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An experimental technique has been developed to determine
the surface energy anisotropy of crystalline solids. The tech-
nique is based on atomic force microscopy measurements,
which are used to quantify the geometry of thermal grooves,
and electron backscattered diffraction pattern measurements,
which are used to specify crystallographic orientations. Obser-
vations are made at circumferential thermal grooves, where it
is assumed that Herring’s local equilibrium condition for a
triple junction holds and that the grain-boundary energy is
independent of its boundary plane. A truncated double Fourier
series is used to approximate the surface energy, and the
unknown coefficients of the series are determined by fitting the
observations to the local equilibrium condition. The method,
which should be applicable to most polycrystalline materials,
has been tested on magnesia that has been thermally grooved
at 1400°C in air. The maximum of the best-fit surface energy
function is at (111) and the minimum is at (100). The relative
surface energies of the low-index planes areg110/g100 5
1.0406 0.008 andg111/g100 5 1.0726 0.010.

I. Introduction

THE anisotropy of the surface energy of a crystalline solid can be
experimentally evaluated by measuring the geometry of crys-

tallographically indexed surface features. For example, the equi-
librium geometries of thermal facets,1,2 grain-boundary
grooves,3–9 small crystallites,10,11 and internal cavities12–14 have
been used to deduce relative surface energies. Because these
techniques demand either special microstructural features or spec-
imen geometries, each has a limited range of applicability. In this
paper, we describe a new technique for determining the anisotropy
of the surface energy. The technique involves the analysis of
thermal grooves in typical polycrystals, and we illustrate its
application by describing a measurement of the surface energy
anisotropy of magnesia.

The condition for local equilibrium that relates the geometry of
a thermal groove (the dihedral angles at the triple line) and its
crystallography (the crystallite orientations) to the energies of the
three interfaces was originally described by Herring:15
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wheregi is the excess free energy per unit area of theith interface,
t i the unit vector that lies in theith interface and is normal to the

line of intersection of the three interfaces (l), ni the unit vector
normal to the line of intersection such thatni 5 l 3 t̂ i, andbi the
right-handed angle of rotation aboutl for the ith boundary
measured from a reference direction. Equation (1) represents a
force balance and can be separated into two perpendicular com-
ponents. With reference to Fig. 1, the force balance normal to the
macroscopic sample surface (parallel toe3) is
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and the force balance parallel to the macroscopic sample surface is
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The symbols in Eqs. (2) and (3) are defined in Fig. 1. By measuring
the geometry and crystallography of thermal grooves, the relative
interfacial energies can be determined from the Herring equation. In
past thermal groove studies, Eq. (3) has been ignored, and the data
analysis has been conducted under the assumption that the torque on
the grain boundary is negligible (]g3/]a 5 0).3–9

Mykura3 was the first to extract relative surface energies from
an analysis of thermal groove data. The most important feature of
Mykura’s3 method is that all of the thermal groove measurements
are made at twin boundaries. By measuring only thermal grooves
at grain boundaries having the same character, the potentially
overwhelming grain-boundary energy anisotropy can be elimi-
nated in such a way that the energies of the free surfaces are the
only remaining unknown variables in Eq. (2). Limiting the
variations in the grain-boundary energy is the common principle
underpinning all subsequent thermal-groove-based surface energy
measurements, including the one described in the current paper.

Mykura’s3 method was advanced by Winterbottom and Gjo-
stein,6,7 who approximated the surface energy as a truncated
double Fourier series and used the method of least squares to
determine the unknown coefficients of the series that best fitted a
set of thermal groove observations. One limitation of Mykura’s3

method is that it can be applied only to the relatively few materials
that exhibit a high population of twin boundaries. McLean and
co-workers8,9 devised a more general method involving the char-
acterization of circumferential thermal grooves on the surface of
cylindrical wires with a bamboo microstructure. Grooves at
different positions around the circumference of the wire are
bounded by a range of crystallographically distinct free surfaces,
but always have the same grain boundary at the root. Thus, if
several hundred thermal groove measurements can be accumulated
from a few grain boundaries, Winterbottom and Gjostein’s6,7 fitting
method can be used to obtain a series representation of the functional
form of the surface energy. Because the methods described above
apply only to crystalline materials that twin extensively or can be
drawn into wires and recrystallized, they have been applied only to
metals such as nickel,3 copper,4,8 g-iron,5 and gold.7
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In the present article, we describe an experimental method that
is similar in spirit to those described above but that can be applied
to ceramic polycrystals. The only necessary property of the
polycrystal is that its microstructure contains a few island grains,
or grains enclosed completely or partially by others. The orienta-
tion dependence of the surface energy of magnesia at 1400°C has
been determined by fitting observations recorded at such grooves
to Herring’s15 equilibrium condition. The energy function derived
from these data is consistent with observed surface faceting.

II. Experimental Procedure

(1) Experimental Approach
When examining a well-annealed, polycrystalline microstruc-

ture, a small grain enclosed within a larger grain is occasionally

found. We refer to the smaller, surrounded crystal as an island
grain and the larger crystal as the matrix grain. A planar section
illustrating this situation is shown schematically in Fig. 1(a); an
island grain observed in magnesia is illustrated in Fig. 2. In Fig. 2,
the boundary separating the island grain from the matrix grain is
easily distinguished by the thermal groove. Assuming that the
triple junction at the groove root is in local thermodynamic
equilibrium, Eqs. (2) and (3) should then be satisfied at all points,
Pi. If the orientations of both grains are determined by backscat-
tered electron diffraction and the inclinations of the three inter-
faces (defined byx1, x2, anda) are determined by microscopic
analysis atN points along the boundary, then it is possible to
specify all of the quantities in Eqs. (2) and (3), except the interface
energies and their derivatives. In our analysis, we assume that the
vectors defining the interface tangents and normals lie in a single
planar section that is perpendicular to the tangent of the triple line.

Determining the surface energy from theN vector equations is
a highly nonlinear problem that, because of experimental uncer-
tainties, may not have a classical solution. To determine an
approximate form for the surface energy, we make two simplifying
assumptions that allow us to arrive at an overdetermined system of
linear equations. An approximate solution of these equations then
can be found via the method of least squares. First, we assume that
the grain-boundary energy is a function only of the misorientation
and not the boundary plane. Therefore,]g3/]a 5 0; this is identical
to the approximation applied in the earlier work.3,9 Because the
misorientation is fixed at all points across the boundary, the
grain-boundary energy (g3) is the same in each of theN equations.
Second, we use Winterbottom and Gjostein’s6,7 method of approx-
imating the surface energy as a truncated double Fourier series. We
have selected the following form for the function:
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In Eq. (4),u andw are the usual spherical angles, and the energy
of the (100) orientation (u 5 0) is normalized to equal 1.0. Using
this approximation, the surface energy and its derivatives at each
point are determined by the surface orientation and a finite set of
unknown coefficients. For a series of orderR, the number of
coefficients is 2R(2R 1 1), so that, for a set ofN observations

Fig. 1. Coordinate system used for the data analysis. (a) Schematic plane
view of an island grain (labeled 2) within a matrix grain (labeled 1).
Multiple groove measurements are made around the circumference of the
island grain, at points labeled Pi. (b) Schematic cross-section view of a
triple junction. Note thatl points into the plane of the paper.

Fig. 2. Montage of AFM images showing an island grain. Black-to-white vertical contrast is 200 nm. Contrast discontinuities occur at the points where
images have been pieced together. Surfaces are inclined from the^111& axis by;10° and are slightly misoriented with respect to one another.
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along the circumferences ofG island grains, the total number of
unknowns isU 5 2R(2R 1 1) 1 G. Because;50 observations
can be made at each island grain, an increment inG increasesN much
more thanU. Thus, for even a few island grains,N .. U, and a set
of best-fitted coefficients and grain-boundary energies can be deter-
mined using a conventional linear least-squares procedure.

The procedure described above should be widely applicable to
most polycrystalline materials. It is not required that the island
grains be completely isolated in the matrix grain, only that the
observations be accumulated from a boundary with constant misori-
entation and a significant degree of curvature (so that surfaces with
many distinct orientations are exposed at the groove root). In our
experience, large curvature is typically observed at low-angle grain
boundaries. In fact, all of the island grains identified as part of this
study have misorientations of,7° and presumably have been formed
when a higher-mobility grain boundary has swept past during the
coarsening of the microstructure.

(2) Sample Preparation
Magnesia powder was formed by decomposing 99.7%-pure

magnesium carbonate (Fisher Scientific Co., Pittsburgh, PA) at
997°C in air. Uniaxial compaction in a hot press at 1700°C for 1 h
at 61 MPa produced a disk with a diameter of 50 mm and an
average thickness of 1.5 mm. Specimens cut from this disk then
were packed in a magnesia crucible with the parent powder and
annealed for 48 h at 1600°C in air. At the end of this treatment, the
specimens were translucent. The geometric measurements used to
characterize the thermal groove and grain-boundary geometry
required specimens that are flat and have two parallel faces.
Appropriate surfaces were prepared using an automatic polisher
(Model PM5, Logitech, Inc., Fremont, CA). The surfaces were
initially lapped with a 9mm alumina slurry, and the final polish
was achieved using an alkaline (pH;10) colloidal silica (0.05
mm) slurry. The flatness of the final surface was measured using an
inductive axial movement gauge head with a resolution of 0.1mm
(TESR, Model TT22, Brown and Sharpe, Wixom, MI); surfaces
were determined to be flat, within60.3 mm over lateral dimen-
sions of 1 cm. The surface was thermally grooved by annealing it
in air for 5 h at1400°C. One of the assumptions that underpinned
our measurement was that the groove morphology was determined
at 1400°C and that it did not change in a significant way during
cooling. Considering the fact that the lateral and vertical dimen-
sions of the grooves and surface facets scaled with the annealing
time and maintain constant dihedral angles, this appeared to be a
satisfactory approximation. The average grain size of the sample
was 109mm. At this stage, one sample was analyzed for impuri-
ties. The sample contained 0.2% calcium, 0.02% aluminum, 0.03%
iron, 0.02% silicon, and 0.03% yttrium.

After thermal grooving, many island grains were located, and
optical micrographs were recorded. A thin, uniform layer (in a
typical experiment, 66 0.3 mm) then was removed by polishing,
and the thermal groove treatment was repeated. The island grains
that remained after polishing (some terminate in the removed
layer) were characterized more completely, as described below.

(3) Crystallite Orientations
The orientations of the matrix and island grains were deter-

mined from electron backscattered diffraction patterns (EBSPs).
The grooved samples were imaged (uncoated) using scanning
electron microscopy (SEM; Model XL40, Philips, Eindhoven, The
Netherlands). EBSPs were obtained at a specimen tilt of 70° by
pointing the beam at the grain of interest in the spot mode. Patterns
were indexed usingORIENTATION IMAGING MICROSCOPY software,
version 2.6 (TexSEM Laboratories, Inc., Draper, UT), which
returned a set of Euler rotation angles (f1, F, f2) relating the
crystal reference frame to the sample reference frame. The abso-
lute orientation of each grain was determined from three separate
diffraction patterns recorded in the same grain.

(4) Surface Inclinations
The orientations of the free surfaces at the groove root were

determined by combining topographic atomic force microscopy
(AFM) data with the orientation data derived from the EBSPs. The
AFM data were recorded using a stand-alone AFM (Model
SAA-125, Digital Instruments, Santa Barbara, CA) positioned
above the specimen mounted on anX–Y translation stage (Model
TSE-150, Burleigh Instruments, Fishers, NY) capable of reproduc-
ibly positioning the specimen with 50 nm resolution. Silicon
nitride cantilevers (Model LNP, Digital Instruments) were used as
probes. AFM data were used to determine the partial dihedral
angles (x1 andx2) and the anglet betweene1 andv (see Fig. 1).

The method for determining the partial dihedral angles has been
described in detail in a previous paper.16 Briefly, the width and
depth of the groove are determined from AFM topographs. In
general, the grooves are not symmetric; therefore, the groove
width associated with a particular crystallite is assumed to be twice
the distance from the topographic minimum at the groove root to
the crest of the adjacent peak. The depth is the vertical distance
from the minimum at the groove root to the crest of the adjacent
peak. If we assume a quasi-static groove profile, it is possible to
determine the inclination of the surface at the groove root from a
measurement of the width and depth.16 We have used the relation-
ship between the width, depth, and inclination determined by
Robertson.17 Because the analytical form of the quasi-static groove
profile is determined under the assumption that the surface
energies are isotropic, there is an approximation implicit in this
procedure. Based on earlier work, the systematic errors associated
with the tip convolution effect for these relatively wide and
shallow grooves should be negligible, and the standard deviation
from random errors is estimated to be 1°.18

More-significant errors potentially resulted from sample posi-
tioning. Because the surface orientations were determined by
combining AFM and SEM observations, it was important that the
specimen reference frame be coincident with the reference frame
of both microscopes. To assist with alignment, two of the lateral
edges of the specimen were cut so that they formed a right angle with
each other and the analysis surface. On each microscope stage, these
external features were used to align the specimen. We estimated that
the uncertainty in the orientation that results from indexing and
specimen positioning errors was not greater than 5°.

Based on the AFM data, the normal of the surface at the groove
root (ni) has the following components in the laboratory reference
frame:

ni , 1 5 cosx i cost

ni , 2 5 cosx i sin t

ni , 3 5 ~21! i sin x i (5)

where the subscripti refers to the surfaces labeled in Fig. 1. The
normal vectorn1 is defined as pointing into the crystal. In the
crystal reference frame, the components of the surface normal (zi)
are specified according to the following transformation:

zi 5 gijnj (6)

wheregij is given by19

g~f1 ,F,f2! 5

F cf1cf2 2 sf1sf2cF sf1cf2 1 cf1sf2cF sf2sF
2cf1sf2 2 sf1cf2cF 2sf1sf2 1 cf1cf2cF cf2sF

sf1sF 2cf1sF cF
G

(7)

where c and s represent sine and cosine, respectively. Finally, the
surface normals are transformed to a unit triangle of distinct
orientations in cubic orientation space where the normal vectorn*
has the componentsz9i:

z9i 5 Mikzk (8)
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The components ofn* are permutations of the absolute values ofzi,
such thatz91 $ z92 $ z93, and the values ofMik are 0, 1, or21 and
are assigned in the following way. Ifz9i Þ uzku, thenMik 5 0. If z9i 5
uzku, thenMik 5 1 for positivezk, andMik 5 21 for negativezk. The
surface energy is parameterized in terms of the spherical coordi-
natesu and w; the relationship between these variables and the
components of the surface normal are

u 5 cos21 z91
(9)

w 5 tan21
z93
z92

The torque terms in Eqs. (2) and (3) can be evaluated using the
following expression:

]g i
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Analytical expressions forgi/u and gi/w are easily obtained
from Eq. (4). Although the termsu/xi andw/xi can be derived
exactly, for computational ease they have been approximated as
difference quotients,Du/Dxi and Dw/Dxi, calculated by dividing
the change that occurs inu or w (Du or Dw) as the surface normal
vector is rotated through a small, fixed angle aboutl, by the
rotation angle (Dxi). The values ofDu and Dw have been
determined using a rotation matrix with elementsRij :

Rij 5 d ij cos~Dx! 2 ε ijkl k sin~Dx! 1 @1 2 cos~Dx!#l i l j (11)

whereli are the components of the vectorl, dij the Kronecker delta,
and«ijk the permutation tensor. The results of the fit are insensitive
to choices ofDx , 1°.

(5) Boundary Inclinations
Optical micrographs of each island grain were recorded before

and after a thin layer of the specimen was removed by polishing.
The field of view for these micrographs included approximately 20
additional grains in the adjacent microstructure so that the relative
lateral positions of the two images could be determined by visually
maximizing the overlap of all the grain boundaries in the image.
Based on measurements of the amount of material removed and
the apparent lateral shift of the boundary between the two images,
the inclination (a) at each point (Pi) was determined. Considering
the magnitude of the vertical distance (66 0.3 mm) and our
estimated uncertainty in the lateral registry between the two layers
(1.5 mm), we anticipated that the maximum uncertainty ona was
;14°. This was by far the most uncertain measurement in this
experiment, and the impact of this error is described in the
Discussion section.

(6) Fitting
The approximate expression for the surface energy (Eq. (4)) was

substituted into Eqs. (2) and (3), and a standard linear least-squares
procedure (LSFIT20) was used to determine the best-fitted values
of the coefficients. The quality of the fit was assessed by the ratio
(r) of the sum of the squares of the residuals to the difference
between the number of equations and the number of free param-
eters. The results presented in the next section are based on fits to
Eq. (2). Fits that included Eqs. (2) and (3) yielded qualitatively
similar results, but the value ofr was 5 times larger. Possible
reasons for this are described in the Discussion section. The data
set consisted of 269 observations from five island grains. If a series
of orderR 5 1 is used, thenr 5 6.763 1023. When the data set
was randomly partitioned into two smaller segments, fitting to
each segment led to almost identical results (within the standard
deviation of the fit). When more terms were included in the series,
there were additional oscillations in the function, andr decreased
slightly. For example, whenR 5 2, r 5 5.473 1023. In this case,
the ordering of the relative energies at the low index surfaces was
the same as for theR 5 1 fit. However, when theR 5 2 function
was fitted to the randomly partitioned data sets, the results differed

from one another and from the results obtained using the complete
data set. For this reason, we took the result from theR 5 1 series
to be the more reliable result.

(7) Orientation Stability
AFM images of the specimen revealed that the surfaces of some

grains were faceted (for example, see Fig. 2), whereas others were
smooth. The faceted surfaces always contained ridges formed by
the intersection of two planes, but no corners. When the surface
inclination changed, as it did near a thermal groove, the ridges
exhibited smoothly curved edges. Thus, all missing surface orien-
tations could be made up of two stable planes. To map the
orientations that were stable or unstable with respect to faceting,
AFM images were recorded of the surfaces of more than 100
grains whose orientations were previously determined based on
EBSP data. If steps with heights.2.1 nm were observed (this
corresponds to 5 times the lattice spacing), the grain was labeled as
faceted. If no steps or steps less than this height were observed, the
grain was labeled as smooth. We choose this arbitrary cutoff as a
dividing line between discrete and continuum behavior by assum-
ing that, for steps of this height, the interaction between individual
atoms at the top and bottom of the facet was negligible.

III. Results

The best-fitted coefficients for the series in Eq. (4) are listed in
Table I. Based on these values, we calculated the energies of the
low-index planes to have the following relations:

g110

g100
5 1.0406 0.008

g111

g100
5 1.0726 0.010

The uncertainties in the values of the energy were determined from
the variances and covariances of the fitted coefficients.21 The
maximum energy occurred at the (111) orientation and the mini-
mum at (100). The functional dependence is illustrated in Fig. 3,
where the value of the function at each observed orientation (Fig.
3(a)) and the energy contours (Fig. 3(b)) are plotted in a unit
triangle of distinguishable orientations. The value of the surface
energy function along the perimeter of the unit triangle is graphed
in Fig. 4. The best-fitted grain-boundary energies for each of the
island grains are listed in Table II. In each case, the energy is less
than that of the (100) surface.

The orientation stability map is shown in Fig. 5. With the
exception of two outliers and a small amount of overlap in the
distributions, the faceted and smooth orientations are well sepa-
rated. Based on these data, it seems that surface orientations near
(100) and (111) are unstable with respect to faceting.

IV. Discussion

Ignoring relaxation effects, the relative surface energy of
different crystallographic planes should scale with the broken bond

Table I. Best Fitted
Coefficients for the

Surface Energy Function

Coefficient Value†

a10 0.118 (60)
b10 0.084 (36)
a11 20.130 (60)
b11 20.056 (34)
c11 20.100 (22)
d11 20.438 (12)

†Standard deviation in the last
two digits is given in parentheses.
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density. Magnesia has the rock salt structure and only one bond per
atom must be broken to create the (100) surface. Two and three
bonds per atom must be broken to form the (110) and (111)
surfaces, respectively. When the broken bond densities per unit
area (s) are compared, the (100) surface has the smallest value and
s110/s100 5 21/2 ands111/s100 5 31/2. Therefore, the measured
surface energies occur in the same order as the density of
nearest-neighbor broken bonds on the surface. As expected,
however, the measured variation in the energies in the real system
(7%) is much less than that predicted by the simple bond-breaking

model. Anisotropies of 2%–8% have been previously observed in
face-centered cubic (fcc) metals;3–11 the current observations are
consistent with the higher end of this range and less than the
anisotropy reported for lithium fluoride (18%)13 and sapphire
(12%).14

The only previous experimental evaluation of the surface
energy of magnesia was reported by Jura and Garland;22 their
calorimetric study of a fine powder led to the conclusion that the
average surface energy of magnesia at room temperature is 1.0
J/m2. Because the adsorption of water probably influenced this
experiment, this value is likely to be an underestimate. There also
have been model calculations of the surface energy of magnesia,
and they are summarized in Table III.23–27 With one exception,
these studies place the energy of the (100) surface at;1.0 J/m2 at
0 K. Furthermore, in the cases where the energies of more than one
surface have been computed, the energies have the same order as
those observed in the present study (g100 , g110 , g111). The
magnitude of the anisotropy predicted by these 0 K calculations is
larger than experimentally observed and, in fact, is larger than it
would be possible to observe in any equilibrium experiment. For
example, if the energy of the (110) surface of a cubic crystal were
.21/2 times the energy of the (100) surface, then the surface would
lower its energy by faceting into (100) and (010) surfaces that
would meet along lines in the [001] direction and form ridges.
Therefore, the energy of the (110) orientation has an upper limit of
21/2g100. Similarly, if the energy of the (111) surface were.31/2

times the energy of the (100) surface, it would lower its energy by
faceting into trigonal pyramids bound by (100), (010), and (001)
facets. Thus, the results of our experiments fall within the upper
bounds set by the equilibrium condition.

A Wulff form was constructed based on the best-fitted energy
function, and it is shown in Fig. 6. To construct the shape,
orientation space was discretized (steps of 0.05 ink andl ), and the
surface energy of each orientation was assigned based on the
best-fitted function. By applying the Wulff construction, a point on

Fig. 3. (a) Orientations of surfaces at the groove roots of five island
grains, plotted in a unit triangle of distinguishable orientations. Each point
is shaded to represent the value of the best-fitted function at that point,
where black corresponds toghkl 5 1.000 and white corresponds toghkl 5
1.072. (b) Surface energy contour plot constructed from the fitted function.
Shading of the contours is the same as in (a).

Fig. 4. Plot of the relative surface energy around the perimeter of the unit
triangle, from (100) to (111), then to (110), and back to (100).

Table II. Best-Fitted Grain-Boundary Energies

Energy Relative
to g100

†
Misorientation

(deg) Axis

0.80 (1) 6.25 ^0.99 0.13 0.06&
0.90 (1) 2.33 ^0.79 0.61 0.04&
0.55 (2) 3.14 ^0.69 0.68 0.28&
0.52 (2) 2.02 ^0.81 0.58 0.02&
0.87 (2) 6.31 ^0.92 0.33 0.20&
†Standard deviation in the last digit is given in parentheses.

Fig. 5. Orientation stability map for magnesia at 1400°C. Each point
corresponds to the orientation of an observed grain. Grains that are faceted
are marked with an3, and grains that are smooth are marked with an open
square.

Table III. Model Calculations of the Magnesia Surface
Energy

Surface energy (J/m2)

Method†(100) (110) (211) (111)

1.16 2.92 Electrostatic model21

1.43 Ab initio Hartree–Fock LCAO22

1.07 2.78 Electrostatic model23

2.64 12.80 Harris–Foulkes functional (LDA)24

0.98 2.29 4.35 Self-consistent tight binding25

†LCAO is linear combination of atomic orbitals and LDA means local density
approximation.
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the surface of the Wulff shape was found for each orientation. The
space between each point then was filled in byQHULL and rendered
in GEOMVIEW to create Fig. 6.28

Because of the discretization, continuously curved surfaces
appear as regular arrays of flat squares visible in the detail of Fig.
6. There are, however, two other features that derive from the
shape of the surface energy function. The first feature is the small
flat facet at (100). Based on the extent of this facet, we conclude
that {hk0} orientations inclined by,5.7° from (100) are missing
from the Wulff form. The second feature is the sharp edges formed
by the intersections of the curved surfaces. These edges pass
through (110) and meet at the (111) orientation. This means that
orientations in the vicinity of the (111) orientation are missing and
that the range of missing orientations extends toward the (110)
orientation. It must be noted that the details of the Wulff form are
extremely sensitive to the details of the energy function, which
contains some uncertainty and is constrained by the choice of basis
functions.9 Increasing or decreasing the energies of selected
orientations within the uncertainties of the function can affect the
extent of the missing orientations in a significant way. However,
we can test the validity of the Wulff form in Fig. 6 by comparing
it with the orientation stability data.

The orientation stability figure presented in Fig. 5 indicates that
surfaces inclined from (100) by#5° are unstable with respect to
faceting. This result is consistent with the Wulff shape illustrated
in Fig. 6, which shows that these orientations are missing from the
equilibrium form. Orientations in the missing region break up into
a (100) facet and a complex (high-index) facet;5° from (100).
The specific index of the complex facet depends on the grain
orientation. The angle at which the (100) plane intersects the
complex surface can be used as an independent measure of the
relative energy of the (100) plane (g100) and the complex plane
(gc). When the Herring equilibrium condition is applied to the
intersection of these two facets, we find that2,15

g100

gc
5 cosv 2

1

gc

]gc

]v
sin v (12)

Taking the second term in Eq. (12) to be negligible (for smallv,
wherev is the angle between the surface normals), the relative
energy is given by cosv, which indicates thatgc/g100 5 1.004.
This is consistent with the best-fitted surface energy function (see
Fig. 4).

The faceted area near the (111) pole spans a much larger
angular range than that near (100). Considering that the surface
energy function maximizes at this orientation, we conclude that
surfaces with these orientations facet to neighboring complex
planes. The observation of faceting in this area is consistent with
the Wulff shape, which shows curved surfaces meeting at sharp

edges that intersect at {111} poles. The sharp edges on the Wulff
shape occur when there are missing orientations; grains with such
orientations may facet. The range of faceted orientations indicated
in Fig. 5 appears to be larger than the range of missing orientations
shown in Fig. 6. The observations also can be explained if the
(111) orientation actually has a slightly lower energy than the
surrounding orientations. In other words, within the uncertainty of
the best-fitted function, it is possible that the surface energy
maximum is inclined a few degrees from (111) and that the (111)
orientation is a local minimum. If this were the case, then the
orientations in the unstable region would always break up into a
facet near (111) and a complex plane at the boundary between the
smooth and faceted orientations. In principle, it should be possible
to distinguish between these two scenarios by indexing the facets
based on EBSP and AFM data. In this particular case, however, the
small spacing of the facets makes their inclinations difficult to
accurately quantify, and our measurements to date have led to
ambiguous results. Although the ambiguous results most likely
occur because of difficulties associated with the measurement, it is
also possible that the shape of the energy function is more
complicated than either of the two scenarios presented above.

The shape of the energy function that results from our fitting
procedure is ultimately constrained by the number of harmonics
used to approximate the energy. If complicated variations do
occur, they are not reproduced by our function. However, the
conclusion that the surface energy increases as the (111) orienta-
tion is approached is robust and consistent with theoretical
predictions and earlier observations. The (111) surface of a
compound with the rock salt structure is polar (terminated by ions
with the same charge), and it has been argued that, because a polar
surface has a dipole moment, its energy is always larger than the
energies of other surfaces of the same solid that are either charge
neutral or charged, but lacking a dipole moment.29 The conven-
tional view is that orientations vicinal to a low-index plane have
relatively higher energies, because additional bonds must be
broken to create a terrace–step structure. However, this rational
does not necessarily apply to a polar surface. In this case, although
the step creation does break additional bonds, it also introduces
ions of the opposite sign, and this reduces the surface charge
imbalance. For example, adjacent (111) terraces of the rock salt
structure separated by monoatomic steps are terminated by ions of
opposite charge. Thus, a decrease in the surface energy with step
density can occur if the gain in electrostatic stability is greater than
the cost of breaking bonds to create steps.

Earlier experimental studies of magnesia surfaces have been
conducted in temperature ranges above and below the current
study (but at different partial pressures of oxygen). For example,
Henrich30 annealed an ion-bombarded magnesia (111) surface
under ultrahigh vacuum to temperatures as high as 1127°C and
found that the surface faceted into trigonal pyramids bounded by
(100) planes. This would imply a higher degree of anisotropy than
what we have observed, which would be consistent with the lower
temperatures used for the annealing. When the magnesia (111)
surface was examined by reflection electron microscopy after
being annealed at 1550°–1700°C in oxygen, it was found to be
smooth (but reconstructed on the atomic scale) and stable against
faceting.31 Although the widely different partial pressures of
oxygen used in the aforementioned studies might make a rigorous
comparison inappropriate, the transition from a faceted surface at
1127°C30 to a partially faceted surface at 1400°C (the current
study) and to a smooth surface at 1500°C31 is consistent with the
reduction in anisotropy that is expected at elevated temperatures.
In fact, this transition might be analogous to that observed in the
isostructural compound halite, for which smooth (111) surfaces are
observed only above 650°C.32 In the present and previous studies,
calcium was the major impurity, and this is known to segregate to
the surface.33 Reflection electron microscopy experiments have
shown that the step structure on the (100) surface can be altered by
calcium segregation;34 therefore, we must conclude that the exact
form of the surface energy function is sensitive to the temperature
and partial pressure of oxygen, and to the concentration of
dissolved (and segregated) impurities.

Fig. 6. Wulff shape of magnesia at 1400°C, determined from the fitted
surface energy function.
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The best-fitted grain-boundary energies (see Table II) are all
less than the surface energy. The median grain boundary to surface
energy ratio has been previously measured to be 1.2, which
indicates that most of the grain boundaries in a random polycrystal
have an energy that is greater than the surface energy.16,35 The
distribution of energy ratios, however, extends as low as 0.65 for
low-angle boundaries.16 Therefore, the low energies that result
from our fit are not surprising, considering that the largest
misorientation is,7°. With one exception, the fitted grain-
boundary energy increases with the misorientation angle. Although
the exception might be due to experimental error, it is probably not
appropriate to establish a correlation between the grain-boundary
energy and only one of the five macroscopic degrees of freedom
that define the grain-boundary character.

One of the assumptions applied in our analysis is that the
grain-boundary energy is independent of the boundary plane. In
other words, the energy of the grain boundary at all points around
the thermal groove is assumed to be the same. If the best-fitted
surface energy function is used to determine the energies of the
surfaces bounding the groove at each point around an island
grain’s circumference, the Herring15 equilibrium condition can be
used to compute a boundary energy at each point. Energies
computed in this way vary systematically with position and
suggest that the boundary plane does influence the grain-boundary
energy. That we average over these variations in our fitting
procedure (and ignore the grain-boundary torque terms) is one of
the sources of uncertainty in our result.

Finally, Eq. (3) has been neglected in our fitting procedure. In
earlier work, Eq. (3) has been ignored without comment.3–9

Including Eq. (3) in the procedure described here increases the
uncertainty in the result. The reason for this is evident when we
compare the form of the equations. In Eqs. (2) and (3), the
magnitude of the left-hand side is determined bya, a measured
parameter that is typically near zero (78% of the observations are in
the range220° , a , 20°) and contains the highest degree of
experimental uncertainty. The left-hand side of Eq. (2) scales with cos
a, and the left-hand side of Eq. (3) scales with sina, so that, whena
is small, measurement errors are magnified by Eq. (3) and diminished
by Eq. (2). For example, a 15° error in the measurement ofa ' 0
leads to an uncertainty on the left-hand side of Eq. (2) of 3.5%; for Eq.
(3), the same error leads to an uncertainty of 26%.

An alternate approach to reconstructing the surface energy
function from thermal groove data, which considers both compo-
nents of Eq. (1), is described in the forthcoming paper.36 This new
method is statistical in nature, multiscale in implementation, and
affords efficient incorporation of the full vector equilibrium
equation. Other main advantages in this approach include no a
priori basis selection for the surface energy representation and
efficient accommodation of large amounts of experimental data.

V. Conclusions

An experimental technique has been developed to determine the
anisotropy of surface energy. The technique uses polycrystalline
specimens and is based on the analysis of crystallographic data
obtained from EBSPs and geometric data obtained by AFM. We
have tested the method on magnesia and found that, at 1400°C,
g110/g100 5 1.0406 0.008 andg111/g100 5 1.0726 0.010. The
surface energy minimum is at (100), and this leads to the faceting
of orientations within 5° of this surface. The surface energy
maximum occurs at or very near the (111) orientation, which is a
polar surface. An orientation stability map indicates that orienta-
tions near (111) are unstable with respect to faceting. It should be
possible to conduct similar measurements on any polycrystalline
specimen that has a grain size.30 mm and contains some
enclosed or partially enclosed grains.
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