Evolution of the Bi₂Mo₃O₁₂ (010) **Surface Following Reactions in H**₂

Figure 1: 7 minutes in 10%H₂/N₂ at 450°C

Figure 3: 30 minutes in 10%H₂/N₂ at 450°C

Figure 2: 15 minutes in 10%H₂/N₂ at 450°C

Atomic Force Microscopy (AFM) was used to study the surface changes that occur during reactions in hydrogen to the selective oxidation cataylst, $Bi_2Mo_3O_{12}$. Figure 1 is an AFM micrograph of a freshly cleaved crystal that was reacted at 450°C in $10H_2/90\%N_2$ for 7 minutes. The micrograph shows pit and precipitate formation. Figure 2 shows a crystal reacted under the same conditions for 15 minutes. The pits have straightened out and are oriented along the [001] direction. The precipitates now seem to preferentially form along the pit walls. Figure 3 shows a crystal reacted for 30 minutes and shows that the concentration of pits and precipitates has increased. Pit formation is believed to occur as a result of MoO3 volatilizing out of the crystal. X-ray diffraction shows that the precipitates are Bi₂MoO₆.

Jennifer Giocondi Advisor: Gregory S. Rohrer This work was supported by an NSF REU supplement to YIA Grant No. DMR-9458005.

100th Annual Meeting of the American Ceramic Society 3rd Place Ceramographic Competition 1998 <u>Classification</u>: Undergraduate