Structure and Bonding in Crystalline Materials: A Textbook for Materials Science and Engineering Students

Gregory S. Rohrer Department of Materials Science and Engineering Carnegie Mellon University Pittsburgh, Pennsylvania 15213-3890

The Journal of Materials Education, **20** (1998) 135. correspondence should be addressed to G.S. Rohrer at:

phone	412-268-2696
fax	412-268-7599
e-mail	gr20+@andrew.cmu.edu
WWW	http://neon.mems.cmu.edu/rohrer.html

ABSTRACT

A textbook has been prepared for an entry level Materials Science and Engineering graduate course on structure and bonding in crystalline materials. The course is intended to serve as a foundation for other graduate courses by providing techniques to understand crystal structures and the cohesive forces that stabilize them. The intrinsically connected topics of structure and bonding are presented in the same course because without knowledge in both of these areas, it is not possible to address the fundamental relationship between the composition, structure, and properties of solid matter that motivates nearly all materials research. The purpose of this paper is to describe the rationale used during the development of the course and the textbook that has been prepared to assist Materials Science and Engineering students and instructors.

Keywords:

Textbook, Crystal Structures, Bonding in Crystals

INTRODUCTION

The interdisciplinary nature and continual evolution of the field of Materials Science and Engineering (MSE) make the choice of a core graduate curriculum a difficult issue. Nevertheless, most departments select a small subset of courses that are required for all graduate students. Ideally, the material taught in the core part of the curriculum will provide all students (even those with undergraduate training in other disciplines) with the tools necessary to address the central issue that motivates nearly all materials research: how does the composition of solid matter and the way in which it is processed influence its structure and properties? To explore this fundamental question in a systematic manner, one needs to understand how the structure of matter is described, how to experimentally probe structure, and the cohesive forces in solids that determine the structure. The scope of the course described here is limited to descriptions of ideal atomic structure (the defect structure and microstructure being course material unto themselves), the theory of diffraction, bonding in crystals, and the relationship between structure and bonding.

The intellectual match between the topics of crystal structure and bonding is difficult to dispute. This structure-bonding relationship was realized in the early part of the century and discussed extensively through the decades by Pauling [1], Hume-Rothery [2], Pearson [3], Phillips [4], and Villars [5-7]. However, the graduate curricula in most MSE departments continue to greatly emphasize structure over bonding. In many cases, students are exposed to advanced models for crystal cohesion only during courses on electrical properties or solid state physics. Clearly, there is a potential advantage to teaching the topic of crystal cohesion at the same time as the topic of crystal structures so that the connections can be emphasized.

There are numerous existing books on crystallography [8-11], structural solid state chemistry [12,13], metallurgy [14], and solid state physics [15-17] that can be used as resources when teaching a course on structure and bonding. However, none of these books is wholly appropriate and this means that one must select sections of each. In my

experience, this complicates the instructor's task of educating and the student's task of learning. The motivation for preparing this textbook was to provide a self-contained, coherent resource for both students and instructors. I should mention that another book targeted for MSE curricula, "Structure and Bonding in Condensed Matter", by C.S. Nichols [18], appeared three years ago. The textbook described here differs from this mainly in the balance between the two topics. The book by Nichols, which is no longer in print, has greater detail in the quantum mechanical models for bonding, while the book described here has a more extensive description of crystal structures, diffraction, and phenomenological models for bonding.

THE SUBJECT MATTER AND ITS ORGANIZATION

The most important (and possibly contentious) organizational decision in the structure of the textbook was whether to present structure or bonding first. There are reasonable philosophical and pragmatic arguments for both possible arrangements. For example, it has been argued that the distribution of electrons in the solid (the bonding) determines the structure and, therefore, bonding must be presented before structure. While this view can be supported, it leads to two problems. The first is the implication that the relationship between bonding and structure is a one way street. In fact, the atomic configuration in a crystal and the electronic distribution (spatial and energetic) seek a joint equilibrium. Consider, for example, what happens when a phase transformation is initiated by the application of hydrostatic pressure. In this case, the interatomic distances are externally altered and the bonds respond to the structure by changing to a new configuration. The second problem with presenting the bonding section before the structure section is that it betrays the scientific process. Models to explain phenomena are developed based on observations. Models for chemical bonds in solids were developed only after extensive crystallographic studies. When examining a model, it is essential that

one has a strong working knowledge of the phenomenon being explained. Since crystal structure data are the observations on which bonding models have been formulated, I have chosen to present this section in advance of the bonding models. A complete table of contents for the text is presented in Table 1.

The case for presenting structure before bonding can also be argued from a pragmatic standpoint. The development of every analytical model for bonding is based on an understanding of the periodicity of the Bravais lattice and symmetry. Furthermore, the concepts of the reciprocal lattices, plane wave scattering, and systematic absences are easiest to introduce when describing diffraction, where the relationships between atomic structure and the reciprocal lattice (diffraction pattern) are concrete. It is then much easier to use these tools to describe the nearly free electron theory, the stability of electron compounds, and the reduced zone scheme for the presentation of band structures.

The decision to present the structure section before the bonding section is hedged somewhat by the first, introductory chapter. In Chapter 1, simple models for crystal structures and bonding are introduced. It is assumed that for most students in the course, this is a review. However, it does provide a foundation in bonding models before the beginning of the structure section. There are two points of emphasis in this chapter: the periodic nature of bonding, structure, and properties and the weakness of the simple models that most students were exposed to as undergraduates. This is intended to motivate the more detailed sections that follow.

Chapters 2 though 5 comprise the structural section of the course. Chapter 2 is a review of undergraduate crystallography with all of the terminology and mechanics needed for any advanced discussion. For example, the chapter includes sections on the real space lattice, crystallographic notation for locations, directions and planes, the reciprocal lattice, methods for calculating geometric parameters of the lattice, and methods for representing crystal structures. I have found that this is not only a useful review for MSE students, but it also provides an adequate foundation for students from other disciplines.

The third chapter describes the formal methods used to specify the symmetry of a crystal. The symmetry groups and operators used by crystallographers are a concise set of instructions for generating the positions of the atoms in a crystal. The goal of the chapter is not to explain the theory of groups, but to provide students with the information necessary to interpret crystallographic data written using conventional notation. This chapter contains sections on symmetry operators, the 32 crystallographic point groups, the 230 crystallographic space groups, and the interpretation of standard crystallographic data.

The goals of the fourth chapter are to acquaint the student with typical prototype crystal structures and to present a less formal, but more convenient way of describing structures. Briefly, simple structures are described as eutactic arrays with an ordered occupation of close-packed and/or interstitial sites. While this method lacks the precision of the one presented in Chapter 3, it is valuable because it leads to easy visualization and provides a means for comparison. More complex ternary and quaternary structures are described in comparison to the simple ones and noncrystalline structures (quasicrystalline, incommensurate, liquid crystalline, and amorphous structures) are described briefly in the last section.

The following example illustrates the methods emphasized in the first several chapters of the book. Chapters 3 and 4 include data for more 50 structure types in the format illustrated by Tables 2 and 3. In a worked problem, the reader is asked to describe the packing in the scheelite structure, compare this ternary structure to a more well known binary prototype structure, and to develop a geometric criterion that can be used to differentiate the ABO₄ compounds that take the scheelite structure from those that take the rutile structure. Based on the data in Table 3 and the information provided in Chapters 2 and 3, the schematic in Fig. 1 is constructed. From this sketch, we recognize that the metal atoms occupy the sites of a cubic close packed lattice and that the oxygen occupy the tetrahedral interstices. Based on this packing description, we note a similarity to the fluorite structure. However, scheelite differs from fluorite because the ordering of the two

metal atoms on the close packed sites doubles the length of the unit cell along [001]. This ordering of the two metal atoms also causes the O to occupy a position that is distorted form the ideal tetrahedral coordination. To develop a geometric criterion to separate those ABO₄ compounds that take the rutile structure from those that take the scheelite structure, we recall that in rutile all of the metal atoms are 6-coordinate. In scheelite, the A cations are 8-coordinate while the B cations are 4-coordinate. This suggests an A/B size differential. To test this, the data in Tables 2 and 3 are used to make the plot in Fig. 2, which clearly illustrates that if $r_A/r_B < 1.3$, the rutile structure is preferred over scheelite.

The goal of the fifth chapter is to provide students with enough of a foundation in the theory of diffraction that they understand how structures are determined and what typical data mean. Rather than surveying crystallographic techniques or methods (most MSE departments devote an entire course to this subject), the chapter concentrates on the theory that accounts for diffraction. An emphasis is placed on understanding how the lattice and the basis of a structure can be determined from the angular positions and intensities of diffracted peaks, respectively. Intensity calculations are used to determine relative site occupations and specific position parameters. This particular section is placed after the chapters on basic crystallography and symmetry because it is not possible to have a detailed discussion of diffraction without the mechanical skills for dealing with real space and reciprocal space lattices or knowledge of the symmetry operations that lead to systematic absences.

The section on bonding is found in Chapters 6 through 9. Chapter 6 is about secondary bonding, Chapter 7 is about ionic bonding, Chapter 8 is about metallic bonding, and Chapter 9 describes the linear combination of atomic orbitals (LCAO) method that can be used for the whole range of polar covalent bonding. While the subject is divided under the traditional headings, the book always emphasizes that the first three classifications (secondary, ionic, metallic) are simply limiting cases of a single phenomenon that should simply be called chemical bonding. In each case, the emphasis is placed on making

quantitative calculations of structural parameters and stabilities. The order of presentation was selected for the simple reason that there is an escalation in the skills needed for each model. Chapter 6, on secondary bonding, introduces the Lennard-Jones pair potential and the methods used to account for long range forces.

In Chapter 7 on ionic bonding, the Madelung potential is added to the Lennard-Jones pair potential. The fundamental steps involved in ionic bond formation are also described in terms of the Born-Haber cycle. Effects not included in the quantitative model, including the crystal field stabilization energy and ionic polarization, are assessed. The concept of electronegativity (first introduced in Chapter 1) is revisited and different quantitative scales are described. Finally, the ability to predict structure based on these models is discussed.

The eighth chapter is about metallic bonding and begins with the development of the free electron theory. After pointing out that this provides no cohesion for the crystal, electrostatic terms are introduced so that the stability of metallic crystals can be explained. Next, the nearly free electron theory and dispersion in the reduced zone scheme are described to introduce the concepts of energy bands, zone boundaries, and energy gaps.

The objective of the ninth chapter is to describe the polar covalent bond within the framework of the LCAO model. In this final chapter on bonding, I note that the LCAO model can, in its limits, also be used to describe materials that are considered ionic or metallic in the simple models. This fact emphasizes the idea that chemical bonding is a single phenomenon that can be described by a single model. After a brief description of how the LCAO method is applied to small molecules, it is applied to two dimensional homopolar crystals, polar crystals, and three dimensional crystals. The Freidel model is used to explain the presence of covalent bonds in transition metal crystals. The factors that lead to hybridization and tetrahedral geometries are also described. While this chapter will not make the student an expert in electronic structure methods, it will provide the foundation needed to understand the electronic structure of a crystal well enough to

interpret the band structure diagrams and density of states plots that are the common result of modern theoretical studies.

The methods emphasized in Chapter 9 are illustrated by the following example. The reader is asked to consider a 2 dimensional binary compound (AB) with a square lattice structure where each site in the lattice is alternately occupied by an A or B atom. Assuming that each atom has a single s valence orbital, the reader is asked to apply the nearest neighbor LCAO model and determine the dispersion along the [100] direction, plot the dispersion assuming that the hypothetical compound is LiCu, LiAl, and LiCl, and, for each case, determine the width of the s-derived bands and the gap between the occupied and unoccupied states. Although the situation is clearly fictitious and the approximations unwarranted, the results are instructive (see Fig. 3). The quantitative calculations, which can be done by hand, illustrate that increasing the polarity in a compound narrows the widths of the bands and increases the gap between occupied and unoccupied states.

The tenth and final chapter returns to the question that is central to materials research: How do the composition of solid matter and the way in which it is processed influence its structure and properties? The scope of this question is much greater than that of this course, but two parts can be addressed. First, when a given set of elements are combined, will they react to form a compound, will they dissolve in one another, or will they be immiscible? Second, what will the ideal atomic scale structure of the combination be? In this chapter, phenomenological approaches to these questions are reviewed because they have been more effective than the quantitative physical models. In the first section, Miedema's [19] and Villars' [20] methods for predicting the existence of stable compounds are reviewed. Laves phases, interstitial compounds, and Hume-Rothery rules [2] are described. The next section describes the factors that determine structure in polar covalent crystals. Among the topics described in this section are Pauling's rules [1] and the bond

valence method [21]. In the final section, structure stability maps developed by Mooser and Pearson [3], Phillips [4], and Villars [5-7] are described.

Throughout the book, an emphasis is always placed on quantitative data, numerical examples, and problem solving. For example, the extensive data allow students to examine how chemical periodicity, electronic structure, and size factors influence structure selection. In the chapter on diffraction, all of the data needed for the calculation of diffraction peak intensity are included and sample calculations are carried out. The bonding models in Chapters 6-9 are all presented in such a way that quantitative solutions can be determined using simple calculations. In this regard, the methods and parameters established by Harrison [17] are followed. While these models are not at the state-of-the-art, they are qualitatively accurate and have the advantage of being simple enough that numerical results for specific compounds and elements are readily obtained and compared by the student. Whenever appropriate, the text includes worked numerical examples and each chapter concludes with an extensive set of problems.

THE COURSE'S TIMING AND TRACK RECORD

In the MSE department at Carnegie Mellon University, this course is taught to all first semester graduate students. A smaller number of senior MSE undergraduates and graduate students from Chemical Engineering, Electrical and Computer Engineering, Mechanical Engineering, and Physics also enroll. The class is held on a normal semester schedule and meets for 28, 110 minute lectures. The chapter structure of the text book is by no means evenly divided. The approximate schedule that I have used is illustrated in Table 4. This is covers 26 of 28 lecture periods and leaves two exam and/or review classes.

I have taught this course annually since 1992 and each class has consisted of 17 to 27 students; the total number of students that have taken this course is 130. At the end of

each semester, students are asked the question, "What was the overall quality of this course?" The response is an integer rating, from 1 to 5, with 5 being the best. The results for the first 5 years (the 1997 results are not yet available) are summarized in Table 5. As a baseline for the rating system, consider the fact that this question is asked of every student in every class in the college and the mean for all courses taught during the same five years was 3.98.

In the first year, there was no text for the course. Students were asked to read from one of about 10 different existing books before each lecture. During this period, the course was rated as slightly above average. The second year was much the same, but I made a transcribed version of my lecture notes available to students a few days before each lecture. During this year, the course was rated well below the college average. Before the third year, I organized, corrected, and greatly expanded the transcription of the notes and made a draft version of the book available to the class before the semester. This draft version was the primary source for the class. At this point, the students' opinions of the class improved significantly. During subsequent years, the content and the organization of the book were continuously refined and the ratings of the course have also improved.

CONCLUSION

A textbook has been prepared from which it is possible to teach the topics of crystal structures and crystal cohesion in an integrated way. Student approval of a course based on this text has been high. Currently, there are no firm plans for publication. However, I anticipate that in the near future, this book will be available for use by others; students and instructors interested in this text prior to publication are encouraged to contact the author.

ACKNOWLEDGMENT

I thank the National Science Foundation for support under a YIA grant DMR-9458005.

REFERENCES

[1] L. Pauling, J. Am. Chem. Soc., **51** 1010 (1929).

[2] W. Hume-Rothery, G. Raynor, "The Structure of Metals and Alloys" (Institute of Metals, London 1962).

[3] E. Mooser and W. B. Pearson, Acta Cryst, **12** 1015 (1959).

- [4] J.C. Phillips, Rev. Mod. Phys., 42 317 (1970).
- [5] P. Villars, J. Less-Common Metals, **92** 215 (1983).
- [6] P. Villars, J. Less-Common Metals, **99** 33 (1984).
- [7] P. Villars, J. Less-Common Metals, **102** 199 (1984).
- [8] D.E. Sands, "Introduction to Crystallography" (W. A. Benjamin, New York 1969).

[9] M.J. Buerger, "Contemporary Crystallography" (McGraw Hill, New York 1970).

[10] H. Megaw, "Crystal Structures: A Working Approach" (W. B. Saunders, Philadelphia 1973).

[11] B.D. Cullity, "Elements of X-ray Diffraction, 2nd edition" (Addison-Wesley, Reading, MA 1978).

[12] A.F. Wells, "Structural Inorganic Chemistry, 5th edition" (Clarendon Press, Oxford, 1984).

[13] A.R. West, "Solid State Chemistry and its Applications" (J. Wiley & Sons, Chichester 1984).

[14] C.S Barrett and T.B. Massalski, "The Structure of Metals" (McGraw Hill, New York 1966).

[15] C. Kittel, "Introduction to Solid State Physics 5th edition" (J. Wiley & Sons, New York 1976).

[16] N.W. Ashcroft, N.D. Mermin, "Solid State Physics" (Holt Rinehart and Winston, New York 1976).

[17] W.A. Harrison,"Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond" (Dover Publications, Inc., New York 1989).

[18] C.S. Nichols, "Structure and Bonding in Condensed Matter" (Cambridge University Press, Cambridge, 1995).

[19] D.G. Pettifor, Solid State Physics 40 43 (1987).

- [20] P. Villars, J. Less-Common Metals 109 93 (1985).
- [21] M. O'Keeffe and N.E. Brese, J. Am. Chem. Soc., 113 3226 (1991).

Figure Captions

Figure 1. A sketch of the atomic positions in the scheelite structure. The projection is shown along the [100] direction.

Figure 2. The radius ratios for the rutile and scheelite structured ABO₄ compounds listed in Tables 2 and 3, respectively. For a consistent comparison, the octahedral radii are used.

Figure 3. Dispersion relations for three hypothetical Li compounds. (a) The two different atoms alternately occupy the vertices of a square lattice. (b) The dispersion of electron energy levels along [100] for three combinations of atoms. The dispersion relation, or energy (E) as a function of wave vector, (**k**), is shown below. E_A is the term state for the valence s electron of the A atom and E_B is the term state for the valence s electron of B atoms. $V_{ss\sigma}$ is the covalent energy for the overlap of the s states, and r₁ and r₃ are the vectors defined in (a).

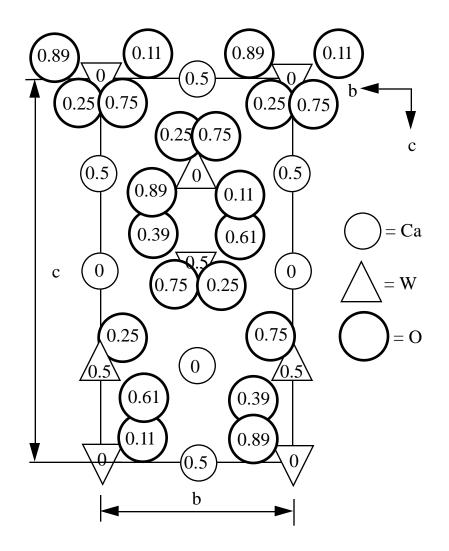


Figure 1. G.S. Rohrer

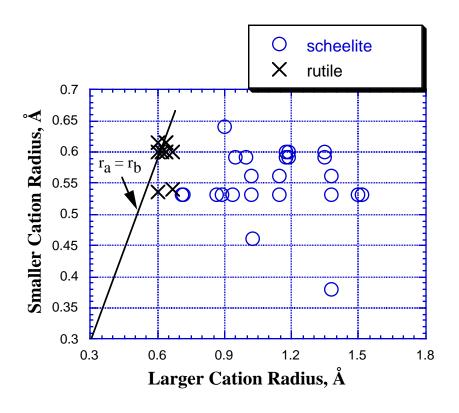
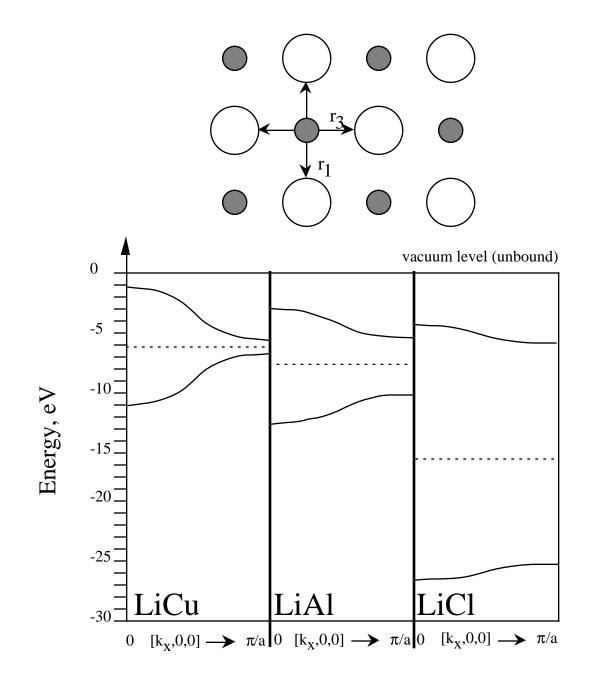
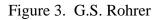




Figure 2. G.S. Rohrer

 $E(\mathbf{k}) = 1/2(E_{A} + E_{B}) \pm \sqrt{1/4(E_{A} - E_{B})^{2} + \{2V_{ss\sigma}[\cos \mathbf{k} \cdot \mathbf{r}_{1} + \cos \mathbf{k} \cdot \mathbf{r}_{3}]}\}$

Table 1. Table of Contents for Structure an Bonding in Crystalline Materials

1.	Chapter 1, Introduction	1
	A. Introduction	1 2 2 3 6
	B. The Importance of the Periodic Table: Mendeleev Predicts Ge in 1871	2
	C. Periodic Trends in Atomic Properties	5
	D. Bonding Generalizations Based on Periodic Trends in the Electronegativity	6 6
	(i) Classification of the elements(ii) Simple bonding models and typical properties	0 7
	(iii) Ketelaar's triangle	10
	(iv) Examples of trends in bonding	10
	E. Generalizations About Crystal Structures Based on Periodicity	14
	(i) Close-packing in metallic solids	14
	(ii) Radius ratios in ionic structures	17
	(iii) Orbital hybridization in covalent structures	21
	(iv) Examples of periodic trends in structures	24
	F. The Limitations of Simple Models	25
	(i) Polymorphism	25
	(ii) Systems with mixed properties and mixed bonding	27
	G. Problems	30
	H. References and Sources for Further Study	31
2.	Chapter 2, Basic Structural Concepts	33
	B. The Bravais Lattice	34
	(i) Definition	34
	(ii) Geometry of the 14 three dimensional Bravais lattices	36
	C. The Unit Cell	47
	(i) The primitive cell	47
	(ii) The non-primitive conventional cell	47
	(iii) The Wigner-Seitz cell	50
	D. The Crystal Structure. A Bravais Lattice Plus a Basis	50
	E. Specifying Locations, Planes and Directions in a Crystal	53
	(i) Locations	53
	(ii) Directions	53
	(iii) Indices for planes	54 57
	F. The Reciprocal Lattice (i) Mathematical formalism	57
	(ii) The relationship between the direct lattice and the reciprocal lattice	60
	(iii) The first Brillouin zone	62
	G. Quantitative Calculations Involving the Geometry of the Lattice	64
	(i) The distances and angles in the direct lattice	64
	(ii) Interplanar spacings, angles between planes, and cell volume	67
	H. Beyond the Ball and Stick Representation of Crystals	71
	(i) Polyhedral models	71
	(ii) Block representations	74
	(iii) The stereographic projection	78
	I. Problems	81
	J. References and Sources for Further Study	84
3.	Chapter 3, Symmetry in Crystals	85
	A. Introduction	86
	B. The Symmetry Operators	86
	C. The First Five Symmetry Operators	87
	(i) Definitions	87
	(ii) The distinction between proper and improper operations	91

Table 1, continued. Table of Contents for Structure an Bonding in Crystalline Materials

D. Combining Operators to Form the 32 Distinct Crystallographic Point Groups	91
(i) Compatibility of rotations and translations	91
(ii) Group notation	93
(iii) Combinations of proper rotations	93
(iv) Groups formed by improper rotations	95
E. The 32 Point Groups Classified by Bravais Lattice	97
(i) Point group nomenclature	97
(ii) The importance of an inversion center	99
(iv) Dealing with cubic point groups	103
(v) General and special positions	105
(vi) Notes on determining the crystallographic point group of an object	108
F. The 230 Space Groups	109
(i) The screw and glide operators	112
(ii) The origin of the space groups and their symbols	113
(iii) The space group symbols	114
(iv) Space group representations	115
(v) Trigonal and hexagonal groups	124
(vi) Information in the International Tables	128
G. The Interpretation of Conventional Crystal Structure Data H. Problems	129 145
I. References and Sources for Further Study	145
Chapter 4. Crystal Structures	150
A. Introduction	155
B. Close-Packed Arrangements	154
(i) Types of close-packing	154
(ii) The ccp and hcp arrangements	157
C. The Interstitial Sites	160
D. Classifying and Naming Crystal Structures.	163
E. Close-Packed Metallic Structures	165
(i) The B2 or CsCl structure	165
(ii) The $L1_0$ or CuAu structure	166
(iii) The $L1_2$ structure	167
(iv) The DO_3 and $L2_1$ structures	168
(v) The DO_{19} and DO_{24} structures: hcp superlattice structures.	170
(vi) Filling the interstices of the bcc lattice: the A15 structure	172
(vii) The C14, C15, C16 structures	173
F. Close-Packing in Ionic Compounds	176
(i) The rock salt and NiAs structures	176
(ii) The spinel and olivine structures	179
(iii) The rutile and CdI_2 structures	183
(iv) Other AB ₂ structures, the CdCl ₂ and fluorite structures	185
(v) The perovskite structure	187
(vi) Superlattice structures	192
(vii) Extensions of the close-packing description to more complex structures	193
G. Structures Derived From ReO ₃	193
(i) Bronzes	194
(ii) Structures derived by crystallographic shear	195
H. Tetrahedral Structures	196
(i) The sphalerite and wurtzite structures	196
(ii) Complex structures based on sphalerite and wurtzite	198

Table 1. continued.	Table of Content	s for Structure an	Bonding in	Crystalline Materials
ruore r, commuca.	radie of coment	5 IOI Structure un	Donoing in	ci jotannie materialo

	I. More Complex Packing Sequences	202
	(i) Notation for stacking sequences	202
	(ii) The SiC polytypes	202
	J. Van der Waals Solids	204
	K. Noncrystalline Solid Structures	204
	(i) Incommensurate structures	204
	(ii) Quasicrystalline structures	204
	(iii) Liquid crystalline structures	200
	(iv) Amorphous materials	200
	L. Problems	20)
	M. References and Sources for Further Study	211
5	Chapter 5, Diffraction	217
э.	A. Introduction	219
		220
	B. Bragg's Formulation of the Diffraction Condition	220
	C. The Scattering of X-rays From a Periodic Electron Density	
	(i) The periodic electron density	222
	(ii) Elastic scattering	225
	(iii) Scattering from many centers	230
	(iv) Equivalence of the Bragg condition and the elastic scattering condition	233
	(v) The Ewald construction	234
	(vi) Concluding remarks	236
	D. The Relationship Between Diffracted Peak Intensities and Atomic Positions	237
	(i) The structure factor	237
	(ii) Systematic absences due to lattice centering	242
	(iii) Systematic absences due to glide operators	244
	(iv) Systematic absences due to the presence of screw axes	244
	(v) Systematic absences and the reciprocal lattice	247
	E. Factors Affecting the Intensity of Diffracted Peaks	252
	(i) Measuring diffracted beam intensities	252
	(ii) Example of a structure factor calculation	254
	(iii) The atomic scattering factor	255
	(iv) The temperature factor	256
	(v) The Lorentz - polarization factor	258
	(vi) Multiplicity	259
	(vii) Computing the intensities	260
	(viii) Preferred orientation	262
	(ix) The absorption correction	263
	(x) The extinction correction	263
	F. Some Diffraction Techniques and Their Uses	264
	(i) Laue back-reflection	264
	(ii) Powder diffraction	265
	(iii) Single crystal methods	268
	(iv) Electron diffraction	270
	(v) Neutron diffraction	270
	G. Supplementary Information	270
	(i) Basics of the Fourier series	272
	(ii) Coefficients for scattering factors	272
	H. Problems	275
	I. Review Problems	283
	J. References and Sources for Further Study	285
	s. Actorenees and bources for rather Study	200

6	Chapter 6, Van der Waals Bonding	287
υ.	A. Introduction	287
	(i) Substances held together by van der Waals bonds	288
	(ii) The effect of molecular weight	289
	(iii) The effect of molecular shape	291
	B. A Physical Model for the van der Waals Bond	292
	(i) The origin of molecular attraction and repulsion	292
	(ii) The Lennard-Jones potential energy model	294
	(iii) Calculating the lattice constant, the cohesive energy, and the bulk modulus	
	(iv) Accounting for longer range interactions	300
	(v) Connecting the generalizations with the physical models	303
	C. Interactions of molecules with permanent dipole moments	306
	D. Problems	309
	E. References and Sources for Further Study	311
7.	Chapter 7, Ionic Bonding	312
	A. Introduction	313
	(i) Solids that are held together by ionic bonds	313
	(ii) The effect of charge and separation on bond strength	313
	(iii) The effect of size on the structure	314
	B. A Physical Model for the Ionic Bond	316
	(i) The formation of an ionic bond	316
	(ii) The ionization energy and electron affinity	317
	(iii) Estimating lattice energies and stability using the Born-Haber cycle	320
	(iv) The Coulombic bonding force and the ionic pair potential	322
	(v) Ionic bonding in the crystal	326
	(vi) The Madelung constant	328
	(vii) Evaluation of the Madelung constant	330
	(viii) Calculating the equilibrium separation, lattice energy, and compressibility	333
	C. Refinements to the Model	336
	(i) The van der Waals attraction	336
	(ii) The zero-point energy	337
	(iii) The crystal-field stabilization energy	337
	(iv) Polarization	341
	D. Predicting the Structures of Ionic Compounds	343
	(i) The minimum energy structure	343
	(ii) Ionic radius and coordination	345
	(iii) The influence of polarization on structure	347
	E. Electronegativity Scales	349
	F. The Correlation of Physical Models with the Generally Observed Trends	353
	G. Problems	355
	H. References and Sources for Further Study	358
	I. Pauling Electronegativities .	360
~	J. Table of Ionic Radii	361
8.	Chapter 8, Metallic Bonding	364
	A. Introduction	365
	(i) Materials that are held together by metallic bonds	366
	(ii) Variations in the bond strength	366
	(iii) Qualitative free electron theory	367

Table 1, continued. Table of Contents for Structure an Bonding in Crystalline Materials

		200
	B. A Physical Model for the Metallic Bond Free Electron Theory	368
	(i) Wave functions, operators, and expectation values	368
	(ii) Formulation of the free electron theory	371
	(iii) The energy density of states	379
	(iv) The free electron energy	381
	C. Failures of the Free Electron Theory	394
	D. Electrons in a Periodic Lattice	394
	(i) The relationship between reciprocal space and wave vector space	394
	(ii) Plotting dispersion in the reduced zone scheme	396
	(iii) The nearly free electron theory: the origin and magnitude of the energy gap	398
	(iv) Metals and insulators	402
	E. Correlation of the Physical Models with General Trends	405
	F. Problems	406
	G. Further Reading	408
9. (Chapter 9, LCAO Model for the Polar Covalent Bond	409
	A. Introduction	410
	(i) Which solids have covalent bonds	410
	(ii) The crystal structures of covalent solids	411
	(iii) The effect of polarity and separation on the bond strength and band gap	412
	B. À Physical Model For the Covalent Bond in a Molecule	413
	(i) Atomic orbitals	414
	(ii) The homopolar bond in a diatomic molecule	417
		422
	(iii) The polar covalent bond	
	(iv) Bond polarity	425
	(v) The general case	426
	C. Physical Model for the Covalent Bond in a Crystal	428
	(i) Introduction	428
	(ii) A homopolar crystal with a square lattice	428
	(iii) The effect of polarity	435
	(iv) The ccp structure	442
	(v) The sphalerite structure	455
	D. Transition Metals	458
	E. Orbital Hybridization	462
		465
	F. The Cohesive Energy of a Covalently Bonded Solid	
	G. Overview of Results From the LCAO Theory	468
	H. Structural Implications of the LCAO Model	470
	I. Problems	472
	J. Further Reading	476
10.	Chapter 10, Models for Predicting Phase Stability and Structure	477
	A. Introduction	478
	B. Compound formation	479
	(i) Miedema's Rules for Alloy Formation	479
	(ii) Villars' method for predicting compound formation	486
	C. Electron Concentration and Radius Ratio rules for Intermetallic Phases	491
	(i) Hume-Rothery rules and electron compounds	491
	(ii) Laves Phases	496
	(iii) Interstitial Compounds	499

Table 1, continued. Table of Contents for Structure an Bonding in Crystalline Materials

D. Factors that Determine Structure in Polar-Covalent Crystals	501
(i) Pauling's rules	501
(ii) The bond valence method	505
(iii) The maximum volume principle	511
(iv) Cation eutaxy	513
(v) Sanderson's description of the polar covalent bond	516
E. Structure Stability Diagrams	526
(i) Mooser-Pearson Plots	526
(ii) Phillips ionicity	531
(iii) Villars' structure stability diagrams	534
F. Problems	539
G. References and Sources for Further Study	540

Formula Unit Space group: Cell dimensions: Cell contents:	TiO ₂ , <i>titanium dioxide</i> P4 ₂ /mnm (no. 136) a = 4.594Å, $c = 2.958$ Å 2 formula units
Atomic positions:	Ti in (2a) mmm 0 0 0; $\frac{1}{2} \frac{1}{2} \frac{1}{2}$
	O in (4f) m2m $x x 0; \overline{x} \overline{x} \overline{0}$
	$\left(\frac{1}{2}+x, \frac{1}{2}-x, \frac{1}{2}\right), \left(\frac{1}{2}-x, \frac{1}{2}+x, \frac{1}{2}\right)$ x ~ 0.3
Examples	
compound $a(Å)$	$c(\dot{A})$ x compound $a(\dot{A})$ $c(\dot{A})$ x

compound	a(Å)	c(Å)	Х	compound	a(Å)	c(Å)	Х
TiO ₂	4.5937	2.9581	0.305	CrSbO ₄	4.57	3.042	
CrO ₂	4.41	2.91		CrTaO ₄	4.626	3.009	
GeO ₂	4.395	2.859	0.307	FeNbO ₄	4.68	3.05	
IrO ₂	4.49	3.14		FeSbO ₄	6.623	3.011	
β-MnO ₂	4.396	2.871	0.302	FeTaO ₄	4.672	3.042	
MoO ₂	4.86	2.79		GaSbO ₄	4.59	3.03	
NbO ₂	4.77	2.96		RhSbO ₄	4.601	3.100	
OsO ₂	4.51	3.19		RhVO ₄	6.607	2.923	
PbO ₂	4.946	3.379		CoF_2	4.6951	3.1796	0.306
RuO ₂	4.51	3.11		FeF ₂	4.6966	3.3091	0.300
SnO ₂	4.7373	3.1864	0.307	MgF_2	4.623	3.052	0.303
TaO ₂	4.709	3.065		MnF_2	4.8734	3.3099	0.305
WO ₂	4.86	2.77		NiF ₂	4.6506	3.0836	0.302
AlSbO ₄	4.510	2.961	0.305	PdF_2	4.931	3.367	
CrNbO ₄	4.635	3.005		ZnF_2	4.7034	3.1335	0.303

Formula unit Space group: Cell dimensio Cell contents: Atomic positi			CaWO ₄ I4 ₁ /a (no. 88) a = 5.24 Å, c =11.38 Å 4 formula units			
-	Ca	(4b)	0,0,1/2; 1/2,0			
	W	(4a)	0,0,0; 0,1/2,1/	,		
	0	(16f)	$x, y, z; \overline{x}, \overline{y}, z; z$	x, y + 1 / 2, 1 / 4 -	$z; \overline{x}, 1/2 - y, 1$	1/4-z;
	0	(101)	$\overline{y}, x, \overline{z}; y, \overline{x}, \overline{z};$	$\overline{y}, x + 1 / 2, z + 1 / 2$	4; y, 1/2 - x,	z + 1 / 4; + I
			x=0.25, y=0.	15, z=0.075		
Examples						
compound	ć	a(Å)	c(Å)	compound	a(Å)	c(Å)
AgReO ₄	5	.378	11.805	NaReO ₄	5.362	11.718
AgTcO ₄	5	.319	11.875	NaTcO ₄	5.339	11.869
BaMoO ₄	4	5.56	12.76	PbMoO ₄	5.47	12.18
BaWO ₄	4	5.64	12.70	PbWO ₄	5.44	12.01
BiAsO ₄	4	5.08	11.70	RbReO ₄	5.803	13.167
CaMoO ₄	4	5.23	11.44	SrMoO ₄	5.36	11.94
CdMoO ₄	4	5.14	11.17	SrWO ₄	5.40	11.90
CeGeO ₄	5	.045	11.167	ThGeO ₄	5.14	11.54
HfGeO ₄	4	.849	10.50	TlReO ₄	5.761	13.33
KReO ₄	5	.675	12.70	UGeO ₄	5.084	11.226
KRuO ₄	5.609		12.991	YNbO ₄	5.16	10.91
KTcO ₄	5	.654	13.03	ZrGeO ₄	4.871	10.570

Chapter Number and Title	Number of Lectures
1. Introduction	1.5
2. Basic Structural Concepts	1.5
3. Symmetry in Crystals	3
4. Crystal Structures	3
5. Diffraction	4
6. Secondary Bonding	1
7. Ionic Bonding	2.5
8. Metallic bonding	2.5
9. LCAO Model for the Polar Covalent Bond	4
10. Models for Predicting Phase Stability and Structure	3

Table 4 Approximate Schedule for Structure and Bonding in Crystalline Materials

Year	Mean Course Rating	Number of Students
1992	4.07	17
1993	3.65	27
1994	4.45	22
1995	4.52	23
1996	4.65	20
1997	NA	21

Table 5. Student Evaluations of the Course