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Abstract. By measuring the geometry and crystallography of the three interfaces that meet at grain boundary
thermal grooves, it is possible to determine the anisotropy of the surface free energy. Previously, the surface energy
of MgO at 1400◦C in air was approximated by a truncated double Fourier series with coefficients that were determined
by fitting the observations to Herring’s condition for local equilibrium at a triple junction. The purpose of this paper
is to describe an alternative analysis of the same data set that is not limited by an assumed functional form of the
surface energy. In this case, the space of surface characters is discretized and each orientation is associated with
a capillarity vector (according to the Cahn–Hoffmann definition). The set of capillarity vectors that most closely
satisfies the condition for local equilibrium at each triple junction is then determined by an iterative method. The
relative surface free energies derived from this analysis are more anisotropic than those derived from the series fit
and more consistent with the observed faceting of MgO in air at 1400◦C. The relative surface energies of the low
index planes are γ110/γ100 = 1.07 ± 0.04 and γ111/γ100 = 1.17 ± 0.04.
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Introduction

In a previous paper [1], geometric and crystallographic
observations at grain boundary thermal grooves were
used to experimentally evaluate the anisotropy of the
surface energy of magnesia after annealing at 1400◦C
in air. The method employed in that paper was adapted
from previous studies of metallic systems, where the
surface energy was approximated by a truncated dou-
ble Fourier series [2, 3]. The unknown coefficients of
the series were determined by fitting the observations
to Herring’s [4] condition for local equilibrium at the
triple junction. Throughout this paper, we will refer to
this procedure as the series fitting method. One limita-
tion of the series fitting method is that the assumption
of particular basis functions for the finite series con-
strains the form of the resulting surface energy func-
tion. The comparative advantages and disadvantages of
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different basis functions were described by Gale et al.
[5] who evaluated the orientation dependence of the
surface energy of an Fe-3% Si alloy. This work showed
that while a conventional trigonometric series can pro-
duce cusps in the surface energy function, it does not
have the correct symmetry. Spherical harmonic basis
functions can be used to produce a surface energy with
the correct symmetry, but the finite extent of the se-
ries makes it impossible to produce sharp cusps at low
energy orientations. The objective of the present paper
is to describe an alternative method for reconstruct-
ing the surface energy anisotropy from thermal groove
measurements that does not parameterize the surface
energy in terms of a harmonic series. Here, we employ
a procedure developed by Morawiec [6] that provides
discrete values of the surface energy for a predefined
set of surface normals. This discrete analysis is facil-
itated by use of the Cahn–Hoffman [7, 8] formalism
for the capillarity vector which makes it possible to in-
clude the surface torques in the equilibrium equation
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without having to compute differentials. This method
will be referred to as the capillarity vector reconstruc-
tion method.

The condition for local equilibrium at a triple junc-
tion with anisotropic interfacial energies that relates
the interfacial geometry and crystallography to the en-
ergies of the three interfaces was originally described
by Herring [4]:

∑

i

γi t̂i + ∂γi

∂βi
n̂i = 0. (1)

In Eq. (1), γi is the excess free energy per unit area of
the i th interface, t̂i is the unit vector that lies in the ith
interface and points in a direction perpendicular to and
away from the line of intersection of the three interfaces
(l̂), n̂i is the unit vector normal to the line of intersection
such that n̂i = l̂ × t̂i , and βi is the right handed angle of
rotation about l̂ for the i th boundary measured from a
reference direction. By approximating the orientation
dependence of the surface energy as a finite series, γi

and ∂γi/∂βi can be computed directly from the best fit
function.

The equilibrium condition in Eq. (1) can be rewritten
in terms of the Cahn–Hoffman [7, 8] capillarity vector,
⇀

ξ , as illustrated in the following paragraphs. The cap-
illarity vector is formed by combining the two scalar
quantities γi and ∂γi/∂βi with unit vectors normal and
parallel to the plane of the interface, respectively. The
component of the capillarity vector normal to the in-
terface is equal in magnitude to γ , thus

⇀

ξ n = γ n̂. Note
that

⇀

ξ n × l̂ is a tension in the plane of the interface
that is perpendicular to l̂ and has a magnitude of γ:

⇀

ξ n × l̂ = γ t̂ . (2)

Furthermore, the capillarity vector has a component
in the plane tangent to the interface that is related
to the change in γ with orientation given by

⇀

ξ t =
(∂γ /∂β)max t̂0, where t̂0 points in the direction of max-
imum increase of γ . Therefore,

⇀

ξ t × l̂ is a vector per-
pendicular to the interface whose magnitude is given
by the component of

⇀

ξ t perpendicular to l̂. This is a
measure of the so-called torque force that is normal
to the interface and urges it to rotate about the line of
intersection. In other words,

⇀

ξ t × l̂ = ∂γ

∂β
n̂. (3)

Substituting the left hand sides of Eqs. (2) and (3) into
Eq. (1), we see that Herring’s [4] equilibrium condition

for a triple junction can be expressed in the following
way:

(
⇀

ξ
1 + ⇀

ξ
2 + ⇀

ξ
3
) × l̂ = 0, (4)

where the indices 1, 2, and 3 correspond to surface 1,
surface 2, and the grain boundary depicted in Fig. 1. By
fitting experimental observations to Eq. (4), the cap-
illarity vectors for the interfaces bounding a thermal
groove can be determined without evaluating any dif-
ferential terms. The surface energy is then given by
the magnitude of the capillarity vector normal to the
surface plane.

In the present paper, we compare the performance
of the series fitting method with that of the capillarity
vector reconstruction method on a simulated and real
data set. The two methods produce results that are qual-
itatively similar. However, there are significant quan-
titative differences. In the case of the simulated data,
the surface energy derived from the capillarity vector
reconstruction method reproduces the input surface en-
ergy more accurately than the series fitting method. One
of the principal limitations of the series fitting method
is that it underestimates the total anisotropy. This trend
is apparently reproduced in the real data, as the sur-
face energy that results from the capillarity vector re-
construction method is more anisotropic than the sur-
face energy that results from the series fitting method.
Because the results from the capillarity vector recon-
struction method are more consistent with experimen-
tally observed surface faceting, we conclude that this
method of determining the surface energy anisotropy
is superior to the series fitting method.

Methods

(i) Experimental

The details of the methods used for both the experi-
mental observations and the series fitting method have
been described in a previous paper [1]. Breifly, the tech-
nique involves measuring the geometry and crystallog-
raphy of thermal grooves around the circumference of
a few fully or partially enclosed grains in a typical
polycrystal, a situation depicted in Fig. 1(a). The ori-
entations of both the enclosed and matrix grains are de-
termined by backscattered electron diffraction. Atomic
force microscopy is used to determine the surface incli-
nations (χi ) and the angle between ê1 and v̂, as defined
in Fig. 1(a). Serial sectioning is used to determine the
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Figure 1. The coordinate system used for the data analysis.
(a) A schematic plane view of an enclosed grain (labeled 2) within
a matrix grain (labeled 1). Multiple groove measurements are made
around the circumference of the enclosed grain, at points labeled Pi .
(b) A schematic cross-sectional view of a triple junction. Note that l̂
points into the plane of the paper. (c) AFM image montage depicting
an enclosed grain. The enclosed grain is misoriented from the sur-
rounding grain by 3.6◦. The black to white contrast in the image is
approximately 150 nm.

grain boundary inclination, α. These data allow the sur-
face energy to be reconstructed using either the series
fitting technique or the capillarity vector reconstruc-
tion method. The final data set consisted of parameters
from 269 thermal grooves measured around the cir-
cumference of five enclosed grains in a polycrystalline
magnesia sample which had been annealed in air for
5 h at 1400◦C.

(ii) The Capillarity Vector Reconstruction Method

The capillarity vector reconstruction method involves
finding a consistent set vectors,

⇀

ξ i , that satisfy Eq. (4)
as nearly as possible for all of the observed thermal
grooves. While we wish to know the capillarity vectors
with respect to the crystal coordinate system, Eq. (4)
holds only for vectors in the sample coordinate system.
The orthogonal matrix, g jl , that transforms a vector
from the sample reference frame to the crystal reference
frame is [9]:

g(φ1, (, φ2)

=





cφ1cφ2 − sφ1sφ2c( sφ1cφ2 + cφ1sφ2c( sφ2s(

−cφ1cφ2 − sφ1sφ2c( −sφ1sφ2 + cφ1cφ2c( cφ2s(

sφ1s( −cφ1s( c(



,

(5)

where φ1, (, and φ2 are the Eulerian angles and the
symbols s and c represent sine and cosine, respectively.
We can therefore rewrite Eq. (4) as:

εijk lk gs
lj ξ

s
l = 0, (6)

where εijk is permutation tensor and the enumeration of
the superscript s goes from 1 to 3 to represent surface
1, surface 2, and the grain boundary, respectively. For s
equal to 1 or 2, the Eulerian angles in Eq. (5) are those
describing the orientation of the appropriate crystallite
with respect to the sample reference frame. Since we do
not sample enough of the possible grain boundary char-
acters, we are forced to assume that the grain boundary
torque is negligible. In other words, ∂γ3/∂β3 = 0 in Eq.
(1) and

⇀

ξ
3 must be perpendicular to the grain boundary

plane. To apply this constraint, only the first compo-
nent of

⇀

ξ is considered (if s = 3, l = 1). Therefore, the
Eulerian angles, φ1, (, and φ2, that specify the grain
boundary (s = 3) orientation are θ, 3/2π , and π − α,
respectively.

Because we seek a discrete set of capillarity vectors,
the space of interface characters must be discretized
over a fixed domain. One can chose the entire domain
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of possible surface orientations, the fundamental zone
of indistinguishable orientations, or an appropriate sub-
domain containing a integer number of fundamental
zones. We used a convenient sub-domain that contains
all directions specified by surface unit normals that
have all three perpendicular components greater than
or equal to zero. If we specify these directions using
the spherical coordinates, these are the values of θ and
φ between 0 and 90◦. This domain is then discretized
in units of , cos θ and ,φ, which makes the range of
surface normals in each cell the same. Because we are
assuming ∂γ3/∂β3 = 0, each enclosed grain boundary
has only one character specified by the misorientation.
Thus, the space of grain boundaries is discretized sim-
ply by the enclosed grain from which the measurement
was taken. In both cases, the discrete cells are enumer-
ated with an index, β. For all surface normals that fall
within a given cell, the capillarity vector is approxi-
mated by the value of

⇀

ξ assigned to that cell.
For each of the J observed triple junctions, there are

three equilibrium equations enumerated by i , repre-
senting the force balance in the three perpendicular di-
rections. To solve these equations, we make the substi-
tution that for an orientation in cell β, Aβ

il = Wεijk lk glj

, where W is selected so that Aβ
il Aβ

il = 1, with no sum-
mation over i . The set of J linear equations represent-
ing the balance of interfacial forces is now:

Aβ
Jilξ

β
l = 0. (7)

The system of equations is solved using the iterative
method described in Ref. [6]. The process begins with
the assumption that ξ

β
l = n̂β

l where n̂β
l is the unit nor-

mal vector at the center of each cell. At each step, the
deviation vector, ,Ji, in the sample coordinate system
is calculated according to:

Aβ
Jilξ

β
l = ,Ji. (8)

Because our sub-domain of surface character space
contains six symmetrically indistinguishable cells for
each possible normal vector, there are 36 equivalent
equations for each observed triple junction. Therefore,
the deviation vector for each triple junction is actu-
ally the average of the 36 symmetrically equivalent
equations. After ,Ji is calculated for each thermal
groove, the capillarity vector is modified by the pro-
duct of the deviation vector (in the crystal coordinate
system) and a relaxation factor, ω. On the kth iteration,
it is modified in the following way:

ξ
β
[k] = ξ

β
l[k−1] − ωAβ

Jil,Ji[k−1]. (9)

The relaxation factor is chosen as the inverse of the
maximum number of equations that any one interfacial
character is involved in. At the end of each iteration,
the

⇀

ξ values are normalized by dividing them by the
average magnitude of all

⇀

ξ at the current iteration step.
The iteration process is stopped when the change in the
sum of the magnitude of all of the deviations vectors is
less than 1% of the change during the first iteration.

Because the data collection technique does not gen-
erate a uniform distribution of surface characters, the
cell population is nonuniform and many of the cells
are underpopulated. This can create sharp variations
in what we expect to be a continuous and relatively
smooth field of capillarity vectors. For this reason, the
field of capillarity vectors is smoothed after the last it-
eration. The value of

⇀

ξ in each cell is replaced by an
average of that cell and the eight adjacent cells in the
unsmoothed matrix. Cells at the edges and corners of
the matrix are averaged only with their existing neigh-
bors, and if a cell contains zero or one observation,
the cell is not used in the smoothing process. Tests on
model data sets suggest that with a denser distribution
of data, the smoothing process is not required.

After smoothing the field of
⇀

ξ , the energy (γ ) for
each orientation, n̂, is determined by γ = ⇀

ξ · n̂. The
energy of each surface is taken to be the average of the
energies in all symmetrically equivalent cells.

Results

(i) Testing on Simulated Data

To test the reconstruction method, we generated a set
of data based on a model energy function. The model
function was isotropic (γs = 1) everywhere except for
a cusp around (111). The cusp had a width of 15◦ and
a depth of 0.6γisotropic and was shaped by an analogy
to the Read–Shockley expression for the energy of low
angle grain boundaries. The functional form is given
by:

γ (0) = 0.6

γ (θ111) = 0.4
(

θ111

15

) (

1 − ln
(

θ111

15

))

+ 0.6
(10)

0 < θ111 ≤ 15◦

γ (θ111) = 1 θ111 > 15◦

where θ111 is the angular separation, in degrees, be-
tween the surface orientation and [111].
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The model thermal grooves were generated by first
assigning Euler angles (φ1, (, φ2) to both the enclosed
and matrix grains. Values for χi and ν̂ were then ran-
domly generated. Next, the values of χ2 and α that
balance the interfacial energies according to Eq. (1)
were determined using a downhill simplex method
[10]. Parameter sets for simulated grooves were con-
sidered valid if the absolute values of the components
of Eq. (1) that are perpendicular and parallel to the
macroscopic sample surface summed to less than 0.01.
The procedure was repeated until 50 valid grooves were
found for each of five enclosed grain/matrix grain pairs.
In other words, the number of observations in the model
data set was selected to mimic as nearly as possible the
real data set. Since the real data contains experimental
errors, the groove parameters (χ1, χ2, ν̂, and α) were
perturbed by a random angle generated according to a
Gaussian distribution with standard deviations of 1◦,
1◦, 1◦, and 5◦, respectively.

The model energy function is shown in Fig. 2 to-
gether with a comparison of the results from the series
fitting method and the capillarity vector reconstruc-
tion. The fitting for the series reconstruction method
was conducted exactly as previously described, using
an R = 1 series [1]. The Fourier series fit results in a
smoothly varying function that approximates the shape
of the actual surface energy function. However, the true
depth of the cusp is underestimated. For the capillarity
vector reconstruction method, the sub-domain of sur-
face characters was divided into 15 equal sections in
cos(θ) and φ (this provides a resolution of about 6◦),
and the iteration process converged after 573 steps. Al-
though there are some outlying points, the calculated
surface energies are close to the model function. While
the true depth of the cusp at (111) is not reproduced,

Figure 2. Plot of relative surface energies reconstructed from model
data using both the series fit and capillarity vector reconstruction
methods. The plot shows orientations around the perimeter of the
unit triangle, from (100) to (111), then to (110), and back to (100).

the capillarity vector reconstruction method performs
better than the series fitting method. Note that the only
point where the discrete reconstructed data deviates
significantly from the model function is at the (111)
orientation. On later inspection, it was found that the
randomly generated data set contained no grooves with
these surfaces. While denser and more uniform trial
data sets can be used to generate better reconstruc-
tions, the results shown in Fig. 2 are characteristic of
the experimental data at hand and illustrate the chal-
lenges associated with discerning sharp features in the
surface energy. 97% of the surface energies determined
using the capillarity vector reconstruction method de-
viated from the model function by less than 0.04. In
our reconstruction of the experimental data, we shall
use this figure as a measure of the uncertainty in the
result.

(ii) Experimental Results

The reconstruction procedure was applied to the ther-
mal groove measurements from a polycrystalline mag-
nesia sample annealed in air at 1400◦C. This is the
same data set described in the previous paper and the
results from the series fitting method are the same. As
with the test data set, the sub-domain of surface char-
acters was divided into 15 equal sections in cos(θ) and
φ; the iteration process converged after 27 steps. The
values of the reconstructed surface energy at intervals
around the perimeter of the unit triangle are shown in
Fig. 3 and a contour plot illustrating the orientation de-
pendence of the surface energy is shown in Fig. 4(a).
Based on the capillarity vector reconstruction method,

Figure 3. Comparison of the relative surface energies derived from
the series fit and capillarity vector reconstruction methods for mag-
nesia at 1400◦C. The plot shows orientations around the perimeter
of the unit triangle, from (100) to (111), then to (110), and back to
(100).
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Figure 4. (a) Contour map on a stereographic projection of the rel-
ative surface energies derived from the capillarity vector reconstruc-
tion method for magnesia at 1400◦C. (b) A schematic diagram sum-
marizing observed orientation stability data for magnesia at 1400◦C.
Orientations near {100} are unstable with respect to faceting into
the {100} orientation and a complex facet. The white regions around
{111} correspond to unstable orientations which form two complex
facets, while orientations in the shaded region are stable with respect
to faceting.

the energies of the low index planes have the following
relationships:

γ110

γ100
= 1.07 ± 0.04

γ111

γ100
= 1.17 ± 0.04

While the trends in the results from the series fit-
ting method and the capillarity vector reconstruction

Table 1. Reconstructed grain
boundary energies.

γgb/γ100 Misorientation,◦

0.56 2.02
0.46 2.33
0.64 3.14
0.75 6.25
0.74 6.31

method are the same, the later shows significantly more
anisotropy. This is consistent with the results from
model data sets. The reconstructed grain boundary en-
ergies are listed in Table 1.

Discussion

The results from the capillarity vector reconstruction
method suggest that the total anisotropy in the surface
energy of magnesia is 17% while the results from the
series fit method on the same data suggest an anisotropy
of 7%. Based on the results from the reconstruction of
the model data, we are led to believe that the capillarity
vector reconstruction method produces more accurate
results. Because the series fit results are constrained by
the form of the basis functions, the full anisotropy can
not be reproduced. The question is, which results more
nearly represent the actual anisotropy? To discriminate
between the two results, we can make a quantitative
comparison between orientation stability data and the
reconstructed surface energy.

In the previous paper, we examined the surfaces of
100 grains of known orientation by AFM and discrim-
inated those that were faceted from those that were
smooth [1]. The bounded and extended grain surfaces
that have orientations that are part of the equilibrium
crystal shape will remain flat during annealing. The
surfaces of grains with missing orientations will form
facets. Within about 15◦ of {100}, we find that surfaces
facet to {100} plane and a complex facet. Further, all
orientations within about 25◦ of {111} form two facets.
These data are represented schematically in Fig. 4(b).
At the time the previous paper was published, we were
not able to unambiguously identify the facets formed
on the surfaces near {111}. A careful examination of
additional data has led us to the conclusion that both
facets are always complex. In other words, the {111}
surface, and those vicinal to it, are missing from the
equilibrium shape. For any given orientation in this
range, the facets and the macroscopic orientation must
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share a common axis. This means that the missing ori-
entation and the complex facets are in the same zone
and lie on a great circle. Further, if the complex facets at
the boundary of the unstable region have the same en-
ergy, then the circle should be the one that intersects the
macroscopic orientation and has the minimum length
through the unstable region. The orientation of the com-
plex facets will be found at the intersection of this great
circle and the boundary between the faceted and flat
orientations.

The results from both the series fit method and the
capillarity vector reconstruction method agree quali-
tatively with the observed faceting. To make a more
quantitative comparison, we can assume that a local
equilibrium is established at the intersections of the
surface facets. Applying Herring’s equation to this sit-
uation, we find that:

γ1

γ2
= cos ω − 1

γ2

∂γ2

∂ω
sin ω (11)

where ω is the angle between the facets. An alternate
expression, in terms of the capillarity vector, can be
derived from Eq. (4). For simplicity, we will ignore to
torque term and take the relative energy of two inter-
secting facets to be given by cos ω (as long as one and
only one is singular). If the (100) surface and the neigh-
boring complex facets (with energy γc) are separated
by 15◦, then γc/γ100 = 1.035. Further, since the (111)
facet is replaced by complex facets inclined by 25◦, we
conclude that γ111/γc is 1.103. If we assume isotropy in
this region of stable orientations, then the anisotropy we
should expect between γ100 and γ111 to be the product
of these two quantities, or about 14%. This is approx-
imately double the amount of anisotropy predicted by
the series fit method, which, in fact, predicted missing
orientations only 4◦ from (100) and 5.5◦ from (111).
The observed range of faceting more closely matches
the results from the capillarity vector reconstruction
method.

It is interesting to consider the reconstructed surface
energies for missing orientations. When one examines
the details of our measurement technique, it is clear
that the energies of missing orientations should sim-
ply be the geometric combination of the energies of
the stable facets that make up such orientations. While
surfaces with missing orientations do not exist at any
thermal groove root, faceted groove surfaces will have
an effective or mesoscopic orientation in the missing
range. This is the orientation that we observe. In earlier

work, we described some of the difficulties associated
with making accurate measurements of the surface in-
clination at the groove root [11]. Our conclusion was
that the best measurements were made on relatively
large grooves (greater than 2 µm wide). The width and
depth of the groove are measured and then, assuming
the known quasistatic profile, the inclination at the root
is calculated [12, 13]. Because the surfaces we observed
were faceted only on the nm-scale, thermal groove pro-
files on the micron scale remain smooth and “missing”
orientations can be assigned to surfaces at groove roots
that are actually faceted. In such cases, we assume that
the mesoscopic shape of the groove is determined not
by the particular facet that forms at the groove root 1 or
2 nm from the triple junction, but by the combination of
the many small facets over which material must diffuse
as the groove profile is established. This mesoscopic
view of the groove is what determines the anisotropy
in the range of missing orientations and the quanti-
tative results reflect this approximation. For example,
if the (111) surface were simply replaced by complex
facets inclined at 25◦ (as observed), the increase in the
surface energy based on the increase in surface area
would be approximately 10%. In this same range of
orientations, the results from the capillarity vector re-
construction method show an energy anisotropy of 9%.
Finally, we should note that our mesoscopic approx-
imation of the groove structure clearly breaks down
when the size of the facets approaches the size of the
groove.

Conclusion

When used to determine surface energy anisotropies
from observations of grain boundary thermal grooves,
the capillarity vector reconstruction method performs
better than the series fit method. The capillarity vec-
tor reconstruction method does not assume a particular
functional form for the surface energy and more accu-
rately reproduces anisotropies. For MgO annealed at
1400◦C in air, we find that the relative surface energies
of the low index planes are γ110/γ100 = 1.07 ± 0.04
and γ111/γ100 = 1.17 ± 0.04.
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