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ABSTRACT

Scanning tunneling microscopy (STM) was used to determine the structure of cleaved, single
crystal surfaces of V20 5, V60 13, Mo 180 52, and Mo80 23. Constant current images were
recorded in ultrahigh vacuum and in air. By imaging well-defined surfaces that exhibit
structural and chemical similarities, and comparing the observations to the known bulk
structures, it is possible to establish a reliable interpretation for the contrast in the STM images.
A comparison of images from the V60 13(001) and the V20 5(001) surfaces clearly shows that
the surface V coordination polyhedra that are capped by vanadyl 0 can be distinguished from
those that are not. This allows vacancies in the vanadyl 0 position to be identified on cleaved
V20 5(001) surfaces. Mo 180 52(100) and Mo 80 23(010) provide models for two different
characteristic types of surface/crystallographic shear (CS) plane intersections. The shear in
Mo 80 23 lies in the (010) surface plane and creates dark contrast along the [001]. The CS
planes in Mo 180 52 , on the other hand, have components of shear both in and normal to the
(100) surface plane and create white contrast parallel to [010]. These standards for contrast
identification can be used to identify defects on inhomogeneous surfaces.

INTRODUCTION

There is a considerable body of experimental evidence supporting the idea that the
oxidation reactions catalyzed by molybdenum and vanadium oxides are influenced by the
atomic-scale structure of their surfaces and the defects that are present there [1-6]. However,
the development of a mechanistic understanding of the relationship between the structure of a
surface and its properties awaits detailed structural data. In general, both the periodic and the
defective components of the surface structure must be characterized. The periodic
characteristics of a compound surface include the composition and arrangement of the
termination layer. The defective components include bulk planar and line defects that intersect
the surface, point defects in the surface plane, and steps. Because the Mo and V oxides use
lattice 0 to oxidize hydrocarbons, characterizing the population and configuration of defects
such as 0 vacancies and crystallographic shear (CS) planes that mediate the reduction and re-
oxidation processes is especially important.

The scanning tunneling microscope (STM) provides a unique opportunity to directly
observe, in real-space, the components of the surface structure listed above. In contrast to
more energetic surface structure probes, such as low energy electron diffraction, which have
the potential to alter the labile molybdate [7] and vanadate [8] surfaces by promoting reduction
reactions, the STM interacts only very weakly with the surface and does not alter its structure.
The ability of the STM to image defect structures on inhomogeneous transition metal oxide
surfaces has been clearly demonstrated in the past [9-12]. However, it can also be said that
nonstoichiometry, structural complexity, uncertainties regarding the nature of the bonding, and
the limited number of experimental precedents all make it difficult to establish unambiguous
interpretations of observed image contrast. One of the goals of this paper is to demonstrate that
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by imaging several well-defined surfaces with related structures and comparing the
observations to the known bulk structures, it is possible to establish reliable interpretations for
high resolution STM images. Another goal is to demonstrate that defects such as 0 vacancies
and surface/CS plane intersections can be distinguished in STM images of these important
transition metal oxide surfaces.

In previous reports, we have compared the atomic-scale resolution STM images of
chemically similar, but structurally different, alkali tungsten bronzes [13-14]. In this paper, we
compare two related vanadates (V20 5 and V60 13) and two related molybdates (Mo1 80 52 and
Mo 80 23). The two molybdenum oxides investigated in this study have ordered CS planes that
occur with a known concentration and orientation. Thus, they serve as experimental models to
identify the contrast associated with surface/CS plane intersections. The two vanadates have
closely related structures that are expected to terminate in different patterns. Comparing
images of these different terminations allows us to determine the effect of singly coordinated 0
on the image contrast and what to expect from vacancies in this position.

EXPERIMENTAL

Single crystals of selected molybdate and vanadate phases were grown by chemical
vapor transport reactions in sealed, evacuated, quartz ampoules. Black, platy crystals of
Mo 180 52 were grown by transporting stoichiometric mixtures of Mo and MoO 3 powders with
12 at approximately 677 'C [15, 16]. Purple, equiaxed crystals of Mo 80 23 were also prepared
from stoichiometric mixtures of Mo and MoO3 powders. In this case, however, the reactants
were annealed isothermally, for at least five days, at 690 'C, in the presence of 12 vapor. Black
platy crystals of V60 13 were grown by transporting stoichiometric mixtures of V20 5 and V20 3
powders with TeC14 in a small temperature gradient around 600 'C [17]. Brown, lustrous
crystals of Nao.003V20 5 were grown by transporting NaxV205 powder with TeCI4 in a small
temperature gradient near 530 'C [18]. In each case, the identity of the phase and the
orientation of the crystal were established using conventional X-ray diffraction methods.

V60 13, Mo1805 2, and Mo 80 23, are all mixed valence compounds with sufficient
electronic conductivity for the high resolution STM experiments. V20 5, on the other hand, is
insulating when pure and not suitable for high resolution imaging. Its conductivity was,
therefore, increased by intercalating a small amount of Na during the crystal growth. Because
the Na resides in the interlayer spaces of the structure and donates an electron to the V20 5
framework, small concentrations increase the conductivity without altering the structure. The
composition of the samples described in this paper, determined by flame emission
spectroscopy, was Nao.003V 20 5. We have also found that dissolving Mo on the V site during
growth increases the conductivity to levels suitable for STM imaging.

Surfaces were prepared for STM imaging by cleavage. Mo 180 52 and V20 5 can be
considered layered compounds. In other words, their three dimensional structures are
composed of identical layers that are connected to each other only by weak van der Waals
bonds. These compounds are easily cleaved using adhesive tape. Mo80 23 and V60 13, on the
other hand, have strong ionic-covalent bonds in all directions and must be cleaved with a razor
blade. Because the bonding is anisotropic, the Mo 80 23(010) and the V60 13(001) surfaces are
easily exposed. The cleavage was carried out either in the ultrahigh vacuum (UHV)
environment, in a N2 filled glove bag attached to the vacuum chamber's load lock, or in air
(after which the sample was either transferred to the UHV chamber via a load-lock or imaged
in air). In one case, where all three preparations were tried on the same compound (V20 5), no
substantive differences could be observed in the images recorded in UHV. We have found that
reliable, atomic-scale imaging is only practical on very flat surfaces. Figure 1 shows an
example of a cleaved surface that is ideally suited for high resolution imaging. In general, the
cleaved surfaces examined in this study were characterized by large flat terraces separated by
unit cell height steps along high symmetry directions. All of the high resolution images
described in this paper were recorded on such terraces, far from steps.
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Figure 1. STM image of a 1.76 gim xl.33 jgm x 50 A area of a cleaved V60 13(001) surface,
recorded in UHV. The sample bias was 2.8 V and the tunnel current was 0.8 nA.

The images reported here were made in the constant current mode with clipped Pt-Ir
tips. The current and bias conditions used for each sample are specified in the image captions.
The images presented here are representative of numerous observations and were selected
based on resolution and consistency (irreproducible or infrequently observed contrast patterns
are assumed to be artifacts of the tip structure). With the exception of Fig. 2c, which was
recorded in air (images with comparable resolution have not yet been recorded in UHV), all
images were recorded in UHV. A background plane has been subtracted from each image to
remove the tilt that otherwise obscures atomic-scale features. The primary source of
dimensional error in the images is thermal drift, which tends to distort the images in the slow
scan direction (the top-to-bottom dimension). No thermal drift corrections have been applied.
In some cases, high frequency noise, smaller than any of the recognizable periodic features in
the image, has been removed.

RESULTS AND DISCUSSION

Contrast Interpretation

Before beginning a discussion of the observed contrast in the high resolution STM
images, it is appropriate to consider the electronic structure of the compounds in question. The
common features of these compounds are that they have a more than 2.0 eV band gap that
separates a filled it band and an unfilled or partially filled it* band that are formed by the
overlap of 0 2p and transition metal d orbitals [19]. The polarity of the compounds suggests
that the anti-bonding 7r* conduction band should have metal "d" character and the bonding nt
valence band should have "0 2p" character. The compounds examined in this study can all be
described as n-type semiconductors, with a high concentration of shallow donors, or as semi-
metals, with a small fraction of the 7t* conduction band states occupied. In either case, the
Fermi level is positioned near the bottom of the conduction band, more than 2 eV above the top
of the occupied states in the valence band. Considering the range of biases used in our
experiments, all images were formed by electrons tunneling to unoccupied conduction band
states (positive sample biases) or from occupied conduction band states (negative sample
biases). Therefore, all things being equal, we expect the tip to be more sensitive to the metal
atom positions than the 0 atom positions. However, the relative geometric position of the
metal and 0 atoms is also important. Tunneling occurs with a probability that has an inverse
exponential relationship to the vertical position of the atoms (and the electronic states
associated with them). Thus, adventitious positioning of the 0 atoms above the metal atoms
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might increase the sensitivity of the tip to the 0 atoms and even reverse the contrast. In
previous reports, we used a computational model to quantify the contributions of these two
factors and to simulate the image contrast. Based on these simulations, we conclude that if the
orbitals associated with the 0 atom positions make up 10 % of the conduction band density of
states, and they are positioned more than I A above the metal atoms, they will dominate the
image contrast.

The considerations discussed above allow us to clearly distinguish between the two
cases we encounter most frequently: a relatively flat surface composed of metal and 0 atoms at
the bases of inverted square pyramids and a more corrugated surface terminated by singly
coordinated apical 0 atoms that cap upright square pyramids or octahedra in an axial
orientation. On the first surface, the contrast should be dominated by the metal atoms and on
the second surface, it should be dominated by the apical 0 that eclipse the metal positions.

(a) (b)

()_ _(d)
Figure 2. (a) Image of the V 2 0 5 (001) surface recorded in UHV, sample bias = 2.0 V, current
= 0.8 nA. Vertical distance from black-to white is 2.25 A. The scale bar is 10 A. (c) Image of
the V60 13(001) surface recorded in air, sample bias = -0.65 V, current = 1.3 nA. Vertical
distance from black-to white is 1.5 A. The scale bar is 10 A. (b&d) Polyhedral structural
models for the surface to the left (not to scale). See text for explanation.
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The Vanadates

Representative STM images of the V20 5(001) and the V60 13(001) surfaces are shown
in Fig. 2. Both images have a repeat unit that nearly matches the expected lx I dimensions for
the (001) plane. Small differences, particularly in the slow scan direction, are caused by
thermal drift. The contrast in the image of V20 5(000) is dominated by lines of light and dark
contrast that run parallel to [010]. o The lines of lighter contrast are approximately 5 A wide;
they have an 11 A period and a 2 A corrugation. A smaller corrugation, within these lines of
lighter contrast, has a periodicity of 3.6 A and an amplitude of only 0.3 A. The contrast in the
image of V 6 0 13 (001) is dominated by pairs of round white features arranged in staggered rows
to form a centered rectangular pattern. The distance between the pairs is 3.6 A along [010] and
the vertical corrugation is approximately 1.5 A. We can understand the contrast in these
images by considering the bulk structures and our expectations for the way that they will cleave
(see Fig. 3).

(a)

°0
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Figure 3. (a) The structural relationship between V20 5 (left) and V60 13 (right) is shown in
projection along [010]. The V atom positions are indicated by black circles and octahedral
coordination by the 0 ligands is assumed. The shaded octahedra share edges with, and are in a
plane behind, the unshaded octahedra. (b) Termination patterns produced by assuming that the
longer, weaker bonds break along the plane indicated by the arrows in (a). See the text for
description.

V20 5 (Pmmn, a = 11.52 A, b = 3.56 A, c = 4.37 A) is the most highly oxidized
vanadium oxide and V60 13 (C2/m, a = 11.92 A, b = 3.68 A', c = 10.14 A', P = 100.870) is a
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somewhat reduced form [20]. The structures of these two compounds are closely related by a
crystallographic shear process which is thought to occur topotactically [8]; V20 5 transforms to
V60 13 by releasing 0 and shearing in the (001) plane to eliminate the vacancies. This
relationship is illustrated in Fig. 3a. In the context of the results shown in Fig. 2, it is
interesting to note the similarity of these structures in planes parallel to (001). First, the a and b
cell lengths are nearly the same. Second, the planes of octahedral groups parallel to (001)
exhibit the same linkages in both phases. Based on these similarities, we might expect the
(001) surfaces of these two compounds to be the same. There are, however, important
differences in the details of the cation coordinations.

In order to better illustrate the structural relationship between the two phases, Fig. 3
suggests that V is octahedrally coordinated in both phases. While this is true for V60 13, the V
coordination in V20 5 would more accurately be described as square pyramidal. Because the V
atoms occupy positions distorted far from the center of the octahedra, each "octahedron" has
one very short axial bond (1.58 A) and one very long bond (2.78 A). While the short "vanadyl
oxygen" bond has covalent character and is very strong, the long bond is very weak and would
be best described as a van der Waals bond [21]. This creates an undulating pathway of weak
bonds parallel to [001] that are expected to break during cleavage to produce the two identical
surfaces shown in the left-hand portion of Fig. 3b. The surface plane, therefore, consists of a
combination of inverted square pyramids and upright square pyramids capped with apical 0
atoms. The coordination around the V atoms in V60 13 , on the other hand, is far more
symmetric and this structure has no weak van der Waals bonds. This difference is obvious in
the mechanical properties of the single crystals; the V20 5 crystals are soft and micaceous while
the V60 13 crystals are far more robust. Assuming a path that breaks the fewest and longest V-
O bonds, the termination patterns shown in the right-hand side of Fig. 3b are produced by
cleavage. Thus, the primary difference between the V20 5(001) surface and these V60 13(001)
surfaces is that the V20 5(001) is terminated by a mixture of 0 at the apices of upright square
pyramids and V at the bases of inverted square pyramids, whereas the V60 13(001) surface is
terminated uniformly by one or the other structural feature. Thus, for the purposes of contrast
interpretation, we need only distinguish between the planar bases of the inverted square
pyramids and the upright square pyramids that place a vanadyl 0 2 A above the surface plane.

The models in Fig. 2b and 2d have been drawn to represent the surface structures
proposed above. A projection onto the (001) plane of V20 5 shows pairs of corner-sharing V-O
polyhedra that link along [010] by corners to form chains that link along [100] by edges. Half
of the polyhedra, the upright square pyramids capped by an apical 0 atom, are labeled with a
white circle. The other squares represent the bases of inverted square pyramids. V60 13 has the
same polyhedral linkages, as is illustrated in Fig. 2d, but all of the polyhedra are the same.
They are either octahedra capped by an apical 0 (as indicated in the figure) or they are inverted
square pyramids with a V atom exposed. Based on these proposed surface structures, we can
explain the contrast in the observed STM images. The apical 0 atoms that cap every other pair
of V-0 polyhedra on the V20 5 surface protrude more than 2 A from the surface plane and
create the dominant white contrast parallel to [010]. The minor contrast along these rows is
due to the spacing between these pairs. Thus, the upright square pyramids, capped by the
apical 0, dominate the image contrast because of their proximity to the tunneling tip. The
knowledge that there is only one type of polyhedral bonding group (either inverted square
pyramids or octahedra) on the V60 13(001) surface allows us to conclude that each group
should create the same image contrast. In fact, there is a one-to-one correspondence between
the round white features in the experimental image and the positions of the V-0 polyhedra.
While it is not possible to unambiguously assign this contrast to the 0 at the apices of
octahedral groups or to the V at the bases of the inverted square pyramids, we assume that,
based on the magnitude of the corrugations and the stability of the surface in air, this is the 0
terminated surface.

The fact that we can easily distinguish between the upright and inverted square
pyramids on the V20 5(000) surface means that we also have the opportunity to distinguish 0
vacancies in the vanadyl 0 position. Because the vacancy converts an upright square pyramid
to an inverted one, the defect should create a reduction in the vertical corrugation. Such
reductions in the corrugation have been observed in images recorded in UHV. Three images

84



are shown for comparison in Fig. 4. The images labeled (a) and (b) were recorded from the
same surface and exhibit the same periodicities. However the vertical corrugation in (a) is
2.25 A while the vertical corrugation in (b) is less than 1.0 k. Furthermore, the rows of white
contrast that dominate the image in Fig. 4a appear to be absent and only the minor corrugation
remains. The images in Figs. 4a and b were selected as nearly homogeneous examples of two
limiting cases for the contrast: those with large corrugations, as in (a), and those with small
corrugations, as in (b). The image in Fig. 4c, displayed with 2.25 A of vertical contrast, is
representative of the inhomogeneous areas that were also observed. The inhomogenous areas,
very common in larger-scale images, are characterized by low corrugation regions that exist
(and are stable over many scans) between the broken lines of white contrast along the [010]
axis.

(a) (b) (c)
Figure 4. Three images of the V20 5(001) surface recorded in UHV. (a) is identical to Fig.
2(a). (b) and (c) were recorded under similar bias and current conditions. (a) and (b) are 50 A
x 50 A areas, (c) covers a 55 A x 55 A area. The vertical range from black-to-white is 2.25 A
in (a) and (c); it is 1.0 A in (b). Sample bias = 2.0 V and current = 0.8 nA.

Figure 5. An oblique projection of the V20 5(001) surface. The V are the darker spheres and
the 0 are the white spheres. The vanadyl 0 protrude upward from the surface. Vacancies in
these spots significantly reduce the surface corrugation.

Because the high and low contrast areas can be observed in the same images, we
conclude that the contrast difference is due to a difference in the surface structure rather than a
difference in the structure of the tip. Considering the model for the surface structure shown in
Fig. 5, it is clear that vacancies in the vanadyl 0 position would lead to a reduction in the
geometric corrugation of the surface. Thus, the most likely explanation is that the low
corrugation regions in Fig. 4c correspond to regions where the singly coordinate surface 0
have been removed, the image in 4b shows an area where most or all of these atoms are
missing, and the image in 4a is of a region where most of the 0 are intact. This interpretation
is based entirely on geometric consideration, it is assumed that electronic effects play a
subordinate role. The validity of this assumption was demonstrated by contrast simulations
described in an earlier publication; the fact that the upright square pyramids are 2 A closer to
the tip overwhelms the fact that there is a lower density of states at this position [18].
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STM observations of 0 disorder on transition metal oxide surfaces are not
unprecedented [9-11]. However, the earlier cases involved crystals that were heated in
vacuum, conditions where oxygen vacancy formation is expected. In this experiment, the
surfaces were prepared by room temperature cleavage, so the disorder must be a result of the
cleavage process or the STM measurement itself. Because the observed defect structure is
stable during continuous scanning, we believe that the vacancies are created during the
cleavage process rather than by the STM measurement. Although cleavage induced
termination layer variations have been observed for compounds with three dimensional
bonding [13], they are not expected to occur in compounds with a van der Waals gap.
However, when one considers the physical and chemical properties of vanadium pentoxide, the
observation of an oxygen deficient surface is not too surprising. The energy for the formation
of a bulk oxygen vacancy, according to the reaction (in the standard Kroger-Vink notation):

O0 = VO + 2e' + 1/2 02 (g)

is known to be 1.3 eV, which makes it one of the most easily reduced transition metal oxides
[22]. The fact that 0 is removed from the lattice with relative ease is, of course, related to the
ability of V20 5 to catalyze the partial oxidation of hydrocarbons. In fact, it has been
previously suggested that these vacancies play a role in the process [23]. Thus, by further
characterizing the defect structure of this surface using real-space STM measurements, it
should be possible to determine how the structure and properties of this surface are related.

The Molybdates

The two molybdenum oxides used in this study contain ordered arrangements of CS
planes and a predictable CS plane/surface intersection pattern. Representative STM images of
the Mo 180 52 (000) and the Mo80 23(010) surfaces are shown in Fig. 6a and 6c. Both images
have a repeat unit that nearly matches the expected l x I dimensions for the surface plane,
assuming a bulk termination. Comparing the images to the bulk structures allows us to identify
the contrast associated with the surface/CS plane intersections.

The two molybdates can be described as deriving from two different fully oxidized
MoO 3 structures by crystallographic shear (CS). Mo 180 52 (P T, a = 8.145 A, b = 11.89 A, c =
21.23 A, a• = 102.67', 0 = 67.820, and y = 109.970) is a layered compound derived from the
layered a-MoO 3 structure by CS of 1(l1 To){35T} and Mo80 23 (P2/a, a = 16.88 A, b = 4.052
A, c = 13.39 A, J3 = 106.190) is a three dimensionally bonded compound that is derived from
the P-MoO 3 structure by CS of 2'(110){[20} [24-26]. As is illustrated in Fig. 7, the
Mo 180 52(100) and Mo80 23(010) planes are analogous to the (010) planes of (X- and P-MoO 3,
respectively. While these planes would be nearly indistinguishable in the fully oxidized
compounds (see Fig. 7a), they are very different in the reduced structures because of the CS
planes that intersect the surface (see Fig. 7b and 7c). Specifically, the shear operation
transforms the planar corner-sharing network into a mixture of corner and edge-sharing and in
the Mo 180 52 structure, moves a small fraction of the octahedrally coordinated Mo atoms to
tetrahedral positions.

There are, however, two key differences between these structure. The first is that
Mo 180 52 is a layered compound and like V20 5, it has a well defined planar network of weak
van der Waals bonds that break during cleavage (see Fig. 7d). These bonds are so weak that
like V20 5, it can be cleaved with tape. Therefore, we know that the surface is terminated by
singly coordinate 0 atoms at the apices of the Mo-O octahedra. Furthermore, because only
weak bonds are broken during the cleavage, the surface is unlikely to reconstruct. Mo80 23, on
the other hand, has strong ionic-covalent bonds in all three directions that must be broken
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during the cleavage process (see Fig. 7e). The second significant difference is that the shear
components that are integral to the Mo8023 structure lie in the plane of the surface and do not
create any surface relief. Thus, edge-sharing octahedra in the surface plane are created, as
shown in Fig. 7c. The shear operation integral to the Mo18052 structure, on the other hand, has
a component normal to the surface so the Mo-O octahedra share edges out of the plane of the
surface and there is a small step (1.5 A) at each surface/CS plane intersection, as shown in Fig.
7d. By comparing the bulk structures and the observed surface images, it is possible to see
how these structural differences influence the contrast in STM images.

(a)

(c) (d)
Figure 6. STM image of Mo08 23(010) and Mo18052(100) recorded in UHV, with structural
models. (a) 110 Ax 110 A image of Mo1 8052(100); sample bias = -1.65 V; current = 0.7 nA;
vertical scale from black-to-white is 2.5 A, the scale bar is 20 A (c) 75 A x 75 A image of
Mo80 23(010); sample bias = 1.3 V; current = 1.0 nA; vertical scale from black-to-white is 1.0
A, the scale bar is 15 A. The octahedra in (b) are shaded according to their relative height.
Those in (d) are shaded according to the relative axial position of the Mo atom (see text for
description).
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We consider first the Mo 180 52 (100) surface. Assuming that the surface cleaves at the
van der Waals gap and that there is no significant rearrangement, we can interpret the contrast
in terms of the known bulk crystal structure. The primary contrast is caused by a series of steps
and terraces oriented along the [010] direction with a 26 A period. There is also a series of
bright features at the edge of each step which has an 11.8 A average frequency along the
direction of the step. The topographic variation over these features is less than 1.0 A. There is
also a series of rows within each step which have a periodicity of 3.8 A and a corrugation
height of 0.4 A. Any additional features within these rows are incompletely resolved. Based
on their spacing and orientation with respect to other features, we assign the lines of contrast
with the 26 A periodicity to the surface/CS plane intersections that define the boundaries of the
unit cell. Between the CS planes, the structure of Mo18052 is nearly identical to MoO 3. Each
of these "MoO 3-like" terraces in the model in Fig. 6b is shaded differently to indicate that they
are at different vertical positions. Using the bulk structure as a model, the vertical
displacement between two terraces separated by a surface/CS plane intersection should be 1.7
A. Measured vertical displacements on the image vary from 1.5 to 2.5 K, depending on the
point of measurement.

(a)

a

(b)

XX
XXX

(d)

a

(e)

b

Figure 7. The relationship between the MoO 3, Mo18052, and Mo 802 3 structures. (a) A single
layer of the (010) plane of the 0x- and 13-MoO3 is essentially the same. Shearing (along lines
indicated by the arrows) in two different ways leads to edge-sharing configurations out of the
plane (b) and in the plane (c). These are the Mo18052, and Mo802 3 structures, respectively.
Views parallel to the surface plane show that Mo 180 52 (d) has weak bonds between the layers
while Mo 80 23 (e) has strong bonds holding the layers together.

The 3.8 A period of the contrast within the terraces correlates with both the positions of
the Mo atoms and the apical 0 atoms that cap the MoO6 octahedra. Although we expect the
apical 0 to dominate the contrast due to its closer proximity to the tunneling tip, we will simply
assume that it is the MoOx group as a whole that is responsible for the contrast. This
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interpretation is consistent with explanations of the contrast in STM images of alkali
molybdate bronzes, related compounds which can also be considered as arrangements of MoOx
polyhedra [27-29]. Thus, we assign the 3.8 A periodicity to the rows of comer sharing MoO 6
octahedra in each terrace (see Fig. 6b). This assignment leads to an explanation of the bright
contrast that occurs with an 11.8 A period at the end of every third row of octahedra. The
position and frequency of these spots correspond to the only positions on the surface where
MoO 4 tetrahedral units occur. One possible reason for the pronounced contrast difference
between the tetrahedral and octahedral units, based solely on geometric considerations, is that
while a Mo atom in the octahedral environment is well shielded from the tip by the apical
oxygen, in the tetrahedral unit there is a direct line between it and the tip which might lead to
an enhanced local density of electronic states and the enhanced corrugations. In any case, the
two coordination polyhedra are clearly discriminated.

The contrast in the STM image of Mo80 23(010) is dominated by narrow lines of black
contrast that run parallel to [100] and kink every 16.78 A. The lines are separated by 13.57 A
wide regions of white contrast. The white contrast regions are further broken up into 3 sub-
units. The vertical variations on this surface are all less than I A. Since these lines of dark
contrast have the perodicity and orientation of the CS plane/surface intersection, we conclude
that these are the shear plane positions. It is interesting to note that when there is a vertical step
at the CS plane/surface intersection, as for Mo180 52, the geometric effect creates a line of
white contrast. However, when there is no topographic elevation, the shear planes create lines
of dark contrast. This implies that the electronic density of states is diminished at these
positions, possibly because the greater density of cations along these planes traps some charge
and reduces the density of the unfilled orbitals that we are probing.

Some aspects of the contrast are not easily explained. For example, according to the
bulk model, the shear plane kinks should occur with a spatial frequency of a/2, rather than a.
Also, there is no simple explanation for the region of white contrast between the shear planes to
break up into three separate units. These contrast effects are probably related to the details of
the termination layer and the relaxations that occur there. Unlike MO180 52, there is no van der
Waals gap and the termination pattern can not be known with certainty. Furhtermore, unlike
V60 13, which also has strong 3-dimensional bonding, we do not expect a uniform termination.
The Mo atoms occupy positions that are displaced from the center of the octahedron along
[010], forming one longer (2.4 A) and one shorter (1.7 A) axial bond. Assuming the longest
(weakest) of the two bonds breaks, we can differentiate two types of polyhedra on the surface,
inverted and upright square pyramids that are terminated by apical 0. These octahedra have
been given opposite shades in Fig. 6d to indicate this difference. Although this differentiation
demonstrates that the two shear plane kink positions in the unit cell have different contiguous
environments, it does not explain why one is imaged as a dark spot and the other is not. It is
hoped that further imaging experiments and contrast simulations will resolve this issue.

CONCLUSION

Atomic-scale resolution STM observations of selected Mo and V oxide surfaces have
been discussed in terms of the bulk structures of the compounds. Through such comparisons, it
is possible to assign contrast in the images to specific surface features such as vanadyl 0, 0
vacancies, and surface/CS plane intersections. These particular structural features are of
interest because CS planes and 0 vacancies mediate the redox processes in the materials.
Thus, they are expected to be present on the surface of a working oxidation catalyst. Such a
surface is expected to have an inhomogeneous structure and a composition intermediate
between the fully oxidized forms (MoO3 and V20 5) and the stable reduced phases. By
establishing procedures for imaging these compounds at high resolution, and precedents for the
interpretation of the image contrast, we hope to enable future studies of more complex
surfaces.
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