from the periphery, a square

island with area s1
2 is left behind on the top facet.  To conserve matter, it must be

true that L2 = s1
2+  s2

2.  Obviously, the only energy change in this process is

associated with the change in the edge energy.  Assuming that the step edges have
the same energy per area as the facets (σ), then the energy for the transfer is:
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In Eq. 1, the first two terms on the right hand side represent the added perimeter
energy while the last one represents the energy eliminated.  It is clear from Eq. 1

that there is no net energy change to transfer a layer in either direction and this

point is illustrated graphically in Fig. 1.  Figure 1 also demonstrates that to transfer
the layer, the crystal must pass through an intermediate state with a higher energy.

The maximum is reached when the area of the partial layer on each facet is the
equal (s1=s2= L/√2).  If we return these numbers to Eq. 1, we see that the barrier to

the transfer of a layer from one facet to another is 1.66 aσL.

We have previously shown nucleation on a facet can be considered negligible if

Fig. 1. The NEB for transferring a layer from the top facet of a cube to side (Eq. 1) and a
schematic of the process.
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the barrier energy is ≥ 40kT [2].  This estimate is based on a classical expression

for the steady-state nucleation rate on an infinite singular facet and defines

nucleation rates ≤ 10-4nm-2s-1, equivalent to a rate of less than one atomic layer per

hour on a facet of 1 nm2, as negligible [4].  If we take a to be 2.5 Å, σ to be 1 J/m2,

and T= 1000 °C, then the barrier will only be surmounted for particles where L <
1.7 nm.  In other words, for defect free particles of sizes greater than about 2 nm,

the NEB will prevent fluctuations about the equilibrium shape.

3. NEB for Intraparticle Transport on a Crystal with a
Nonequilibrium Shape

We now consider non-equilibrium shapes with volumes L1(L2)
2=L3, square facets

perpendicular to z (L2 by L2), and length along z, L1, such that L1>L.  Here, we
consider only the NEB as the crystal evolves toward its equilibrium shape.  The

barriers are the free energies of the critical state representing the maximum free
energy of the lowest free energy path for material transfer.  In calculating the NEB

for this shape, we note that the removal of a complete layer from the face

perpendicular to z results in only a partial layer on the other participating face.  A
subsequent transfer will encounter a different barrier, in general, because of the

different degree of coverage of the participating face.  We confine the calculation
to the maximum of the sequence of barrier free energies.  If this is prohibitive,

changes will not occur. If it is not prohibitive, neither will the other barriers be
prohibitive.

For the long, thin crystal (prolate shape) to evolve toward equilibrium, the facets

perpendicular to z must move toward the center.  In this case, the critical state of
maximum free energy is the unstable equilibrium in which the material removed

from the z face leaves a square nucleus (sxs) and also forms a square nucleus of
the same size on one of the side faces.  Mass balance requires 2s2=(L2)

2.  The free

energy change to form the configuration and hence the NEB is

εb(-) = 8aσs - 4aσL2  = 4(√2-1)aσL2. (2)

Since Eq. 1 and 2 are identical when s1=s2=s and L2=L, we see that εb(-)/εe
b  = L2/L.

Using the constant volume condition, we obtain

εb(-)/εe
b=(L/L1)

1/2; (3)



as L1/L increases, the barrier slowly decreases.  It is interesting to note that even
when the crystal is far from equilibrium, the barrier can be significant.  For

example, consider a crystal for which L = 10 nm.  Using the values for the

physical parameters cited in section 2, the barrier for a 5 nm x 5 nm x 40 nm
crystal to move material from a small face to a large one is about 2 x 10-18J or

more than 100 kT at 1000°C.  In other words, if the crystal had no step generating
defects, it would be kinetically frozen in a stationary configuration far from its

equilibrium shape.  Elsewhere, we have shown that there are similar barriers for

oblate (L1<L) shapes [3].  The influence of the NEB on morphological changes has
been observed experimentally.  The erratic morphological evolution of cavities in

sapphire annealed for up to 16 h at 1900°C [5] and the stationary states of 50 nm
zirconia crystals annealed on a hot stage in the TEM for several hours at 850 °C

[6] were both explained in terms of the NEB.

4. Effect of the NEB on Coarsening

We now consider the NEB for the addition or subtraction of layers when the cube
is able to exchange matter with a reservoir at a fixed chemical potential.  This is

intended to represent the processes that must occur during the coarsening of
faceted particles.  As before, the crystal has its equilibrium shape and an edge

length of L.  We assume that the crystal is situated in a medium in which it is

slightly soluble so that it can exchange material with a reservoir of the same
substance, at a fixed chemical potential of µ∞.  We can imagine this reservoir to be

a large number of identical cubes of the same material where the distance from the
center of each cube to any of its six facets is R* so that µ∞=2σ/R*.  Now consider

the transfer of material from the reservoir to the crystal.  To do so, a square

nucleus of area s2 and height a must be placed on the facet.  The energy for this
transfer is:
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for 0 ≤ s ≤ L.  In Eq. 4, the first term on the right hand side is the energy of the

perimeter of the nucleus and the second term is the change in the free energy on

moving a volume of material (as2) from the reservoir to the flat surface.  Note that
if the crystal is in equilibrium with a reservoir of identical particles (R*=L/2), then

there should be no energy change when a single layer of atoms is transferred from



the reservoir.  Equation 4 shows that this is the case when s=L and R*=L/2.

However, to add even a single layer, the crystal must past through a relatively
higher energy state that contains a partial layer.  By differentiation of Eq. 4, we

see that the maximum occurs at s = R* and that the barrier to addition, ε+, is:

*2 Raσε =+ (5)

where R* is between 0 and L.  In this case, the NEB is independent of the crystal
size and depends only of R*, which characterizes the size of the particles in the

reservoir.  If we assume the same physical quantities as before, then the crystals

will grow only when R* is less than a critical value of about 1.4 nm.  In other
words, only crystals with L < 3 nm can provide supersaturation that is high enough

to drive nucleation on a flat facet.  If we take R* as a representation of a mean
crystal size in a distribution, then as soon as R* rises above the critical value, the

NEB will halt growth.
The energy to remove a layer from the crystal and place it in the reservoir is:
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Where the first two terms on the right hand side represent the energy difference
between a complete layer and a partial layer; this is ≤ 0 for all valid values of s.

The final term on the right hand side is the energy increase associated with
moving a volume of material from the flat surface to the reservoir.  The maximum

of Eq. 6 is at s = R* and the barrier to removing a layer, ε-, is:

ε σ− = + −
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where R* is between L/2 and L.  Note that for a crystal in contact with a reservoir

of identical particles (R* = L /2), ε+=  ε -=2aσR*, as we would expect for the

equilibrium case.  The barrier to remove a layer is smaller if the reservoir is made
up of crystals that are somewhat larger (L/2 < R*< L) and vanishes completely if

the particles in the reservoir are twice as large as the crystal (R* ≥L).

According to these results, illustrated in Fig. 2, the coarsening of defect free

faceted crystals will be limited by the NEB; when the mean field chemical

potential (µ∞) decreases to the point where corresponding values of R* are beyond

a few nm, growth will stop.  The results are in sharp contrast to conventional



coarsening theory, in which atoms are driven to or away from surfaces by

chemical potential gradients where they attach or detach without a nucleation
barrier [7,8].  In real populations of crystals, some will contain defects that

produced steps and these crystals will continue to grow after the perfect crystals

become immobilized.  We believe that this might explain abnormal coarsening in
systems of faceted crystals.

Fig.2. The barriers for addition of layers to the crystal (from a reservoir containing smaller

crystals) and removal of layers (from a reservoir containing larger crystals).
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