
Nucleation Barrier for Volume-Conserving Shape Changes of
Faceted Crystals

William W. Mullins and Gregory S. Rohrer*
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213–3890

This paper considers volume-conserving shape changes of
small faceted particles or cavities; these changes are driven by
surface-energy reduction. If these changes require normal
motion of the facets (singular surfaces), and if the perimeter
free energysp (per unit area) of a nucleus of a new facet layer
is comparable to a typical surface free energy (s ' 1 J/m2), the
energy barrier is prohibitively large for facets larger than a
limiting size of approximately a nanometer unless they are
intersected by dislocations that provide a source of steps. In the
absence of such dislocations, particles that contain these facets
are immobilized in their initial shapes. If sp < s, the limiting
facet size is increased by a factor of approximatelys/sp.

I. Introduction

SINGULAR or nonrough surfaces, which correspond to cusps in
the plot of the surface free energy as a function of orientation,

advance and retreat via the lateral motion of steps that add or
subtract atomic layers. If a singular surface has no steps or step
sources, its motion is limited by two-dimensional nucleation.1,2

The so-called “growth resistance” that is derived from the two-
dimensional nucleation barrier was a controversial topic in the first
half of the twentieth century, as researchers attempted to under-
stand how singular surfaces could advance at supersaturations
10–100 times smaller than those predicted by nucleation theory.2

This issue was settled by Frank,3 who convincingly argued that
screw-dislocation/surface intersections provide the source of the
steps necessary for a singular facet to advance or retreat under the
low-supersaturation conditions that are observed in growth exper-
iments. In this communication, a singular surface (or facet)
without steps is termed an ideal singular surface. When the
problem of two-dimensional nucleation on an ideal singular facet
was revisited by Hirth,4 using a refined theory, the conclusions of
the earlier investigations2 were substantiated.

Although Frank’s model3 is most widely known for its expla-
nation of crystal-growth phenomena, Herring5,6 noted that the
two-dimensional nucleation barrier also would prevent the surface-
free-energy-motivated motion of ideal singular facets during sin-
tering. Searcy7 elaborated on this point and argued that, for a fully
faceted particle with no dislocations to evolve to a new fully
faceted shape closer to equilibrium, it would have to transform
through an unfavorable configuration, and the probability of this
happening decreases as the size of the particle increases.

The objective of this paper is to quantify the barrier that exists
for a small crystal particle (or cavity in a crystal) with ideal

singular surfaces to undergo a volume-conserving morphological
change toward equilibrium. Our central conclusion is that changes
in particle shape that require normal motion of ideal singular facets
are prohibited for facets larger than a certain limiting size, which
is typically on the order of a nanometer. The barrier that prohibits
shape changes is present because, as material is transferred from
one facet (or from a continuously curved surface) to another facet,
the advancing facet must, at some point, be covered by a partial
layer. This intermediate state has a relatively higher energy7 that is
approximately equal to the energy that is required to form a
two-dimensional nucleus with an equivalent radial dimension that
is comparable to the facet sizer. In Section III, it is shown that,
whenr is greater than a limiting value (which is on the order of a
nanometer), the corresponding nucleation rate is negligible. In
other words, the equivalent supersaturation generated by particles
larger than a few nanometers is insufficient to drive significant
nucleation on a facet. The implication of this conclusion is that
crystals with facets larger than the limiting size can reach an
equilibrium shape only if their bounding singular surfaces are
intersected by dislocations with a screw component. Models that
are dependent on sources and sinks of matter on faceted surfaces
require step-providing defects.8 In the absence of such defects,
nucleation must be considered.

II. Nucleation Barriers for Shape Changes

The nucleation barriers for shape changes of crystals with the
equilibrium shapes of a truncated sphere and a cube are calculated
in this section, from a continuum standpoint. In both cases, the
discussion is focused on the nucleation barrier to fluctuations
around the equilibrium shape; the barrier will be approximately the
same for shape changes of a near-equilibrium shape toward
equilibrium. An estimate also is given of the barrier for a
more-general non-equilibrium initial shape.

A sphere that has been truncated by two equal circular facets at
opposite ends is illustrated schematically in Fig. 1. If the free
energies of the singular and curved (isotropic) surfaces aress and
sc, respectively, then, according to the Wulff construction,6

ss/sc 5 h/R. Recognizing thath 5 R cosu, we find that

ss 5 sc cosu (1)

Equation (1) also may be regarded as a local force balance in the
radial direction at the edge of the facet.

First, we calculate the free energy (ε0(r)) necessary to create a
circular partial layer of macroscopic heightb and radiusr on the
circular facet of radiusr (see Figs. 1(b) and 1(c)), using material
taken from a bulk reservoir (m 5 0). Following Herring,9 we find
ε0(r) to be given by the change in the surface energy:

ε0~r ! 5 2pbrS 2ss

tanu
1

sc

sin uD 5 2pbrsc sin u (2)

We now assume Eq. (2) to be valid whenb 5 a, wherea is the
height of an atomic layer; we call this condition the macroscopic
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perimeter (MP) assumption. According to this assumption, Eq. (2)
shows that the free energy per unit area of the perimeter is given
by

sp 5 sc sin u (3)

To analyze fluctuations about the equilibrium shape, we con-
sider the transfer of a fixed volume (par2) of material from the
curved surface of chemical potential 2sc/R to the ideal singular
surface to form the partial layer (hereafter called the nucleus) that
has been described previously. The total required free energy is

εt~r ! 5 2parsc sin u 2 par2S2sc

R D
5 ~2pasc sinu!S r 2

r 2

rD ~for 0 # r # r! (4)

wherer 5 R sin u is used in the last step. This expression also
gives the energy required for a reverse transfer of all but a nucleus
of radiusr from the facet to the curved surface (i.e.,2εt(r 2 r) 5
«t(r). Note that the nucleus has a positive free energy for all values
of 0 # r # r and, as required by equilibrium, there is no net
change in free energy to transfer a complete facet layer in either
direction (see Fig. 2). The maximum of Eq. (4) occurs atr 5 r* 5
r/2, which corresponds to a barrier heightEb of

Eb 5 par* sp 5
1

2
parsc sin u 5

1

2
paRsc sin2 u (5)

We note three points regarding Eq. (5). First, the barrier is
symmetric, with respect to addition or removal of a complete facet
layer (see Fig. 2(a)), which is consistent with the requirement that
the two processes have equal probabilities in equilibrium. Second,
the barrier energy is linear in the particle or facet size (for a given
u). Third, the barrier vanishes asu approaches zero, showing that
the model continuously reduces to that of an isotropic sphere. In
this limit, the perimeter (step) energy given by Eq. (3) vanishes,
which corresponds to the roughening transition of the vanishing
facet.10

Equation (5) givesEb for fluctuations around the equilibrium
shape. To examine the barriers for particles with initial non-
equilibrium shapes, we define the aspect ratioa 5 h/r and note
that the equilibrium value ofa is ae 5 1/tanu. We consider oblate
shapes of revolution for whichh 5 (a/ae) , 1. We assume that the
cross section of the curved surface is the arc of a circle, withu still
given by Eq. (1), and use the expressionk 5 [(cos u)/h] 1 [(sin
u)/r] to approximate the mean curvature of the surface; the
expression is exact for the equilibrium shape and in the limit asa
approaches zero. With these assumptions, it can be shown that the
energy is given by

εt~r ! 5 ~pasc sin u !F2r 2 S1 1 h

h D r 2

rG (6)

Note that Eq. (6) is identical to Eq. (4) whenh 5 1, and the
maximum of εt(r) occurs atr* 5 rh/(1 1 h). The barrier for
fluctuations toward equilibrium isEb1 ' (parsc sin u)[h/(1 1
h)], whereas the barrier for fluctuations away from equilibrium is
Eb2 ' (parsc sin u) {1/[ h(1 1 h)]}, giving the ratioEb1/Eb2 '
h2. This asymmetry is clarified in Fig. 2(b), which is a plot of Eq.
(6) for h 5 1⁄2. The preceding results show that the barrier reduces
to that given by Eq. (5) forh 5 1 and the barrier does not change
radically for h near unity; forh 5 1⁄2, as assumed in Fig. 2(b),
Eb1(h 5 1⁄2)/Eb1(h 5 1) 5 2⁄3.

Finally, we consider a crystal whose equilibrium shape is that of
a cube. Based on a qualitative argument, Searcy7 concluded that
there is a barrier for such a particle to evolve toward equilibrium.
This conclusion may be quantified by noting that the critical state
for shape fluctuations of a cube of sideS is that which consists of
two equal partial layers on adjacent faces, which corresponds to
the transfer of half a layer from one face to another. According to
the MP assumption, these layers will be equal squares of sides
S/=2 (for matter conservation). Therefore, the energy barrier is

Eb 5 4asS S

Î2
1

S

Î2
2 SD 5 4~Î2 2 1!asS< 1.66asS

(7)

which is comparable to that for the truncated sphere (Eq. (5)) for
s ' sc, r ' S, and sinu ' 1.

III. Nucleation Rates for Shape Changes

To estimate the nucleation rateI per unit area that corresponds
to the barriers calculated in Section II, we use the classical

Fig. 1. (a) Schematic projection of the truncated sphere, viewed parallel
to the ideal singular facet; (b) oblique projection showing a partial layer on
the singular facet; and (c) geometry of the partial layer.

Fig. 2. Energy barrier for (a) the nucleation or removal of a new layer on
a crystal with an equilibrium shape, based on Eq. (4) (or Eq. (6) withh 5
1) and (b) the nucleation of a new layer on the foreshortened crystal, based
on Eq. (6) withh 5 1⁄2.
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expression4,11 for the steady-state nucleation rate of a circular
nucleus of critical radiusr* on an infinite singular facet:

I 5 Zvcn0 expS2Eb

kT D 5 A expS2Eb

kT D (8)

wheren0 is the number of facet lattice sites per unit area,Z 5
[spa

5/(4p2(r*)3kT)]1/2 the Zeldovich or Farkas non-equilibrium
factor,11 vc 5 8pr*n0Ds/a the rate at which critical nuclei become
supercritical (in whichDs is the surface diffusion coefficient),k the
Boltzmann’s constant, andT the absolute temperature. The pre-
exponential factorA may be treated as an approximate constant if
the variations inr* and T are not too large and if we use a fixed
value forDs, which we take to be the upper-limit value (Ds 5 1027

m2/s), which approximately corresponds to a jump frequency that
is equal to the vibration frequency; this will give an upper estimate
of A and, hence,I. With this value and the valuesr* 5 1029 m,
a 5 3 3 10210 m, n0 5 1.13 1019, Z 5 1022 (typical value), and
kT 5 10220 J, we get for an upper estimate of the prefactor:A 5
1.0 3 1031 (m2zs)21.

If we define nucleation rates ofI # 1024 (nm2zs)21 (which is
equivalent to a rate of less than one atomic layer per hour on a
facet 1 nm2 in size) and use the estimated value ofA, the
nucleation on the facet can be considered to be negligible for

Eb * 40kT (9)

approximately. A more-exact criterion can be obtained by includ-
ing the dependence ofA on sp, r*, and T (principally throughDs)
and requiring the nucleation rate to be small for the facet area
rather than for the fixed value of 1 nm2; however, Eq. (9) suffices
as an approximate upper estimate of the value ofEb at and above
which the nucleation rate is negligible; numerical estimates follow.

For shape changes of the cube near equilibrium withkT 5
10220 J, we combine Eqs. (7) and (9) to obtain the upper estimate
SL ' 0.8 nm (henceforth, limiting values are denoted by the
subscript “L”), above which the rates of nucleation and shape
changes are negligible. For shape changes (fluctuations) of the
truncated sphere at (or near) equilibrium, the values of the limiting
sizes ofr*, r, and R are dependent on the assumed value ofu,
which also may be expressed in terms ofsp/sc 5 sinu. Combining
Eqs. (5) and (9), we obtainrL 5 2.5, 4.8, and 9.7 nm foru 5 20°,
10°, and 5°, respectively. The corresponding particle diameters are
RL 5 7.3, 28.1, and 112 nm, respectively. Finally, for the
non-equilibrium initial shapeh 5 1⁄2, we evaluate the results for
u 5 20° to find rL 5 3.7 nm.

IV. Discussion

The MP assumption is perhaps the most questionable of those
used in the estimation of barrier height. The concept of a contact
angle between the singular surface and the edge of the partial layer,
which is implied by Eq. (1), certainly breaks down when the partial
layer has an atomic-scale thickness. If the MP assumption under-
estimates the perimeter energy, then the nucleation barrier also is
underestimated, which would make the limiting sizes even smaller
than previously estimated. The perimeter energy is not expected to
be significantly overestimated by the MP assumption, because this
would imply an energy increase if steps were collected to form a
macroscopic surface, which would contradict the assumed equi-
librium shape. Thus, the MP assumption probably gives a lower
limit for the perimeter energy and predicts the highest-feasible
nucleation rate.

The barrier heights that are estimated here apply to cases where
the sample is neither shrinking (evaporating) nor growing at a
significant rate, and this situation is most closely approximated in
experiments that involve internal cavities. In fact, step-producing
defects have been used to rationalize the experimentally observed
rates at which faceted cavities change shape and migrate.12–16

Recently, Kitayama and Glaeser16 measured the shape-change
kinetics of pancake-shaped pores in sapphire. Pores with a variety

of orientations were measured, and only those principally bounded
by (101#0) surfaces, which are not on the equilibrium shape of
sapphire, obeyed diffusion-limited kinetics. The remaining pores,
whose principal faces are on the Wulff shape, evolved more slowly
and showed a greater degree of variability. One compelling
observation from the Kitayama and Glaeser16 work is that some of
the pores changed shape dramatically during annealing while
others, a few pore diameters away, seemed unchanged. Our present
analysis is consistent with the suggestion that the pores that
changed shape intersected dislocations whereas those that did not
were bound by perfect singular surfaces.16 Finally, we note that
models that recently have been developed to explain observations
of unstable neck formation in faceted particles also are consistent
with the theory that, for sufficiently large particles, step-producing
defects are critical for volume-conserving shape changes.17,18

V. Conclusion

Volume-conserving shape changes of small faceted defect-free
particles or cavities, which are driven by surface-energy reduction
and require normal motion of the facets (singular surfaces), are
prohibited by the magnitude of the nucleation barrier for facet
sizes larger than a certain limit, typically on the order of a
nanometer. If the nucleus perimeter free energysp is less than a
typical surface value (s 5 1 J/m2), the limiting facet size increases
by a factor of;s/sp. The facet can move only when a step-
producing defect (such as a dislocation with screw character)
intersects a facet surface. In the absence of such a defect, the facets
are immobile and nonequilibrium shapes are kinetically stabilized.
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